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1. Introduction

Processes with stationary and independent increments are the continuous-time ana-
logues of sums of independent, identically distributed random variables. They con-
stitute one of the simplest yet also most fundamental classes of stochastic processes.
With an additional assumption on the regularity of sample paths, such processes
are referred to as Lévy processes, see Definition 2.2 below. The class of Lévy pro-
cesses has been studied extensively and in many different state spaces, ranging from
the classical case of R

d (where it contains both the Wiener and Poisson processes
as extremely important examples) to more general topological groups, including
non-Abelian ones. Due to their capability of incorporating both diffusion-type con-
tinuous evolution and jumps, Lévy processes are now widely used as basic stochas-
tic models in applied mathematics, notably in mathematical finance and quantum
physics, see, for example, [1] which also contains ample references to the vast liter-
ature on the subject.
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The aim of this note is to provide an easily accessible, dynamical systems ori-
ented proof of a fundamental fact concerning the convergence to Haar measure of
the normalized occupation measures of any Lévy process taking values in a compact
group. Various special cases of the main results, Theorem 3.1 and Corollary 3.1,
have been (re-)discovered repeatedly over the years, as have some related facts,
see Remark 4.5. However, arguments geared towards these special cases tend to
obscure rather than elucidate the underlying general dynamical principle. As this
note ventures to demonstrate, the latter is most easily understood when stripped
of all superfluous particulars.

2. Basic Definitions and Notations

Throughout, G denotes a metrizable compact group, with the group operation
written multiplicatively, with neutral element eG and with Borel σ-algebra BG.
When written without a subscript, the symbol B stands for the Borel σ-algebra on
R, or on some (Borel) subset thereof. The sets gB and Bg are the images of B ∈ BG

under, respectively, the left- and right-translation by g; that is, gB = {gb : b ∈ B}
and Bg = {bg : b ∈ B}. Write λG for the (normalized) Haar measure on G;
that is, λG is the unique probability measure on (G,BG) that is invariant under
all left-translations. (Equivalently, λG is the unique probability measure on (G,BG)
invariant under all right-translations.) For any closed (and hence compact) subgroup
H of G it will be understood that the corresponding Haar measure λH is defined on
all of (G,BG), rather than merely on (H,BH) and λH(G\H) = 0. For any g ∈ G,
denote by εg the Dirac probability measure concentrated at g.

Denote by C(G) the separable Banach space of continuous, complex-valued
functions on G, equipped with the supremum norm. The dual of C(G) is the space
of finite, complex-valued measures on (G,BG); from now on this space will always
be equipped with the corresponding weak∗ topology.

Definition 2.1. A measurable function γ : [0,+∞) → G is continuously uniformly
distributed in G, abbreviated henceforth as c.u.d., if

lim
T→+∞

1
T

∫ T

0

ϕ(γ(t))dt =
∫

G

ϕdλG ∀ϕ ∈ C(G). (2.1)

Similarly, with �y� denoting, as usual, the largest integer not larger than y ∈ R,
a sequence (gn)n∈N is uniformly distributed (u.d.) in G whenever the function γ :
t �→ g�t�+1 is c.u.d., see [19].

Note that γ is c.u.d. if and only if the normalized occupation measures ΛT

converge to λG as T → +∞; here the probability measure ΛT is, for every T > 0,
defined by

ΛT (B) =
1
T

∫ T

0

1B(γ(t))dt ∀B ∈ BG,

with 1B denoting the indicator function of any set B ∈ BG.
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Definition 2.2. A Lévy process in G is a family X = (Xt)t≥0 of G-valued random
variables, defined on some underlying probability space (Ω,F ,P), with the following
properties:

(i) For any 0 ≤ t1 < t2 the distribution of the increment X−1
t1 Xt2 is the same as

the distribution of X−1
0 Xt2−t1 .

(ii) The random variables Xt1 , X
−1
t1 Xt2 , X

−1
t2 Xt3 , . . . , X

−1
tn−1

Xtn are independent
whenever n ≥ 2 and 0 ≤ t1 < t2 < · · · < tn.

(iii) For P-almost all ω ∈ Ω, the G-valued function t �→ Xt(ω) is right-continuous
with left-limits (or rcll for short); that is, limε↓0Xt+ε(ω) = Xt(ω) for all t ≥ 0,
and limε↓0Xt−ε(ω) =: Xt−(ω) exists for every t > 0.

For fixed ω ∈ Ω, the rcll function t �→ Xt(ω) is referred to as a path of X .
WriteD for the set of all rcll functions from [0,∞) to G. Note that the equivalent

French acronym càdlàg is often used instead of rcll, and D is called the Skorohod
space associated with G. It is possible to equip D with a complete, separable met-
ric such that the corresponding Borel σ-algebra BD coincides with the σ-algebra
generated by the sets of the form

{γ ∈ D : γ(tj) ∈ Bj for n ∈ N; j = 1, . . . , n; 0 ≤ t1 < · · · < tn;B1, . . . , Bn ∈ BG},
see, for example, Secs. 3.5 and 3.7 of [10].

3. Main Result and Applications

Let X = (Xt)t≥0 be a Lévy process in G. For every t ≥ 0, write µt for the distribu-
tion of the increment X−1

0 Xt. Note that the family of probability measures (µt)t≥0

is a convolution semigroup; that is, µt1 ∗ µt2 = µt1+t2 for all t1, t2 ≥ 0, where ∗
denotes the convolution of probability measures on (G,BG). It follows that each
probability measure µt is infinitely divisible, though no explicit use of this property
will be made here. For any probability measure ν on (G,BG), recall that the support
of ν is the smallest closed set F ⊂ G with ν(F ) = 1. For every t ≥ 0 write St for the
support of µt. The following characterization of the almost sure continuous uniform
distribution for the paths of X is the main content of this note.

Theorem 3.1. Let X = (Xt)t≥0 be a Lévy process in the metrizable compact group
G. Then the following statements are equivalent :

(i) The set
⋃

t≥0 St is dense in G.
(ii) The paths of X are, with probability one, c.u.d. in G.

Proof. In order not to interrupt the main thread, two auxiliary facts of a technical
nature are deferred to the subsequent Lemmas 3.1 and 3.2.

It will be convenient to formulate the main part of the proof using the termi-
nology of ergodic theory. To this end, consider the probability measure ρ defined
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on (G × D,BG ⊗ BD) by setting, for any n ∈ N, 0 = t0 < t1 < · · · < tn and
B0, B1, . . . , Bn ∈ BG,

ρ(B0 × {γ ∈ D : γ(tj) ∈ Bj ∀ j = 1, . . . , n})
:= P{ξ ∈ B0, X

−1
0 Xtj ∈ Bj ∀ j = 1, . . . , n},

where ξ is a random variable, also defined on (Ω,F ,P), that is independent of the
process X and has distribution λG. For every t ≥ 0, define a map Rt of G×D into
itself by

Rt(g, γ(•)) = (gγ(0)−1γ(t), γ(t)−1γ(t+ •)) ∀ (g, γ) ∈ G×D.

Clearly, Rt is measurable, and

Rt1 ◦Rt2(g, γ(•)) = Rt1(gγ(0)−1γ(t2), γ(t2)−1γ(t2 + •))
= (gγ(0)−1γ(t2)γ(t2)−1γ(t2 + t1),

(γ(t2)−1γ(t2 + t1))−1γ(t2)−1γ(t2 + t1 + •))
= (gγ(0)−1γ(t1 + t2), γ(t1 + t2)−1γ(t1 + t2 + •))
= Rt1+t2(g, γ(•))

holds for all t1, t2 ≥ 0. Moreover, since ξX−1
0 Xt has distribution λG for all t ≥ 0,

it follows from the stationarity and independence of increments of X that for any
n ∈ N, 0 = t0 < t1 < · · · < tn and B0, B1, . . . , Bn ∈ BG,

ρ ◦R−1
t (B0 × {γ : γ(tj) ∈ Bj ∀ j = 1, . . . , n})
= P{ξX−1

0 Xt ∈ B0, X
−1
t Xt+tj ∈ Bj ∀ j = 1, . . . , n}

= P{ξ ∈ B0, X
−1
0 Xtj ∈ Bj ∀ j = 1, . . . , n}

= ρ(B0 × {γ : γ(tj) ∈ Bj ∀ j = 1, . . . , n}).
Thus, (Rt)t≥0 is a ρ-preserving semi-flow. In particular, the stochastic process
(ξX−1

0 Xt)t≥0 is stationary [7, 18]. Recall that (Rt)t≥0 is said to be ergodic if
ρ(R−1

t (A)�A) = 0 for A ∈ BG ⊗ BD and all t ≥ 0 implies that ρ(A) ∈ {0, 1};
here, as usual, � denotes the symmetric difference of two sets. From Lemma 3.1
below, it follows that (Rt)t≥0 is ergodic if and only if

P{λG(BX−1
0 Xt�B) = 0} = 1 ∀ t ≥ 0 (3.1)

for some set B ∈ BG implies that λG(B) ∈ {0, 1}. (Note that Lemma 3.1 is required
only for the “if” part; the “only if” part is straightforward, cf. Theorem 3 in [16]
and Theorem 1 in [25].)

With these preparations, the asserted implication (i)⇒(ii) will now be proved.
Thus assume (i); that is,

⋃
t≥0 St = G. The key step in establishing (ii) is to check

1250008-4

St
oc

h.
 D

yn
. 2

01
3.

13
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

L
B

E
R

T
A

 o
n 

05
/2

3/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

August 1, 2012 13:10 WSPC/S0219-4937 168-SD 1250008 5–16

A Limit Theorem for Occupation Measures of Lévy Processes in Compact Groups

that the semi-flow (Rt)t≥0 is ergodic in this case. Assume, therefore, that (3.1)
holds for some set B ∈ BG. Note that then

P{λG(BX−1
0 Xtn�B) = 0 ∀n ∈ N} = 1

holds for every sequence (tn)n∈N in [0,+∞). Specifically, choose (tn)n∈N such that⋃
n∈N

Stn is dense in G. (This is possible due to the separability of G.) By Fubini’s
Theorem, λG(Bh�B) = 0 holds for all h in a dense subset H0 of G. To establish
the ergodicity of (Rt)t≥0, it remains to demonstrate how this last conclusion implies
that λG(B) ∈ {0, 1}. Assume, therefore, that λG(B) > 0 and let ν be the normalized
restriction of λG to B; that is,

ν(A) :=
λG(B ∩A)
λG(B)

∀A ∈ BG.

For g ∈ G, denote by Tg the right-translation by g. Notice that, for every h ∈ H0,

ν ◦ T−1
h (A) =

λG(B ∩Ah−1)
λG(B)

=
λG(Bh ∩A)
λG(B)

= ν(A) +
λG(Bh ∩A) − λG(B ∩A)

λG(B)
,

and hence

|ν ◦ T−1
h (A) − ν(A)| =

|λG(Bh ∩A) − λG(B ∩A)|
λG(B)

≤ λG(Bh�B)
λG(B)

= 0,

showing that ν ◦T−1
h = ν. Given any g ∈ G and ϕ ∈ C(G), pick a sequence (hn)n∈N

in H0 such that limn→∞ hn = g. Since ϕ ◦ Thn → ϕ ◦ Tg uniformly on G, it follows
by dominated convergence that∫

G

ϕ(x)dν ◦ T−1
g (x) =

∫
G

ϕ(xg)dν(x) = lim
n→∞

∫
G

ϕ(xhn)dν(x)

= lim
n→∞

∫
G

ϕ(x)dν(x) =
∫

G

ϕ(x)dν(x).

Thus, ν is invariant under all right-translations, and consequently ν = λG. In
particular, λG(B) = 1, as required. Hence, the semi-flow (Rt)t≥0 is ergodic.

By the Birkhoff Ergodic Theorem, for every integrable ϕ : G→ C,

1
T

∫ T

0

ϕ(gγ(0)−1γ(t))dt T→+∞−−−−−→
∫

G×D

ϕ(g′)dρ(g′, γ′) =
∫

G

ϕ(g′)dλG(g′)

holds for ρ-a.e. (g, γ) ∈ G×D. In probabilistic terms, this means that

lim
T→+∞

1
T

∫ T

0

ϕ(ξX−1
0 Xt)dt =

∫
G

ϕdλG (3.2)
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holds with probability one. For any ϕ ∈ C(G), g ∈ G and n ∈ N, denote the set{
ω ∈ Ω : lim sup

T→+∞

∣∣∣∣∣ 1T
∫ T

0

ϕ(gXt(ω))dt−
∫

G

ϕdλG

∣∣∣∣∣ < 1
n

}
∈ F

by Ωϕ,g,n. As ξX−1
0 is Haar-distributed in G, 1 =

∫
G

P(Ωϕ,g,n)dλG(g) for every n
by the above, and so P(Ωϕ,g,n) = 1 for λG-almost every g ∈ G. If λG({eG}) > 0
or, equivalently, if G is finite, then P(Ωϕ,e

G
,n) = 1 for all n, and consequently

P(
⋂

n Ωϕ,e
G

,n) = 1. If, on the other hand, eG is not an atom of λG then, by the
uniform continuity of ϕ, there exists a sequence (gn)n∈N in G with limn→∞ gn = eG

such that P(Ωϕ,gn,2n) = 1 and Ωϕ,gn,2n ⊆ Ωϕ,e
G

,n for all n. From

1 = P

(⋂
n

Ωϕ,gn,2n

)
≤ P

(⋂
n

Ωϕ,eG,n

)
≤ 1,

it is clear that also in this case

lim
T→+∞

1
T

∫ T

0

ϕ(Xt)dt =
∫

G

ϕdλG with probability one. (3.3)

Finally, recall that C(G) is separable, and hence taking the intersection of (3.3)
over a dense family {ϕn : n ∈ N} in C(G) yields that the paths t �→ Xt are, with
probability one, c.u.d. in G. Thus, (i) implies (ii).

To show the reverse implication (ii) ⇒ (i), suppose that (i) does not hold. In
this case, Lemma 3.2 shows that HX :=

⋃
t≥0 St is a proper (compact) subgroup

of G. It then follows from the first part of the proof that the paths of (X−1
0 Xt)t≥0

are c.u.d. in HX . Thus,

lim
T→+∞

1
T

∫ T

0

ϕ(Xt)dt =
∫

HX

ϕ(X0h)dλHX (h) ∀ϕ ∈ C(G) (3.4)

holds with probability one. It is straightforward to see that, no matter what the
distribution of X0 is, for some suitable choice of ϕ ∈ C(G) the integral on the right
of (3.4) will not almost surely equal

∫
G
ϕ(g)dλG(g).

The following two somewhat technical lemmas have been relied on in the proof
of Theorem 3.1.

Lemma 3.1. With the notation used in the proof of Theorem 3.1, let the
BG ⊗ BD-measurable function ψ : G × D → R be invariant under the semi-
flow (Rt)t≥0; that is, assume that ψ ◦ Rt = ψ holds ρ-a.e. for all t ≥ 0. Then
there exists a BG-measurable function ψ : G → C such that ψ(g, γ) = ψ(g) for
ρ-a.e. (g, γ) ∈ G×D.

Proof. The argument given here mimics the proof of Theorem 1 in [25]. Write
expectations and conditional expectations with respect to ρ as ρ[•] and ρ[• | •],
respectively. Put G := BG ⊗ {∅, D} and H := {∅, G} ⊗ BD. Since there exists,
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for any bounded BG ⊗ BD-measurable function ψ, a BG-measurable function
ψ : G → R such that ρ[ψ | G](g, γ) = ψ(g) for ρ-a.e. (g, γ) ∈ G × D, it suffices
to show for any bounded invariant function ψ that ψ = ρ[ψ | G] ρ-a.e. By a mono-
tone class argument, this is equivalent to showing for any bounded invariant func-
tion ψ, any bounded G-measurable function α, and any bounded H-measurable
function β that

ρ[ψαβ] = ρ[ρ[ψ | G]αβ]. (3.5)

Note that due to the independence of the sub-σ-algebras G and H under ρ the
right-hand side of (3.5) is

ρ[ρ[ψ | G]α]ρ[β] = ρ[ψα]ρ[β],

and so it further suffices to show for any bounded H-measurable function β with
ρ[β] = 0 that ρ[ψαβ] = 0 for any bounded G-measurable function α. Since

ρ[ψαβ] = ρ[ρ[ψβ | G]α],

this is equivalent to establishing

ρ[|ρ[ψβ | G]|] = 0. (3.6)

Note also that ρ[|ρ[ψβ | G]|] = ρ[|ρ[ψβ | G] ◦ Rt|] for all t ≥ 0 because Rt preserves
the measure ρ. Moreover, observe that

ρ[ψβ | G](g, γ) = E[ψ(g,X−1
0 X•)β(X−1

0 X•)],

where β is a BD-measurable function such that β(g, γ) = β(g) for ρ-a.e. (g, γ) ∈
B ×D. By definition of Rt and the stationary increments property of X ,

ρ[ψβ | G] ◦Rt(g, γ) = E[ψ(gγ(0)−1γ(t), X−1
0 X•)β(X−1

0 X•)]

= E[ψ(gγ(0)−1γ(t), X−1
t Xt+•)β(X−1

t Xt+•)].

Since ψ is invariant, ψ(g, γ) = ψ(gγ(0)−1γ(t), γ(t)−1γ(t+ •)), and hence

ρ[ψβ | G] ◦Rt(g, γ) = E[ψ(g,X(γ,t)
• )β(X−1

t Xt+•)],

where

X(γ,t)
s :=

{
γ(s) if 0 ≤ s < t,

γ(t)X−1
t Xs if s ≥ t.

For every t ≥ 0, let Ht be the sub-σ-algebra of BG ⊗ BD generated by the maps
(g, γ) �→ γ(s), 0 ≤ s ≤ t, and denote, as usual, by G ∨ Ht the σ-algebra gener-
ated by G ∪ Ht. Since ρ[ψ | G ∨ Ht](g,X

(γ,t)
• ) = ρ[ψ | G ∨ Ht](g, γ̃) for any γ̃ ∈ D
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such that γ̃(s) = γ(s) for 0 ≤ s ≤ t, it follows that

E[ρ[ψ | G ∨ Ht](g,X
(γ,t)
• )β(X−1

t Xt+•)] = ρ[ψ | G ∨ Ht](g, γ)E[β(X−1
t Xt+•)]

= ρ[ψ | G ∨ Ht](g, γ)ρ[β]

= 0.

Also, by the independent increments property ofX and the Martingale Convergence
Theorem, ∫

G×D

E[|ρ[ψ | G ∨ Ht](g,X
(γ,t)
• ) − ψ(g,X(γ,t)

• )|]dρ(g, γ)

=
∫

G×D

|ρ[ψ | G ∨ Ht](g, γ) − ψ(g, γ)|dρ(g, γ) t→+∞−−−−→ 0.

Hence,

ρ[|ρ[ψβ | G]|] = ρ[|ρ[ψβ | G] ◦Rt|]

=
∫

G×D

|E[ψ(g,X(γ,t)
• )β(X−1

t Xt+•)]|dρ(g, γ)

=
∫

G×D

|E[ψ(g,X(γ,t)
• )β(X−1

t Xt+•)]

−E[ρ[ψ | G ∨ Ht](g,X
(γ,t)
• )β(X−1

t Xt+•)]|dρ(g, γ)

≤ ‖β‖∞
∫

G×D

E[|ψ(g,X(γ,t)
• )

− ρ[ψ | G ∨ Ht](g,X
(γ,t)
• )|]dρ(g, γ) t→+∞−−−−→ 0,

which in turn shows that (3.6) holds. Therefore, for each invariant function ψ there
does indeed exist a BG-measurable function ψ : G → R such that ψ(g, γ) = ψ(g)
for ρ-a.e. (g, γ) ∈ G×D.

Lemma 3.2. For every Lévy process in the metrizable compact group G, the set⋃
t≥0 St is a subgroup of G.

Proof. For convenience, denote
⋃

t≥0 St byHX . Note that µt1∗µt2 = µt1+t2 implies

St1St2 := {g1g2 : gj ∈ Stj for j = 1, 2} = St1+t2 ∀ t1, t2 ≥ 0.

It follows that h1h2 ∈ HX whenever {h1, h2} ⊂ HX . Given any h ∈ HX , therefore,
hHX ⊂ HX . To see that hHX = HX , first choose a metric d on G that is invariant
under all left- as well as right-translations. (Such a metric exists, see, for example,
§0.6 of [33].) If g ∈ HX \ hHX , then d(g, hng) ≥ min{d(g, hh′) : h′ ∈ HX} > 0
for every n ∈ N, and in particular d(hmg, hng) = d(g, hn−mg) is bounded away
from zero for m,n ∈ N, n > m. Consequently, the sequence (hng)n∈N does not
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contain any convergent subsequence, contradicting the compactness of G. Hence
hHX = HX , and it is clear that {eG, h

−1} ⊂ HX . Since h ∈ HX was arbitrary, the
set HX is indeed a subgroup.

If (Xt)t≥0 is a Lévy process with X0 = eG and h > 0, then Xnh is, for every
n ∈ N, the product of n independent random variables, all of which have the same
distribution as Xh. Conversely, let (ξn)n∈N be an i.i.d. sequence in the metrizable
compact group G. Denote by S the support of the common distribution of the ξn,
n ≥ 1, and, for every n ∈ N, let Sn = {g1 · · · gn : gj ∈ S for j = 1, . . . , n}. If (τn)n∈N

is a sequence of i.i.d. exponential random variables that is independent of (ξn)n∈N,
then the process (Xt)t≥0 defined by Xt = eG for 0 ≤ t < τ1 and Xt = ξ1 · · · ξn for
τ1 + · · · + τn ≤ t < τ1 + · · · + τn+1 is a Lévy process. The following discrete-time
analogue is, by the latter observation, immediate from Theorem 3.1 and the Strong
Law of Large Numbers applied to the random variables (τn)n∈N.

Corollary 3.1. Let (ξn)n∈N be an i.i.d. sequence in the metrizable compact group
G with the common distribution having support S. Then the sequence (ξ1 · · · ξn)n∈N

is, with probability one, u.d. in G if and only if
⋃

n∈N
Sn = G.

Example 3.1. Let Y = (Yt)t≥0 be a Lévy process in the (non-compact, Abelian)
group R with the usual topology. According to the classical Lévy–Khintchine for-
mula (see, for example, Theorem 1.2.14 in [2]), E[eiyYt ] = etη(y) for all t ≥ 0 and
y ∈ R, where

η(y) = iβy − 1
2
σ2y2 +

∫
R

(eixy − 1 − ixy1(−1,1)(x))dν(x), (3.7)

with β ∈ R, σ2 ≥ 0, and ν a Borel measure on R that satisfies ν({0}) = 0 and∫
R
y2 ∧ 1 dν(y) < +∞. The triple (β, σ2, ν) uniquely determines Y .
For any y ∈ R, denote by 〈y〉 the fractional part of y, that is, 〈y〉 = y − �y�.

Set Xt = 〈Yt〉 for all t ≥ 0. Clearly, X is a Lévy process in the compact (Abelian)
group T = R/Z. From (3.7) and Theorem 3.1 it is readily deduced that the paths
of X are, with probability one, c.u.d. in T unless simultaneously σ2 = 0 (i.e. Y has
no Gaussian component), ν(R \ 1

mZ) = 0 for some m ∈ N (i.e. ν is concentrated
on the lattice 1

mZ = { k
m : k ∈ Z}), and β =

∑
|k|<m

k
mν({ k

m}). In the latter case,
assuming that m is chosen to be minimal, the paths of X are c.u.d. in the closed
subgroup 〈 1

mZ〉 of T, that is, with probability one,

lim
T→+∞

1
T

∫ T

0

ϕ(Xt)dt =
1
m

m−1∑
j=0

ϕ

(
j

m

)
∀ϕ ∈ C(T).

Note that with ϑ ∈ R and P{ξ1 = ϑ} = 1, Corollary 3.1 contains the well-known
fact that (〈nϑ〉)n∈N is u.d. in T if and only if ϑ is irrational.

Example 3.2. If G is merely locally compact then (2.1) will usually not hold for
almost all paths of a Lévy process X in G, even when both sides exist, perhaps
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for some appropriate subspace of C(G). However, Example 3.1 can be extended in
a way that not only highlights the role played by the compactness of G, but also
provides a new perspective on Theorem 1 in [22].

Let Y = (Yt)t≥0 again be a Lévy process in R, with characteristic triple
(β, σ2, ν), and fix a bounded continuous function f : R → C. To avoid triv-
ialities, assume f is non-constant. Theorem 3.1 can be used to show that
limT→+∞ 1

T

∫ T

0
f(Yt)dt does exist with probability one, provided that f is almost

periodic (or a.p. for short). Recall that f is a.p. if, for every ε > 0, there exist a set
Pε ⊂ R which is relatively dense (i.e. Pε “has bounded gaps”) such that

sup
y∈R

|f(y + p) − f(y)| < ε ∀ p ∈ Pε.

It is well known that f is a.p. if and only if the closure Hf of the family {f(y+ •) :
y ∈ R} is compact in Cb(R), the Banach space of bounded continuous complex-
valued functions on R equipped with the supremum norm. (Usually, Hf is referred
to as the hull of f , see, for example, [11].) Moreover, the average

A(f) := lim
T→+∞

1
2T

∫ T

−T

f(y)dy

exists for every a.p. function f . The addition

f(y1 + •) + f(y2 + •) := f(y1 + y2 + •) ∀ y1, y2 ∈ R,

extends continuously to Hf , turning the latter into a metrizable compact (Abelian)
group. Clearly, eHf

= f , and the Haar measure on Hf is uniquely determined by
the requirement that∫

Hf

ϕdλHf
= A(ϕ � f) ∀ϕ ∈ C(Hf ),

where ϕ � f denotes the a.p. function y �→ ϕ
(
f(y + •)). With these preparations,

define a process X in Hf by simply setting Xt = f(Yt +•) for all t ≥ 0. It is readily
confirmed that X is a Lévy process. (Note that Example 3.1 simply corresponds to
the special case of f being periodic with period 1, in which caseHf is homeomorphic
and isomorphic to T, and A(f) =

∫ 1

0
f(y)dy.) Observe that HX = Hf unless σ2 = 0

and ν(R\aZ) = 0 for some a > 0. When HX = Hf , Theorem 3.1 implies that, with
probability one,

1
T

∫ T

0

ϕ(Xt)dt =
1
T

∫ T

0

ϕ(f(Yt + •))dt T→+∞−−−−−→
∫

Hf

ϕdλHf

= A(ϕ � f) ∀ϕ ∈ C(Hf ).

In particular, choosing ϕ(g) := g(0) for all g ∈ Hf yields ϕ � f = f and consequently

1
T

∫ T

0

f(Yt)dt
T→+∞−−−−−→ A(f) with probability one. (3.8)
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For every a.p. function f , therefore, (3.8) holds for any Lévy process Y on R

provided that Y either has a nonzero Gaussian component or else the associated
measure ν is not concentrated on a lattice.

Example 3.3. As an application of Theorem 3.1 and Corollary 3.1, let b ≥ 2 be a
positive integer and recall that a measurable function f : [0,+∞) → R is b-Benford
if logb |f | is c.u.d. in T, where logb denotes the base-b logarithm and the convention
logb 0 := 0 is adopted for convenience, see [4] for background information and
further details on the Benford property as well as its ramifications. Equivalently,
the function f is b-Benford if

lim
T→+∞

Leb{t ∈ [0, T ) : Sb(f(t)) ≤ s}
T

= logb s ∀ s ∈ [1, b);

here Sb(y), the base-b significant of y ∈ R is, by definition, the unique number in
{0}∪ [1, b) such that |y| = Sb(y)bk for some integer k. Similarly, a sequence (yn)n∈N

in R is called b-Benford whenever the function t �→ y�t�+1 is b-Benford.
Let Y = (Yt)t≥0 be a Lévy process in R with characteristic triple (β, σ2, ν) and,

for any real constants a �= 0, c �= 0, and d, consider

Xt = aecYt+dt, t ≥ 0.

Since (cYt +dt)t≥0 is again a Lévy process, it follows from Theorem 3.1 that t �→ Xt

is b-Benford with probability one unless

σ2 = 0 and ν

(
R

∖
ln b
|c|mZ

)
= 0 for some m ∈ N. (3.9)

Note that (3.9) does not hold if ν is non-atomic. In particular, the paths of any
geometric Brownian motion (also referred to as a Black–Scholes process), corre-
sponding to the case where Y is a standard Brownian motion, are almost surely
b-Benford for all b. Similarly, if Y is a Poisson process then the paths t �→ aecYt+dt

are, with probability one, b-Benford unless c is a rational multiple of ln b, cf. [27].
For a discrete-time analogue of these observations, let (ξn)n∈N be an i.i.d.

sequence in R. By Corollary 3.1, the sequence (
∏n

j=1 ξj)n∈N is b-Benford with prob-
ability zero or one, depending on whether or not the support of the distribution of
(logb |ξ1|) is contained in 1

mZ for some m ∈ N, cf. [24].

4. Further Remarks and Observations

The following remarks aim at providing some background information that may help
the reader putting the main results of this note, Theorem 3.1 and Corollary 3.1, in
perspective.

Remark 4.1. The notion of continuous uniform distribution applies to all measur-
able functions (paths), not only to those that are rcll. Hence it may seem natural
to consider the class of stochastic processes that arises by replacing assumption
(iii) in Definition 2.2 with the weaker requirement that the map (t, ω) �→ Xt(ω) be
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jointly measurable. As the following argument shows, nothing is gained from this
seemingly greater generality.

By Theorem 1 in [9], joint measurability implies the existence of closed sets
F ⊂ [0, 1] with Lebesgue measure arbitrarily close to 1 such that for all ε > 0

lim
δ↓0

sup
|t2−t1|≤δ,t1,t2∈F

P{d(Xt1 , Xt2) > ε} = 0,

where d is a translation-invariant metric on G. Observe that if t2 > t1, then

P{d(Xt1 , Xt2) > ε} = P{d(eG, X
−1
t1 Xt2) > ε}

= µt2−t1({g ∈ G : d(eG, g) > ε}).

A celebrated theorem of Steinhaus (Théorème VIII in [31], see also [5, 17]), asserts
that the set {t2 − t1 : t1, t2 ∈ F} contains an open neighborhood of 0 whenever F
has positive Lebesgue measure. Thus, µt converges to εeG as t ↓ 0. Now, define a
strongly continuous contraction semigroup of operators (Pt)t≥0 on C(G) by setting
P0ϕ = ϕ and

Ptϕ =
∫

G

ϕ(•g)dµt(g) ∀ t > 0 and ϕ ∈ C(G).

It follows from the theory of Feller semigroups (see, for example, Sec. III.7 of [23])
that by modifying each random variable Xt on a P-null set it is possible to produce
a stochastic process with rcll paths. By Fubini’s Theorem, the value of

∫ T

0
ϕ(Xt)dt,

T ≥ 0, remains unchanged if X is replaced by such an rcll modification.

Remark 4.2. Lévy processes are a special class of Markov processes, and so it is
natural to inquire whether Theorem 3.1 is a consequence of more general results in
the vast Markov process literature. The proof given above certainly uses the extra
Lévy structure: The fact that the distribution of (Xt)t≥0 when X0 = g is equal
to the distribution of (gXt)t≥0 when X0 = eG reduces checking the ergodicity
of (ξX−1

0 Xt)t≥0 to verifying a criterion involving only the right-translations by
h ∈ HX . Moreover, the fact that the state space is a compact group permits the
latter verification to be reduced to the uniqueness of normalized Haar measure on
such a group.

A discussion of limit theorems for the occupation measures of discrete-time
Markov processes is given in Chap. 17 of [21] under the assumption that the pro-
cess is Harris recurrent. Similar results for continuous-time processes are obtained
in Paragraph II of [3] by the device of sampling the process at the arrival times
of a Poisson process to obtain a discrete-time process. The condition HX = G in
Theorem 3.1 is easily seen to be equivalent to the condition that

∫ +∞
0

µt(U)dt > 0
for all non-empty open sets U ⊂ G. If this condition is replaced by the stronger
assumption that

∫ +∞
0

µt(B)dt > 0 for all B ∈ BG with λG(B) > 0, then it is possi-
ble to conclude from the results in [3, 21] that limT→+∞ 1

T

∫ T

0
ϕ(Xt)dt =

∫
G
ϕdλG
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almost surely for any bounded measurable function ϕ. Note that if Y = (Yt)t≥0

is as in Example 3.1 with (β, σ2, ν) = (0, 0, εϑ) for some irrational ϑ ∈ R, then
X = (Xt)t≥0 defined by Xt = 〈Yt〉 satisfies the condition HX = T, yet

∫∞
0

P{Xt ∈
B}dt = 0 when B is the complement of {〈nϑ〉 : n ∈ N} ∪ {0} in T, a set with
full λT-measure.

Remark 4.3. The ergodicity of the stationary process (ξX−1
0 Xt)t≥0 appearing in

the proof of Theorem 3.1 and that of its discrete-time analogue (ξξ1 · · · ξn)n∈N can
be established more easily if one assumes that, respectively, St for some t > 0 and
the support S of the common distribution of the ξn, n ≥ 1, are not contained in the
coset of any proper closed normal subgroup of G. Under this additional assumption,
it follows from the Itô–Kawada Theorem (see, for example, Theorem 2.1.4 in [13])
that, for any t ≥ 0, the random variables X−1

t Xt+T converge in distribution to λG

as T → +∞, and analogously, ξnξn+1 · · · ξn+N converges in distribution to λG as
N → ∞. As a consequence, for any A,B ∈ BG,

P{ξX−1
0 Xt ∈ A, ξX−1

0 Xt+T ∈ B} T→+∞−−−−−→ P{ξX−1
0 Xt ∈ A}P{ξX−1

0 Xt ∈ B},

showing that the process (ξX−1
0 Xt)t≥0 is actually mixing in this case, and thus a

fortiori ergodic, cf. [18, 33]. Mixing properties of the semi-flow (Rt)t≥0 have been
studied in [12]. By contrast, the proof of Theorem 3.1 presented above only uses the
ergodicity of (ξX−1

0 Xt)t≥0. Ergodicity is all that can be hoped for in general: For
example, take G = T and let (ξn)n∈N be an i.i.d. sequence with P{ξ1 = 〈√2〉} = 1.
In this case, the process (ξ + ξ1 + · · · + ξn) = (〈ξ + n

√
2〉), though stationary and

ergodic, is not mixing, since for B = {〈t〉 : 0 ≤ t ≤ 1
2} ∈ BT,

lim sup
N→∞

P{〈ξ + n
√

2〉 ∈ B, 〈ξ + (n+N)
√

2〉 ∈ B}

=
1
2
�= 1

4
= P{〈ξ + n

√
2〉 ∈ B}2

holds for every n ∈ N.

Remark 4.4. Every Hausdorff compact group G carries a unique normalized Haar
measure. Hence the statement of Theorem 3.1 (respectively, Corollary 3.1) makes
sense for every jointly measurable stochastic process X (respectively, sequence) in
G. Even though it makes sense, however, it is not generally true: The asserted
equivalence may break down whenever the increments of X are non-stationary or
dependent, or if G fails to be metrizable. While the former two observations are
quite obvious, to see what might go wrong when G is not metrizable, recall that G is
metrizable if and only if C(G) is separable. The proof of Theorem 3.1 given here uses
the metrizability of G, the separability of C(G), and the consequent separability of
G, and so there is no hope that this proof will extend. As shown by Corollary 4.5.4
in [19], if a Hausdorff compact Abelian group G is not separable, then no sequence
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is u.d. in G. Any extension of Corollary 3.1, therefore, must require the separability
of G (at least in the Abelian case).

Remark 4.5. As the following short, non-exhaustive compilation illustrates, spe-
cial cases of Theorem 3.1 and Corollary 3.1 as well as related results have repeatedly
appeared in the literature.

The earliest pertinent references the authors have been able to identify are the
announcement of a Random Ergodic Theorem in [32] and its subsequent significant
generalization in [16, 25]. In a purely probabilistic setting, [22] focuses on discrete-
time processes taking values in R but also considers the case G = T. In addition,
extensions to compact groups and general continuous-time processes X = (Xt)t≥0

in R are discussed briefly. For the latter, a sufficient condition for the almost sure
continuous uniform distribution of paths is given under the assumption that

E[eiλ(Xt−X0)] = O(t−δ) as t→ +∞ (4.1)

for every real λ �= 0 and the appropriate δ = δ(λ) > 0. Note that (4.1) holds
for every nondegenerate Brownian motion in R, but it does not hold if X is, for
instance, a Poisson process, since in this case |E[eiλ(Xt−X0)]| = 1 whenever λ ∈ 2πZ.
Theorem 3.1 replaces (4.1) with a necessary and sufficient condition.

The uniform distribution of Brownian paths on R has been established in [8] and
subsequently in [14]. Building on these, in the case of Brownian motion on R, [29]
proves a law of the iterated logarithm for the deviations of 1

T

∫ T

0 ϕ(Xt)dt from its
expected value, and [6] study the same problem on compact connected Riemannian
manifolds, while [20, 26] consider more general processes on R. A sufficient condition
for sequences of real-valued random variables with stationary, but not necessarily
independent increments to be u.d. in T is derived in [15], and in [30] sums of i.i.d.
random variables are considered under the perspective of rotation invariance.

It appears that the Benford property for paths of (some) Lévy processes has
been studied only rather recently. Utilizing large deviation results, [27] essentially
establishes the almost sure c.u.d. property of the paths of X for G = T with
X = 〈Y 〉, where Y is a continuous local martingale plus a deterministic drift. The
most important example of this type is the standard Brownian motion, and the test
function ϕ in (2.1) may be taken to be merely measurable and bounded in this case,
i.e. ϕ ∈ L∞(G) instead of ϕ ∈ C(G), cf. Remark 4.2. (Notice that L∞(G) is non-
separable whenever G is infinite.) In [28], a similar approach is extended to general
Lévy processes in R. In this more general setting, however, the desired conclusion —
the almost sure Benford property of paths — is obtained only under an additional
regularity condition on the characteristic function of Y1, referred to as “standard
condition”. Many Lévy processes, most importantly perhaps any Poisson process,
do not satisfy this condition and hence are not amenable to the techniques of [28].
Although this may look like a minor technicality, it is not: As shown in Remark 4.2,
there are Lévy processes X on T for which limT→+∞ 1

T

∫ T

0
ϕ(Xt)dt =

∫
T
ϕdλT does

not almost surely hold for some ϕ ∈ L∞(T).
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28. K. Schürger, Lévy processes and Benford’s Law, preprint (2011).
29. O. Stackelberg, A uniform law of the iterated logarithm for functions C-uniformly

distributed mod 1, Indiana Univ. Math. J. 21 (1971) 515–528.
30. W. Stadje, On the asymptotic equidistribution of sums of independent identically

distributed random variables, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989)
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