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An improved Maximum Allowable Transfer Interval
for LP-stability of Networked Control Systems

Arnulf Jentzen, Frank Leber, Daniela Schneisgen, Arno 8eigtefan Siegmund

Abstract—An elementary self-contained proof is given for an improve f/‘\c = fp = 0, implying thatw, 7 are constant between transmission
bound on the maximum allowable transfer interval that guarantees L?-  times. The entire system is subject to the external pertiorbay;
stability in networked control systems with disturbances. throughout it will be assumed thatis locally integrable. As detailed

Index Terms—LP-stability, networked control systems. Tp

in [2], upon introduction of the combined state = and

|I. INTRODUCTION

Networked Control System (NCS) consists of multiple feedback . . . .
A control loops sharing a serial communication channel. Wh&?cordlng to Fig. 1 can be written concisely as
compared with traditional multi-channel control, the NG&hétecture &= f(t,z,e,w), 1.1)
has the advantages of low cost, easy maintenance and griaitifie ¢ =g(t,z,e,w) (1.2)
As a consequence, analysis and design of NCS have received a | NG
of attention lately, as evidenced for instance by [1], [&], &nd the e(0;) = h(37 e(0; )) ) (1.3)
many references therein. A key feature of NCS is that, duehéo tyyheref : Rog x R™= 7 tmw — R™ andg : Ry x R Fretnw

reliance on a single channel, the overall system performamd Rne 1 . Ny x R — R™. System (1) is hybrid in that it combines
§tabi|ity may dgteriorate if the communication .is overhfayed or the differential equations (1.1), (1.2) far,e with the difference
infrequent. An important problem in the analysis of NCSyéfiere,  (jump) equation (1.3) foe at transmission times. The functidnis a
is to find rigorous yet practicable bounds for the time spamween ey ingredient of (1): it encodes the network protocol bycifyéng

transmission times up to which stability of the whole systeam oy at any transmission time access to the network is grafated
be guaranteed. Substantial progress has been made reremly jfferent nodes in the system.

termining thismaximum allowable transfer interval efficiently. The Givenzo € R™, ey € R™, a solution of the initial value problem
purpose of the present note is to further improve one pivesllt in

this regard for a special class of network protocols: In thee set- z(0) =zo, e(0)=ceo, 2
up as [2], the main result (Theorem 1) provides an upper bamd o (1) is understood to be any pait, e) of functions satisfying
the transfer interval that is universally larger than the developed (2) sych that (1.1) and (1.2) hold for almost all> 0, and (1.3)
in that paper. While the quantitative improvement is modés¢ no|gs for all j € N; implicit in the latter is thatr : Rso — R™
argument by which it is achieved is short and elementary aod t 5,4, - R-o — R™ are absolutely continuous on, resﬁectivélygo
may be useful for any future work on the subject. Though siniit 54 [ej,G;H[ for every j € N, ande(07) = limso e(6; 7;;)
spirit, the corresponding results in [1], [5], are based omewhat eyists. Here any functio” on [a,b[ with a < b will be called
different assumptions and are not immediately comparabléhe apsolutely continuous if"|(4.) i absolutely continuous for every

Y-y

network errore = the equations governing the NCS

result presented here. a < ¢ < b. Throughout it will be assumed thgt g, and the functions
fo, fe, fp, fr,gc, gp in the original NCS (see [2] for details), are
II. NETWORKED CONTROL SYSTEMS sufficiently smooth and regular for (1),(2) to have a uniqakition

Consider anNCS as described in [2], allowing for jumps andfor eachzo, eo. Also, a measurable functioH : R™* — R' from the
disturbances. The networksansmission times are (6;,),cn, with —state spac®”+ to R’ will be considered, which models the output
6o = 0 ande < 0,;41—0; < 7forall j € No, where0 < ¢ < 7. Note of the hybrid system (1).
thate > 0 is arbitrary, its sole purpose being to rule out solutionthwi  For ease of presentation, denotelby, the set of all non-negative
infinitely many jumps in finite time. The boundis referred to as the real numbers, and for every € R let (t) := max{j € Np :
maximum allowable transfer interval (MATI). At each transmission 6; < t} so that(t) = j if and only if ¢ € [0;,0;11], andt > 6,
time 6; the protocol gives access to the communication network for all ¢ € Rxo. For everyy € Li,.(R>o;R?) with d € N and
one of the internal nodes. The structure of a general NCSpiedel compact intervall C Ry, the norm||y||.»(ry With p > 1 is given
schematically in Fig. 1. At each transmission tirfie the output by (fl lly(t)||P dt)*/? where]| - || is any norm oriR?. Throughout, if
signalsu andy of, respectively, controller and plant are transmittegp > 1 theng > 1 denotes the unique number withip +1/qg = 1.
via the network, thus providing the input signalsand y to plant The main goal of this article is to establish conditions eimgu
and controller. Between transmission timesandy obey an intrinsic that the system (1) i€”-stable fromw to H(x), which means that
dynamics governed byc and fp, respectively; in the simplest case,there exist constant&’,y > 0 independent ofco € R™, eg € R™®

andw, such that
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\%M/\l/\%y w o T>| ip = fp(t,zp,u,w) }—x£|y=gp(t,xp)
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Fig. 1: A schematic model of the general NCS structure.

three main aspects: the properties of the protocol, as ibescby computation confirms the explicit formula
(1.3); the intrinsic dynamics of plant and controller, agegi by (1.1);

and the maximal time between transmissions, as measured oy 17 = In L{ +v2 <2+\fL)<1+P)
accordance with [2], the following assumptions on, respelyt the K g

protocol and the intrinsic dynamics are made with an apitgly 312v3 | 443v2 | 24v3 L 14v3 | 312v3 1
— /T2 A+ HERE 4 + + + 51z

chosen measurable functidi : R™* — R’ ¥Lp L2p 2L2p2

(AV) There exists a functiod” : No x R"™ — R>o such that ynqer the identical assumptions as in Theorem 1, stabsitgstab-
V(j,-) : R™ — Ry is locally Lipschitz (and hence almostished in [2] for

everywhere differentiable) for every € Ny, and there exist 1 L
_ Ll Lty 4
positive constant®3;, L > 0, as well asd < p < 1, such that T<Te= L " pL+v" “)

() By'llell € V(j,e) < Bille| for all (j,¢e) € Ng x R™;
(ii) For almost allt > 0 and almost alle € R™¢, and for all
(j,z,w) € Ng x R x R" Corollary 3. Under the assumptions of Theorem 1, and with
given by (4),

VeV (j,e) - g(t,z,e,w) < LV (4, €) + | H(x)|[ + Bil[w] ; Tl < Thaan (5)

That rwan is universally better (i.e. larger) thar,, is the content of

(iii) V(j + 1, h(y, e)) < pV(j,e) forall (j,e) € No x R™.  holds for everyy,L >0, p>1and0 < p < 1.
(Ap) System (1.1) isLP-stable from(V,w) to H(x) with V' as in

; Example 4 below exemplifies (5) in the benchmark example of a
(AV), that is, for someBs, vy > 0

batch reactor. Using somewhat different concepts and igaés, in

1] stability has been established for
1H @) |00, < Ba(llzoll + [0l zo0.) + MV oy L y

1— 2\ /A2 2
for all ¢ > 0. T< T = - = arctan (2 (( —pL))—i—;/(l n )2> , (6)
The assumptions (K) and (Ap) are naturally met in many situations VY- L P P

of practical importance. If so, the overall stability of (&ucially 544 in [5] for some specific class of protocols and
depends on the transmission times not being too far apai. Th

following theorem is the main result of this note. <1y = In 2

m ) (7)
where N denotes the number of nodes, and > ( satisfies
2 (L +~yN) — yNz'="N — 2L = 0. While for the batch reactor
example T, 75, > 7uwan, the authors do not know whether such
a relation holds generally. Moreover, unlike [1, Thm.1] ®ham 1
allows for disturbances. On the other hand, results in [1] can be
holds for allt > 0, provided thatr < Tyan, Whereruan is the unique easily extended to some classes of perturbed systems, tiaubar

Theorem 1. Assume that (1) satisfies {A and (Ap) for somep > 1.
Then (1) isL?-stable fromw to (H(x),e), i.e. with some constant
C,

[1H (@)l Lrro. + llellLro.g < C(llzoll + lleoll + lwllzro.n)  (3)

zero of to the system considered in Example 4. Note also that [5, 3i2j.
1 L assumes the protocol to hmiformly persistently exciting, which is
A A L A t th for the TOD protocol
Fyppp(r) =y — 4 not the case e.g. for the protocol.
Lp Lq 1—pe Example 4. The linearized model of an unstable batch reactor is
n el™ -1 1 considered in [1], [2], [4], [5] as a benchmark problem. Wheitten
7 Lpt/p in the standard form (1), the governing equations of this-irpmit-

. . R two-output system are
in the interval]0, — L™ " In p|.

. . o . t=A A
Remark 2. Sincet — F 1 p.,(7) is smooth and strictly increasing, ¢ =An® + Aize + Ws,

Twan can easily be determined numerically. For= 2 a short ¢ = Az + Asze + we,
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with w, € Lioo(R>0;R®), we € Li(R>0;R"), and constant p < oo with parameters., = 15.73, p = > for the batch reactor
matricesAi1, Az, Az21, A22 according to with TOD protocol. Figure 3 compares the various theorétiggmer
bounds onr depending ory € [10, 100] with parameterd. = 15.73,

1.38 —0.2077 6.715 —5.676 0 0 N=2p= Lf H(z) = V/2A.1z for the batch reactor with RR
—0.5914  —15.65 0 0675 —11.36 0 tocol 2
Ay, _ | —14.66 2.001 —22.38  21.62 -2.272 —25.17 pro -
= 0.048 2.001 1.343 —2.104 —2.272 0 |-
0 1 0 0 0 0
1 0 1 -1 0 0 0011 ‘
0 0O 0 O | — TMATI |
0 -11.36 0 0 i )
Ay — | ~15:73  —2272 0 0
2= 0 —-2272 0 0 |-
0 1 0 0
1 0 0 0
13.33  0.2077 17.01 —18.05 0 2517
Ao, — 05914 15.65 0 —0.675 11.36 0 T
21 = 0 0 0 0 0 o>
0 0 0 0 0 0 L ]
15.73 0 0 0 L ]
0 1136 0 0
Az = 0 0 0 0 1 ' g 1
0 0 0 0
The jump relation (1.3) is determined by the protocol. Tweular 0.009 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
choices are the so-callecbund robin (RR) and try-once-discard 1 2 8 4 5 6 7 8 ° 1
(TOD) protocols. The RR protocol is static in that it gives acces_ p
to the two internal nodésaccording to a pre-set algorithm that ISFig. 2: Comparison of the theoretical upper boundsrofor LP-
independent ot, concretely, stability as given by Theorem 1 and (4), respectively, asretfan
bl ) diag1,0,0,0] e if j is even, of p, using the TOD protocol for the batch reactor example.
76 = . . ..
it diag0, 1,0,0] e if 7 is odd;

the fact thathes(j,€)s = her(j,€)a = 0 for all j, e reflects the
underlying model assumption that only the plant output aignis
transmitted via the network whereds= w, i.e., the controller output
signal is transmitted to the plant through a separate pecfeannel.
The dynamic TOD protocol grants access depending on thelactu
value of e, concretely

diag1,0,0,0]e if |es| > |ea],

hroo(ji€) =4 -
o0 (7 €) { diag0,1,0,0le if |ez| < [ea].

Thus the node showing the greater error is given access aand
the corresponding component eff;) equals zero.

For Theorem 1 to apply, assumptionsWAand (Ap) must hold.
For L2-stability, i.e. forp = 2, it is demonstrated in [2] that this
is indeed the case with a functidn constructed fronh, with L = o ‘ ‘ ‘ ‘
15.73, p = 1/v/2, and withy = 22.52, H(x) = v/2A2:z in the RR ° @ vy % e

case andy = 15.92, H(z) = A1z in the TOD case, respectively. _. . . 2 "
Using these data, Table | shows the values-gf T and y for Fig. 3: Graphing the theoretical upper boundsofor L*-stability

both protocols, and of 5 for the RR protocol. For the batch reactor;Clnd r\]/arginggl, as given by (7|)’ (6), Theorem 1, and (4), respectively,
example the relative increase @fian over 7y is 7.2% for the RR or the batch reactor example.
and6.5% for the TOD protocol.

IV. PROOFS

‘ ‘ T TMATI T 75l The proof of Theorem 1 rests upon two lemmas that are of isitere
on their own. Lemma 5 is generalisation to impulsive systems of
the classical Gronwall inequality. Lemma 6 provides an expedient
TOD 1.0-1072 | 1.065-10"2 | 1.084-10"2 N/A estimate for a piecewise expression arising from Lemma 5 itha
instrumental in the proof of the main result.

RR 8.159-1073 | 87501073 | 8.956-10~3 | 1.052-10—2

TABLE |: Comparison of the theoretical upper boundsofor >

1 . _ R
stability as given by (4), Theorem 1, (6) and (7), respebyive Lemma 5. Let y,z € Lj,.(R>0;R) be non-negative and assume

that, for everyj € Ny, the functionz is absolutely continuous on
(05,0541 and z(0; ;) = lims\ 0 2(6;41 — 9) exists. If, with some
Figure 2 graphs the theoretical upper bounds-dor LP-stability constantsL, p > 0,

as given by Theorem 1 and (4), respectively, as a functiot ef 0 %(t) < Lz(t) 4y (¢) for almost allt > 0, and

INodes are referred to dks in [5]; in the present exampley = 2. (i) z(0j41) < pz(G{H) for all j € Np,
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then the inequality

z(t) < e tpMz

t
(0)+/ P09 (=051 (3 4
0

holds in (8) as well.

and consequently, with =

t
1% / IVa(s)|Pds <

t),

holds for allt > 0. If equality holds in (i) and (ii), then equality < L/( L(s—6;) _ 1)p71/SeL(sfo)Hy(U)”p do ds
6 0

Proof: For all¢ € [6;,0;4+1[ andj € No, assumption (i) and the

classical Gronwall lemma imply that

z(t) < eL(t=0) (0;) —|—/ eH 9y (s) ds. 9)

05

In particular, by (9) and assumption (ii),

2
2(0;) < pa(0) < eL(eﬂ"GH)pZ(@ja)er/ ")y (s) ds,
4

-1

and hence by induction

z(ej)SeL‘gjp’z(O)JrZi:lpJ*“l/ "0y (s)ds,

O —1

which, together with (9) ands) = k — 1 for every s € [0x_1, 0],
shows that

k
Z(t) S@Lt j _’_Zk 1 j k+l/ 6L(t75)y(8)d8+

k*l
+/ L(t—s) ( )dS
0;
¢
=" p™ 2(0) —|—/ eH =) M=)y () ds
0

holds for allt € [#;,6;+1]. Sincej € Ny was arbitrary, this proves
(8). ]

Lemma 6. Assume that the numbers L > 0 and0 < p < 1
satisfyr < —L~'Inp. Giveny € L .(R>o; R?), define functions
Y1,Y2 : Rso — R? as

t ¢
Yi(t) ::/eL(FS)y(s)ds, Ya(t) ::/eL(FS)pm*My(s) ds.
00t 0

Foreveryp > 1,if y € LY (R>o; R
and for allt > 0

) thenY1, Ys € L, (Rso;R%),

IYillzeo,g < Mllylleepos,  Y2llzeion < A2llyllzep,g, (10)
with
Lt
-1
A1 = eL p
b (11)
N A N A R +A
2T Lp Lq 1 — pel v

Proof: For all ¢ > 0, Holder’s inequality implies that

(@B < (/ eL(”)ly(S)lld8>
0

(t)

t pml
(/ elt=2) ds) / eL(tfs)Hy(s)des
0y )

(t)
t
—1 :
= [ (M0w) )7 X ly(s)II” ds,
O

<

J J

t t
-1 (/ (eL(”J”—l)pl@“dS) e ly(o)|"do
0, o

J

t
p [ () = 1 (1) Oy o) P
0;

eL-r 1) t
o / ly(s)|Pds.
p 0

In particular therefore

Ok+1 LT _ 1\p
/ IYa(s)|Pds < L7 =1
o5, p

i (Iyllzr oy 00s21)" » Yk € No,

and summation ovek yields the claimed bound ok .
To prove the estimate fdr>, note first that, by Holder's inequality
andeH — 0j <,

9
IYa(t) - V()] < / eHE=9) 50— ()] ds
0

(ty— 1 i Oivr
=30 [Ty as

J
. 9j+1L Va Oj+1 'r
- / Qa9 g / ly()I” ds
0 0

J

,jeL(tf%-)Lfl/qqfl/q(l_e—LqT)l/q”yHLp[ej’QHl]
—Lqr 1/q (ty—1
Lit—0,) [ 1 —€ E : Lry(t)—j
=e " ( Lq > j=0 (pe™) [Yllzrio;,0,41)
- 1/q
1—e Lgt
_ Z(t

with the auxiliary function

Z(t) = et emz“ 1

A bound on||Z||r o, follows from

t
/Z(s)pds =
0
t
(s)—1
_ Lp(s—0(s))
/ (=,

<t> L s—6 1 Lrk—j P
/ p( k) Z (pe™") JHy||Lp[9j’9j+1]) ds

O

(t) k—1 Lo k— P
S (S )

together with the observation that, sinpe“ <1,

(t) k—1 b P
> (e ) T lrie )
(t) k=1 kg p—1 k—1 Ky
<> 0 O(pe =) Zj (0" 00, 0,0
k— 1
<
(1—peLT> Zk 0Z

() 2

83 ||yHLP[<9]‘,9j+1] .

P
Lt\(s)—j
(pe )<> ]ly”LP[ejvejJrl]) ds

<

)i
J”yHLp 07,0511]

peL‘r

1— peLT

Lry\k—j
(pe™™) ]> Hy”ZLJP[ej,eHl]
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r \P L
< pe* p for all « > 1 andz > 1. This yields
< (252 ) Wl
P P —1 1/r z?—1 1a 1-1/ 1/p_1-1/ 1/
so that overall < » > ( 7 ) <z Ple—-1)"Pz Yz —-1)"1
Lpt 1/p Lt = —
e"PT —1 pe =z(z—1), Ve>1.
1Zllzeo, < (T) (ﬁ) llyllzeo,q - .
p p Note that (12) becomes an equalityas~ 1 or p — +oo. m
This implies that, for allt > 0, ) )
b - Proof of CoroLIIary 3: The numberr(, is the unique zero of
—Lgr\ 1/a e”” . .
1—e L9 = == A
V|l Lrp0,g < (T) 1Zl L0, + IYillLeo,e » Gq,L.p(T) VT et — LN [0,—L~'Inp[. Thus the claim
q follows once it has been demonstrated that
and proves the bound claimed f&5. [ Lr _ Lz
P . 3 V-t S S SO L T
1— peL‘r 1— peLT

Proof of Theorem 1. Note first that with the notation of Lemma

6, Fyrpp =" 2—1. Giveny,L >0,p>1,and0 < p < 1,the holds forallL > 0,p>1,0<p<1land0 <7 < —L 'Inp,

map F,.1. ., is continuous and strictly increasing ¢t —L ™" In p|
with F, 1p,»(0) = —landlim,;_p-11, , F,1,p,0(T) = +00. Thus
Twan, &S a zero ofF, 1, ,, IS uniquely determined. Assume that
T < Twan, henceyXs < 1, and define auxiliary functiong, z :
R>0 — Rxg according to

2(t) = V((t)e(t), yt) = H@®)|+ Billw@)]

For these functions, assumptionsV(Ai), with [6, Corollary, p.64],
and (AV/,iii) imply that
dz

(1) < La(t) + y(0),

for almost allt > 0 andj € Ny, respectively. So Lemma 5 applies
and shows in turn that

2(05+1) < PZ(9;+1)7

t [1
S0 <050+ [ 0y,
° [2]
and therefore, by Lemma 6, for all> 0,
[3]
[2[lze 10,6 < Co2(0) + A2lyllLr (0.4
< Bi(Co + A2)([leo|| + [lw]|Lro,g) + A2 | H ()| e[, » [4]
with an appropriate”y not depending on. From assumption (), [5]
it follows that
I1H (z)l|zeo,6) < Ba(llzoll + lwllzeo,e)) + Vl2l L0, [6]
< B(1+7Co +vA2) (ol + lleol + llwllzrio,g) +
+ A2 H (2)|Lejo,y »
for all ¢ > 0, where B = max{B1, B2}, and sincey\: < 1,
1+~vCo + A2
I1H (z)[|Lrjo,) £ B ——=———— ([l@oll + lleol| + llwllLr(0,11) ,
1 ’y)\z
for all ¢ > 0. By (AV.i), |lellzepo.q < Bll#|lLeo,q. @nd hence the
proof is complete. [ ]

The proof of Corollary 3 will make use of the following elentary
fact.

Lemma 7. Letp > 1. Then

p_ 1/p q_ 1/q
<:C » 1> (m p 1) <z(z—-1), Vx>1. (12)

Proof: For anya > 1 definep, (z) := az® 'z —1) —2* +1
and observe thap,(xz) > 0 for all x > 1 becausep.(1) = 0 and
oh(z) = a(a — 1)x*"?(z — 1) > 0. Consequently,

1

(=)

<z(7%) (@ —1)=

where ) is given by (11). To verify (13), simply note that the latter
is implied by

Lpt __ 1/p Lqgt __ 1/q
u u S eL‘r(eLT _ 1) ,
p q

which is (12) withz = =™ > 1. n
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