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Abstract

Conditions are given for aCk map T to be a Newton map, that is, the map associated
with a differentiable real-valued function via Newton’s method. For finitely differentiable
maps and functions, these conditions are only necessary, but in the smooth case, that is,
for k = ∞, they are also sufficient. The characterisation rests upon the structure of the
fixed point set ofT and the value of the derivativeT ′ there, and it is best possible as is
demonstrated through examples.

2000 Mathematics subject classification: primary 37N30, 39A11, 49M15; secondary
37E05, 65H05.
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point.

1. Introduction

Newton’s method (NM) for computing successive approximations of zeros of functions
is one of the most widely used methods in all of applied mathematics; variants and
generalisations also play a prominent role in numerous other disciplines [2, 3, 6, 8, 9].
Conceptually, NM becomes especially transparent within a dynamical systems context.
The purpose of this brief note is to characterise, in the simplest possible setting, the
local properties of the dynamical systems thus encountered.

Throughout, let f : I → R be a differentiable function, defined on some open
interval I ⊂ R, and denote byN f its associated NM transformation, that is,

Nf .x/ = x − f .x/

f ′.x/
; for all x ∈ I : f ′.x/ 6= 0; (1.1)
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for Nf to be defined for everyx ∈ I , setN f .x/ := x wheneverf ′.x/ = 0.
NM for finding roots (zeros) off , that is, real numbersx∗ with f .x∗/ = 0, amounts

to picking an initial pointx0 ∈ I and iteratingN f , thus generating the sequence

xn = Nf .xn−1/ = Nn
f .x0/; for all n ∈ N;

where, here and throughout, for any mapT : I → R and anyn ∈ N, T n.x/ =
T
(
Tn−1.x/

)
, provided thatT n−1.x/ ∈ I , and T0.x/ = x. Note thatN f .x/ = x

precisely if f .x/ f ′.x/ = 0; that is, the only fixed points ofN f occur where eitherf
or f ′ vanish. Thus forf .xn/ f ′.xn/ = 0, and only then, does NM terminate atxn. If
f .xn/ = 0, a root has been found, and otherwise (1.1) breaks down due to a horizontal
tangent to the graph off at xn (see Figure1).
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FIGURE 1. Visualising NM: The first few iteratesx1; x2; x3 are found graphically, both by means of
tangents to the graph off (broken line) and via the graph ofNf (solid line). Note how the pointx∗

2 with
f ′.x∗

2/ = 0 causesN f to have a discontinuity.

Clearly, if.xn/ converges tox∗, say, and ifNf is continuous atx∗, thenNf .x∗/ = x∗,
that is,x∗ is a fixed point ofNf , and f .x∗/ = 0. (The trivial alternativef ≡ const.
is tacitly excluded here, see Lemma2.4below.) It is this correspondence between the
roots of f and the fixed points ofNf that suggests that NM be studied as a dynamical
system. Under a mild assumption, each (isolated) fixed pointx∗ is attracting, that
is, limn→∞ Nn

f .x0/ = x∗ for all x0 sufficiently close tox∗. (For x0 further away from
any root, the sequence.xn/ may exhibit a considerably more complicated long-term
behaviour [2, 3, 9].) This aspect of NM is put into perspective by the main result
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of the present paper, Theorem3.2 below, which completely characterises the local
dynamical properties ofNf .

2. Newton maps

The definition of a Newton map given below entails a relationship between the
analytic properties of a functionf and the analytic properties of its associated NM
transformationNf . It is a simple fact, rarely alluded to in studies of NM, that in
general these properties are quite independent.

EXAMPLE 2.1. The function f .x/ = |x|3=2 is C1 but notC2, yet it has aC∞ NM
transformation, namelyNf .x/ = x=3.

EXAMPLE 2.2. It is easily seen that the function

f .x/ =
{

exp
(−x−2 + |x| + cos.x−2/

)
if x 6= 0;

0 if x = 0;

is C∞, and bothf and f ′ vanish only atx∗ = 0. Nevertheless

−1 = lim inf
x→0

Nf .x/ < lim sup
x→0

Nf .x/ = 1;

henceNf is not evencontinuousat x∗.

Since Nf may fail to be continuous even iff is C∞, in order to ensure the
applicability of NM, some explicit assumption on the smoothness ofNf has to be
imposed. To formulate such conditions concisely, letN∞ = N ∪ {∞} and stipulate
that∞−1 := 0 and∞ ± j = ∞ for all j ∈ N.

In view of (1.1), for Nf to beCl for somel ∈ N∞, one might demand thatf be at
leastCl+1, but Examples2.1and2.2show that this assumption is neither necessary nor
sufficient. Simply imposing further conditions onNf also seems problematic as long
as it is not clear whether any such condition is satisfied for a reasonably large class
of functions. Thus it is inevitable to address the following general inverse problem:
Given aCl mapT , does there exist a functionf such thatT = N f ?

DEFINITION 2.3. Let I ⊂ R be an open interval, andl ∈ N∞. A mapT ∈ Cl .I / is
called aNewton map(associated withf ), if T = N f for some differentiable function
f : I → R.

Clearly, not everyT ∈ Cl .I / is a Newton map, even ifl = ∞, as the trivial
exampleT.x/ = −x shows, for which everyf with N f = T lacks differentiability at
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x∗ = 0. As will become clear shortly, most maps are not Newton, but a satisfactory
characterisation is not available for finitely differentiable maps. However, in the
smooth case, that is, forl = ∞, there is a simple characterisation of Newton maps, as
provided by Theorem3.2below.

For any mapT , denote by Fix[T] the set of fixed points ofT , that is, Fix[T] :=
{x ∈ I : T.x/ = x}, and say that Fix[T] is attracting if lim n→∞ Tn.x0/ ∈ Fix[T] for
all x0 sufficiently close to Fix[T].

LEMMA 2.4. Let f : I → R be differentiable, and assume thatN f is continuous.
ThenFix[Nf ] is either empty or a(possibly one-point) interval; in the latter case,

lim sup
x→x∗

Nf .x/− x∗

x − x∗ = Ž for someŽ ∈ [0; 1] (2.1)

holds for everyx∗ ∈ Fix[Nf ].
PROOF. It will first be shown that both setsZ0 := {x ∈ I : f .x/ = 0} and

Z1 := {x ∈ I : f ′.x/ = 0} of zeros of f and f ′, respectively, are (possibly empty or
one-point) subintervals ofI . Moreover, if Z1 6= I , that is, if f is not constant, then
Z1 ⊂ Z0; in fact, the two sets coincide unlessZ0 contains exactly one point, in which
caseZ1 may be empty. Since Fix[Nf ] = Z0 ∪ Z1 the first part of the lemma follows
immediately from this.

If Z1 = I , then Fix[N f ] = I , so let Z1 6= ∅ be different fromI . Pick a ∈ Z1,
suppose, by way of contradiction,f .a/ 6= 0 and, without loss of generality, that
b := sup{x ≥ a : f .y/ = f .a/ for all y ∈ [a; x]} belongs toI . Clearly, f .b/ = f .a/
and f ′.b/ = 0, henceN f .b/ = b. By the Mean Value Theorem there exists a sequence
bn ↘ b such that 0< | f ′.bn/| ≤ 1 for all n. But then

lim inf
n→∞

|Nf .bn/− b| ≥ lim
n→∞

| f .bn/| = | f .b/| = | f .a/| > 0;

clearly contradicting the continuity ofNf . Therefore f .a/ = 0, henceZ1 ⊂ Z0.
If a1 < a2 both belong toZ0 then, by the previous argument and the Mean Value
Theorem,Z0 contains a point strictly betweena1 and a2. Since Z0 is closed, it
contains, with any two points, the whole segment joining these points. ThusZ0 is an
interval. If Z0 is not a singleton thenZ0 ⊂ Z1 and thereforeZ0 = Z1. The latter
equality also holds ifZ0 is one-point becauseZ1 6= ∅. Finally, if Z1 is empty then
clearly Z0 cannot contain more than one point.

Assertion (2.1) is trivially true if x∗ is an interior point of Fix[Nf ]. Without loss of
generality therefore assume thatx∗ is, say, aright boundary point of Fix[Nf ] = Z0.
ChooseŽ > 0 so small thatJ := ]x∗; x∗ + Ž] ⊂ I and, for 0< t ≤ Ž, let

h.t/ := Nf .x∗ + t/− x∗

t
; (2.2)
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the functionh is continuous on]0; Ž], andh.t/ 6= 1 for all t > 0. Sincex 6= Nf .x/
for x ∈ J,

f ′.x/
f .x/

= 1

x − Nf .x/
; for all x ∈ J;

which after integrating both sides fromx to x∗ + Ž, and using the auxiliary functionh
defined in (2.2), can be written as

f .x/ = f .x∗ + Ž/ exp

(
−
∫ Ž

x−x∗

1

1 − h.t/

dt

t

)
; for all x ∈ J: (2.3)

Assumef .x∗ + Ž/ > 0 without loss of generality. Ifh.t/ > 1 for all t > 0, then (2.3)
implies that f .x∗/ 6= 0, contradictingx∗ ∈ Z0. Thush.t/ < 1 for all t > 0, and in
particular

lim sup
t↘0

h.t/ = lim sup
x↘x∗

Nf .x/− x∗

x − x∗ ≤ 1:

Fix j ∈ N. Dividing (2.3) by .x − x∗/ j = Ž j exp
(
− j

∫ Ž
x−x∗ dt=t

)
yields

f .x/

.x − x∗/ j
= f .x∗ + Ž/

Ž j
exp

(∫ Ž

x−x∗

j − 1 − jh.t/

1 − h.t/

dt

t

)
; for all x ∈ J: (2.4)

To bound lim supt↘0 h.t/ from below, pick" > 0 and assume thath.t/ < −" for all
sufficiently smallt > 0. In this case, (2.4) with j = 1 shows that

.x − x∗/−1 f .x/ ≥ f .x∗ + Ž/Ž−.1+"/−1

.x − x∗/−".1+"/−1 → ∞; asx ↘ x∗;

which contradicts the differentiability off at x∗. Since " > 0 was arbitrary,
lim supt↘0 h.t/ ≥ 0.

REMARK. (i) Lemma 2.4 should be contrasted with the simple fact that for
everyclosed setA ⊂ R there exists aC∞ mapT with T.I / ⊂ I and Fix[T] = A ∩ I .

(ii) Under the conditions of Lemma2.4 there is no analogue to (2.1) for the
corresponding lim inf which, as simple examples show, can be any number between,
and including, the trivial bounds−∞ andŽ.

As pointed out earlier, the applicability of NM rests on the correspondence between
the roots of f and the fixed points ofNf — and the attractiveness of the latter. Mere
continuity of Nf does not guarantee that Fix[Nf ] is attracting.
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EXAMPLE 2.5. Consider theC1 function

f .x/ =
{

|x|3=2 exp
(
− ∫ |x|−1

0 t−1 sint dt
)

if x 6= 0;

0 if x = 0;

for which the associated NM transformation

Nf .x/ =
{

x
(
1 + 2 sin

(|x|−1
))
=
(
3 + 2 sin

(|x|−1
))

if x 6= 0;

0 if x = 0;

is continuous yet obviously notC1. The only fixed point ofNf , and correspondingly
the only root off and f ′, is x∗ = 0. Since, for everyj ∈ N, the points±2=.³.4 j −1//
are 2-periodic, Fix[Nf ] = {0} is not attracting.

Thus while Fix[Nf ] is topologically simple wheneverNf is continuous, to make
NM practical for approximating zeros, more smoothness is required. Only the case of
Nf being at leastC1 will therefore be considered from now on. (For the same reason,
the legitimate casel = 0 has been excluded from Definition2.3.) Also, the properties
of N ′

f , albeit not completely determined by the smoothness off , do depend on the
latter. To describe this dependence, for everyk ∈ N∞, define the set

1k := {
0; 1=2; 2=3; : : : ; 1 − k−1

} ∪ ]1 − k−1; 1
]
; (2.5)

and note that[0; 1] = 11 ⊃ 12 ⊃ · · · ⊃ 1∞ = {1 − j −1 : j ∈ N∞}.
LEMMA 2.6. Let f : I → R be differentiable, and assume thatN f ∈ C1.I /. Then

Fix[Nf ] is either empty or an attracting(possibly one-point) interval. Moreover, if
Fix[Nf ] 6= ∅ and f ∈ Ck.I / with k ∈ N∞ then

N ′
f .Fix[Nf ]/ = {Ž} for someŽ ∈ 1k: (2.6)

PROOF. The assertions are trivially true iff is constant or Fix[Nf ] = ∅. Therefore
assume thatf is not constant and Fix[Nf ] is not empty, hence a subinterval ofI , by
Lemma2.4. If x∗ is an interior point of Fix[Nf ] then N ′

f ≡ 1 in a neighbourhood
of x∗, and the assertion is again true. Thus assume without loss of generality thatx∗

is a right boundary point of Fix[Nf ]. By Lemma2.4, N ′
f .x

∗/ ∈ 11, sox∗ obviously
is attracting from the right, unless perhaps forN ′

f .x
∗/ = 1. In the latter case, with

the notation introduced in the proof of Lemma2.4, the functionh defined in (2.2),
supplemented byh.0/ := N ′

f .x
∗/ = 1, is continuous on[0; Ž] and can be written as

h.t/ = 1 − H.t/, whereH is also continuous on[0; Ž], andH.t/ 6= 0 unlesst = 0.
With this, (2.3) takes the form

f .x/ = f .x∗ + Ž/ exp

(
−
∫ Ž

x−x∗

dt

t H.t/

)
; for all x ∈ J:
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Since f .x∗/ = 0 and f .x∗ + Ž/ 6= 0, the integral
∫ Ž

0 dt=.t H.t//must diverge to+∞.
As H is continuous and, except possibly att = 0, does not change sign,H.t/ > 0 and
soh.t/ < 1 whenever 0< t ≤ Ž. FromN f .x∗ + t/− x∗ = th.t/ < t andh.0/ = 0 it
follows thatx∗ < N f .x0/ < x0 and thereforeNn

f .x0/ ↘ x∗ provided thatx0 ∈ J. In
other words,x∗ is attracting from the right.

It remains to verify (2.6) for f ∈ Ck.I /. To this end, assume first thatk < ∞ and
f .x∗/ = f ′.x∗/ = · · · = f .k/.x∗/ = 0. In this case, sincef is Ck, the left-hand side
in (2.4) with j = k tends to a finite limit asx ↘ x∗. Consequently,

lim
"↘0

∫ Ž

"

k − 1 − kh.t/

1 − h.t/

dt

t
< +∞: (2.7)

If h.0/ < 1− k−1, then the integrand in (2.7) would eventually be positive neart = 0,
which clearly is impossible. Thereforeh.0/ ≥ 1 − k−1. Sinceh.0/ ≤ 1 by the same
argument,

N ′
f .x

∗/ = h.0/ ∈ [1 − k−1; 1] ⊂ 1k:

If k = ∞ and f . j /.x∗/ = 0 for all j ∈ N, then similar reasoning shows that
N ′

f .x
∗/ ∈ ⋂ j ∈N[1 − j −1; 1] = {1} ⊂ 1∞.

Finally assume thatf .x∗/ = f ′.x∗/ = · · · = f . j /.x∗/ = 0 yet f . j +1/.x∗/ 6= 0
for some j with 0 ≤ j < k. The same argument as before withk replaced byj
shows thatN ′

f .x
∗/ ∈ [1 − . j + 1/−1; 1]. If h.0/ > 1 − . j + 1/−1, then (2.4) with j

replaced byj +1 would imply that limx↘x∗.x − x∗/−. j +1/ f .x/ = 0, which contradicts
f . j +1/.x∗/ 6= 0. ThusN ′

f .x
∗/ = h.0/ = 1 − . j + 1/−1 ∈ 1∞ ⊂ 1k.

EXAMPLE 2.7. Lemma2.6is best possible in the following sense: For everyk ∈ N∞
andŽ ∈ 1k there exists aCk function f with Nf ∈ C1 having a single fixed pointx∗

such thatN ′
f .x

∗/ = Ž. Fork ∈ N andŽ ∈ 1k\{1} let  = .1 − Ž/−1 and consider the
function

f .x/ =
{

x
(
1 + .2k + 4/−1x.1+ /.1+k/ sin.x− /

)
if 0 < |x| < 1;

0 if x = 0;

where, for non-integer , each argumentx has to be replaced by|x|. Taking I =
] − 1; 1[, it is readily checked thatf ∈ Ck.I / andN f ∈ C1.I /. Moreover,x∗ = 0 is
the only fixed point ofNf in I , andN ′

f .x
∗/ = 1−  −1 = Ž. ForŽ = 1, an example is

provided by theCk function

f .x/ = e−1=|x| + 1

2
e−.k+4/=|x| sin

(
e1=|x|);

for which Nf is C1, hasx∗ = 0 as its only fixed point, andN ′
f .x

∗/ = 1. Simple
examples in the casek = ∞ are f .x/ = x for Ž < 1, and f .x/ = exp.−|x|−1/ for
Ž = 1, respectively.
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An important special case for which Lemma2.6can be strengthened is the case of
a root of finite multiplicity. Recall thatx∗ ∈ I is a root of f ∈ Ck.I / of multiplicity
j ∈ N if f .x/ = .x − x∗/ j g.x/ for all x ∈ I , whereg ∈ Ck.I / andg.x∗/ 6= 0.

LEMMA 2.8. Let x∗ be a root of f ∈ Ck.I / of finite multiplicity j . Then, for
some open intervalJ ⊂ I containingx∗, Nf ∈ Ck−1.J/, and N ′

f .x
∗/ = 1 − j −1; in

particular, Fix[Nf ] ∩ J = {x∗} is attracting.

PROOF. Since f .x/ = .x − x∗/ j g.x/ for someg ∈ Ck with g.x∗/ 6= 0,

Nf .x/− x∗ = .x − x∗/
. j − 1/g.x/+ .x − x∗/g′.x/

jg.x/+ .x − x∗/g′.x/
= .x − x∗/h.x/; (2.8)

whereh is Ck−1 on some open intervalJ ⊂ I containingx∗, and

N ′
f .x

∗/ = h.x∗/ = 1 − j −1:

Thus, for J chosen sufficiently small, Fix[N f ] ∩ J = {x∗}, and the fixed pointx∗

clearly is attracting.

3. Main theorem

Lemma2.6 contains necessary conditions for a map to be Newton. In general it
is too much to expect that everyT ∈ C1.I / whose fixed point set is attracting and
satisfies (2.6) would be a Newton map associated with somef ∈ Ck.I /.

EXAMPLE 3.1. Let I = ] − 1; 1[ and consider the map

T.x/ =
{

x=log |x| if 0 < |x| < 1;

0 if x = 0;

which hasx∗ = 0 as its only and attracting fixed point and, withT ′.x∗/ := 0, is
C1 on I . ObviouslyT ′.x∗/ ∈ 1k for all k ∈ N∞. Suppose thatNf = T for some
f ∈ Ck.I /. Then, with some nonzero constantC,

f .x/ = Cx.1 − log x/; for all x : 0< x < 1:

Clearly, this function cannot be extended to even adifferentiablefunction onI . Thus
Nf 6= T for every f ∈ Ck.I /. The fact that in this exampleT is barelyC1 is not
important, as it is easy to find similar examples withT showing anyfinite degree of
differentiability: For everyl ∈ N (andk ∈ N∞) there exist mapsT ∈ Cl .I / such that
T ′.Fix[T]/ = {Ž} with Ž ∈ 1k, yet Nf 6= T for all f ∈ Ck.I /.
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Example3.1shows that there is no hope for a converse of Lemma2.6to hold, even
if Nf is assumed to be more regular thanC1. However, the situation is much clearer
for smooth maps, that is, forl = ∞. In this case, the converse of Lemma2.6 does
actually hold, that is, the stated conditions are also sufficient.

THEOREM 3.2. Let k ∈ N∞, and supposeT ∈ C∞.I /. ThenT is a Newton map,
associated withf ∈ Ck.I /, if and only if Fix[T] either is empty or an attracting
(possibly one-point) interval, and

T ′.Fix[T]/ = {Ž}; for someŽ ∈ 1k: (3.1)

Moreover, the functionf is uniquely determined up to a multiplicative constant if
eitherŽ ∈ {0; 1=2; 1=3; : : : ; 1 − k−1}\{1} or the setI \ Fix[T] is connected.

PROOF. If T is a Newton map then, by Lemma2.6, Fix[T] is an attracting interval
(which may be empty or one-point), and (3.1) holds. Thus only the converse statement
and the uniqueness assertion have yet to be proved. To this end, three cases will be
distinguished; throughout letg.x/ := x − T.x/.

Case 1.Assume that Fix[T] = ∅. Theng is nonvanishing andC∞ on I , and so is

f .x/ = exp

(∫ x

¾

dt

g.t/

)
; for all x ∈ I ;

where¾ is any point inI . Sinceg isC∞ and does not vanish onI , the solutionf of the
first-order ODEf ′= f = 1=g, or equivalently,Nf = T , is unique up to multiplication
by a constant.

Case 2.Assume thatx∗ ∈ Fix[T] andT ′.x∗/ = Ž with Ž ∈ 1k\{1}. Clearly this
implies that Fix[T] = {x∗}, andT can be written as

T.x/ = x∗ + Ž.x − x∗/+ .1 − Ž/.x − x∗/2h.x/;

with a uniquely determinedh ∈ C∞. Note that.x − x∗/h.x/ 6= 1 for all x ∈ I . Let
 = .1− Ž/−1, pick pointsx−; x+ ∈ I with x− < x∗ < x+, and definef : I → R by

f .x/ :=




c+.x+ − x∗/ exp
(
− ∫ x+

x dt=g.t/
)

if x > x∗;

0 if x = x∗;

c−.x∗ − x−/ exp
(∫ x

x− dt=g.t/
)

if x < x∗;

(3.2)

herec+; c− are nonzero real constants. Sincex∗ is the only fixed point ofT in I it
follows that f ∈ C∞.I \{x∗}/, andNf = T . By using the identity

.x − x∗/ = .x+ − x∗/ exp

(
−

∫ x+

x

dt

t − x∗

)
; for all x > x∗; (3.3)
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a short computation yields

.x − x∗/− f .x/ = c+ exp

(
−

∫ x+

x

h.t/ dt

1 − .t − x∗/h.t/

)
; for all x > x∗:

An analogous computation forx < x∗ yields

.x∗ − x/− f .x/ = c− exp

(


∫ x

x−

h.t/ dt

1 − .t − x∗/h.t/

)
; for all x < x∗:

Since the integrandh.t/=.1 − .t − x∗/h.t// is C∞ on I , both one-sided limits for
|x − x∗|− f .x/, asx approachesx∗, are finite and nonzero. IfŽ = 1 − j −1 for some
1 ≤ j ≤ k then, for f to beC j on I , these two one-sided limits have to be equal or,
equivalently,

c− = .−1/ j c+ exp

(
− j

∫ x+

x−

h.t/ dt

1 − .t − x∗/h.t/

)

must hold. In the latter case, for allx ∈ I ,

f .x/ = c+.x − x∗/ j exp

(
− j

∫ x+

x

h.t/ dt

1 − .t − x∗/h.t/

)
;

which showsf ∈ Ck.I /. Since the two-parameter family defined in (3.2) contains all
solutions ofNf = T on x < x∗ andx > x∗ separately, the solution ofNf = T is
unique up to multiplication by a nonzero constant ifŽ ∈ {0; 1=2; 1=3; : : : ; 1−k−1}\{1}.

If, on the other hand,Ž > 1− k−1, and correspondingly > k, then f ∈ Ck.I / for
any choice of the constantsc+; c−, and f .x∗/ = f ′.x∗/ = · · · = f .k/.x∗/ = 0.

Case 3. Assume thatT ′.Fix[T]/ = {1}. If Fix[T] = I , then trivially T is the
Newton map associated withf ≡ 1. Without loss of generality, therefore, assume
thatx∗ is the right boundary point of Fix[T]. In this case

T.x/ = x − .x − x∗/2h.x/;

whereh ∈ C∞.I / andh.x/ > 0 wheneverx > x∗, andh.x/ = 0 for all x ∈ Fix[T];
in particular, therefore,h.x∗/ = 0. As before, pickx+ ∈ I with x+ > x∗ and,
analogously to (3.2), let

f +.x/ :=
{

exp
(
− ∫ x+

x
dt

g.t/

)
if x > x∗;

0 if x ≤ x∗:

Using (3.3), with replaced byj , and recalling thatg.t/ = .t−x∗/2h.t/, it follows that
limx↘x∗.x − x∗/− j f +.x/ = 0 for all j ∈ N. Thus f + ∈ C∞.I / andN f +.x/ = T.x/
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x∗x∗
1 x∗

2 xxx

Fix[T]

Fix[T
]

II I

T.x/T.x/T.x/

FIGURE 2. ThreeC∞ mapsT which are not Newton maps associated with anyCk function on the interval
I because Fix[T] is not attracting (left), Fix[T] is not an interval (middle), andT ′.x∗/ 6∈ 1k for any
k ∈ N∞, respectively.

wheneverx > x∗ or x ∈ Fix[T]. If Fix[T] has a left boundary point inI as well, then
define f − in a “mirrored” manner and letf = c+ f + + c− f − with nonzero constants
c+; c−. Clearly, f ∈ C∞.I / andN f = T for any choice ofc+; c−.

The assertion concerning uniqueness up to multiplication by a constant is now
obvious from the three cases detailed above.

COROLLARY 3.3. SupposeT ∈ C∞.I /. ThenT is a Newton map, associated with
f ∈ C∞.I /, if and only ifFix[T] is either empty or an attracting(possibly one-point)
interval, and

T ′.Fix[T]/ = {1 − j −1}; for some j ∈ N∞: (3.4)

Moreover, f is uniquely determined up to a multiplicative constant unlessj = ∞
in (3.4) and the setI \ Fix[T] is not connected.

The next corollary requiresT to be not onlyC∞ but even real-analytic. Recall that
a map isreal-analyticif it can be represented by its Taylor’s series in a neighbourhood
of every point in its domain. Real-analytic Newton maps are especially easy to
characterise. Although analyticity is a strong assumption indeed, the class of real-
analytic functions is of great historical [5, 9] and practical relevance, as it contains,
for example, all rational and trigonometric functions and compositions thereof [1, 4].
If f is real-analytic then so isNf , provided the latter map is continuous [1, 2].

COROLLARY 3.4. Let T be real-analytic onI , andT.x/ 6≡ x. ThenT is a Newton
map, associated with a real-analytic functionf , if and only ifT has at most one fixed
point in I , and, in case a fixed pointx∗ exists,T ′.x∗/ = 1 − j −1 for some j ∈ N.
Moreover, f is unique up to multiplication by a constant.
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EXAMPLE 3.5. For f .x/ = exp.−x/ and f j .x/ = x j , j ∈ N, clearlyNf .x/ = x+1
andNf j .x/ = .1− j −1/x, respectively. Thus all cases referred to in Corollary3.4can
actually occur.

EXAMPLE 3.6. The much-studied logistic mapF¼.x/ = ¼x.1 − x/ is a Newton
map associated with a real-analytic function onI = ]0; 1[ if and only if¼ ∈ M , with
M := ] − ∞; 1] ∪ {1 + j −1 : j ∈ N}. Indeed,F¼ = Nf¼ with functions

f¼.x/ =
(

x

¼x + 1 − ¼

).1−¼/−1

for ¼ 6= 1;

and f1.x/ = exp.−x−1/. Note that while f¼ is real-analytic onI for all ¼ ∈ M , it
is only in the trivial case¼ = 0 that f¼ could be extended to a real-analytic function
such thatNf¼.x/ = F¼.x/ for all x ∈ R. Consequently,F¼ is not a Newton map onR
unless¼ = 0.

EXAMPLE 3.7. It must be emphasised that Theorem3.2and Corollaries3.3and3.4
do not force the set Fix[T] of aC∞ or real-analytic Newton mapT to attractall points
in I . In fact, the mapT may at the same time exhibit somestabledynamical feature
other than a fixed point. For a simple concrete example consider the (real-analytic)
function

f .x/ = x
3 + x2

1 + x2
;

for which the associated Newton map

Nf .x/ = − 4x3

3 + x4

has the stable (in fact, super-attracting) 2-periodic orbit
{√

3;−√
3
}
.

REMARK. It is well known that if f is a rational function (that is, a quotient of
two polynomials) thenNf can be extended uniquely to (and studied appropriately
as) a smooth functionSNf on SR, the one-point compactification ofR. Though finite,
Fix[SNf ] generally contains more than one point [2, 3]. Corollary3.4, however, clearly
still applies to Fix[SNf ] ∩ I for every intervalI on which f is real-analytic.

The above results about Newton maps have an immediate bearing on the distribution
of the floating-point fractions of the iteratesxn = Nn

f .x0/, that is, on the numerical data
generated by NM. (See [7] for an account on the relevance of fraction parts distributions
for practical computations.) In particular, this distribution depends significantly on
the analytic properties ofNf discussed in this note; the interested reader is referred
to [4] for details.
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