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A CHARACTERISATION OF NEWTON MAPS

A.BERGER™ and T. P. HILL?

(Received 10 December, 2005)

Abstract

Conditions are given for & mapT to be a Newton map, that is, the map associated
with a differentiable real-valued function via Newton’s method. For finitely differentiable
maps and functions, these conditions are only necessary, but in the smooth case, that is,
for k = oo, they are also sufficient. The characterisation rests upon the structure of the
fixed point set ofT and the value of the derivativE’ there, and it is best possible as is
demonstrated through examples.
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1. Introduction

Newton’s method (NM) for computing successive approximations of zeros of functions
is one of the most widely used methods in all of applied mathematics; variants and
generalisations also play a prominent role in numerous other discipings, 8, 9.
Conceptually, NM becomes especially transparent within a dynamical systems context.
The purpose of this brief note is to characterise, in the simplest possible setting, the
local properties of the dynamical systems thus encountered.

Throughout, letf : | — R be a differentiable function, defined on some open
intervall C R, and denote byN; its associated NM transformation, that is,

f(x)
fr(x)’

Nf(X) = X — forall x e | : f'(x) #0; (1.2)
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for N to be defined for every € |, setN¢ (x) := x wheneverf’(x) = 0.
NM for finding roots (zeros) of , that is, real numbens® with f (x*) = 0, amounts
to picking an initial pointx, € | and iteratingN¢, thus generating the sequence

Xn = Nt (Xn_1) = Nf(Xo), forall ne N,

where, here and throughout, for any mép: | — R and anyn € N, T"(X) =
T(T"(x)), provided thatT"*(x) € I, andT°%x) = x. Note thatN¢(x) = x
precisely if f (x) f’(x) = 0; that is, the only fixed points dfl; occur where eitheif

or f” vanish. Thus forf (x,) f'(x,) = 0, and only then, does NM terminatexat If

f (x,) = 0, aroot has been found, and otherwis€gl breaks down due to a horizontal
tangent to the graph of atx,, (see Figurel).

f(x), N (x)

V<

Xi, X3 . ..roots of f
f'(x3) =0

FIGURE 1. Visualising NM: The first few iterates;, x,, X3 are found graphically, both by means of
tangents to the graph df (broken line) and via the graph &f; (solid line). Note how the point; with
f’(x5) = 0 causedN; to have a discontinuity.

Clearly, if (x,) converges ta*, say, and ifN; is continuous at*, thenN¢ (x*) = x*,
that is,x* is a fixed point ofN¢, and f (x*) = 0. (The trivial alternativef = const.
is tacitly excluded here, see Lemrma below.) It is this correspondence between the
roots of f and the fixed points d; that suggests that NM be studied as a dynamical
system. Under a mild assumption, each (isolated) fixed pding attracting, that
is, limn_o Nf(Xo) = x* for all X, sufficiently close tox*. (For X, further away from
any root, the sequenda,) may exhibit a considerably more complicated long-term
behaviour P, 3, 9].) This aspect of NM is put into perspective by the main result
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of the present paper, Theoredr2 below, which completely characterises the local
dynamical properties dfl;.

2. Newton maps

The definition of a Newton map given below entails a relationship between the
analytic properties of a functiof and the analytic properties of its associated NM
transformationN¢. It is a simple fact, rarely alluded to in studies of NM, that in
general these properties are quite independent.

EXAMPLE 2.1. The function f (x) = |x|¥? is C! but notC?, yet it has aC> NM
transformation, nameli; (x) = x/3.

ExAMPLE 2.2. It is easily seen that the function

exp(—x~2+ x| + cogx?)) if x #0,

f(x) =
*) 0 if x=0,

is C>, and bothf and f’ vanish only aix* = 0. Nevertheless

—1= Iimigf N¢(X) < limsupN¢(x) =1,

X—0

henceN; is not evercontinuousat x*.

Since Ny may fail to be continuous even if is C*®, in order to ensure the
applicability of NM, some explicit assumption on the smoothnesslphas to be
imposed. To formulate such conditions concisely,Net = N U {co} and stipulate
thatoo ' :=0andoo 4+ j = co forall j € N.

In view of (1.1), for N¢ to beC' for somel € N, one might demand thdt be at
leastC'*1, but Example®.1and2.2show that this assumption is neither necessary nor
sufficient. Simply imposing further conditions d also seems problematic as long
as it is not clear whether any such condition is satisfied for a reasonably large class
of functions. Thus it is inevitable to address the following general inverse problem:
Given aC' mapT, does there exist a functioh such thafl = N;?

DEFINITION 2.3. Let | C R be an open interval, arlde N.. AmapT € C'(l) is
called aNewton magfassociated with ), if T = N¢ for some differentiable function
f:1 = R.

Clearly, not everyT e C'(l) is a Newton map, even if = oo, as the trivial
exampleT (x) = —x shows, for which evenyf with Ny = T lacks differentiability at
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x* = 0. As will become clear shortly, most maps are not Newton, but a satisfactory
characterisation is not available for finitely differentiable maps. However, in the
smooth case, that is, for= oo, there is a simple characterisation of Newton maps, as
provided by Theoren3.2 below.

For any mapr, denote by FiKT ] the set of fixed points of , that is, FiXT] :=
{x e I : T(x) = x}, and say that FixT ] is attractingif lim ,_. .. T"(Xo) € Fix[T] for
all xq sufficiently close to FiKT].

LEMMA 2.4. Let f : | — R be differentiable, and assume thdt is continuous.
ThenFix[N¢] is either empty or §possibly one-pointinterval, in the latter case,

N¢(X) — x*

limsup — =4 forsomes € [0, 1] (2.1)
holds for every* € Fix[N;].
PrOOF It will first be shown that both setZ, := {x € | : f(X) = 0} and

Z;:={x el : f'(x) =0} of zeros of f and f’, respectively, are (possibly empty or
one-point) subintervals df. Moreover, ifZ; # |, that is, if f is not constant, then

Z1 C Zy; in fact, the two sets coincide unlegs contains exactly one point, in which
caseZ; may be empty. Since HN] = Zy U Z; the first part of the lemma follows

immediately from this.

If Z; =1, then FiYN¢] = I, so letZ; # ¢ be different froml. Picka € Z,,
suppose, by way of contradictiorf,(a) # 0 and, without loss of generality, that
b:=supx >a: f(y)= f(a) forally € [a, x]} belongstd . Clearly, f (b) = f(a)
andf’(b) = 0, henceN¢ (b) = b. By the Mean Value Theorem there exists a sequence
b, \{ b such that O< | f'(b,)| < 1 for all n. But then

liminf [N¢ (b)) —b| = lim [f(by)| = [f0)=[f@] >0,

clearly contradicting the continuity dil;. Thereforef(a) = 0, henceZ; C Z,.
If a4 < a, both belong toZ, then, by the previous argument and the Mean Value
Theorem, Z, contains a point strictly betweesy anda,. Since Z, is closed, it
contains, with any two points, the whole segment joining these points. Zhissan
interval. If Z, is not a singleton theZ, C Z; and thereforez, = Z;. The latter
equality also holds iZ, is one-point becausg; # @. Finally, if Z; is empty then
clearly Z, cannot contain more than one point.

Assertion 2.1) is trivially true if x* is an interior point of FixN¢]. Without loss of
generality therefore assume thdtis, say, aright boundary point of FigN] = Z,.
Choosées > 0 so small thatl := |x*, x* +6] C | and, forO<t < §, let

Np(X* 1) — x*

h(t) := t , 2.2)
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the functionh is continuous on0, 8], andh(t) # 1 for allt > 0. Sincex # N¢(X)
forx € J,

') 1

= for all J
00~ XN orall x e J,

which after integrating both sides froxto x* 4 8, and using the auxiliary functiom
defined in R.2), can be written as

s 1 dt
o« 1—h)t

f(xX) = f(X*+6) exp(—/ ) , forall x € J. (2.3)

Assumef (x* 4+ 8) > 0 without loss of generality. Ifi(t) > 1 forallt > 0, then @.3)
implies thatf (x*) # 0, contradictingx* € Zy. Thush(t) < 1 forallt > 0, and in
particular

N _ *
limsuph(t) = lim supM <1l
N0 XN X — X*

ijeNJmMmgQawa—ﬁﬂ:amm(—Lﬁwdquaw

f f(x* ¥ j—=1—jh

) _ = (X _+ %) exp / Jij(t)g , forall xeJ. (2.4)
(X —x*)) ) e 1—=ht) t

To bound limsup_, h(t) from below, picke > 0 and assume théait) < —e for all
sufficiently smallt > 0. In this case,4.4) with ] = 1 shows that

(X — X (X) > F(xX* +8)8 M (x — x*)FHO T 5 00, asx \ X*,

which contradicts the differentiability of at x*. Sincee > 0 was arbitrary,
limsup. o h(t) > 0. O

REMARK. (i) Lemma2.4 should be contrasted with the simple fact that for
everyclosed sefA C R there exists £ mapT with T(l) Cc | and FiXT] = AN .

(i) Under the conditions of Lemma.4 there is no analogue t® (1) for the
corresponding lim inf which, as simple examples show, can be any number between,
and including, the trivial boundsoo ands.

As pointed out earlier, the applicability of NM rests on the correspondence between
the roots off and the fixed points oy — andthe attractiveness of the latter. Mere
continuity of Ny does not guarantee that i ] is attracting.
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EXAMPLE 2.5. Consider theC?! function

32 IO R i
F0) = IX] exp( ot smtdt) if x#£0,
if x=0,

for which the associated NM transformation

{x(1~|— 2sin(1xI™1))/(3+ 2sin(1x|"Y)) if x #0,
Nt (X) = .
0 if x=0,

is continuous yet obviously n@*. The only fixed point ofN¢, and correspondingly
the only root off andf’, isx* = 0. Since, for every € N, the pointst2/(z (4] — 1))
are 2-periodic, FikN¢] = {0} is not attracting.

Thus while FiXN;] is topologically simple wheneveX; is continuous, to make
NM practical for approximating zeros, more smoothness is required. Only the case of
N¢ being at leas€* will therefore be considered from now on. (For the same reason,
the legitimate casle= 0 has been excluded from Definiti@n3.) Also, the properties
of N{, albeit not completely determined by the smoothnes$,ado depend on the
latter. To describe this dependence, for every N, define the set

Av:=1{0,1/2,2/3,...,1- kU1 - k™ 1], (2.5)
andnotethaf0, 1] = A1 D A D - D A ={1—j1: ] eNg.

LEMMA 2.6. Let f : | — R be differentiable, and assume thdt € C(1). Then
Fix[N¢] is either empty or an attractin¢possibly one-pointinterval. Moreover, if
Fix[N¢] # ¥ and f € CX(1) withk e N then

Ni (FixX[N¢]) = {8} for somes € Ay. (2.6)

PROOF. The assertions are trivially true ff is constant or FiN¢] = ¢. Therefore
assume thaf is not constant and Fii¢] is not empty, hence a subinterval lofby
Lemmaz2.4. If x* is an interior point of FikN¢] then N} = 1 in a neighbourhood
of x*, and the assertion is again true. Thus assume without loss of generaligy that
is aright boundary point of FikN¢]. By Lemma2.4, N{ (x*) € A;, SoX* obviously
is attracting from the right, unless perhaps fy(x*) = 1. In the latter case, with
the notation introduced in the proof of Lemmn2a4, the functionh defined in @.2),
supplemented b(0) := N} (x*) = 1, is continuous ofi0, §] and can be written as
h(t) = 1 — H(t), whereH is also continuous ofD, §], andH (t) # 0 unlesg = 0.
With this, 2.3) takes the form

8

f(x):f(x*+6)exp(—/ ! ) forall x € J.

_x TH(D)
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Sincef (x*) = 0andf (x* +§) # 0, the integrayo5 dt/(tH(t)) must diverge totoo.
As H is continuous and, except possiblyt at 0, does not change sigHl,(t) > 0 and
soh(t) < 1 whenever O<t < 8. FromN; (x* +1t) — x* =th(t) <t andh(0) =0t
follows thatx* < N (Xo) < Xo and thereforeNf(xo) \( x* provided thatx, € J. In
other wordsx* is attracting from the right.

It remains to verify 2.6) for f € C¥(l). To this end, assume first thiat< oo and
f(x) = f'(x*) =--. = f®O(*) = 0. In this case, sincé is C¥, the left-hand side
in (2.4) with j = k tends to a finite limit ag \, x*. Consequently,

)
Iim/ k —1— kh(t) dt

lim — < 4o00. (2.7)

1-h) t

If h(0) < 1— k™1, then the integrand ir2(7) would eventually be positive neie= 0,
which clearly is impossible. Thereforg0) > 1 — k=, Sinceh(0) < 1 by the same
argument,

N;(x*) =h(0) € [L- k™, 1] C Ay

If Kk = oo and f9(x*) = 0 for all j € N, then similar reasoning shows that
N{(x) € e[l — 751 = {1} C Aw.

Finally assume thaf (x*) = f'(x*) = --- = fO(x*) = 0 yet fU+V(x*) £ 0
for somej with 0 < j < k. The same argument as before withreplaced by;j
shows thatN} (x*) € [1— (j + 1)1 1]. If h(0) > 1 — (j + 1) 7%, then @.4) with j
replaced byj + 1 would imply that lime 4 (x — x*)~U+ f (x) = 0, which contradicts
fUD(x*) £ 0. ThusN/ (x) =h(0) =1— (j + D' € A, C Ay O

ExampLE 2.7. Lemma2.6is best possible in the following sense: For every N,
ands € Ay there exists &£ function f with Ny € C* having a single fixed point*
such thatN} (x*) = §. Fork € N ands € A¢\{1} lety = (1 — §)~* and consider the
function

X7 (14 2k + 4) " XENEHO sin(x 7)) if 0 < [x] < 1,

f(x) =
*) if x=0,

where, for non-integey, each argument has to be replaced bix|. Taking| =
1—1, 1], itis readily checked thaf € C¥(1) andN; € C*(l). Moreoverx* =0 is
the only fixed point oN¢ in I, andN} (x*) = 1— y ! = §. For§ = 1, an example is
provided by theC* function

f(X) — efl/‘xl + %ef(k+4)/‘xl Sln(el/lx‘)’

for which N; is C!, hasx* = 0 as its only fixed point, andl;(x*) = 1. Simple
examples in the cade= oo are f (x) = x” for § < 1, andf (x) = exp(—|x|™1) for
8 = 1, respectively.
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An important special case for which Lemra can be strengthened is the case of
a root of finite multiplicity. Recall thax* € | is a root of f € C*(I) of multiplicity
j eNif f(x) = (x—x*)Ig(x) forall x e I, whereg € CX(I) andg(x*) # 0.

LEMMA 2.8. Let x* be a root of f e CX(l) of finite multiplicity j. Then, for
some open interval C | containingx*, Ny € C<1(J), andN{(x*) = 1— j~%in
particular, Fix[N¢] N J = {x*} is attracting.

PROOF. Since f (x) = (x — x*)Ig(x) for someg e C* with g(x*) # 0,

(j = Do) + (x — x)Hgx)

Nt (X) — X* = (X — x¥) 900+ X—xg 0 (X — x*h(x), (2.8)

whereh is C*~1 on some open interval C | containingx*, and
N;(x*) =h(x*)=1—j*%

Thus, forJ chosen sufficiently small, FiN:] N J = {x*}, and the fixed poink*
clearly is attracting. O

3. Main theorem

LemmaZ2.6 contains necessary conditions for a map to be Newton. In general it
is too much to expect that evefly € C*(l) whose fixed point set is attracting and
satisfies 2.6) would be a Newton map associated with some C*(1).

ExampLE 3.1. Let| =] — 1, 1] and consider the map

T(0 = x/log x| i_f 0 < |x] <1,
0 if x=0,

which hasx* = 0 as its only and attracting fixed point and, with(x*) := 0, is
Clon . ObviouslyT'(x*) € A for allk € N,,. Suppose thaN; = T for some
f € CX(1). Then, with some nonzero constaiit

f(x) =Cx(1—logx), forall x:0<x <1

Clearly, this function cannot be extended to evatiferentiablefunction onl. Thus
N¢ # T for every f € CK(l). The fact that in this exampl& is barelyC? is not
important, as it is easy to find similar examples witlshowing anyfinite degree of
differentiability: For every € N (andk € N,.) there exist map3 e C'(I) such that
T'(FiX[T]) = {8} with § € A, yetN; # T forall f € CX(l).
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Example3.1shows that there is no hope for a converse of Ler@rb#o hold, even
if N is assumed to be more regular tfah However, the situation is much clearer
for smooth maps, that is, for= co. In this case, the converse of Lemra® does
actually hold, that is, the stated conditions are also sufficient.

THEOREM 3.2. Letk € N, and suppos& € C>(l). ThenT is a Newton map,
associated withf e C*(1), if and only if Fix[T] either is empty or an attracting
(possibly one-pointinterval, and

T'(Fix[T]) = {8}, forsomes € Ay. (3.1)

Moreover, the functionf is uniquely determined up to a multiplicative constant if
eithers € {0,1/2,1/3,...,1— k™ 1}\{1} or the setl \ Fix[T] is connected.

PrOOF If T is a Newton map then, by Lemn2a6, Fix[T] is an attracting interval
(which may be empty or one-point), argl{) holds. Thus only the converse statement
and the uniqueness assertion have yet to be proved. To this end, three cases will b
distinguished; throughout Igf(x) := x — T(X).

Case 1.Assume that FiKT ] = . Theng is nonvanishing an€*> on |, and so is

f(x)—ex(/xﬂ> forall x € |
BV ATGYA ’

whereg is any pointinl . Sinceg is C* and does not vanish dn the solutionf of the
first-order ODEf’/f = 1/g, or equivalentlyN; = T, is unique up to multiplication
by a constant.

Case 2.Assume thak* € Fix[T] andT'(x*) = § with § € Ax\{1}. Clearly this
implies that FiXT] = {x*}, andT can be written as

T(X) =X 4+ 8(X —X*) + (1 —8)(X — x*)?h(X),
with a uniquely determinetli € C*. Note that(x — x*)h(x) # 1forallx € I. Let
y = (1 —8)71, pick pointsx—, x* € | with x~ < x* < x*, and definef : | — R by
cr(xt — x*)” exp(— fxX+ dt/g(t)) if X > x*,
f(x):=10 if x = x*, (3-2)
c(x* — x7)” exp( /) dt/g()) if X < x*;

herec™, ¢~ are nonzero real constants. Sinceis the only fixed point ofT in | it
follows that f € C>(1\{x*}), andN; = T. By using the identity

< dt

(X —x5)” = (xT — x*)” exp(—y/ m) , forall x > x*, (3.3)
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a short computation yields

X+

h(t) dt

X —x"7f(x)=c" exp(—y/ m) , forall x > x*.

An analogous computation far < x* yields

x h(t) dt

X*=x)7"f(X)=c¢c" exp(y /X m) , forall x < x*.
Since the integranti(t) /(1 — (t — x*)h(t)) is C* on I, both one-sided limits for
Ix — x*|7" f (x), asx approacheg*, are finite and nonzero. &= 1 — j~! for some

1 < j < kthen, forf to beC! on |, these two one-sided limits have to be equal or,

equivalently,
. e h(t) dt
- — (—Dict — -
¢ b eXp< ’/X 1—(t—x*)h<t>>
must hold. In the latter case, for alle |,

. o h(t) dt
f(x) = c"(x — x¥)/ exr)(—l/ m>

which showsf € Ck(I). Since the two-parameter family defined $13) contains all
solutions of Ny = T onx < x* andx > x* separately, the solution df; = T is
unique up to multiplication by a nonzero constaitif {0, 1/2,1/3, ..., 1-k 1}\{1}.

If, on the other hand > 1 — k%, and correspondingly > k, thenf e C*(I) for
any choice of the constants, ¢, and f (x*) = f'(x*) = ... = f®(x*) = 0.

Case 3. Assume thafT’(Fix[T]) = {1}. If FiX[T] = I, then trivially T is the
Newton map associated with = 1. Without loss of generality, therefore, assume
thatx* is the right boundary point of F{X ]. In this case

T(X) =X — (X — x"?h(x),

whereh € C>(l) andh(x) > 0 whenevex > x*, andh(x) = O for all x € FiX[T];
in particular, thereforeh(x*) = 0. As before, pickx®™ € | with x* > x* and,
analogously to%.2), let

frx) = exp(—fx %) iF x> x,
0 if X < x*.

Using @3.3), with y replaced byj, and recalling thag(t) = (t—x*)2h(t), it follows that
limy (X — x5 fH(x) = 0forall j € N. Thusf+ e C®(l) andNy+(x) = T(X)
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TX)

TX)

A A

X+ X

FIGURE 2. ThreeC* mapsT which are not Newton maps associated with @4yunction on the interval
| because FiXT] is not attracting (left), FiKT ] is not an interval (middle), and’(x*) ¢ A for any
k € N, respectively.

whenevex > x* orx € Fix[T]. If Fix[T] has a left boundary point inas well, then
definef ~ in a “mirrored” manner and let = c* f* 4 ¢~ f =~ with nonzero constants
ct,c . Clearly,f € C>*(l)andN; = T for any choice ot™, c".

The assertion concerning uniqueness up to multiplication by a constant is now
obvious from the three cases detailed above. O

COROLLARY 3.3. Supposd € C*(l). ThenT is a Newton map, associated with
f € C>(l), ifand only ifFix[T] is either empty or an attractinfpossibly one-point
interval, and

T(Fix[T) ={1— '}, forsomej e N.. (3.4)

Moreover, f is uniquely determined up to a multiplicative constant unlgss oo
in (3.4) and the set \ Fix[T] is not connected.

The next corollary require§ to be not onlyC*> but even real-analytic. Recall that
a map igeal-analyticif it can be represented by its Taylor’s series in a neighbourhood
of every point in its domain. Real-analytic Newton maps are especially easy to
characterise. Although analyticity is a strong assumption indeed, the class of real-
analytic functions is of great historicab,[9] and practical relevance, as it contains,
for example, all rational and trigonometric functions and compositions thetedf. [
If f is real-analytic then so ill¢, provided the latter map is continuous PJ.

COROLLARY 3.4. LetT be real-analytic onl, andT (x) # x. ThenT is a Newton
map, associated with a real-analytic functidnif and only if T has at most one fixed
point in I, and, in case a fixed point* exists,T’(x*) = 1 — j~* for somej € N.
Moreover, f is unique up to multiplication by a constant.
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ExAMPLE 3.5. For f (x) = exp(—x) and f; (x) = x, j € N, clearlyN¢(x) = x+1
andNy, (x) = (1— j Y x, respectively. Thus all cases referred to in Corollawycan
actually occur.

ExampLE 3.6. The much-studied logistic map, (x) = ux(1 — x) is a Newton
map associated with a real-analytic functionlos: 10, 1[ if and only if x € M, with
M:=]-00,11U{1+ j*:j € N}. Indeed,F, = Nj, with functions

X -
f = — f 1
1 (X) (MX+1_M> oru # 1,

and f;(x) = exp(—x~1). Note that whilef, is real-analytic ol for all x € M, it

is only in the trivial casg. = 0 that f, could be extended to a real-analytic function
such thaiN; (x) = F,(x) for all x € R. ConsequentlyF, is not a Newton map oR
unlessy = 0.

ExampLE 3.7. It must be emphasised that Theor8rdand Corollarie.3and3.4
do not force the set F[X ] of aC* or real-analytic Newton map to attractall points
in |. In fact, the mapl’ may at the same time exhibit sore@bledynamical feature
other than a fixed point. For a simple concrete example consider the (real-analytic)
function

3+ x?
f(X) =X ——,
(x) R
for which the associated Newton map
4x3
Ni(X) = ———
(%) EEY

has the stable (in fact, super-attracting) 2-periodic drpi8, —+/3}.

REMARK. It is well known that if f is arational function (that is, a quotient of
two polynomials) therN; can be extended uniquely to (and studied appropriately
as) a smooth functiofl; on R, the one-point compactification &. Though finite,
Fix[N{] generally contains more than one poiait§]. Corollary3.4, however, clearly
still applies to FixN] N | for every intervall on which f is real-analytic.

The above results about Newton maps have animmediate bearing on the distributior
of the floating-point fractions of the iterat&s = N (Xo), that is, on the numerical data
generated by NM. (Seé&]for an account on the relevance of fraction parts distributions
for practical computations.) In particular, this distribution depends significantly on
the analytic properties dfl; discussed in this note; the interested reader is referred
to [4] for detalils.
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