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ABSTRACT. For sequences sufficiently close to (a logn), with an arbitrary real
constant a, this note describes the precise asymptotics of the associated empiri-
cal distributions modulo one, with respect to the Kantorovich metric as well as a
discrepancy-style metric. In particular, the note demonstrates how these asymp-
totics depend on a in a delicate, discontinuous way. The results strengthen and

complement known facts in the literature.

Communicated by Friedrich Pillichshammer

1. Introduction

Consider an increasing sequence (xn) in R, with xn → ∞ and xn+1−xn ↓ 0 as
n → ∞. It is well known [7,15] that if lim infn→∞ n(xn+1 − xn) < ∞, then (xn)
does not have a (unique) distribution modulo one (mod 1, for short). Arguably
the simplest, most natural example of such a sequence is (xn)=(a logn) with a
real constant a > 0, where limn→∞ n(xn+1−xn) = a. The importance of (logn)
for uniform distribution theory goes well beyond that of an anecdotal example,
though. For instance, a classical theorem by Niederreiter [17] states that if (xn) is
uniformly distributed (u.d., for short) mod 1, then xn/ logn → ∞. By contrast,(
logn (log logn)ε

)
, for example, is u.d. mod1 for every ε > 0. Thus (logn)

marks a threshold for increasing sequences, separating those that are u.d. mod 1
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from those that are not. For this and many other reasons, sequence that are,
in one way or another, close to (a logn) are classical objects of study [3,7,14,15,
17,24,25].

The fact that sequences (xn) close to (a logn) do not have a (unique) distri-
bution mod 1 naturally raises further, quantitative questions. On the one hand,
(xn) may have a (wn)-weighted distribution [12,16], with appropriate (positive)
weights wn. For instance, (a logn) is u.d. with weights (n−1) and (n−1 logn);
see, e.g., [15, sec.3]. On the other hand, in the space of distributions mod 1, that
is, among probability measures on R/Z, the empirical averages along (xn) have
a continuum of accumulation points. It is natural to analyze the rate of conver-
gence to, as well as the precise structure of these accumulation points [15, 23].
The present note provides such an analysis.

Traditionally, the distributional behaviour mod1 of sequences like (a logn)
has been studied mainly in terms of (asymptotic) distribution functions [12,16].
Though quite elementary, this approach can lead to “remarkable results” [16,
p.57]. It will, however, also lead to unavoidable artifacts. For instance, the set
of distribution functions of (xn) = (log logn), where limn→∞ n(xn+1 − xn) = 0,
contains the constant function c for every 0 ≤ c ≤ 1. When understood as
distributions on R/Z, clearly all these functions are but different representations
of one and the same object, namely the Dirac distribution (or unit point mass)
concentrated on 0 + Z; see, e.g., [22] for similar artifacts.

Motivated by the classical treatise [15], this note avoids the potentially ar-
tifactual asymptotic distribution functions mod 1. Instead, it studies the distri-
butions mod 1 of (xn) directly as (Borel) probability measures on R/Z. Though
very direct, this approach relies heavily on particular metrics (on the set of all
probability measures on R/Z), the precise definition of which may in turn re-
quire a fair amount of analytic preliminaries. Specifically, this note employs the
Kantorovich (or 1-Wasserstein) metric dT, that is, the minimal L1-norm of the
difference between (appropriately shifted) distribution functions, as well as the
discrepancy-style metric d∞, that is, the L∞-norm of the difference between
distribution functions. For the convenience of the reader, the definitions and all
pertinent properties of these two metrics are reviewed in detail in Section 2.
For the purpose of this introduction, it suffices to notice that dT and d∞ both
are bona fide metrics with many endearing features. On the one hand, dT may
be viewed as a minimal “transport cost” from one distribution to the other,
via the Kantorovich–Rubinstein theorem [8, Sec. 11.8]. Also, dT represents the
largest difference between integrals (w.r.t. one probability measure or the other)
incurred over all real-valued 1-Lipschitz functions on R/Z. On the other hand,
d∞ is a natural, immediate generalization of star discrepancy, a familiar concept
used widely throughout uniform distribution theory [3,16,25].
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To state but one simple, illustrative special case of the main results, Theo-
rems 3.1 and 4.3 below, for every integer N ≥ 1 denote by μN the discrete uni-
form distribution on the N points 1

3 log 1,
1
3 log 2, . . . ,

1
3 logN mod 1, and by μ

the distribution on R/Z with distribution function Fμ(s) = (e3s − 1)/(e3 − 1),
an exponential distribution “wrapped up mod 1”; see Section 2 for precise def-
initions and notations. Now, the sequence (μN ) of distributions is divergent, as
alluded to earlier, but has many convergent subsequences. For instance, it is well
known [15,16] that μNj

→ μ for an increasing sequence (Nj) of positive integers

if and only if dist(13 logNj,Z) → 0 as j → ∞; see also Corollary 3.2 below.
Theorem 3.1 greatly refines this by providing a precise rate of convergence:
If supj Njdist(

1
3 logNj,Z) < ∞, as is the case, e.g., for (Nj) = (�e3j�), then

limj→∞
Nj√
logNj

dT(μNj
, μ) =

1

3
√
2π

. (1.1)

Furthermore, if, for instance, (Nj) = (�2e3j�) then (1.1) remains valid, provided
that μ is replaced by the appropriate “rotated” copy of μ; see Figure 1.

(Nj) = (�e3j�)
N1 = �e3� = 20

(Nj) = (�2e3j�)
N1 = �2e3� = 40

µ20

µ

µ40

µ ◦R−1
1
3
log 2

1

0
1 10 0 ss 1

3
log 2

µNj → µ µNj → µ ◦R−1
1
3
log 2

Fµ(s) =
e3s − 1

e3 − 1

Figure 1. Illustrating (1.1) and Theorem 3.1: With μN denoting

the discrete uniform distribution on 1
3
log 1, 1

3
log 2, . . . , 1

3
logN mod 1,

for (Nj) = (�e3j�) the sequence (μNj
) converges to an exponential dis-

tribution μ “wrapped up mod 1” as j → ∞ (left; see also Figure 2 below);

for (Nj) = (�2e3j�), the sequence (μNj
) converges to μ “rotated” by 1

3
log 2

(right). By Theorem 3.1, the dT-rate of convergence is precisely (
√
logN/N)

in either case.
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To help put relations like (1.1) in perspective, a similar analysis is carried out
using d∞. In contrast to(1.1), Theorem 4.3 asserts that

lim supj→∞
Nj

logNj
d∞(μNj

, μ) ≤ 1

3
,

as well as

lim infj→∞
Nj√
logNj

d∞(μNj
, μ) = ∞ ;

see Figure 2 which may also help explain why, as far as the author has been able
to ascertain, the precise asymptotics of

(
d∞(μNj

, μ)
)
remains unknown.

In a nutshell, then, this note illustrates how usage of dT may lead, with little
effort, to conclusions that are more robust and conclusive, compared to d∞.

ΔN =
N(FµN − Fµ)√

logN

N1 = 20 N2 = �e6� = 403 N3 = �e9� = 8103

0.5

−0.5

0

11 1 000 sss

Figure 2. Why the asymptotics of
(
d∞(μN , μ)

)
may be more delicate

than the asymptotics of
(
dT(μN , μ)

)
: For (Nj) = (�e3j�) the (scaled) dif-

ference ΔNj
between distribution functions oscillates wildly, and is in fact

unbounded as j → ∞, by Theorem 4.3. By contrast, Theorem 3.1 implies

that limj→∞ mint∈R

∫ 1
0 |ΔNj

(s)− t| ds = 1/(3
√
2π) ≈ 0.1329.

2. Analytic preliminaries

Throughout, the sets of positive integers, integers, rational, positive real, real,
and complex numbers are denoted by N, Z, Q, R+, R, and C, respectively.
For every a ∈ R, let �a� and �a� be the largest integer ≤ a and the smallest
integer ≥ a, respectively; also, denote by 〈a〉 = a− �a� the fractional part of a.
Recall that T = R/Z is a compact metrizable space when endowed with the
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usual (quotient) topology. For all a, b ∈ R, let dT(a, b) = mink∈Z |a−b+k|; when
restricted to T × T, this semi-metric yields a metric that induces the topology
of T. One may interpret T as the unit circle in C, via the bi-Lipschitz bijection
ιC : T → {z ∈ C : |z| = 1} given by ιC(x) = e2πix, for which

4dT(x, y) ≤ |ιC(x)− ιC(y)| ≤ 2πdT(x, y) ∀x, y ∈ T .

By this interpretation, dT(x, y) is the (normalized) arclength of the shortest arc
joining ιC(x) and ιC(y). For every x ∈ T, let Q(x) = −x and Rt(x) = x + t
for all t ∈ R. Thus the maps ιC ◦ Q ◦ ι−1

C
and ιC ◦ Rt ◦ ι−1

C
simply are the

reflection of the unit circle about the real axis, and its counter-clockwise rotation
by 2πt, respectively. Clearly, Q and Rt are isometries of T, with R−1

t = R−t and
Rt ◦Q = Q ◦R−t for every t.

Denote by P the set of all (Borel) probability measures on T, endowed with
the topology of weak convergence. Recall that P is compact and metrizable, with
μn → μ in P if and only if

∫
T
h dμn → ∫

T
h dμ for every h ∈ C(T). For explicit

calculations later on, associate with each μ ∈ P its distribution function Fμ as
follows: The bijection ιR : T → [0, 1[ given by ιR(x) = 〈x〉 is bi-measurable.
(While ι−1

R
is continuous, clearly ιR is discontinuous at x = 0.) With this, let

Fμ(s) = μ
(
ι−1
R

([0, s])
) ∀0 ≤ s < 1 ,

so the function Fμ is non-decreasing and right-continuous, with Fμ(0) ≥ 0 and
limε↓0 Fμ(1 − ε) = 1. Every function with these properties is the distribution
function of one and only one μ ∈ P . Examples of elements of P relevant for this
note include the Dirac measure δx at x ∈ T, for which δx(B) = 1 or = 0 for every
Borel set B⊂T depending on whether x∈B or x �∈B, and the Lebesgue measure
λT characterized by FλT

(s) ≡ s.

A familiar metric inducing the topology of weak convergence on P , henceforth
also denoted dT for simplicity and often referred to as the Kantorovich (or 1-
-Wasserstein) metric, is given by

dT(μ, ν) = suph∈L(T)

(∫
T

h dμ−
∫
T

h dν

)
∀μ, ν ∈ P ,

where L(T) =
{
h ∈ C(T) : h(0) = 0, |h(x) − h(y)| ≤ dT(x, y) ∀x, y ∈ T

}
. As is

well-known [6,8,26],

dT(μ, ν) = mint∈R

∫ 1

0

|Fμ(s)− Fν(s)− t| ds ∀μ, ν ∈ P , (2.1)

and hence dT(μ, ν) =
∫ 1

0
|Fμ(s) − Fν(s) − t| ds precisely if t ∈ R is a median

of Fμ − Fν , i.e., if

λ
({

0 ≤ s < 1 : Fμ(s)− Fν(s) ≤ t
}) ≥ 1

2

81



ARNO BERGER

as well as

λ
({

0 ≤ s < 1 : Fμ(s)− Fν(s) ≥ t
}) ≥ 1

2 ,

where λ denotes Lebesgue measure (on R).

Given any (Borel measurable) map S : T → T and μ ∈ P , recall that μ ◦S−1,
sometimes referred to as the push-forward of μ under S, is the unique ν ∈ P
with ν(B) = μ

(
S−1(B)

)
for every Borel set B ⊂ T. For example, δx ◦ R−1

t =

δx+t as well as λT ◦ R−1
t = λT for all x ∈ T, t ∈ R. Note specifically that

dT(μ ◦ S−1, ν ◦ S−1) = dT(μ, ν) for all μ, ν ∈ P and every isometry S of T;
in particular, dT is invariant under all reflections and rotations. Using (2.1), it
is readily deduced that dT(μ, λT) ≤ 1

4 , and this inequality is strict unless μ = δx
for some x∈T. As a consequence, dT(μ, ν)≤ 1

2 for all μ, ν∈P , and this inequality
is strict unless μ = δx, ν = δx+1/2 for some x ∈ T. Note that dT(δx, δy) = dT(x, y)
for all x, y ∈ T, so {δx : x ∈ T} is an isometric copy of T inside P .

A one-parameter family in P particularly relevant for this note is the follow-
ing: For every a ∈ R \ {0} let ηa ∈ P be defined by its distribution function

Fηa
(s) =

es/a − 1

e1/a − 1
∀0 ≤ s < 1 .

In probabilistic parlance, ηa simply is the distribution of 〈−aX〉, where the
random variable X is standard exponential. A straightforward calculation
using (2.1) yields

dT(ηa, λT) = |a| log cosh 1

4a
, dT(ηa, δ0) = a tanh

1

4a
∀a ∈ R \ {0} , (2.2)

which in turn suggests setting η0 = δ0 and η−∞ = η∞ = λT. With this, the
set {ηa : −∞ ≤ a ≤ ∞} is a homeomorphic copy of T inside P . Note that
ηa ◦Q−1 = η−a for every a ∈ R∪ {−∞,∞}. Rotated versions of ηa are going to
play a prominent role later on. For convenience, for every a∈R∪ {−∞,∞} and
t∈R, write ηa ◦ R−1

t simply as ηa,t. For a ∈ R \ {0}, the distribution function
of ηa,t equals

Fηa,t
(s) = emin{s−〈t〉,0}/a − e−〈t〉/a e

1/a − es/a

e1/a − 1
(2.3)

=

⎧⎪⎪⎨⎪⎪⎩
e(1−〈t〉)/a e

s/a − 1

e1/a − 1
if 0 ≤ s < 〈t〉 ,

1− e−〈t〉/a e
1/a − es/a

e1/a − 1
if 〈t〉 ≤ s < 1 ;

it is in this form that the probability measures ηa,t traditionally appear in the
literature [12,16]. Notice that η0,t=δt for every t∈R, whereas η−∞,t=η∞,t=λT.
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It is straightforward to show that for every a ∈ R \ {0},

4|a| log cosh 1

4a
dT(s, t) ≤ dT(ηa,s, ηa,t) ≤ tanh

1

4|a| dT(s, t) ∀s, t ∈ R ; (2.4)

when interpreted with caution, (2.4) remains valid for a = 0 and |a| = ∞ also.

Given any sequence (xn) in R, for every N ∈ N denote by μN [xn] ∈ P the
empirical distribution mod 1 of {x1, . . . , xN}, that is, let

μN [xn] =
1

N

∑N

n=1
δxn

∀N ∈ N .

Thus, μN [xn] is the unique μ ∈ P with
∫
T
h dμ = 1

N

∑N
n=1 h(xn) for every

h ∈ C(T). Also, denote by M[xn] the set of all accumulation points of the
sequence (μN ) in P , i.e.,

M[xn] =
{
μ ∈ P : ∃N1 < N2 < · · · s.t. μNj

[xn] → μ as j → ∞}
.

The set M[xn] ⊂ P is non-empty, compact and connected [12, 23, 25].
Conversely, every non-empty, compact and connected subset of P equals M[xn]
for some sequence (xn). This note focuses on sequences (xn) for which M[xn] is
very small. An extreme situation obviously occurs when M[xn] = {μ} for some
μ ∈ P . In this situation, (xn) is said to have distribution μ mod1, with the
most classical special case being M[xn] = {λT}, or equivalently, (xn) being u.d.
mod 1 [15, 16]. For the slowly changing sequences precisely defined in the next
section, it is well known that M[xn] is not a singleton. Still, M[xn] has a very
simple structure that can be described rather transparently. Sections 3 and 4
below provide such a description together with sharp rates of convergence.

Although the metric dT on P (and T) is the main tool used here, in order
to relate the results to classical concepts and studies, the metric

d∞(μ, ν) := sup0≤s<1 |Fμ(s)− Fν(s)| ∀μ, ν ∈ P
is considered as well. Note that by (2.1),

dT(μ, ν) ≤
∫ 1

0

|Fμ(s)− Fν(s)| ds ≤ d∞(μ, ν) ∀μ, ν ∈ P ,

and d∞ induces a strictly finer topology on P than does dT. Also, d∞ is not
invariant under Q or any Rt �= idT, unlike dT. Recall, however, that if μn → μ
and μ is continuous, i.e., if μ({x}) = 0 for every x ∈ T, then d∞(μn, μ) → 0
also. In this situation, therefore, dT(μn, μ) → 0 if and only if d∞(μn, μ) → 0.
A classical case in point is μ = λT, where d∞(μN [xn], λT) is traditionally referred
to as star discrepancy , often denoted D∗

N (xn); see, e.g., [16]. Even in this familiar
context, however, the rates of convergence for

(
dT(μN , μ)

)
and

(
d∞(μN , μ)

)
may

differ considerably, as the reader is going to see shortly.
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3. A Kantorovich rate of convergence

Throughout this note, let f : R+ → R be a C1-function with the property
that ∫ ∞

1

|tf ′(t)− a| dt < ∞ (3.1)

for some (necessarily unique) a ∈ R. In a way, therefore, f(t) differs but lit-
tle from a log t. For any f satisfying (3.1), consider the sequence (xn) =

(
f(n)

)
.

For convenience, henceforth write μN [f(n)] and M[f(n)] as μf
N and Mf,

respectively; in other words,

μf
N =

1

N

∑N

n=1
δf(n) ∈ P ∀N ∈ N ,

Mf =
{
μ ∈ P : ∃N1 < N2 < · · · s.t. μf

Nj
→ μ as j → ∞} ⊂ P .

Unless a = 0, clearly |f(n)| → ∞ and limn→∞ n
(
f(n + 1) − f(n)

)
= a.

By [15, Thm.3], the set Mf is not a singleton. The main result of this section,
Theorem 3.1 below, elucidates why Mf instead is a homeomorphic (in fact,
bi-Lipschitz equivalent) copy of T inside P ; see Corollary 3.2. In preparation
for the precise statement of the result, denote by T : R+ → Q the classical
Thomae function,

T (t) =

⎧⎪⎨⎪⎩
1

q
if t = p/q with p, q ∈ N and gcd(p, q) = 1 ,

0 if t ∈ R+ \Q ,

and for every t > 1, let

V (t) = 1 + 2max
n∈N

T (tn)2

tn − T (tn)2
.

More explicitly, for every t > 1 and with {tn : n ∈ N} ∩Q abbreviated as Bt,

V (t) =

⎧⎪⎨⎪⎩
1 if Bt = ∅ ,

pq + 1

pq − 1
if Bt = {(p/q)j : j ∈ N} with p, q ∈ N and gcd(p, q) = 1.

Plainly, 1 ≤ V (t) ≤ 3. Moreover, V (t) = 1 for all but countably many t > 1,
and the function V is continuous at t if and only if V (t) = 1. Let V (∞) :=
limt→∞ V (t) = 1. Utilizing the function V allows for a neat description of the

asymptotics of (μf
N ). The following theorem greatly strengthens [25, Thm.3.1],

with the convention e1/0 := ∞ applied in case a = 0. To appreciate the statement
of the result, recall that ηa,t, with a, t ∈ R, denotes an exponential distribution
on T, “wrapped up mod 1 and rotated” as per (2.3).
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������� 3.1� Let f : R+ → R be a C1-function. If f satisfies (3.1) for some
a ∈ R then

limN→∞
N√
logN

dT
(
μf
N , ηa,f(N)

)
=

√
|a|
6π

V (e1/|a|) . (3.2)

���	�
� As pointed out by one referee, the appearance of the factorN/
√
logN

in (3.2) is reminiscent of recent studies on certain u.d. mod1 sequences [4],
[13,21].

Before turning towards the proof of Theorem 3.1, two immediate corollaries
are worth mentioning. On the one hand, (3.2) contains a simple description
of Mf as the set of all rotated copies of a single element of P .

������	� 3.2� Let f : R+ → R be a C1-function. If f satisfies (3.1) for

some a ∈ R \ {0}, then Mf = {ηa,t : t ∈ R}. Moreover, μf
Nj

→ ηa,t as j → ∞
for some increasing sequence (Nj) of integers and some t ∈ R if and only if
dT(f(Nj), t) → 0.

As a matter of fact, both conclusions of Corollary 3.2 are valid even if (3.1)
fails, provided that limt→∞ tf ′(t) = a; see [2]. For the (forbidden) case a = 0,
the second conclusion of Corollary 3.2 is valid as well, but the first is not.

On the other hand, Theorem 3.1 provides a quantitative form of the familiar
fact that sequences

(
f(n)

)
with f satisfying (3.1), and indeed also if merely

limt→∞ tf ′(t) = a, do not have a distribution mod 1, i.e., (μf
N) is divergent.

������	� 3.3� Let f : R+ → R be a C1-function. If f satisfies 3.1 for some
a ∈ R then

limN→∞
∣∣∣dT(μf

N , μ
)− dT

(
ηa,f(N), μ

)∣∣∣ = 0 ∀μ ∈ P .

Note that for every μ ∈ P the function t �→ dT(ηa,t, μ) is continuous, 1-peri-
odic, and attains a positive maximal value; for μ = λT this function is constant,
its (positive) value being displayed in (2.2).

Theorem 3.1 hinges on a central limit theorem for Riesz-Raikov sums, of which
a simple special case, tailor-made for subsequent use, is stated here for the
reader’s convenience; further background and details on this classical subject
can be found, e.g., in [10, 11]. That a central limit theorem is key to the proof
of Theorem 3.1 may seem surprising, but is consistent with a well-established
paradigm: Even completely deterministic systems may exhibit statistics that are
best understood in terms of appropriately scaled random walks [1,5].

����������� 3.4� For every β ∈ R+ with β > 1,

limM→∞
1

M

∫ 1

0

(∑M

j=1

(〈
βjs

〉− 1

2

))2

ds =
V (β)

12
. (3.3)
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Moreover, for every Borel probability measure ν on R that is absolutely contin-
uous w.r.t. λ,

limM→∞ ν

({
t ∈ R :

1√
M

∑M

j=1

(〈
βjt

〉− 1

2

)
≤ b

})
= Φ

(
2b

√
3

V (β)

)
(3.4)

for every b ∈ R, where Φ denotes the standard normal distribution function.

P r o o f o f T h e o r e m 3.1. Since μf
N ◦Q−1 = μ−f

N and ηa ◦Q−1 = η−a, it can
be assumed that a ≥ 0. For the time being, assume that in fact a > 0, and
fix any h ∈ L(T). It will first be shown that it suffices to establish (3.2) solely
for the case of f being a constant multiple of log. To this end, for every t ∈ R+

let Δ(t) = tf ′(t)− a,

f̃(t) = a log t+ f(1) +

∫ ∞

1

Δ(u)

u
du ∀t ∈ R+ ,

and correspondingly μ̃N = μN [f̃(n)]. Observe that∣∣∣∣N (∫
T

h dμf
N−

∫
T

h dμ̃N

)∣∣∣∣ = ∣∣∣∣∑N

n=1

(
h ◦ f(n)− h ◦ f̃ (n))∣∣∣∣

≤
∑N

n=1
|f(n)− f̃(n)| =

∑N

n=1

∣∣∣∣−∫ ∞

n

Δ(u)

u
du

∣∣∣∣
≤

∫ N+1

1

∫ ∞

max{v−1,1}

|Δ(u)|
u

du dv ≤
∫ ∞

1

|Δ(u)| du ,

so with the definition of dT and by virtue of (3.1),

NdT
(
μf
N , μ̃N

) ≤
∫ ∞

1

|Δ(u)| du ∀N ∈ N . (3.5)

Similarly, with (2.4) and since every rotation Rt is an isometry of T,

NdT
(
ηa,f(N), ηa,˜f(N)

) ≤ NdT
(
f(N), f̃(N)

)
≤ N

∫ ∞

N

|Δ(u)|
u

du ≤
∫ ∞

N

|Δ(u)| du . (3.6)

From (3.5) and (3.6) it is clear that

limN→∞
N√
logN

∣∣∣dT(μf
N , ηa,f(N)

)− dT
(
μ̃N , ηa, ˜f(N)

)∣∣∣ = 0 .

Thus, it suffices to establish (3.2) for f(t) = a log t, and this will now be done. For
convenience, let LN = max{1, �a logN�} and sN = 〈a logN〉 for every N ∈ N.
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By a direct calculation using Euler summation, for every N ≥ e1/a,

N

∫
T

h dμf
N =

h(0) + h(a logN)

2
+

∫ N

1

h(a log u) du

+

∫ N

0

h′(a logu)
a

u

(〈
u
〉− 1

2

)
du

= C1,N +
1

a

∫ a logN

0

h(v)ev/adv +

∫ a logN

0

h′(v)
(〈

ev/a
〉− 1

2

)
dv

= C2,N +
1

a

∫ 1

0

h(v)
∑LN

j=1
e(v+j−1)/adv +

1

a

∫ sN

0

h(v)e(v+LN )/adv

+

∫ 1

0

h′(v)
∑LN

j=1

(〈
e(v+j−1)/a

〉− 1

2

)
dv

= C3,N +
N

a(e1/a − 1)

∫ sN

0

h(v)e(v+1−sN )/adv

+
N

a(e1/a − 1)

∫ 1

sN

h(v)e(v−sN )/adv

+

∫ 1

0

h′(v)
∑LN

j=1

(〈
e(v+j−1)/a

〉− 1

2

)
dv

= C3,N +N

∫
T

h dηa,sN +

∫ 1

0

h′(v)
∑LN

j=1

(〈
e(v+j−1)/a

〉− 1

2

)
dv ;

here the numbers C1,N , C2,N , C3,N depend on h and a but are uniformly bounded
in that

|C1,N |+ |C2,N |+ |C3,N | ≤ 3 ∀N ≥ e1/a .

In other words, for every N ≥ e1/a,

N√
LN

(∫
T

h dμf
N −

∫
T

h dηa,f(N)

)
=

C3,N√
LN

+

∫ 1

0

h′(v)
1√
LN

∑LN

j=1

(〈
e(v+j−1)/a

〉− 1

2

)
dv . (3.7)

To make the remainder of the argument easy to grasp, let β = e1/a > 1, and
S(v) = e(v−1)/a for every v ∈ R. The Borel probability measure ν = λ|[0,1]◦S−1 is

absolutely continuous w.r.t. λ, its density being equal to a/v on [β−1, 1] = S[0, 1],
and vanishing outside this interval. Also, for every N ∈ N let

gN(v) =
1√
LN

∑LN

j=1

(〈
βjv

〉− 1

2

)
∀v ∈ R .
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Utilizing these abbreviations, deduce from (3.7) that for every N ≥ β,

N√
LN

dT
(
μf
N , ηa,f(N)

) ≤ 3√
LN

+

∫ 1

0

|gN ◦ S(v)| dv

=
3√
LN

+

∫
[β−1,1]

|gN (w)| dν(w) . (3.8)

Now, fix ε > 0, and with Dε = aβV (β)/(12ε) let AN,ε =
{
w ∈ [β−1, 1] :

|gN (w)| < Dε

}
. For the integral in (3.8), observe that∫

[β−1,1]

|gN (w)| dν(w)

= Dε

∫
[β−1,1]\AN,ε

|gn(w)|
Dε

dν(w) +

∫
AN,ε

min{|gN (w)|, Dε} dν(w)

≤ 1

Dε

∫ 1

β−1

gN (w)2
a

w
dw +

∫
[β−1,1]

min{|gN (w)|, Dε} dν(w)

≤ aβ

Dε

∫ 1

0

gN(w)2 dw +

∫ ∞

0

ν
({

w ∈ [β−1, 1] : min{|gN(w)|, Dε} ≥ b
})

db

=
12ε

V (β)

∫ 1

0

gN (w)2 dw +

∫ Dε

0

ν
({w ∈ R : b ≤ |gN (w)| ≤ Dε}

)
db .

After plugging this bound back into the right-hand side of (3.8), an application
of (3.3) and (3.4), together with Fatou’s lemma, yields

lim supN→∞
N√
LN

dT
(
μf
N , ηa,f(N)

)
≤ ε+

∫ Dε

0

(
Φ

(
2Dε

√
3

V (β)

)
− Φ

(
2b

√
3

V (β)

)

+ Φ

(
− 2b

√
3

V (β)

)
Φ

(
−2Dε

√
3

V (β)

))
db

≤ ε+

∫ ∞

0

(
1− Φ

(
2b

√
3

V (β)

)
+Φ

(
−2b

√
3

V (β)

))
db

= ε+

√
V (β)

3

∫ ∞

0

(
1− Φ(t)

)
dt = ε+

√
V (β)

6π
.
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Since ε > 0 has been arbitrary,

lim supN→∞
N√
LN

dT
(
μf
N , ηa,f(N)

) ≤ √
V (β)

6π
. (3.9)

Note that limN→∞ LN/ logN = a. Thus to complete the proof of (3.2) for a > 0,
it only remains to establish (3.9) with lim inf instead of lim sup, and with the
inequality reversed. To this end, let mN ∈ R+ be the unique number with

λ

({
v ∈ [0, 1] :

∑LN

j=1

〈
βjS(v)

〉 ≤ mN

})
=

1

2
.

In probabilistic parlance, mN is the median of
∑LN

j=1

〈
βjS(X)

〉
, where the ran-

dom variable X is uniform on [0, 1]. Since
〈
βjS(X)

〉
is very close to being

uniform for large j, the probabilistic view suggests that mN should be close
to 1

2LN . To see that indeed it is, notice that

1

2
= ν

({
w ∈ R :

1√
LN

∑LN

j=1

(〈
βjw

〉 − 1

2

)
≤ 2mN − LN

2
√
LN

})
∀N ∈ N .

Thus, if mN were larger than 1
2 (LN + ε

√
LN ) for ε > 0 and infinitely many N

then, by (3.4),

1

2
≥ lim infN→∞ ν

({
w ∈ R :

1√
LN

∑LN

j=1

(〈
βjw

〉− 1

2

)
≤ ε

2

})

= Φ

(
ε

√
3

V (β)

)
>

1

2
,

an obvious contradiction. It follows that

lim supN→∞
2mN − LN√

LN

≤ ε ,

and similarly for the corresponding lower bound. Since ε > 0 has been arbitrary,

limN→∞
2mN − LN√

LN

= 0 .

Returning now to (3.7), recall that
∫ 1

0
h′(v) dv = 0, and hence the term −1

2
on the far right in that equation may be replaced by −mN/LN . Doing so yields

N√
LN

dT
(
μf
N , ηa,f(N)

) ≥ − 3√
LN

+

∫ 1

0

∣∣∣∣ 1√
LN

∑LN

j=1

〈
βjS(v)

〉−mN

∣∣∣∣ dv
≥ − 3√

LN

− |LN − 2mN |
2
√
LN

+

∫ 1

0

|gN ◦ S(v)| dv .
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As in (3.8), observe that∫ 1

0

|gN ◦ S(v)| dv =

∫
[β−1,1]

|gN (w)| dν(w) =

∫ ∞

0

ν
({w ∈ R : |gN(w)| ≥ b}) db ,

and so, with (3.4) and Fatou’s lemma,

lim infN→∞
∫ 1

0

|gN ◦ S(v)| dv ≥
∫ ∞

0

ν
({w ∈ R : |gN (w)| ≥ b}) db

=

∫ ∞

0

(
1− Φ

(
2b

√
3

V (β)

)
+Φ

(
−2b

√
3

V (β)

))
db =

√
V (β)

6π
.

In summary, therefore,

lim infN→∞
N√
LN

dT
(
μf
N , ηa,f(N)

) ≥ √
V (β)

6π
.

As noted earlier, this, together with (3.9), completes the proof for a > 0.

It remains to consider the case a = 0, for which (3.2) merely asserts that

limN→∞
N√
logN

dT
(
μf
N , δf(N)

)
= 0 . (3.10)

Here, (3.1) reads
∫∞
1

t|f ′(t)| dt < ∞. It is easy to see that this in fact entails

supN∈N NdT
(
μf
N , δf(N)

)
< ∞, which in turn implies (3.10): Indeed, by Euler

summation,

N

∫
T

h dμf
N =

h ◦ f(1) + h ◦ f(N)

2
+

∫ N

1

h ◦ f(u) du

+

∫ N

1

h′ ◦ f(u)f ′(u)
(
〈u〉 − 1

2

)
du

= Nh ◦ f(N) +
h ◦ f(N)− h ◦ f(1)

2

−
∫ N

1

h′ ◦ f(u)f ′(u)
(
�u�+ 1

2

)
du ,

and hence for every N ∈ N,

NdT
(
μf
N , δ0 ◦R−1

f(N)

) ≤ 1 +

∫ N

1

(
u+

1

2

)
|f ′(u)| du ≤ 1 + 2π

∫ ∞

1

u|f ′(u)| du .

As seen at the outset, this completes the proof. �
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Arguably the most prominent concrete example within the scope of Theo-
rem 3.1 is f(t) = a log t with a ∈ R, where (3.2), with μN [a logn] written simply
as μN , reads

limN→∞
N√
logN

dT
(
μN , ηa,a logN

)
=

√
|a|
6π

(3.11)

for all but countably many a; for instance, (3.11) holds whenever a is an al-
gebraic number. By contrast, for every integer q ≥ 2, and with logq denoting
the logarithm base q,

limN→∞
N√
logN

dT
(
μN , ηlogq e,logq N

)
=

√
q + 1

6π(q − 1) log q
;

cf. [25, Thm.3.3]. To relate (3.2) to the example given in the Introduction, no-
tably to (1.1), observe that for every increasing sequence (Nj) in N and t ∈ R,
by the triangle inequality for dT as well as (2.4),

Nj√
logNj

∣∣dT(μNj
, ηa,a logNj

)− dT(μNj
, ηa,t)

∣∣ ≤ Nj√
logNj

dT(ηa,a logNj
, ηa,t)

≤ Nj√
logNj

dT(a logNj , t)

for every j ∈ N. Thus, if supj NjdT(a logNj, t) < ∞ then

limj→∞
Nj√
logNj

dT
(
μNj

, ηa,t
)
=

√
|a|
6π

V (e1/|a|) .

Specifically, with a = 1
3 this yields ((1.1) for t = 0; Figure 1 illustrates how

μNj
→ η1/3,t for t = 0 (left) and t = 1

3 log 2 (right), respectively.

A related example of enduring interest [14, 18–20, 22, 24] is (log pn), where
pn denotes the n-th prime number. Recall that by the prime number theorem,
| log pn − f(n)| → 0 with f(t) = log t + log log t. Evidently, this f does not lie
within the scope of Theorem 3.1, as limt→∞(tf ′(t) − 1) log t = 1, and so (3.1)
fails. However, limt→∞ tf ′(t) = 1, and it can be shown [2] that

lim supN→∞ logNdT
(
μN [log pn], η1,log pN

)
< ∞ , (3.12)

which is consistent with [19, Thm.6]. As of this writing, the precise rate of conver-
gence for dT

(
μN [log pn], η1,log pN

) → 0 is unknown to the author, though (3.12)

and the finer analysis in [20] suggest that it is much slower than
(√

logN/N
)
,

the rate observed for (logn) in (3.11).
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4. A discrepancy rate of convergence

This section considers exactly the same real-valued sequences as the previous
section, i.e.,

(
f(n)

)
with f satisfying (3.1), but employs the discrepancy-style

metric d∞ instead of dT. Again, μN [f(n)] is abbreviated as μf
N throughout.

The following simple calculus fact is going to be useful.

����������� 4.1� Let f : R+ → R be a C1-function. If f satisfies (3.1)
for some a ∈ R then there exists a C1-function g : R+ → R such that g(n) = f(n)
for all n ∈ N, with∫ ∞

1

t|g′(t)− f ′(t)| dt < ∞ and limt→∞ tg′(t) = a .

In addition, it will be convenient to use a straightforward generalization
of (a special case of) the central limit theorem 3.4.

����������� 4.2� Let I ⊂ R be an interval with λ(I) < ∞, and for every j ∈ N

let εj : I → R be measurable. If
∑∞

j=1 supI |εj | < ∞ then for every β ∈ R+ with
β > 1,

limM→∞ λ

({
t ∈ I :

1√
M

∑M

j=1

(〈
βjt+ εj(t)

〉− 1

2

)
≤ b

})
=

λ(I) Φ

(
2b

√
3

V (β)

)
∀b ∈ R .

With the usage of μf
N and ηa,t exactly as in Theorem 3.1, the following ana-

logue of that theorem for d∞ hints at an asymptotics of (μf
N) quite different

from what has been observed earlier. The result naturally strengthens and com-
plements [19,25].

������� 4.3� Let f : R+ → R be a C1-function. If f satisfies (3.1) for some
a ∈ R \ {0}, then

lim supN→∞
N

logN
d∞

(
μf
N , ηa,f(N)

) ≤ |a| , (4.1)

as well as

lim infN→∞
N√
logN

d∞
(
μf
N , ηa,f(N)

)
= ∞ . (4.2)

P r o o f. Assume first that a > 0, and also that f ′(t) > 0 for all sufficiently
large t, with the latter assumption being justified by Proposition 4.1. Pick N0
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so large that f(t) > 1 and f ′(t) > 0 whenever t ≥ N0, and denote by g=g(t)
the inverse of f , defined for all t ≥ f(N0); for convenience, let g(t) = N0

for all t ≤ f(N0). As in the proof of Theorem 3.1, define Δ(t) = tf ′(t) − a
for all t ∈ R+, but also E(t) =

∫∞
t

Δ(u)/u du and E∗(t) =
∫∞
t

|Δ(u)|/u du.
By (3.1), the functions E and E∗ are well-defined, E∗ is non-increasing, with
0 ≤ t|E(t)| ≤ tE∗(t) → 0 as t → ∞, and

∫∞
1

tE∗(t) dt < ∞. Observe that

f(t) = a log t+D −E(t) ∀t ∈ R+,

where D is an appropriate constant, and hence also

g(t) = e(t−D)/aeE◦g(t)/a ∀t ≥ f(N0) .

Both assertions of the theorem will follow easily once a sufficiently accurate
asymptotic representation of N(Fμf

N
−Fηa,f(N)

), in the form of (4.8) below, has

been obtained. To this end, with LN = �f(N)� and sN = 〈f(N)〉 for convenience,
straightforward counting yields for every N ≥ N0 and 0 ≤ s < 1,

NFμf
N
(s) = #{1 ≤ n ≤ N : 0 ≤ 〈f(n)〉 ≤ s}

= N0Fμf
N0

(s) + �g(max{s+ �f(N0)�, f(N0)})� −N0

+
∑LN−1

j=�f(N0)
(�g(j + s)� − �g(j)�+ 1)

+min{�g(LN + s)�, N} − �g(LN )�+ 1

= D1(s) + LN +
∑LN−1

j=�f(N0)
(�g(j + s)� − �g(j)�)

+ min{�g(LN + s)�, N} − �g(LN )� ; (4.3)

here D1(s) is bounded,

|D1(s)| ≤ 1 + �f(N0)�+N0e

(
1+E∗(N0)

)
/a ∀0 ≤ s < 1 .

To further analyze the remaining terms in the representation ofNFμf
N
(s) in (4.3),

observe first that for every �f(N0)� ≤ j ≤ LN − 1 and 0 ≤ s < 1,

�g(j + s)� − �g(j)� = g(j + s)− g(j)− (〈g(j + s)〉+ 〈−g(j)〉)
= e(j+s−D)/aeE◦g(j+s)/a

− e(j−D)/aeE◦g(j)/a − (〈g(j + s)〉+ 〈−g(j)〉)
= e(j+s−D)/a − e(j−D)/a − (〈g(j + s)〉+ 〈−g(j)〉)
+ e(j+s−D)/a

(
eE◦g(j+s)/a − 1

)− e(j−D)/a
(
eE◦g(j)/a − 1

)
.
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With regard to the last two terms, notice that for all 0 ≤ s < 1,∣∣∣∣∑LN−1

j=�f(N0)
e(j+s−D)/a

(
eE◦g(s+j)/a − 1

)∣∣∣∣
≤

∑LN−1

j=�f(N0)
e(j+s−D)/aE

∗ ◦ g(j + s)

a
eE

∗◦g(j+s)/a

≤ eE
∗(N0)/a

a

∑LN−1

j=�f(N0)
e(j+s−D)/a

∫ ∞

g(j+s)

|Δ(u)|
u

du

≤ eE
∗(N0)/a

a

∫ LN

1

e(v+s−D)/a

∫ ∞

g(j+s)

|Δ(u)|
u

du dv

=
eE

∗(N0)/a

a

∫ ∞

g(s)

|Δ(u)|
u

∫ f(u)+1−s

1

e(v+s−D)/adv du

≤ eE
∗(N0)/ae1/a

∫ ∞

N0

|Δ(u)|eE∗(u)/adu ≤ e

(
(1+2E∗(N0)

)
/a

∫ ∞

N0

|Δ(u)| du .

With this, it follows that∑LN−1

j=�f(N0)
(�g(j + s)� − �g(j)�)

= (es/a − 1)e−D/a e
LN/a − e�f(N0)/a

e1/a − 1

−
∑LN−1

j=�f(N0)
(〈g(j + s)〉+ 〈−g(j)〉)+D2,N(s)

= Ne−sN/a e
s/a − 1

e1/a − 1

−
∑LN−1

j=�f(N0)
(〈g(j + s)〉+ 〈−g(j)〉)+D3,N(s) , (4.4)

where D2,N (s), D3,N(s) are uniformly bounded, in that

supN≥N0,0≤s<1 max{|D2,N(s)|, |D3,N (s)|} < ∞ .

Next, a similar analysis for the final two terms in (4.3) yields

min{�g(LN + s)�, N} − �g(LN )� = �g(LN +min{s, sN})�+ �−g(LN )�
= g(LN +min{s, sN})− g(LN )− 〈g(LN +min{s, sN})〉 − 〈−g(LN )〉
= g

(
f(N) + min{s− sN , 0})− g

(
f(N)− sN

)
− 〈

g
(
LN +min{s, sN})〉 − 〈−g(LN )

〉
= N

(
emin{s−sN ,0}/a − e−sN/a

)
+D4,N(s) , (4.5)

where D4,N (s) again is uniformly bounded.
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Finally, plugging (4.4) and (4.5) into (4.3) yields

NFμf
N
(s) = D1(s) + LN +Ne−sN/a e

s/a − 1

e1/a − 1

−
∑LN−1

j=�f(N0)
(〈g(j + s)〉+ 〈−g(j)〉)+D3,N (s)

+N
(
emin{s−sN ,0}/a − e−sN/a

)
+D4,N (s)

= NFηa,f(N)
(s) + LN

−
∑LN−1

j=�f(N0)
(〈g(j + s)〉+ 〈−g(j)〉)

+D1(s) +D3,N(s) +D4,N(s) . (4.6)

Now, for convenience define for every N ≥ N0 and 0 ≤ s < 1,

hN (s) = 1− 1

LN

∑LN

j=1

(〈g(j + s)〉+ 〈−g(j)〉) (4.7)

= − 1

LN

∑LN

j=1

((
〈g(j + s)〉 − 1

2

)
+

(
〈−g(j)〉 − 1

2

))
.

With this, it is clear from (4.6) that

supN≥N0,0≤s<1

∣∣∣N(
Fμf

N
(s)− Fηa,f(N)

(s)
)− LNhN (s)

∣∣∣ < ∞ . (4.8)

As hinted at earlier, (4.1) now follows immediately, since −1 < hN (s) ≤ 1 for all
N ≥ N0 and 0 ≤ s < 1, and consequently

lim supN→∞
N

LN
d∞

(
μf
N , ηa,f(N)

) ≤ 1 .

Recalling that limN→∞ LN/ logN = a therefore completes the proof of (4.1)
for a > 0.

To prove (4.2), notice first that for all j ≥ �f(N0)� and 0 ≤ s < 1,

g(j + s) = e(j+s−D)/a + e(j+s−D)/a
(
eE◦g(j+s)/a − 1

)
=: e(j+s−D)/a + εj(s) .

For convenience, let εj(s) = g(j+s)−e(j+s−D)/a for all 1 ≤ j < �f(N0)� as well,
and Ej := sup0≤s<1 |εj(s)|. With this, for all j ≥ �f(N0)�,

Ej ≤ e(j+1−D)/a E∗ ◦ g(j)
a

eE
∗(N0)/a ,
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and hence∑∞
j=�f(N0)

Ej ≤ eE
∗(N0)/a

a

∑∞
j=�f(N0)

e(j+1−D)/a

∫ ∞

g(j)

|Δ(u)|
u

du

≤ eE
∗(N0)/a

a

∫ ∞

f(N0)

∫ ∞

g(v−1)

e(v+1−D)/a |Δ(u)|
u

du dv

=
eE

∗(N0)/a

a

∫ ∞

N0

|Δ(u)|
u

∫ f(u)−1

f(N0)

e(v+1−D)/adv du

≤ e2
(
1+E∗(N0)

)
/a

∫ ∞

N0

|Δ(u)| du < ∞ .

Similarly to the proof of Theorem 3.1, let S(v) = e(v−D)/a for all v ∈ R. Then,
simply g(j + s) = ej/aS(s) + εj(s) for all j ∈ N, 0 ≤ s < 1, and so, by Proposi-

tion 4.2 with I = S[0, 1] and β = e1/a,

limM→∞ λ

({
t ∈ I :

1√
M

∑M

j=1

(〈
ej/at+ εj ◦ S−1(t)

〉− 1

2

)
≤ b

})
=

λ(I) Φ

(
2b

√
3

V (β)

)
> 0 ∀b ∈ R .

It follows that, given any c ∈ R+ and sufficiently large N ∈ N, there exist
0 ≤ s1, s2 < 1 such that

1√
LN

∑LN

j=1

(〈
g(j + s1)

〉− 1

2

)
≤ −c ,

1√
LN

∑LN

j=1

(〈
g(j + s2)

〉− 1

2

)
≥ c .

Thus, with

HN :=
1

LN

∑LN

j=1

(〈−g(j)
〉−1

2

)
∀N ∈ N

for convenience,√
LNhN (s1) ≥ c−

√
LNHN ,

√
LNhN (s2) ≤ −c−

√
LNHN ,

and consequently,

sup0≤s<1

√
LN |hN (s)| ≥ max

{|c−√
LNHN |, |c+

√
LNHN |} ≥ c .

Since c ∈ R+ has been arbitrary, lim infN→∞
√
LN sup0≤s<1 |hN (s)| = ∞.

Together with (4.8), this proves (4.2) for a > 0.

The case a < 0 is left to the reader, as the argument is completely analogous-
-notwithstanding the fact that d∞ is not invariant under Q, unlike dT. �
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To see that the rate (logN/N) observed in (4.1) is sharp for some f, take for
example f(t) = a log t with a > 0. Here (4.7) simply reads

hN (s) = 1− 1

LN

∑LN

j=1

(〈
e(j+s)/a

〉
+

〈−ej/a
〉)

.

For instance, if e1/a is an integer , then limε↓0 hN (ε) = 1, and consequently

limN→∞
N

logN
d∞

(
μf
N , ηa,f(N)

)
= a ;

cf. [25, Cor.3.4]. Slightly more generally, it is not hard to see that

lim infN→∞
N

logN
d∞

(
μf
N , ηa,f(N)

)
> 0 (4.9)

whenever e1/a is a Pisot number for which the Galois conjugate with the second-
largest modulus is non-negative. (For example, the larger root of r2−4r+2 = 0 is
a Pisot number with this property.) In general, however, determining the precise

asymptotics of
(
d∞(μf

N , ηa,f(N))
)
may be a challenging task, not least because

limN→∞
N

logN

∫ 1

0

|Fμf
N
(s)− Fηa,f(N)

(s)| ds = 0

for Lebesgue almost every a. Nonetheless, the author suspects that (4.9) in fact
always holds under the assumptions of Theorem 4.3. If indeed it does, then the
precise value(s) of the lim sup and lim inf in (4.1) and (4.9), respectively, may
depend on a in an exceedingly complicated manner. The reader may want to
compare this delicate situation to the clear-cut conclusion of Theorem 3.1.

������	� 4.4� Let f : R+ → R be a C1-function. If f satisfies (3.1) for some
a ∈ R \ {0}, then

limN→∞
∣∣∣d∞(μf

N , μ)− d∞(ηa,f(N), μ)
∣∣∣ = 0 ∀μ ∈ P . (4.10)

As with dT, the function t �→ d∞(ηa,t, μ) is continuous, 1-periodic, and attains
a positive maximal value for every μ ∈ P . Unlike with dT, however, this function
is not constant for μ = λT, as

0 < 2mint∈R d∞(ηa,t, λT) = maxt∈R d∞(ηa,t, λT) ∀a ∈ R ;

this fact has been recorded repeatedly, if often implicitly, in the literature [3,9].

The reader will no doubt have noticed that, unlike in Theorem 3.1 and Corol-
lary 3.3, the case a = 0 is forbidden in Theorem 4.3 and Corollary 4.4. To see
that the conclusions of the latter results may indeed fail for a = 0, pick first

97



ARNO BERGER

an increasing sequence (Nj) in N, as well as a decreasing sequence (aj) in R+

with a1 < 1
2 and

∑∞
j=1 jajNj < ∞. With this, consider (xn) given by

(xn) = ( 0, . . . , 0︸ ︷︷ ︸
N1 zeros

, a1, 0, . . . , 0︸ ︷︷ ︸
N2 zeros

, a2, 0, . . .︸ ︷︷ ︸
etc.

) .

Clearly, (3.1) holds for an appropriate f with (xn) =
(
f(n)

)
and a = 0. More-

over, with N = N1 + · · ·+Nj + j for j ∈ N,

d∞(μf
N , δf(N)) =

N − j

N
≥ 1− 2

j + 3
,

but also

d∞(μf
N−1, δf(N−1)) = 1− N − j

N − 1
≤ 2

j + 3
,

from which it is clear that

lim supN→∞ d∞
(
μf
N , δf(N)

)
= 1 > 0 = lim infN→∞ d∞

(
μf
N , δf(N)

)
.

Moreover, taking for instance Nj = j for all j ∈ N yields

lim infN→∞
√
Nd∞(μf

N , δf(N)) =
√
2 .

Notice that all this is inconsistent with (4.1) which for a = 0 would read

limN→∞ Nd∞(μf
N , δf(N))/ logN = 0. By contrast, it is readily seen that

NdT

(
μf
N , δf(N)

)
≤ jajNj +

∑j

k=1
ak

for every N ∈ {N1 + · · · + Nj + j, . . . , N1 + · · · + Nj+1 + j}, so the sequence(
NdT(μ

f
N , δf(N))

)
is bounded, and (3.2) is valid for a = 0, as expected.

In a similar vein, to see that (4.10) may fail for a = 0, simply take f(t) =
e−t cos(πt). Here limN→∞ Fμf

N
(s) = 1

2 for every 0 < s < 1, and consequently

limN→∞ d∞ (μf
N , λT) = 1

2 , whereas clearly, limN→∞ d∞ (δf(N), λT) = 1.

Again, contrast this with the fact that

limN→∞ dT(μ
f
N , λT) =

1
4
= limN→∞ dT(δf(N), λT) = dT(δ0, λT) ,

in perfect agreement with Corollary 3.3.

Examples like these illustrate once again how usage of dT may lead to more
robust and comprehensive statements, compared to d∞.
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