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An improved Maximum Allowable Transfer Interval
for Lp-stability of Networked Control Systems

Arnulf Jentzen, Frank Leber, Daniela Schneisgen, Arno Berger, Stefan Siegmund

Abstract—An elementary self-contained proof is given for an improved
bound on the maximum allowable transfer interval that guaranteesLp-
stability in networked control systems with disturbances.

Index Terms—Lp-stability, networked control systems.

I. I NTRODUCTION

A Networked Control System (NCS) consists of multiple feedback
control loops sharing a serial communication channel. When

compared with traditional multi-channel control, the NCS architecture
has the advantages of low cost, easy maintenance and great flexibility.
As a consequence, analysis and design of NCS have received a lot
of attention lately, as evidenced for instance by [1], [2], [5] and the
many references therein. A key feature of NCS is that, due to the
reliance on a single channel, the overall system performance and
stability may deteriorate if the communication is overly delayed or
infrequent. An important problem in the analysis of NCS, therefore,
is to find rigorous yet practicable bounds for the time span between
transmission times up to which stability of the whole systemcan
be guaranteed. Substantial progress has been made recentlyin de-
termining thismaximum allowable transfer interval efficiently. The
purpose of the present note is to further improve one pivotalresult in
this regard for a special class of network protocols: In the same set-
up as [2], the main result (Theorem 1) provides an upper boundon
the transfer interval that is universally larger than the one developed
in that paper. While the quantitative improvement is modest, the
argument by which it is achieved is short and elementary and thus
may be useful for any future work on the subject. Though similar in
spirit, the corresponding results in [1], [5], are based on somewhat
different assumptions and are not immediately comparable to the
result presented here.

II. N ETWORKED CONTROL SYSTEMS

Consider anNCS as described in [2], allowing for jumps and
disturbances. The network’stransmission times are (θj)j∈N0

with
θ0 = 0 andε ≤ θj+1−θj ≤ τ for all j ∈ N0, where0 < ε < τ . Note
thatε > 0 is arbitrary, its sole purpose being to rule out solutions with
infinitely many jumps in finite time. The boundτ is referred to as the
maximum allowable transfer interval (MATI). At each transmission
time θj the protocol gives access to the communication network to
one of the internal nodes. The structure of a general NCS is depicted
schematically in Fig. 1. At each transmission timeθj the output
signalsu andy of, respectively, controller and plant are transmitted
via the network, thus providing the input signalsû and ŷ to plant
and controller. Between transmission times,û andŷ obey an intrinsic
dynamics governed bŷfC and f̂P , respectively; in the simplest case,
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f̂C = f̂P = 0, implying thatû, ŷ are constant between transmission
times. The entire system is subject to the external perturbation w;
throughout it will be assumed thatw is locally integrable. As detailed

in [2], upon introduction of the combined statex =

[
xP

xC

]
and

network error e =

[
ŷ − y
û − u

]
the equations governing the NCS

according to Fig. 1 can be written concisely as

ẋ = f(t, x, e, w) , (1.1)

ė = g(t, x, e, w) , (1.2)

e(θj) = h
(
j, e(θ−

j )
)

, (1.3)

wheref : R≥0×R
nx+ne+nw → R

nx andg : R≥0×R
nx+ne+nw →

R
ne , h : N0 ×R

ne → R
ne . System (1) is hybrid in that it combines

the differential equations (1.1), (1.2) forx, e with the difference
(jump) equation (1.3) fore at transmission times. The functionh is a
key ingredient of (1): it encodes the network protocol by specifying
how at any transmission time access to the network is grantedto
different nodes in the system.

Givenx0 ∈ R
nx , e0 ∈ R

ne , a solution of the initial value problem

x(0) = x0 , e(0) = e0 , (2)

for (1) is understood to be any pair(x, e) of functions satisfying
(2) such that (1.1) and (1.2) hold for almost allt > 0, and (1.3)
holds for all j ∈ N; implicit in the latter is thatx : R≥0 → R

nx

ande : R≥0 → R
ne are absolutely continuous on, respectively,R≥0

and [θj , θj+1[ for every j ∈ N, and e(θ−
j ) := limδց0 e(θj − δ)

exists. Here any functionF on [a, b[ with a < b will be called
absolutely continuous ifF |[a,c] is absolutely continuous for every
a < c < b. Throughout it will be assumed thatf, g, and the functions
fC , f̂C , fP , f̂P , gC , gP in the original NCS (see [2] for details), are
sufficiently smooth and regular for (1),(2) to have a unique solution
for eachx0, e0. Also, a measurable functionH : R

nx → R
l from the

state spaceRnx to R
l will be considered, which models the output

of the hybrid system (1).
For ease of presentation, denote byR≥0 the set of all non-negative

real numbers, and for everyt ∈ R≥0 let 〈t〉 := max{j ∈ N0 :
θj ≤ t} so that〈t〉 = j if and only if t ∈ [θj , θj+1[, and t ≥ θ〈t〉
for all t ∈ R≥0. For everyy ∈ L1

loc(R≥0; R
d) with d ∈ N and

compact intervalI ⊂ R≥0, the norm‖y‖Lp(I) with p ≥ 1 is given
by (
∫

I
‖y(t)‖p dt)1/p where‖ · ‖ is any norm onRd. Throughout, if

p > 1 thenq > 1 denotes the unique number with1/p + 1/q = 1.
The main goal of this article is to establish conditions ensuring

that the system (1) isLp-stable fromw to H(x), which means that
there exist constantsK, γ ≥ 0 independent ofx0 ∈ R

nx , e0 ∈ R
ne

andw, such that

‖H(x)‖Lp[0,t] ≤ K(‖x0‖ + ‖e0‖) + γ‖w‖Lp [0,t]

holds for all t ≥ 0.

III. A STABILITY THEOREM FOR NCS

An important problem in the study of the NCS (1) is to identify
stability criteria. Naturally, any such criterion has to take into account
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ẋP = fP (t, xP , û, w) y = gP (t, xP )

˙̂
y = f̂P (t, xP , xC , ŷ, û, w)

˙̂
u = f̂C(t, xP , xC , ŷ, û, w)

ẋC = fC(t, xC , ŷ, w)u = gC(t, xC , ŷ )
w

w

w

w

xP

y

u

xC

ŷ

û

plant

controller

communication network

Fig. 1: A schematic model of the general NCS structure.

three main aspects: the properties of the protocol, as described by
(1.3); the intrinsic dynamics of plant and controller, as given by (1.1);
and the maximal time between transmissions, as measured byτ . In
accordance with [2], the following assumptions on, respectively, the
protocol and the intrinsic dynamics are made with an appropriately
chosen measurable functionH : R

nx → R
l.

(AV ) There exists a functionV : N0 × R
ne → R≥0 such that

V (j, ·) : R
ne → R≥0 is locally Lipschitz (and hence almost

everywhere differentiable) for everyj ∈ N0, and there exist
positive constantsB1, L > 0, as well as0 < ρ < 1, such that

(i) B−1
1 ‖e‖ ≤ V (j, e) ≤ B1‖e‖ for all (j, e) ∈ N0 × R

ne ;
(ii) For almost allt ≥ 0 and almost alle ∈ R

ne , and for all
(j, x, w) ∈ N0 × R

nx × R
nw

∇eV (j, e) · g(t, x, e, w) ≤ LV (j, e)+‖H(x)‖+B1‖w‖ ;

(iii) V
(
j + 1, h(j, e)

)
≤ ρV (j, e) for all (j, e) ∈ N0 × R

ne .

(Ap) System (1.1) isLp-stable from(V, w) to H(x) with V as in
(AV ), that is, for someB2, γ > 0

‖H(x)‖Lp[0,t] ≤ B2(‖x0‖ + ‖w‖Lp [0,t]) + γ‖V (〈·〉, e)‖Lp[0,t]

for all t > 0.

The assumptions (AV ) and (Ap) are naturally met in many situations
of practical importance. If so, the overall stability of (1)crucially
depends on the transmission times not being too far apart. The
following theorem is the main result of this note.

Theorem 1. Assume that (1) satisfies (AV ) and (Ap) for somep > 1.
Then (1) isLp-stable fromw to (H(x), e), i.e. with some constant
C,

‖H(x)‖Lp[0,t] + ‖e‖Lp [0,t] ≤ C(‖x0‖ + ‖e0‖ + ‖w‖Lp [0,t]) (3)

holds for allt ≥ 0, provided thatτ < τMATI, whereτMATI is the unique
zero of

Fγ,L,p,ρ(τ ) :=γ

(
eLpτ − 1

Lp

)1/p(
eLqτ − 1

Lq

)1/q
ρ

1 − ρeLτ
+

+ γ
eLτ − 1

Lp1/p
− 1

in the interval]0,−L−1 ln ρ[.

Remark 2. Sinceτ 7→ Fγ,L,p,ρ(τ ) is smooth and strictly increasing,
τMATI can easily be determined numerically. Forp = 2 a short

computation confirms the explicit formula

L τMATI = ln L

{
1+

√
2

γ
+ (2+

√
2)(1+ρ)

2Lρ

−
√

3+2
√

2
γ2 + 4+3

√
2

γL
+ 2+

√
2

γLρ
+ 1+

√
2

L2ρ
+ 3+2

√
2

2L2ρ2 + 1
2L2

}

Under the identical assumptions as in Theorem 1, stability is estab-
lished in [2] for

τ < τ [2] =
1

L
ln

L + γ

ρL + γ
. (4)

That τMATI is universally better (i.e. larger) thanτ [2] is the content of

Corollary 3. Under the assumptions of Theorem 1, and withτ [2]

given by (4),
τ [2] < τMATI (5)

holds for everyγ, L > 0, p > 1 and0 < ρ < 1.

Example 4 below exemplifies (5) in the benchmark example of a
batch reactor. Using somewhat different concepts and techniques, in
[1] stability has been established for

τ ≤ τ [1] =
1√

γ2 − L2
arctan

(
(1 − ρ2)

√
γ2 − L2

2ρ(γ − L) + L(1 + ρ)2

)
, (6)

and in [5] for some specific class of protocols and

τ ≤ τ [5] =
ln z

NL
, (7)

where N denotes the number of nodes, andz > 0 satisfies
z (L + γN) − γNz1−1/N − 2L = 0. While for the batch reactor
exampleτ [1] , τ [5] > τMATI, the authors do not know whether such
a relation holds generally. Moreover, unlike [1, Thm.1] Theorem 1
allows for disturbancesw. On the other hand, results in [1] can be
easily extended to some classes of perturbed systems, in particular
to the system considered in Example 4. Note also that [5, Thm.5.2]
assumes the protocol to beuniformly persistently exciting, which is
not the case e.g. for the TOD protocol.

Example 4. The linearized model of an unstable batch reactor is
considered in [1], [2], [4], [5] as a benchmark problem. Whenwritten
in the standard form (1), the governing equations of this two-input-
two-output system are

ẋ = A11x + A12e + wx ,

ė = A21x + A22e + we ,
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with wx ∈ L1
loc(R≥0; R

6), we ∈ L1
loc(R≥0; R

4), and constant
matricesA11, A12, A21, A22 according to

A11 =





1.38 −0.2077 6.715 −5.676 0 0

−0.5914 −15.65 0 0.675 −11.36 0

−14.66 2.001 −22.38 21.62 −2.272 −25.17

0.048 2.001 1.343 −2.104 −2.272 0

0 1 0 0 0 0

1 0 1 −1 0 0



 ,

A12 =





0 0 0 0

0 −11.36 0 0

−15.73 −2.272 0 0

0 −2.272 0 0

0 1 0 0

1 0 0 0



 ,

A21 =

[
13.33 0.2077 17.01 −18.05 0 25.17

0.5914 15.65 0 −0.675 11.36 0

0 0 0 0 0 0

0 0 0 0 0 0

]
,

A22 =

[
15.73 0 0 0

0 11.36 0 0

0 0 0 0

0 0 0 0

]
.

The jump relation (1.3) is determined by the protocol. Two popular
choices are the so-calledround robin (RR) and try-once-discard
(TOD) protocols. The RR protocol is static in that it gives access
to the two internal nodes1 according to a pre-set algorithm that is
independent ofe, concretely,

hRR(j, e) =

{
diag[1, 0, 0, 0] e if j is even,

diag[0, 1, 0, 0] e if j is odd;

the fact thathRR(j, e)3 = hRR(j, e)4 = 0 for all j, e reflects the
underlying model assumption that only the plant output signal y is
transmitted via the network whereasû = u, i.e., the controller output
signal is transmitted to the plant through a separate perfect channel.
The dynamic TOD protocol grants access depending on the actual
value ofe, concretely

hTOD(j, e) =

{
diag[1, 0, 0, 0] e if |e2| ≥ |e1| ,
diag[0, 1, 0, 0] e if |e2| < |e1| .

Thus the node showing the greater error is given access atθ−
j , and

the corresponding component ofe(θj) equals zero.
For Theorem 1 to apply, assumptions (AV ) and (Ap) must hold.

For L2-stability, i.e. for p = 2, it is demonstrated in [2] that this
is indeed the case with a functionV constructed fromh, with L =
15.73, ρ = 1/

√
2, and withγ = 22.52, H(x) =

√
2A21x in the RR

case andγ = 15.92, H(x) = A21x in the TOD case, respectively.
Using these data, Table I shows the values ofτ [2] , τMATI and τ [1] for
both protocols, and ofτ [5] for the RR protocol. For the batch reactor
example the relative increase ofτMATI over τ [2] is 7.2% for the RR
and6.5% for the TOD protocol.

τ [2] τMATI τ [1] τ [5]

RR 8.159 · 10−3 8.750 · 10−3 8.956 · 10−3 1.052 · 10−2

TOD 1.0 · 10−2 1.065 · 10−2 1.084 · 10−2 N/A

TABLE I: Comparison of the theoretical upper bounds onτ for L2-
stability as given by (4), Theorem 1, (6) and (7), respectively.

Figure 2 graphs the theoretical upper bounds onτ for Lp-stability
as given by Theorem 1 and (4), respectively, as a function of1 <

1Nodes are referred to aslinks in [5]; in the present example,N = 2.

p < ∞ with parametersL = 15.73, ρ = 1√
2

for the batch reactor
with TOD protocol. Figure 3 compares the various theoretical upper
bounds onτ depending onγ ∈ [10, 100] with parametersL = 15.73,
N = 2, ρ = 1√

2
, H(x) =

√
2A21x for the batch reactor with RR

protocol.
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Fig. 2: Comparison of the theoretical upper bounds onτ for Lp-
stability as given by Theorem 1 and (4), respectively, as a function
of p, using the TOD protocol for the batch reactor example.
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Fig. 3: Graphing the theoretical upper bounds onτ for L2-stability
and varyingγ, as given by (7), (6), Theorem 1, and (4), respectively,
for the batch reactor example.

IV. PROOFS

The proof of Theorem 1 rests upon two lemmas that are of interest
on their own. Lemma 5 is ageneralisation to impulsive systems of
the classical Gronwall inequality. Lemma 6 provides an expedient
estimate for a piecewise expression arising from Lemma 5 that is
instrumental in the proof of the main result.

Lemma 5. Let y, z ∈ L1
loc(R≥0; R) be non-negative and assume

that, for everyj ∈ N0, the functionz is absolutely continuous on
[θj , θj+1[ and z(θ−

j+1) = limδց0 z(θj+1 − δ) exists. If, with some
constantsL, ρ ≥ 0,

(i)
dz

dt
(t) ≤ Lz (t) + y (t) for almost allt ≥ 0, and

(ii) z (θj+1) ≤ ρz(θ−
j+1) for all j ∈ N0,
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then the inequality

z (t) ≤ eLtρ〈t〉z (0) +

∫ t

0

eL(t−s)ρ〈t〉−〈s〉y(s) ds (8)

holds for all t ≥ 0. If equality holds in (i) and (ii), then equality
holds in (8) as well.

Proof: For all t ∈ [θj , θj+1[ andj ∈ N0, assumption (i) and the
classical Gronwall lemma imply that

z (t) ≤ eL(t−θj)z (θj) +

∫ t

θj

eL(t−s)y (s) ds. (9)

In particular, by (9) and assumption (ii),

z(θj) ≤ ρz(θ−
j ) ≤ eL(θj−θj−1)ρz(θj−1)+ρ

∫ θj

θj−1

eL(θj−s)y(s) ds ,

and hence by induction

z(θj) ≤ eLθj ρjz(0) +
∑j

k=1
ρj−k+1

∫ θk

θk−1

eL(θj−s)y(s) ds ,

which, together with (9) and〈s〉 = k − 1 for every s ∈ [θk−1, θk[,
shows that

z(t) ≤ eLtρjz(0) +
∑j

k=1
ρj−k+1

∫ θk

θk−1

eL(t−s)y(s) ds +

+

∫ t

θj

eL(t−s)y(s) ds

= eLtρ〈t〉z(0) +

∫ t

0

eL(t−s)ρ〈t〉−〈s〉y(s) ds

holds for all t ∈ [θj , θj+1[. Sincej ∈ N0 was arbitrary, this proves
(8).

Lemma 6. Assume that the numbersτ, L > 0 and 0 < ρ < 1
satisfy τ < −L−1 ln ρ. Given y ∈ L1

loc(R≥0; R
d), define functions

Y1, Y2 : R≥0 → R
d as

Y1(t) :=

∫ t

θ〈t〉

eL(t−s)y(s) ds , Y2(t) :=

∫ t

0

eL(t−s)ρ〈t〉−〈s〉y(s) ds .

For everyp > 1, if y ∈ Lp
loc(R≥0; R

d) thenY1, Y2 ∈ Lp
loc(R≥0; R

d),
and for all t ≥ 0

‖Y1‖Lp[0,t] ≤ λ1‖y‖Lp [0,t] , ‖Y2‖Lp [0,t] ≤ λ2‖y‖Lp[0,t] , (10)

with

λ1 =
eLτ − 1

Lp1/p
,

(11)

λ2 =

(
eLpτ − 1

Lp

)1/p(
eLqτ − 1

Lq

)1/q
ρ

1 − ρeLτ
+ λ1 .

Proof: For all t ≥ 0, Hölder’s inequality implies that

‖Y1(t)‖p ≤
(∫ t

θ〈t〉

eL(t−s)‖y(s)‖ds

)p

≤
(∫ t

θ〈t〉

eL(t−s) ds

)p−1 ∫ t

θ〈t〉

eL(t−s)‖y(s)‖p ds

= L1−p
(
eL(t−θ〈t〉) − 1

)p−1
∫ t

θ〈t〉

eL(t−s)‖y(s)‖p ds ,

and consequently, withj = 〈t〉,

Lp

∫ t

θj

‖Y1(s)‖pds ≤

≤ L

∫ t

θj

(
eL(s−θj) − 1

)p−1
∫ s

θj

eL(s−σ)‖y(σ)‖p dσ ds

= L

∫ t

θj

(∫ t

σ

(
eL(s−θj) − 1

)p−1
eLsds

)
e−Lσ‖y(σ)‖pdσ

= p−1

∫ t

θj

(
(eL(t−θj) − 1)p− (eL(σ−θj)− 1)p

)
eL(θj−σ)‖y(σ)‖pdσ

≤ (eLτ − 1)p

p

∫ t

θj

‖y(s)‖pds .

In particular therefore
∫ θk+1

θk

‖Y1(s)‖p ds ≤ (eLτ − 1)p

Lpp

(
‖y‖Lp[θk,θk+1]

)p
, ∀k ∈ N0 ,

and summation overk yields the claimed bound onY1.
To prove the estimate forY2, note first that, by Hölder’s inequality

andθj+1 − θj ≤ τ ,

‖Y2(t) − Y1(t)‖ ≤
∫ θ〈t〉

0

eL(t−s)ρ〈t〉−〈s〉‖y(s)‖ds

=
∑〈t〉−1

j=0
ρ〈t〉−j

∫ θj+1

θj

eL(t−s)‖y(s)‖ds

≤
∑〈t〉−1

j=0
ρ〈t〉−j

(∫ θj+1

θj

eLq(t−s) ds

)1/q(∫ θj+1

θj

‖y(s)‖p ds

)1/p

≤
∑〈t〉−1

j=0
ρ〈t〉−jeL(t−θj)L−1/qq−1/q(1−e−Lqτ )1/q‖y‖Lp[θj ,θj+1]

≤ eL(t−θ〈t〉)

(
1 − e−Lqτ

Lq

)1/q∑〈t〉−1

j=0
(ρeLτ )〈t〉−j‖y‖Lp [θj ,θj+1]

=

(
1 − e−Lqτ

Lq

)1/q

Z(t) ,

with the auxiliary function

Z(t) = eL(t−θ〈t〉)
∑〈t〉−1

j=0
(ρeLτ )〈t〉−j‖y‖Lp[θj ,θj+1] .

A bound on‖Z‖Lp [0,t] follows from
∫ t

0

Z(s)pds =

=

∫ t

0

eLp(s−θ〈s〉)

(∑〈s〉−1

j=0
(ρeLτ )〈s〉−j‖y‖Lp[θj ,θj+1]

)p

ds

≤
∑〈t〉

k=0

∫ θk+1

θk

eLp(s−θk)
(∑k−1

j=0
(ρeLτ )k−j‖y‖Lp[θj ,θj+1 ]

)p

ds

≤ eLpτ − 1

Lp

∑〈t〉

k=0

(∑k−1

j=0
(ρeLτ )k−j‖y‖Lp[θj ,θj+1]

)p

,

together with the observation that, sinceρeLτ < 1,
∑〈t〉

k=0

(∑k−1

j=0
(ρeLτ )k−j‖y‖Lp[θj ,θj+1]

)p

≤
∑〈t〉

k=0

(∑k−1

j=0
(ρeLτ )k−j

)p−1∑k−1

j=0
(ρeLτ )k−j‖y‖p

Lp[θj ,θj+1]

≤
(

ρeLτ

1 − ρeLτ

)p−1∑〈t〉

k=0

∑k−1

j=0
(ρeLτ )k−j‖y‖p

Lp [θj ,θj+1]

=

(
ρeLτ

1 − ρeLτ

)p−1∑〈t〉−1

j=0

(∑〈t〉

k=j+1
(ρeLτ )k−j

)
‖y‖p

Lp[θj ,θj+1 ]
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≤
(

ρeLτ

1 − ρeLτ

)p

‖y‖p
Lp [0,θ〈t〉]

,

so that overall

‖Z‖Lp [0,t] ≤
(

eLpτ − 1

Lp

)1/p(
ρeLτ

1 − ρeLτ

)
‖y‖Lp[0,t] .

This implies that, for allt ≥ 0,

‖Y2‖Lp[0,t] ≤
(

1 − e−Lqτ

Lq

)1/q

‖Z‖Lp [0,t] + ‖Y1‖Lp[0,t] ,

and proves the bound claimed forY2.

Proof of Theorem 1: Note first that with the notation of Lemma
6, Fγ,L,p,ρ = γλ2 − 1. Given γ, L > 0, p > 1, and0 < ρ < 1, the
mapFγ,L,p,ρ is continuous and strictly increasing on[0,−L−1 ln ρ[
with Fγ,L,p,ρ(0) = −1 andlimτ↑−L−1 ln ρ Fγ,L,p,ρ(τ ) = +∞. Thus
τMATI, as a zero ofFγ,L,p,ρ, is uniquely determined. Assume that
τ < τMATI, henceγλ2 < 1, and define auxiliary functionsy, z :
R≥0 → R≥0 according to

z(t) := V
(
〈t〉, e(t)

)
, y(t) := ‖H(x(t))‖+ B1‖w(t)‖ .

For these functions, assumptions (AV ,ii), with [6, Corollary, p.64],
and (AV ,iii) imply that

dz

dt
(t) ≤ Lz(t) + y(t) , z(θj+1) ≤ ρz(θ−

j+1) ,

for almost allt ≥ 0 and j ∈ N0, respectively. So Lemma 5 applies
and shows in turn that

z (t) ≤ eLtρ〈t〉z (0) +

∫ t

0

eL(t−s)ρ〈t〉−〈s〉y(s) ds ,

and therefore, by Lemma 6, for allt ≥ 0,

‖z‖Lp [0,t] ≤ C0z(0) + λ2‖y‖Lp[0,t]

≤ B1(C0 + λ2)(‖e0‖ + ‖w‖Lp [0,t]) + λ2‖H(x)‖Lp[0,t] ,

with an appropriateC0 not depending ont. From assumption (Ap),
it follows that

‖H(x)‖Lp[0,t] ≤ B2(‖x0‖ + ‖w‖Lp[0,t]) + γ‖z‖Lp [0,t]

≤ B(1 + γC0 + γλ2)(‖x0‖ + ‖e0‖ + ‖w‖Lp [0,t]) +

+ γλ2‖H(x)‖Lp[0,t] ,

for all t ≥ 0, whereB = max{B1, B2}, and sinceγλ2 < 1,

‖H(x)‖Lp[0,t] ≤ B
1 + γC0 + γλ2

1 − γλ2
(‖x0‖ + ‖e0‖ + ‖w‖Lp [0,t]) ,

for all t ≥ 0. By (AV ,i), ‖e‖Lp [0,t] ≤ B‖z‖Lp [0,t], and hence the
proof is complete.

The proof of Corollary 3 will make use of the following elementary
fact.

Lemma 7. Let p > 1. Then
(

xp − 1

p

)1/p(
xq − 1

q

)1/q

≤ x(x − 1) , ∀x ≥ 1 . (12)

Proof: For anyα ≥ 1 defineϕα(x) := αxα−1(x−1)−xα +1
and observe thatϕα(x) ≥ 0 for all x ≥ 1 becauseϕα(1) = 0 and
ϕ′

α(x) = α(α − 1)xα−2(x − 1) ≥ 0. Consequently,

(
xα − 1

α

) 1
α

≤ x(1− 1
α ) (x − 1)

1
α

for all α ≥ 1 andx ≥ 1. This yields
(

xp − 1

p

)1/p(
xq − 1

q

)1/q

≤ x1−1/p(x − 1)1/px1−1/q(x − 1)1/q

= x(x − 1) , ∀x ≥ 1 .

Note that (12) becomes an equality asp → 1 or p → +∞.

Proof of Corollary 3: The numberτ [2] is the unique zero of

Gγ,L,ρ(τ ) = γ
eLτ − 1

1 − ρeLτ
− L in [0,−L−1 ln ρ[. Thus the claim

follows once it has been demonstrated that

Lλ2 <
eLτ − 1

1 − ρeLτ
= eLτ − 1 + (eLτ − 1)

ρeLτ

1 − ρeLτ
(13)

holds for all L > 0, p > 1, 0 < ρ < 1 and 0 < τ < −L−1 ln ρ,
whereλ2 is given by (11). To verify (13), simply note that the latter
is implied by

(
eLpτ − 1

p

)1/p(
eLqτ − 1

q

)1/q

≤ eLτ (eLτ − 1) ,

which is (12) withx = eLτ > 1.
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