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Abstract
For arbitrary Borel probability measures on the real line, necessary and sufficient
conditions are presented that characterize best purely atomic approximations relative
to the classical Lévy probability metric, given any number of atoms, and allowing for
additional constraints regarding locations orweights of atoms. The precise asymptotics
(as the number of atoms goes to infinity) of the approximation error is identified for the
important special cases of best uniform (i.e. all atoms having equal weight) and best
(i.e. unconstrained) approximations, respectively. When compared to similar results
known for other probability metrics, the results for Lévy approximations are more
complete and require fewer assumptions.

Keywords Best (uniform) approximation · Lévy probability metric · Inverse
function · Inverse measure · Approximation error · Asymptotic point distribution
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1 Introduction

LetP be the set of all Borel probabilitymeasures on the real line, and denote the support
of μ ∈ P by suppμ. For each positive integer n, let P∗

n = {μ ∈ P : # suppμ ≤ n}.
Recall that P endowed with the topology of weak convergence is a Polish space that
contains P∗∞ := ⋃

n P∗
n = {μ ∈ P : # suppμ < ∞} as a dense subspace [11, Ch.

11]. Many different metrics (and metric-like quantities [15]) on P or parts thereof
have been studied extensively, as they play important roles in probability theory and
statistics [30,31]. Given a specific probability metric d and μ ∈ P\P∗∞, it is natural
to ask whether there exists, for every n, a best d-approximation δ•,n• of μ in P∗

n , i.e.
d(μ, δ•,n• ) = inf{d(μ, ν) : ν ∈ P∗

n }, perhaps with additional desirable properties
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such as, e.g. all atoms having equal weight; see Sect. 2 for precise terminology and
notation. Provided they exist, how can such best d-approximations be characterized
and found systematically? How fast do they converge to μ, i.e. at what rate does the
approximation error d(μ, δ•,n• ) tend to 0 as n → ∞? Questions like these, regarding
the approximation inP by elements ofP∗∞, continue to attract interest in awide variety
of contexts; see, e.g. [5,6,9,10,23,24,28] and the many references therein.

Denoting the distribution function of μ ∈ P by Fμ, that is, Fμ(x) = μ
(]−∞, x])

for all x ∈ R, recall the Kantorovich (or Wasserstein; cf. [6, p. 4] and [15]) metric,
given by

dW(μ, ν) =
∫

R

|Fμ(x) − Fν(x)| dx =
∫

[0,1]
|F−1

μ (y) − F−1
ν (y)| dy, (1.1)

where F−1
μ is an inverse of Fμ; see Sect. 2 for details. Note that strictly speaking

dW is not defined on all of P × P , but only on P1 × P1, with P1 = {
μ ∈ P :∫

R
|x | dμ(x) < +∞} ⊃ P∗∞. The metric space (P1, dW) is complete and separable,

though its metric topology is finer than the subspace topology inherited from P . Due
to its simplicity and functional-analytic flavour, the metric dW figures prominently in
many applied areas, e.g. image compression, signal processing, mathematical finance
and optimal transport [23,27,32,35,38]. A vast literature exists addressing the basic
questions mentioned earlier relative to dW, as well as many generalizations thereof,
notably to multi-dimensional settings [6,13,21,22,28].

Another important notion of distance, the Prokhorov metric is given by

dP(μ, ν) = inf
{

y ∈ R
+ : μ(B) ≤ ν(B y) + y ∀ Borel sets B ⊂ R

} ∀μ, ν ∈ P,

(1.2)
where B y = {x ∈ R : dist(x, B) < y}. Note that dP is defined on all of P × P ,
unlike dW, and metrizes precisely the topology of weak convergence [11,15]. Also,
dP(μ, ν) ≤ 1 for all μ, ν ∈ P . A general theory of best dP-approximation in P by
elements ofP∗∞ has been initiated in [20], where the authors observe that some aspects
of the theory are “more difficult [than the corresponding theory for dW] …mainly due
to the lack of suitable scaling properties [of dP]”.

In a spirit similar to [18,37], this article addresses the approximation problem
relative to the classical Lévy metric,

d1(μ, ν) = inf
{

y ∈ R
+ : Fμ−( · − y) − y ≤ Fν ≤ Fμ( · + y) + y

} ∀μ, ν ∈ P,

(1.3)
where Fμ−(x) = limε↓0 Fμ(x − ε) = μ

(]−∞, x[). Note that d1 ≤ 1, similarly to dP.
The values of dW, dP and d1 are not completely unrelated, since d1(μ, ν) ≤ dP(μ, ν) ≤√

dW(μ, ν) for all μ, ν ∈ P1; see, e.g. [4,11,15]. When compared to dW and dP, the
metric d1 is particularly attractive: On the one hand, it is a bona fide metric [3, p. 100]
metrizing the topology of weak convergence on all of P (similar to dP, but unlike dW).
On the other hand, its definition (1.3) is considerably easier to work with than (1.2).
Although computing d1 for concrete problems may still be “not easy” [15, p. 423] (cf.
also [34]), especially when compared to (1.1), the main (asymptotic) results of this
article suggest that nevertheless d1 often is more benign than both dW and dP, in that
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fewer assumptions (or no assumptions at all, as in Theorem 4.1 and Proposition 4.3)
are needed to draw analogous or perhaps even stronger conclusions. With all technical
details deferred to later sections, this is illustrated here for two familiar (absolutely
continuous) distributions—standard normal and 1-Pareto.

Let μ be the standard normal distribution. By a celebrated asymptotic result for
best dW-approximations [18, Thm. 6.2],

limn→∞ ndW(μ, δ•,n• ) =
√

π

2
= 1.253, (1.4)

whereas by [20, Ex. 5.1],

limn→∞
n√
log n

dP(μ, δ•,n• ) = √
2. (1.5)

Note that (1.4) yields the faster decay of the approximation (or quantization) error
d(μ, δ•,n• ), whereas only (1.5) involves a probability metric that actually metrizes the
topology of weak convergence. As it turns out, for the Lévy metric these two desirable
properties can be achieved simultaneously: Theorem 4.1, one of the main results of
this article, yields

limn→∞ nd1(μ, δ•,n• ) = −
√

π

2
Li1/2

(

− 1√
2π

)

= 0.3931, (1.6)

where Li1/2 denotes the polylogarithm of order 1
2 .

An interesting variant of (1.4)–(1.6) considers best uniform approximations of
μ ∈ P , that is, best approximations of μ by ν ∈ P∗

n , subject to the additional require-
ment that nν({x}) is a (positive) integer for every x ∈ supp ν. Best uniform (or,
more generally, best constrained) approximations have recently attracted consider-
able interest, not least in view of potential applications in stochastic processes and
differential equations [7,8,16,17,36,37]; they may also be viewed as deterministic
analogues of (random) empirical measures [6,9,14]. With δ

un• denoting a best uniform
d-approximation of μ, trivially d(μ, δ•,n• ) ≤ d(μ, δ

un• ). For μ being the standard
normal distribution, [37, Ex. 5.18] reports that

dW(μ, δun• ) = O
(√

log n

n

)

as n → ∞,

and this bound is sharp; cf. also [7,16]. Although the authors do not know of any
analogous result regarding best uniform dP-approximations, (1.5) makes it clear that
dP(μ, δ

un• ) is at leastO(n−1√log n) as n → ∞, if not larger. By contrast, Theorem3.3,
another main result of this article, simply yields

limn→∞ nd1(μ, δun• ) = 1

2
,

which represents a faster and more precise rate than its dW- and dP-counterparts.
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For a second illustrative example, let μ be the 1-Pareto distribution, i.e. Fμ(x) =
1− x−1 for all x ≥ 1. Since μ /∈ P1, clearly μ is not amenable to dW-approximation,
whereas [20, Thm. 5.2] yields

limn→∞
√

ndP(μ, δ•,n• ) = 1√
2
.

For the Lévy metric, this article again provides faster, more precise rates, namely

nd1(μ, δun• ) = 1

2
− 1

8
n−2 + O(n−3) as n → ∞, (1.7)

as well as

nd1(μ, δ•,n• ) = π

8
+ π2(6 − π)

3 × 210
n−2 + O(n−3) as n → ∞. (1.8)

Thus, the results of this article make the case that although the Lévy metric d1, unlike
dW and dP, does not extend to higher dimensions in a straightforward way, its usage
for one-dimensional probabilities often leads to simpler and stronger results.

This article is organized as follows. Section 2 first introduces all required termi-
nology and notation and then reviews basic facts pertaining to approximations in P
relative to the Lévy metric. Utilizing the latter, Sects. 3 and 4 specifically study best
uniform and best (unconstrained) approximations, respectively, and in particular the
asymptotics of the approximation error as n → ∞. Also, under a mild assumption
the atoms of (asymptotically) best approximations conform to an asymptotic point
distribution, as shown by Theorem 4.5.

2 Lévy Probability Metrics

This section reviews basic facts regarding the approximation in P by measures with
finite support, relative to the Lévy probability metric(s). The stated results are straight-
forward extensions of [4,36], and the reader is referred to these references for further
details and elementary proofs. The following, mostly standard notations are used
throughout. The sets of all positive integers, nonnegative integers, integers, positive real
numbers and real numbers are denoted N, N0, Z, R

+ and R, respectively. Numerical
values of real numbers are displayed to four correct significant decimal digits. For every
x ∈ R and non-empty A ⊂ R, dist(x, A) = infa∈A |x−a|, diam A = supa,b∈A |a−b|,
and 1A is the indicator function of A; also, x� denotes the largest integer not larger
than x , and the cardinality of A is #A. If the domain of a function f contains A, then
f (A) = { f (a) : a ∈ A}. Lebesgue measure on the real line is denoted λ.
Since non-decreasing functions play a crucial role in what follows, first a few basic

properties of such functions are recorded. Throughout, denote byR = R∪{−∞,+∞}
the extended real line with its usual order and topology, and by F the family of all
functions f : R → R that are non-decreasing and right-continuous. Given f ∈ F , let
f (±∞) = limx→±∞ f (x) ∈ R, and for every x ∈ R let f−(x) = limε↓0 f (x − ε).
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Note that f−(x) ≤ f (x) ≤ f−(y) whenever x < y; in particular, f−(x) = f (x)

if and only if f is continuous at x . With every f ∈ F associate its (upper) inverse
function f −1 : R → R given by

f −1(x) = sup
{

y ∈ R : f (y) ≤ x
} ∀x ∈ R;

here and throughout the convention sup∅ = −∞ (and inf ∅ = +∞) is adhered to.
Importantly, F is closed under inversion and composition.

Proposition 2.1 Let f , g ∈ F . Then, f −1 ◦ g ∈ F , and ( f −1)−1 = f .

Given f , g ∈ F and ε > 0, let

dε( f , g) = inf
{

y ∈ R
+ : f−( · − y/ε) − y ≤ g ≤ f ( · + y/ε) + y

} ∈ [0,+∞].

Motivated for ε = 1 by (1.3), this definition enables a unified treatment of all ε-Lévy
probability metrics later in this section. It is readily checked that dε indeed satisfies the
axioms of a metric on F , except that dε( f , g) may equal +∞. Also, dε is compatible
with inversion.

Proposition 2.2 Let f , g ∈ F and ε > 0. Then, dε( f −1, g−1) = εd1/ε( f , g).

Given f , g ∈ F , note that ε �→ dε( f , g) is non-decreasing and continuous on R
+.

Consequently, the limits of dε( f , g) exist as ε → 0 or ε → +∞. For instance, if
f , g ∈ F are bounded, then simply

limε→0 dε( f , g) = lim sup|x |→+∞ | f (x) − g(x)|
= max

{| f (−∞) − g(−∞)|, | f (+∞) − g(+∞)|},

but also

limε→+∞ dε( f , g) = supx∈R | f (x) − g(x)| = ‖ f − g‖∞;

here, as usual, ‖h‖∞ = ess sup |h| = inf
{

y ∈ R
+ : λ({|h| ≥ y}) = 0

}
for every

measurable function h : R → R.
Given f ∈ F , let I ⊂ R be any interval with the property that

f−(sup I − x),− f (inf I + x) < +∞ for some x ∈ R, (2.1)

and consider the auxiliary function � f ,I : R → R, introduced in [4], with

� f ,I (x) = inf
{

y ∈ R
+ : f−(sup I − y) − y ≤ x ≤ f (inf I + y) + y

} ∀x ∈ R;

also, let �∗
f ,I = inf

{
y ∈ R

+ : f−(sup I − y) − y ≤ f (inf I + y) + y
}
. For any

sequence (Ik)k∈N of intervals in R, write limk→∞ Ik = I if limk→∞ inf Ik = inf I
and limk→∞ sup Ik = sup I .
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Proposition 2.3 Let f ∈ F , and let I ⊂ R be an interval satisfying (2.1).

(i) The function � f ,I is Lipschitz continuous and nonnegative;
(ii) � f ,I (x) ≥ �∗

f ,I ≥ 0 for all x ∈ R;

(iii) �∗
f ,I ≤ 1

2λ(I ), and �∗
f ,I = 0 if and only if f−(sup I ) ≤ f (inf I );

(iv) If (Ik)k∈N is a sequence of intervals in R with limk→∞ Ik = I , then Ik satisfies
(2.1) for all sufficiently large k, and

limk→∞ �∗
f ,Ik

= �∗
f ,I as well as limk→∞ � f ,Ik (x) = � f ,I (x) ∀x ∈ R.

Remark 1 (i) If f = Fμ (respectively, f = F−1
μ ) for some μ ∈ P , then every

(respectively, every bounded) interval I ⊂ R satisfies (2.1). Given f ∈ F , note
that f = Fμ for some (necessarily unique) μ ∈ P if and only if f (−∞) = 0 and
f (+∞) = 1; similarly, f = F−1

μ for some μ ∈ P if and only if f−(0) = −∞,
f (1) = +∞, and f

(]0, 1[) ⊂ R.
(ii) The function � f ,I may not attain a minimum value, or when it does, that mini-

mum value may be larger than �∗
f ,I . However, mild additional assumptions guarantee

that � f ,I (x) = �∗
f ,I for some x ∈ R; see [4, Prop. 3.3].

For every ε > 0, consider the ε-Lévy metric on P given by

dε(μ, ν) = dε(Fμ, Fν) ∀μ, ν ∈ P.

The metric dε is complete, separable and induces the topology of weak convergence
(for an authoritative account on the family (dε)ε>0, the reader may want to con-
sult [31, Sec. 4.2]; see also [34]). Note that ε �→ dε(μ, ν) is non-decreasing with
limε→0 dε(μ, ν) = 0, whereas

limε→+∞ dε(μ, ν) = ‖Fμ − Fν‖∞ ∀μ, ν ∈ P,

often referred to as the uniform or Kolmogorov metric, yields a complete yet non-
separable metric on P and induces a finer topology [4, Sec. 5]. For any μ ∈ P and
ε > 0, and with the dilation Tε : x �→ εx , notice the simple but useful identity

dε(μ, ν) = d1(μ ◦ T −1
ε , ν ◦ T −1

ε ) ∀μ, ν ∈ P. (2.2)

To study finitely supported (and hence purely atomic) dε-approximations of any μ ∈
P , this article employs the following notations: for every n ∈ N, let Ξn = {x ∈ R

n :
x,1 ≤ . . . ≤ x,n}, Πn = {p ∈ R

n : p, j ≥ 0,
∑n

j=1 p, j = 1}, and for each x ∈ Ξn

and p ∈ Πn let δ p
x = ∑n

j=1 p, jδx, j . For convenience, x,0 := −∞ and x,n+1 := +∞
for every x ∈ Ξn, as well as P,i := ∑i

j=1 p, j for i = 0, . . . , n and every p ∈ Πn ;

note that P,0 = 0 and P,n = 1. Henceforth, usage of the symbol δ
p
x tacitly assumes

that x ∈ Ξn and p ∈ Πn, for some n ∈ N either specified explicitly or else clear from
the context. Utilizing (2.2) and [4, Lem. 3.4], the value of dε(μ, δ

p
x ) allows for simple

explicit expressions.
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Proposition 2.4 Let μ ∈ P , ε > 0, and n ∈ N. For every x ∈ Ξn and p ∈ Πn,

dε(μ, δ
p
x ) = ε maxn

j=0 �Fμ/ε,[x, j ,x, j+1](P, j/ε) = maxn
j=1 �

εF−1
μ ,[P, j−1,P, j ](εx, j ).

(2.3)

For everyμ ∈ P , ε > 0 and n ∈ N, (2.3) suggests considering the following quantities:
given x ∈ Ξn , let

�•
x =ε max

{
�Fμ/ε,[−∞,x,1](0), �∗

Fμ/ε,[x,1,x,2], . . . , �
∗
Fμ/ε,[x, j−1,x, j ], . . .

. . . , �∗
Fμ/ε,[x,n−1,x,n ], �Fμ/ε,[x,n ,+∞](1/ε)

}
,

and given p ∈ Πn , let

�p• = maxn
j=1 �∗

εF−1
μ ,[P, j−1,P, j ].

Notice that while �•
x and �

p• do depend on μ, ε, and, implicitly, also n, in order to keep
notations simple, this dependence is not displayed explicitly. By Proposition 2.3(iv),
p �→ �

p• is continuous on Πn , and hence

�•,n• = minp∈Πn �p•

is well defined (for a constructive alternative definition of �•,n• , see [4, Sec. 3]). The
quantities �•

x , �
p• and �•,n• control the minimization of (x, p) �→ dε(μ, δ

p
x ), with or

without constraints, in a sensemade precise by Proposition 2.5. To formulate the result,
call δ p

x a best dε-approximation of μ ∈ P , given x ∈ Ξn if

dε(μ, δ
p
x ) ≤ dε(μ, δ

q
x ) ∀ q ∈ Πn .

Similarly, call δ p
x a best dε-approximation of μ, given p ∈ Πn if

dε(μ, δ
p
x ) ≤ dε(μ, δ

p
y ) ∀ y ∈ Ξn .

Denote by δ•
x and δ

p• any best dε-approximation ofμ, given x and p, respectively. Best
dε-approximations, given p = un := (n−1, . . . , n−1), are referred to as best uniform
dε-approximations, and denoted δ

un• . Finally, δ p
x is a best dε-approximation of μ ∈ P ,

denoted δ•,n• , if

dε(μ, δ
p
x ) ≤ dε(μ, δ

q
y ) ∀ y ∈ Ξn, q ∈ Πn .

Notice that usage of the symbols δ•
x , δ

p• and δ•,n• always refers to specific μ ∈ P ,
ε > 0 and n ∈ N, all of which are usually clear from the context.

Proposition 2.5 Let μ ∈ P , ε > 0 and n ∈ N.
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(i) For every x ∈ Ξn, there exists a best dε-approximation of μ, given x, and
dε(μ, δ•

x ) = �•
x . Moreover, dε(μ, δ

p
x ) = �•

x with p ∈ Πn if and only if

ε�Fμ/ε,[x, j ,x, j+1](P, j/ε) ≤ �•
x ∀ j = 0, . . . , n. (2.4)

(ii) For every p ∈ Πn, there exists a best dε-approximation of μ, given p and
dε(μ, δ

p• ) = �
p• . Moreover, dε(μ, δ

p
x ) = �

p• with x ∈ Ξn if and only if

�
εF−1

μ ,[P, j−1,P, j ](εx, j ) ≤ �p• ∀ j = 1, . . . , n. (2.5)

(iii) There exists a best dε-approximation of μ, and dε(μ, δ•,n• ) = �•,n• . Moreover,
dε(μ, δ

p
x ) = �•,n• with x ∈ Ξn, p ∈ Πn if and only if (2.4) and (2.5) hold with

�•,n• instead of �•
x and �

p• , respectively.

The following two examples illustrate Proposition 2.5. Notice that in either example
the sequences

(
dε(μ, δ

un• )
)
and

(
dε(μ, δ•,n• )

)
both converge to 0 at the same rate

(n−1). As demonstrated in Sects. 3 and 4 for best uniform and best dε-approximations,
respectively, this rate is not specific to these examples, but rather indicative of much
more general mechanisms.

Example 1 Consider the exponential distribution exp(a) with parameter a > 0, i.e.
let Fμ(x) = 1 − e−ax for all x ≥ 0. From Proposition 2.5, it is easily deduced that
δ

un
x with x ∈ Ξn is a best uniform dε-approximation of μ if and only if, for every

j = 1, . . . , n,

x, j ∈
[

−1

a
log

(

1 − j

n
+ �un•

)

− �
un•
ε

,−1

a
log

(

1 − j − 1

n
− �un•

)

+ �
un•
ε

]

,

with �
un• = dε(μ, δ

un• ) being the unique solution of n�(e2a�/ε + 1) = 1. A straightfor-
ward analysis of the latter equation yields the asymptotic equality

ndε(μ, δun• ) = 1

2
− a

4ε
n−1 + O(n−2) as n → ∞. (2.6)

A best dε-approximation of μ also exists and in fact is unique, with

x, j = −1

a
log

(
e2a�

•,n• (n− j)/ε − 1

e2a�
•,n• n/ε − 1

+ �•,n•

)

− �•,n•
ε

, P, j = 1 − e−2a�
•,n• j/ε

1 − e−2a�
•,n• n/ε

,

for all j = 1, . . . , n, where �•,n• = dε(μ, δ•,n• ) solves �e2na�/ε = � + tanh(a�/ε).
Similarly to before, an analysis of this equation yields

ndε(μ, δ•,n• ) = c1 − a2c21
6ε(a + ε)

n−2 + O(n−4) as n → ∞, (2.7)

with c1 = 1
2ε log(1 + a/ε)/a < 1

2 . Notice that dε(μ, δ•,n• ) < dε(μ, δ
un• ) for every

n ≥ 2; see also Fig. 1.
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Fig. 1 Illustrating d1-approximations of the standard exponential distribution (dotted curve) with n = 4
atoms: while the best approximation δ

•,4• (solid line) is unique, best uniform approximations δ
u4• (broken

lines) are not; see Example 1

Example 2 Fix b > 1, and let Fμ(x) = log x

log b
for all 1 ≤ x ≤ b. Usually referred to as

Benford’s law base b, this distribution has many interesting properties; see, e.g. [2,4]
and the references therein.As in the previous example, best uniformdε -approximations
of μ are non-unique, yet �un• is the unique solution of b1−� −b1+�−1/n = 2�/ε, which
in turn yields

ndε(μ, δun• ) = c2 − c22
bε

n−1 + O(n−2) as n → ∞, (2.8)

with c2 = 1
2εb log b/(1 + εb log b) < 1

2 . Also similarly to Example 1, best
dε-approximations of μ are unique, �•,n• solves b2n�

(
� + ε sinh(� log b)

) = � +
εb sinh(� log b), and a straightforward analysis yields

ndε(μ, δ•,n• ) = c3 + (b − 1)c22c23b2c3−2

3ε
n−2 + O(n−4) as n → ∞, (2.9)

with c3 = log(1 + εb log b) − log(1 + ε log b)

2 log b
< c2; notice again dε(μ, δ•,n• ) <

dε(μ, δ
un• ) for every n ≥ 2.

Remark 2 The reader may find it instructive to compare the quantitative results in
Examples 1 and 2 to their dW- and dP-counterparts. On the one hand, for μ = exp(a)
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[37, Ex. 5.8] shows that

ndW(μ, δun• ) = 1

4a
log n + O(1) as n → ∞,

whereas by [18, Ex. 5.7],

ndW(μ, δ•,n• ) = n

a
log

n + 1

n
= 1

a
+ O(n−1) as n → ∞.

While the authors are not awareof any result regardingbest uniformdP-approximations,
it follows from [20, Prop. 2.1] that

ndP(μ, δ•,n• ) = 1

2a
log n − 1

2a
log log n + O(1) as n → ∞.

On the other hand, for μ being Benford’s law base b > 1,

ndW(μ, δun• ) = n

log b
tanh

(
log b

4n

)

= 1

4
+ O(n−2) as n → ∞,

ndW(μ, δ•,n• ) = 1

log b
tanh

(
log b

4

)

∀n ∈ N,

as recorded in [4], and

ndP(μ, δ•,n• ) = b − 1

2
+ O(n−1) as n → ∞,

again by [20, Prop. 2.1]. When compared to Lévy approximations, therefore, the
asymptotics of best (or best uniform) dW- and dP-approximations of μ are more sen-
sitive to the tail behaviour of μ. Though perhaps not obvious from (1.1)–(1.3), this
is not too surprising either: informally, finiteness of the integral in (1.1) alone neces-
sitates moderate tails for μ, ν, and taking the infimum over all Borel sets in (1.2)
makes dP pick up small deviations near infinity. By contrast, the infimum in (1.3) is,
in the parlance of (1.2), taken over unbounded intervals only, which in turn causes dε

to be much less sensitive to heavy or irregular tails, an informal observation that is
corroborated rigorously by the results in the remaining sections of this article.

3 Best Uniform Lévy Approximations

This section provides a detailed asymptotic analysis of dε(μ, δ
un• ) for any μ ∈

P . Notice the uniform bound ndε(μ, δ
un• ) ≤ 1

2 , due to Proposition 2.3. Thus,
dε(μ, δ

un• ) → 0 as n → ∞ at an (upper) rate not slower than (n−1). Except for
trivial cases, this rate is sharp.

Lemma 3.1 Let μ ∈ P and ε > 0. Then, lim supn→∞ ndε(μ, δ
un• ) > 0 unless μ = δa

for some a ∈ R.
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Proof Throughout the proofs of this section, write g = F−1
μ for convenience, and

let ωn = ndε(μ, δ
un• ) for all n ∈ N, as well as ω− = lim infn→∞ ωn and ω+ =

lim supn→∞ ωn . Since δa ◦ T −1
ε = δεa , by (2.2), it suffices to consider the case of

ε = 1. Fix any 0 < x < y < 1. Assume that ω+ = 0, i.e. limn→∞ ωn = 0. Note that,
for every n ∈ N,

g−
(

j − 2ωn

n

)

− 2ωn

n
≤ g

(
j − 1 + 2ωn

n

)

+ 2ωn

n
∀ j = 1, . . . , n, (3.1)

by the definition of ωn . Also, observe that for all sufficiently large n,

j + 2ωn+1

n + 1
<

j − 2ωn

n
and

j + 2ωn

n
<

j + 1 − 2ωn+1

n + 1
,

for every j = nx�, . . . , ny� + 1, which, together with (3.1), yields

g(y) − g(x) ≤ g

(ny� + 1 + 2ωn

n

)

− g−
(nx� − 2ωn

n

)

=
ny�+1∑

j=nx�

(

g

(
j + 2ωn

n

)

− g−
(

j − 2ωn

n

))

+
ny�+1∑

j=nx�+1

(

g−
(

j − 2ωn

n

)

− g

(
j − 1 + 2ωn

n

))

≤
ny�+1∑

j=nx�

(

g−
(

j + 1 − 2ωn+1

n + 1

)

− g

(
j + 2ωn+1

n + 1

))

+ 4ωn

n
(ny� − nx� + 1)

≤ 4ωn+1

n + 1
(ny� − nx� + 2) + 4ωn

n
(ny� − nx� + 1)

≤ 12ωn+1 + 8ωn .

Since limn→∞ ωn = 0 by assumption, and 0 < x < y < 1 have been arbitrary,
g(0) = g−(1) = a for some a ∈ R, that is, μ = δa . ��

For the subsequent finer analysis, the following terminology is useful: for every
f ∈ F , let G f be the growth set of f , i.e. let

G f = {
x ∈ R : f (x − ε) < f (x + ε) ∀ε > 0

}
.

Note that G f is closed in R, and G f �= ∅, unless f is constant. For exam-
ple, G Fμ = suppμ and {0, 1} ⊂ G F−1

μ
⊂ [0, 1] for every μ ∈ P . Also,

f (x) ∈ R whenever f −1(−∞) < x < f −1(+∞). With λ f
(] −∞, f −1(−∞)]) :=

λ f
([ f −1(+∞),+∞[) := 0 and
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λ f
(]x, y]) := f (y) − f (x) ∀ f −1(−∞) < x ≤ y < f −1(+∞),

therefore, λ f is a σ -finite positive Borel measure concentrated on G f . For example,
λidR = λ, and λFμ = μ for every μ ∈ P . Also, μ−1 := λF−1

μ
is a positive Borel

measure supported on G F−1
μ

⊂ [0, 1], referred to as the inverse measure ofμ; see, e.g.
[6,37]. For convenience, write G Fμ and G F−1

μ
simply as Gμ and Gμ−1 , respectively.

Note thatμ−1(R) = μ−1
(]0, 1[) = diam Gμ, and henceμ−1 = 0 precisely ifμ = δa

for some a ∈ R. When rephrased utilizing this terminology, Lemma 3.1 has the
following corollary.

Proposition 3.2 For every μ ∈ P and ε > 0, the following are equivalent:

(i) limn→∞ ndε(μ, δ
un• ) = 0;

(ii) dε(μ, δ
un• ) = 0 for every n ∈ N;

(iii) μ = δa for some a ∈ R;
(iv) μ−1 = 0.

The first main result in this section asserts that
(
ndε(μ, δ

un• )
)
does converge, to an

easily determined limit, if μ−1 is absolutely continuous. The result is reminiscent of a
theorem regarding best uniform dW-approximations [37, Thm. 5.15] (see also [7,16]),
but unlike in that theorem, no integrability assumption on dμ−1/dλ is needed, and the
limit in question always is finite. When formulating the result, it is helpful to use the
function Ω : R → R with

Ω(x) = x

2 + 2|x | ∀x ∈ R.

Plainly, Ω is an increasing C1-function, with |Ω(x)| ≤ 1
2 |x | for all x ∈ R, and

Ω(±∞) = ± 1
2 . While the appearance of Ω in the following theorem is a simple

consequence of the bound (3.3), the reader may find it curious to note that 2Ω plays
a prominent role in the theory of random walks [12].

Theorem 3.3 Let μ ∈ P and ε > 0. If μ−1 is absolutely continuous (w.r.t. λ), then

limn→∞ ndε(μ, δun• ) =
∥
∥
∥
∥Ω

(

ε
dμ−1

dλ

)∥
∥
∥
∥∞

. (3.2)

Proof Since
d(μ ◦ T −1

ε )−1

dλ
= ε

dμ−1

dλ
, it is enough to prove (3.2) for ε = 1. Using

the same symbols as in the proof of Lemma 3.1, for every n ∈ N let

Jn, j =
[

j − 1 + ωn

n
,

j − ωn

n

]

∀ j = 1, . . . , n.

Note that ωn < 1
2 for every n since g is continuous. Moreover,

g

(
j − ωn

n

)

− g

(
j − 1 + ωn

n

)

≤ 2ωn

n
∀ j = 1, . . . , n,
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and consequently, by the absolute continuity of g,

2ωn

1 − 2ωn
≥ g

(
( j − ωn)/n

)− g
(
( j − 1 + ωn)/n

)

(1 − 2ωn)/n

= 1

λ(Jn, j )

∫

Jn, j

g′ dλ ∀ j = 1, . . . , n. (3.3)

Equality holds on the left in (3.3) for at least one j , and for that j ,

2ωn

1 − 2ωn
= 1

λ(Jn, j )

∫

Jn, j

g′ dλ ≤ ‖g′‖∞,

from which it is clear that

ω+ ≤ ‖g′‖∞
2 + 2‖g′‖∞

= ‖Ω(g′)‖∞ ≤ 1

2
. (3.4)

Since (3.2) trivially holds when ω− = 1
2 , henceforth assume ω− < 1

2 , and pick
n1 < n2 < . . . so that limk→∞ ωnk = ω−. Given any 0 < x < 1, let jk(x) =
nk x� + 1 ∈ {1, . . . , nk}, and note that Jnk , jk (x) ⊂ [x − 1/nk, x + 1/nk], but also

λ(Jnk , jk (x))

λ([x − 1/nk, x + 1/nk]) = 1

2
− ωnk

k→∞−→ 1

2
− ω− > 0.

Thus, the sequence (Jnk , jk (x))k∈N shrinks to x nicely, and by [33, Thm. 7.10],

g′(x) = limk→∞
1

λ(Jnk , jk (x))

∫

Jnk , jk (x)

g′ dλ ≤ limk→∞
2ωnk

1 − 2ωnk

= 2ω−

1 − 2ω−

for λ-almost every x ∈ [0, 1]. It follows that ω− ≥ Ω(g′) holds λ-almost everywhere,
and hence ω− ≥ ‖Ω(g′)‖∞. Together with (3.4), this completes the proof. ��

If μ−1 is singular, then the asymptotic behaviour of
(
dε(μ, δ

un• )
)

is con-
trolled by a different mechanism. To prepare for the general result, observe that
lim infn→∞ dist(nx, Z) = 0 for every x ∈ R, whereas

lim supn→∞ dist(nx, Z) =
⎧
⎨

⎩

1
2 (q − 1)/q if x = p/q with coprime

p ∈ Z, q ∈ N, q odd,
1
2 otherwise;

(3.5)

in particular, lim supn→∞ dist(nx, Z) ≥ 1
3 unless x ∈ Z. Defining ι : R → N0∪{+∞}

as

ι(x) = 2 inf
{
n ∈ N0 : (2n + 1)x ∈ Z

}
,
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notice that the right-hand side in (3.5) is nothing other than Ω ◦ ι(x). With this,
consider the very simple example of μa = aδ−1 + (1− a)δ1 for some 0 < a < 1, for
which G

μ−1
a

= {0, a, 1}. It is readily confirmed that ndε(μa, δ
un• ) = dist(na, Z) for

all sufficiently large n, and hence lim infn→∞ ndε(μa, δ
un• ) = 0, as well as

lim supn→∞ ndε(μa, δun• ) = Ω ◦ ι(a) = maxΩ ◦ ι(G
μ−1

a
).

This equality is but one manifestation of a general principle.

Lemma 3.4 Let μ ∈ P and ε > 0. If μ−1 is singular (w.r.t. λ), then

lim supn→∞ ndε(μ, δun• ) = supΩ ◦ ι(Gμ−1). (3.6)

Proof Using the same symbols as in previous proofs, write Gμ−1 simply as G, and let
2m = sup ι(G) with the appropriate m ∈ N0 ∪ {+∞}; also, let G∗ be the set of atoms
of μ−1, i.e. G∗ = {

0 < x < 1 : g−(x) < g(x)
}
. Assume first that m ∈ N0. Since

m = 0 implies G = {0, 1}, or equivalently μ−1 = 0, and (3.6) is correct in this case
by Proposition 3.2, henceforth assume m ≥ 1. Then, μ−1 is concentrated on finitely
many atoms, thus

G∗ = G =
{

0,
k1

2m1 + 1
, . . . ,

kl

2ml + 1
, 1

}

,

with the appropriate positive integers l, k1, . . . , kl , m1, . . . , ml , where the numbers
ki , 2mi + 1 are coprime for all i , and maxl

i=1 mi = m. As seen in the example above,
for all sufficiently large n,

ωn = maxl
i=1 dist

(
nki

2mi + 1
, Z

)

,

and hence

ω+ = maxl
i=1 Ω ◦ ι

(
ki

2mi + 1

)

= maxl
i=1 Ω(2mi ) = Ω(2m),

so again (3.6) is correct. It remains to consider the case of m = +∞. Here, it is
convenient to consider two subcases, depending on whether ι(G∗) is unbounded or
not. In the former case, fix a ∈ R

+, and pick x ∈ G∗ with ι(x) ≥ a. Moreover, pick
b > 3, and recall that yn := (dist(nx, Z) − 1/b)/n > 0 for infinitely many n ∈ N.
Since x is an atom of μ−1, for every c ∈ R

+ clearly

g−
(

x + 1

bn

)

− g

(

x − 1

bn

)

≥ c

bn
for all sufficiently large n. (3.7)
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Choosing c = b/ε in (3.7), note that for infinitely many n,

g−
(nx� + 1 − nyn

n

)

− g

(nx� + nyn

n

)

= g−
(

x + max{1 − 2dist(nx, Z), 0}
n

+ 1

bn

)

− g

(

x + min{1 − 2dist(nx, Z), 0}
n

− 1

bn

)

≥ g−
(

x + 1

bn

)

− g

(

x − 1

bn

)

≥ 1

nε
≥ 2yn

ε
,

and consequently ωn ≥ nyn . It follows that

ω+ ≥ lim supn→∞
(

dist(nx, Z) − 1

b

)

= Ω ◦ ι(x) − 1

b
≥ Ω(a) − 1

b
.

Since a, b > 3 have been arbitrary, ω+ = 1
2 = Ω(2m). Finally, assume that ι(G∗) is

bounded, and hence G∗ is finite, possibly empty. Since m = +∞, clearly G\G∗ �= ∅,
and every x ∈ G\G∗ is a continuity point of g, as well as an accumulation point of
G. By [33, Thm. 7.15],

limε↓0
g−(x + ε) − g(x − ε)

2ε
= +∞ for μ−1-almost every 0 < x < 1.

From this, it is clear that, given any b, c > 3, there exists x ∈ G\Q for which (3.7)
holds. With ι(x) = a = +∞, the same argument as before shows that ω+ = 1

2 , i.e.
(3.6) is correct in this case also. ��

CombiningTheorem3.3 andLemma3.4 yields a sharp (upper) rate for (dε

(
μ, δ

un• )
)
,

for arbitraryμ ∈ P . To formulate the result, recall that every σ -finite Borel measure ρ

on the real line can be written uniquely as ρ = ρA+ρS, where ρA and ρS are absolutely
continuous and singular (w.r.t. λ), respectively.

Theorem 3.5 Let μ ∈ P and ε > 0. Then,

lim supn→∞ ndε(μ, δun• ) = max

{∥
∥
∥
∥ Ω

(

ε
d(μ−1)A

dλ

)∥
∥
∥
∥∞

, supΩ ◦ ι(G(μ−1)S
)

}

.

(3.8)

Proof Since there is nothing to prove otherwise, assume that (μ−1)A �= 0 and
(μ−1)S �= 0. In analogy to the proof of Lemma 3.4, let g = F−1

μ = gA + gS,
with gA, gS ∈ F such that λgA = (μ−1)A and λgS = (μ−1)S, as well as
2m = sup ι(GS) ∈ N0 ∪ {+∞}, where GS = G(μ−1)S

for convenience. Since
g−(y) − g(x) ≥ gS−(y) − gS(x) for all 0 < x < y < 1, Lemma 3.4 yields
ω+ ≥ supΩ ◦ ι(GS) = Ω(2m). Thus, (3.8) clearly is correct when m = +∞,
and only the case of m ∈ N remains to be considered (note that m = 0 is impossible,
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as it would imply (μ−1)S = 0). In this case, GS is finite, say, GS = {0, x1, . . . , xl , 1}
with l ∈ N and 0 < x1 < . . . < xl < 1. With Jn, j as in the proof of Theorem 3.3, and
letting Kn = {nxi� : i = 1, . . . , l} ⊂ {1, . . . , n − 1} for n ≥ 1/x1, observe that

gA

(
j − ωn

n

)

− gA

(
j − 1 + ωn

n

)

= g−
(

j − ωn

n

)

− g

(
j − 1 + ωn

n

)

≤ 2ωn

nε
∀ j /∈ Kn,

and consequently

1

λ(Jn, j )

∫

Jn, j

εg′
A dλ ≤ 2ωn

1 − 2ωn
∀ j /∈ Kn .

If ω− < 1
2 , then the same argument as in the proof of Theorem 3.3 shows that

εg′
A(x) ≤ 2ω−

1 − 2ω− for λ-almost every x,

since clearly jn(x) /∈ Kn whenever x /∈ GS and n is sufficiently large. Thus,
ω− ≥ ‖Ω(εg′

A)‖∞; trivially, the latter also holds when ω− = 1
2 . In summary,

ω+ ≥ max
{‖Ω(εg′

A)‖∞,Ω(2m)
} =: ω; note that ω simply equals the right-hand

side in (3.8).
The reverse inequality is non-trivial only when ω < 1

2 . In this case, assume m ∈ N

as before, and pick any z with ω < z < 1
2 . Then, for all sufficiently large n,

gA

(
j − z

n

)

− gA

(
j − 1 + z

n

)

≤ 2z

εn
∀ j = 1, . . . , n,

but also, since GS is finite,

gS−
(

j − z

n

)

− gS

(
j − 1 + z

n

)

= 0 ∀ j = 1, . . . , n.

Thus, ωn ≤ z for all sufficiently large n, and since z > ω was arbitrary, ω+ ≤ ω. ��
Corollary 3.6 Let μ ∈ P and ε > 0.

(i) If lim supn→∞ ndε(μ, δ
un• ) < 1

3 , then
(
ndε(μ, δ

un• )
)

converges, and μ−1 is abso-
lutely continuous (w.r.t. λ).

(ii) If lim supn→∞ ndε(μ, δ
un• ) ≥ 1

3 , then either
(
ndε(μ, δ

un• )
)

converges, or

lim supn→∞ ndε(μ, δun• ) ∈
{
1

3
,
2

5
,
3

7
, . . . ,

1

2

}

=
{
Ω(2m) : m ∈ N ∪ {+∞}

}
.
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Remark 3 (i) The proof given above shows that, for every μ ∈ P and ε > 0,

lim infn→∞ ndε(μ, δun• ) ≥
∥
∥
∥
∥ Ω

(

ε
d(μ−1)A

dλ

)∥
∥
∥
∥∞

.

(ii) Letμ ∈ P be non-atomic. Then, the right-hand side in (3.8) tends to 1
2 as ε → +∞.

This is consistent with the fact that n minx∈Ξn ‖Fμ − Fδ
un
xn

‖∞ = 1
2 for all n ∈ N

whenever μ is non-atomic [4, Cor. 5.5].

The following example illustrates the results of this section. In particular, it demon-
strates that all situations allowed by Theorem 3.5 and Corollary 3.6 do occur. It also
shows that (3.2) may fail when μ−1 is not absolutely continuous; similarly, (3.6) may
fail when μ−1 is not singular.

Example 3 For every 0 ≤ a < 1 < b, considerμa,b = aδ−1+(1−a)U1,b, whereU1,b
denotes the uniform distribution (normalized Lebesgue measure) on [1, b]. Note that
μa,1 := limb↓1 μa,b = μa , with μa considered prior to Lemma 3.4. Since (μ−1

a,b)A =
(b − 1)Ua,1 and (μ−1

a,b)S = 2δa provided that a > 0, Theorem 3.5 yields

lim supn→∞ ndε(μa,b, δ
un• ) = max

{

Ω

(

ε
b − 1

1 − a

)

,Ω ◦ ι(a)

}

,

whereas by direct inspection,

lim infn→∞ ndε(μa,b, δ
un• ) = Ω

(

ε
b − 1

1 − a

)

<
1

2
.

On the one hand, if a = am = m/(2m + 1) for some m ∈ N0, then Ω ◦ ι(am) = am ,
and since b �→ Ω

(
ε(b − 1)/(1 − am)

)
is increasing continuously from 0 to 1

2 , there
exists a unique bm with Ω

(
ε(bm − 1)/(1 − am)

) = am . Thus,
(
ndε(μam ,b, δ

un• )
)

converges precisely if b ≥ bm , whereas for b < bm the lim inf can have any value
between 0 and am . On the other hand, if a = 1

2 then Ω ◦ ι(a) = 1
2 , and again

lim infn→∞ ndε(μ1/2,b, δ
un• ) = Ω

(
2ε(b − 1)

)
can have any value between 0 and 1

2 .
Except for the case of limn→∞ ndε(μ, δ

un• ) = 1
2 , which occurs, e.g. for the exponential

distributions in Example 1, every possible situation allowed by Theorem 3.5 can be
observed in this example by choosing a, b appropriately; see also Fig. 2. Notice that
μ−1

a,b is absolutely continuous precisely if a = 0 and is singular only if b = 1. While
Theorem 3.3 and Lemma 3.4 thus cannot in general be reversed, clearly (3.2) and (3.6)
may fail if μ−1 is not absolutely continuous and singular, respectively.

Example 4 Let μ be a normal distribution with variance σ 2 > 0. With φ denoting the
standard normal distribution function, it is readily deduced from Proposition 2.5 that
�

un• = dε(μ, δ
un• ) is the unique solution ofφ−1(1−�)−φ−1(1+�−1/n) = 2�/

√
ε2σ 2.

Utilizing the familiar fact [1, Sec. 26.2]

1 − φ(x) = e−x2/2

√
2π

(
x−1 − x−3 + O(x−5)

)
as x → +∞,
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Fig. 2 Solid black lines indicate,
for any μ ∈ P , the possible
values of the limit inferior and
the limit superior of(
ndε(μ, δ

un• )
)
; see

Theorems 3.3 and 3.5.
Example 3 demonstrates that all
possible values may indeed
occur

a straightforward analysis of this equation yields

ndε(μ, δun• ) = 1

2
− 1

2ε
√
2σ 2

·
√
log n

n
+ O(n−1) as n → ∞, (3.9)

which sharpens (3.2). Notice that convergence occurs here at a slightly slower rate
than has so far been observed in this article for examples of absolutely continuous
μ−1; cf. [16] and [37, Ex. 5.18].

As Examples 1, 2 and 4 suggest, the results of this section, notably Theorem 3.3,
can be refined by imposing further assumptions on μ. For instance, assume that
g = F−1

μ is C2 on ]0, 1[ and that g, g′ �= 0 both are convex, with lim supx↑1(1 −
x)g′′(x)/g′(x) < +∞ (all mentioned examples meet these requirements; for normal
distributions, only the right half of ]0, 1[ has to be considered due to symmetry). Let-
ting c = ‖Ω(εg′)‖∞ > 0 for convenience, it is straightforward to show that, as a
refinement of (3.2),

ndε(μ, δun• ) = c − 2c2

ε
en + o(en) as n → ∞, (3.10)

where limn→∞ en = 0, and more specifically,

en =

⎧
⎪⎪⎨

⎪⎪⎩

1

g′−(1)
+ n

g(1 − (1 − c)/n) − g(1 − c/n)

(1 − 2c)g′−(1)2
if c < 1

2 ,

1

g′(1 − 1/(2n)
) if c = 1

2 ;
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in particular, if g′′−(1) < +∞ then simply

en = g′′−(1)

2g′−(1)2
n−1.

As the reader may want to check, for exponential, Benford and normal distributions,
the asymptotic equalities (2.6), (2.8) and (3.9), respectively, all are (slightly sharper
than, but certainly) consistent with (3.10).

Example 5 Let μ be the Cantor distribution, i.e. the log 2/ log 3-dimensional Haus-
dorff measure on the classical Cantor middle thirds set C . Thus, Gμ = C , and since
diam C = 1, the measure μ−1, referred to as the inverse Cantor distribution [6, Ex.
A.11], is a probability measure as well. Both μ,μ−1 are singular: while μ is non-
atomic,μ−1 is purely atomic; in fact,μ−1({i2−m}) = 3−m for every m ∈ N and every
odd 1 ≤ i < 2m . Obviously, Lemma 3.4 applies to both distributions, showing that

lim supn→∞ ndε(μ, δun• ) = lim supn→∞ ndε(μ
−1, δun• ) = 1

2
.

By contrast, it is straightforward to check that lim infn→∞ ndε(μ, δ
un• ) = 0.

For the inverse Cantor distribution, an elementary analysis [4,36] yields 1
216 ≤

lim infn→∞ nd1(μ−1, δ
un• ) ≤ 1

3 , but the authors do not know the precise value of
lim infn→∞ ndε(μ

−1, δ
un• ) for any ε > 0.

4 Best (Unconstrained) Lévy Approximations

This section studies the asymptotics of dε(μ, δ•,n• ) as n → ∞. The following theorem
is the section’s main result and a counterpart to Theorems 3.3 and 3.5. It asserts that
the sequence

(
ndε(μ, δ•,n• )

)
always converges, to a limit smaller than 1

2 that is easily
expressed in terms of Ω and (μ−1)A, the absolutely continuous part of μ−1.

Theorem 4.1 Let μ ∈ P and ε > 0. Then,

limn→∞ ndε(μ, δ•,n• ) =
∫

Ω

(

ε
d(μ−1)A

dλ

)

dλ. (4.1)

As pointed out already in Introduction, Theorem 4.1 may be regarded as an analogue
for dε of (the one-dimensional version of) a classical dW-quantization theorem [18,
Thm. 6.2], but unlike that theorem, it does not impose a moment assumption on
(μ−1)A. For dW-approximations, such an assumption is known to be essential, as the
dW-approximation error for μ ∈ P1 can decay arbitrarily slowly without it; see [18,
Ex. 6.4] and [37, Thm. 5.33]. In the light of Theorem 4.1, this may be viewed as an
artefact specific to dW that does not exist for dε . Also, recall that unlike dW, the metric
dε metrizes precisely the topology of weak convergence on all of P , and so does dP.
As far as the authors have been able to ascertain, however, all known results pertaining
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to the asymptotics of the dP-approximation error also impose additional assumptions
[20, Sec. 4], and despite the similarities between dP and dε , [20, Sec. 5] suggests that
the dP-approximation error can decay arbitrarily slowly as well.

When proving Theorem 4.1, the following observation, a direct consequence of
Proposition 2.5 together with the argument establishing [4, Thm. 3.9], is helpful; its
routine verification is left to the interested reader.

Proposition 4.2 Let μ ∈ P , ε > 0, and n ∈ N. With � = dε(μ, δ•,n• ), there exists
p ∈ Πn such that for every j = 1, . . . , n,

dist(P, j , Gμ−1)≤� and

μ−1(]P, j−1 + �, P, j − �[)≤ 2�

ε
≤ μ−1([P, j−1 + �, P, j − �]).

Proof of Theorem 4.1 Throughout this proof, for convenience let g = F−1
μ and G =

Gμ−1 as before, but also �n = dε(μ, δ•,n• ) and ωn = n�n for all n ∈ N, as well as
ω− = lim infn→∞ ωn and ω+ = lim supn→∞ ωn . Again it suffices to consider the
case of ε = 1. Note that �n = 0 for some (and hence all sufficiently large) n ∈ N if
and only if G is finite, in which case (4.1) clearly is correct. Thus, assume G to be
infinite from now on, and consequently �n > 0 for all n ∈ N.

Given n ∈ N, choose pn ∈ Πn as in Proposition 4.2 and notice that �n > 0 implies
minn

j=1(Pn, j − Pn, j−1) ≥ 2�n > 0; in particular, Pn, j−1 < Pn, j for all j = 1, . . . , n.
Consequently, for every x ∈ [0, 1[ there exists a unique jn(x) ∈ {1, . . . , n} with
Pn, jn(x)−1 ≤ x < Pn, jn(x). For convenience, let Jn, j = [Pn, j−1 + �n, Pn, j − �n] for
all j = 1, . . . , n, and hence λn, j := λ(Jn, j ) = Pn, j − Pn, j−1 − 2�n . Next, recall
that the set U := [0, 1]\G is open, possibly empty. If U �= ∅, let I1, I2, . . . be its
(at most countably many) connected components, that is, the disjoint open intervals
with endpoints in G and U = ⋃

k Ik . Thus, for every x ∈ U there exists a unique
k(x) ∈ {1, 2, . . .} with x ∈ Ik(x). Finally, consider the subset G† of G defined as

G† = {
x ∈ G : I ∩ G = {x} for some interval I with λ(I ) > 0

}
. (4.2)

Notice that {0, 1} ⊂ G†, and G† is (at most) countable. Utilizing Proposition 4.2, it is
readily checked that

limn→∞[Pn, jn(x)−1, Pn, jn(x)] = {x} ∀x ∈ G\G†, (4.3)

but also
limn→∞[Pn, jn(x)−1, Pn, jn(x)] = Ik(x) ∀x ∈ U . (4.4)

With these preparations, the proof is now carried out in three separate steps for the
reader’s convenience.

Step I: Assume μ−1 is absolutely continuous.
Proposition 4.2 with ε = 1 yields μ−1(Jn, j ) = 2�n or, equivalently,

g(Pn, j − �n) − �n = g(Pn, j−1 + �n) + �n ∀ j = 1, . . . , n, (4.5)
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and since μ−1 is absolutely continuous also λn, j > 0. Fix any 0 < a < 1, and
recalling that g is differentiable λ-almost everywhere, with g′ ≥ 0 integrable over
every compact subinterval of ]0, 1[, pick a nonnegative continuous function fa :
]0, 1[ → R with

∫
[0,1] |g′ − fa | dλ < a (notice that g′, fa may not be integrable over

[0, 1]). IfU �= ∅, then also pick ka ∈ N large enough to ensure λ(
⋃

k>ka
Ik) < a, and

for every k = 1, . . . , ka pick a continuous function ek : ]0, 1[→ [0, 1] with ek(x) = 1
for all x ∈]0, 1[\Ik such that

∫
Ik

faek < aλ(Ik). Let f = fa
∏ka

k=1 ek ; in case U = ∅,
simply let f = fa . Clearly, f is nonnegative and continuous on ]0, 1[, with
∫

[0,1]
|g′ − f | dλ =

∫

G
|g′ − fa | dλ +

∫

U
| f | dλ ≤

∫

[0,1]
|g′ − fa | dλ < a, (4.6)

since g′ vanishes on U . Next, deduce from (4.5) that

1

λn, j

∫

Jn, j

f dλ = 2�n

λn, j
+ 1

λn, j

∫

Jn, j

( f − g′) dλ

=
2�n −

∫

Jn, j

(g′ − f ) dλ

Pn, j − Pn, j−1 − 2�n
∀ j = 1, . . . , n,

and consequently, for every j = 1, . . . , n,

2Ω

(
1

λn, j

∫

Jn, j

f dλ

)

(Pn, j − Pn, j−1) = 2�n −

∫

Jn, j

(g′ − f ) dλ

1 + 1

λn, j

∫

Jn, j

f dλ
. (4.7)

Summing (4.7) over j = 1, . . . , n yields

ωn −
∫

[0,1]
hn dλ = 1

2

n∑

j=1

∫

Jn, j

(g′ − f ) dλ

1 + 1

λn, j

∫

Jn, j

f dλ
, (4.8)

with the piecewise constant nonnegative function hn : [0, 1[ → R given by

hn(x) = Ω

(
1

λn, jn(x)

∫

Jn, jn (x)

f dλ

)

∀x ∈ [0, 1[.

Recall that f ≥ 0, and so the right-hand side in (4.8) is bounded, for every n ∈ N,
by 1

2

∑n
j=1

∫
Jn, j

|g′ − f | dλ ≤ 1
2

∫
[0,1] |g′ − f | dλ < 1

2a. Deduce from (4.3) and the
continuity of f that

limn→∞ hn(x) = Ω
(

f (x)
) ∀x ∈ G\G†. (4.9)
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Similarly, (4.4) and the choice of the functions ek for k = 1, . . . , ka imply that

limn→∞ hn(x) = Ω

(
1

λ(Ik(x))

∫

Ik(x)

f dλ

)

≤ Ω(a) <
a

2
∀x ∈

⋃ka

k=1
Ik . (4.10)

The elementary estimate, valid for all n ∈ N,

∣
∣
∣
∣ωn −

∫

[0,1]
Ω(g′) dλ

∣
∣
∣
∣ ≤

∣
∣
∣
∣ωn −

∫

[0,1]
hn dλ

∣
∣
∣
∣+

∫

⋃ka
k=1 Ik

hn dλ +
∫

⋃
k>ka Ik

hn dλ

+
∫

[0,1]
|Ω( f ) − Ω(g′)| dλ +

∫

G
|hn − Ω( f )| dλ,

together with (4.8), Fatou’s lemma and (4.10), the choice of ka and the fact that
0 ≤ hn ≤ 1

2 , estimate (4.6) as well as the dominated convergence theorem yield

lim supn→∞
∣
∣
∣
∣ωn −

∫

[0,1]
Ω(g′) dλ

∣
∣
∣
∣ ≤ a

2
+ a

2
+ a

2
+ a

2
+ 0 = 2a.

Since 0 < a < 1 has been arbitrary, limn→∞ ωn = ∫
[0,1] Ω(g′) dλ, i.e. (4.1) holds.

Step II: Assume μ−1 is singular.
Given any 0 < a < 1, let Ua = {x ∈ [0, 1] : dist (x, G) ≥ a}. Note that Ua ⊂
[a, 1− a] is a compact, possibly empty subset of U , so Ua ∩ G = ∅. Assume for the
time being that all atoms of μ−1 in [a, 1 − a] are small in that

μ−1({x}) ≤ a2 ∀x ∈ [a, 1 − a]. (4.11)

Recall that 2�n ≤ μ−1(Jn, j ) for all j = 1, . . . , n, by Proposition 4.2, and correspond-
ingly

ωn ≤
n∑

j=1

Ω

(
μ−1(Jn, j )

λn, j

)

(Pn, j − Pn, j−1) =
∫

[0,1]
h̃n dλ,

with the piecewise constant function h̃n : [0, 1[ → R given by

h̃n(x) = Ω

(
μ−1(Jn, jn(x))

λn, jn(x)

)

∀x ∈ [0, 1[.

First, observe that if x ∈ Ua , then (4.4) and (4.11) imply that

lim supn→∞ μ−1(Jn, jn(x)) ≤ μ−1(Ik(x)) ≤ 2a2,

whereas clearly limn→∞ λn, jn(x) = λ(Ik(x)) ≥ 2a. Thus,

lim supn→∞ h̃n(x) ≤ Ω(a) <
a

2
∀x ∈ Ua . (4.12)
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Next, notice that if x ∈ G\G†, then ([Pn, jn(x)−1, Pn, jn(x)]) shrinks to x nicely, and
hence

limn→∞
μ−1([Pn, jn(x)−1, Pn, jn(x)])

Pn, jn(x) − Pn, jn(x)−1
= 0 for λ-almost every x ∈ G,

by [33, Thm. 7.13]. Thus, limn→∞ �n/(Pn, jn(x) − Pn, jn(x)−1) = 0 for λ-almost every
x ∈ G, which in turn shows that (Jn, jn(x)) shrinks to x nicely as well. Applying [33,
Thm. 7.13] once more yields limn→∞ μ−1(Jn, jn(x))/λn, jn(x) = 0 for λ-almost every
x ∈ G, and thus

limn→∞ h̃n(x) = 0 for λ-almost every x ∈ G. (4.13)

Recalling that G† is countable, deduce from (4.12) and (4.13) that

ω+ ≤ lim supn→∞
∫

[0,1]
h̃n dλ

= lim supn→∞
(∫

Ua

h̃n dλ +
∫

G
h̃n dλ +

∫

[0,1]\(Ua∪G)

h̃n dλ

)

≤ a

2
+ 1

2

(
1 − λ(Ua ∪ G)

)
. (4.14)

In summary, (4.14) holds provided that μ satisfies (4.11).
To conclude the argument in the case of μ−1 being singular, given 0 < b < 1,

pick 0 < a < b so small that λ(Ua ∪ G) > 1 − b. Noting that the set Ga := {
x ∈

[a, 1 − a] : μ−1({x}) > a2
}
is finite, consider g̃ ∈ F given by

g̃ = g −
∑

x∈Ga

μ−1({x})1[x,+∞[,

as well as the unique μ̃ ∈ P with F−1
μ̃ = g̃. Crucially, (4.11) holds with μ̃ instead

of μ. Moreover, notice that G̃ := Gμ̃−1 ⊃ G\Ga , and clearly Ũa ⊃ Ua , where
Ũa = {x ∈ [0, 1] : dist (x, G̃) ≥ a}. Thus, Ũa ∪ G̃ ⊃ (Ua ∪ G)\Ga , and (4.14)
applied to μ̃, with �̃n := d1(μ̃, δ•,n• ), yields

lim supn→∞ n�̃n ≤ a

2
+ 1

2

(
1 − λ(Ũa ∪ G̃)

)
< b.

Finally, let ma = #Ga and observe that �n+ma ≤ �̃n for all n ∈ N, so

ωn ≤ n�̃n−ma = (n − ma)�̃n−ma + ma �̃n−ma

for all n > ma . Since limn→∞ �̃n = 0, clearly ω+ ≤ lim supn→∞ n�̃n < b, and since
0 < b < 1 has been arbitrary, ω+ = 0. Thus, (4.1) holds, with vanishing right-hand
side, whenever μ−1 is singular.
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Step III: Let μ ∈ P be arbitrary.
As in the proof of Theorem 3.5, write g = gA + gS with gA, gS ∈ F such that
λgA = (μ−1)A and λgS = (μ−1)S. Let μ〈A〉 and μ〈S〉 be the (uniquely determined)
probability measures with (μ〈A〉)−1 = (μ−1)A and (μ〈S〉)−1 = (μ−1)S, respectively
(notice that in general μ〈A〉 �= μA and μ〈S〉 �= μS). Also, for every n ∈ N let �

〈A〉
n =

d1(μ〈A〉, δ•,n• ) and �
〈S〉
n = d1(μ〈S〉, δ•,n• ). Given any m, n ∈ N, pick p〈A〉

m ∈ Πm and

p〈S〉
n ∈ Πn as in Proposition 4.2. By considering the joint partition of [0, 1] generated

by
{

P〈A〉
m,i : i = 0, . . . , m

}
and

{
P〈S〉

n, j : j = 0, . . . , n
}
, it is readily seen that �m+n ≤

�
〈A〉
m + �

〈S〉
n . For every 0 < a < 1 and n ∈ N, therefore

ωn ≤ n�(1−a)n�+an� ≤ 1 + (1 − a)n�
1 − a

�
〈A〉
(1−a)n� + 1 + an�

a
�
〈S〉
an�,

and applying Steps I and II to μ〈A〉 and μ〈S〉, respectively, yields

ω+ ≤ 1

1 − a

∫

Ω

(
d(μ〈A〉)−1

A

dλ

)

dλ = 1

1 − a

∫

Ω(g′
A) dλ.

(recall that limn→∞ �
〈A〉
n = limn→∞ n�

〈S〉
n = 0). Since 0 < a < 1 has been arbitrary,

ω+ ≤ ∫
Ω(g′

A) dλ. To obtain a lower bound for ω−, recall from Proposition 4.2 that

g−(Pn, j − �n) − �n ≤ g(Pn, j−1 + �n) + �n ∀ j = 1, . . . , n,

and since g− = gA + gS−,

gA(Pn, j − �n) − �n ≤gA(Pn, j−1 + �n) + �n

− max
{
0,
(
gS−(Pn, j − �n) − gS(Pn, j−1 + �n)

)}

≤gA(Pn, j−1 + �n) + �n ∀ j = 1, . . . , n,

from which it is clear that �
〈A〉
n ≤ �n for every n ∈ N. Applying Step I to μ〈A〉 yields

ω− ≥ lim infn→∞ n�
〈A〉
n = ∫

Ω(g′
A) dλ. Hence, limn→∞ ωn = ∫

Ω(g′
A) dλ, and the

proof is complete. ��
Along the lines of the aboveproof, andby considering the absolutely continuous part

ofμ rather than ofμ−1, the following dual version of Theorem 4.1 can be established;
the routine details are left to the interested reader.

Proposition 4.3 Let μ ∈ P and ε > 0. Then,

limn→∞ ndε(μ, δ•,n• ) = ε

∫

Ω

(
1

ε
· dμA

dλ

)

dλ.

Notice that Theorem 4.1 and Proposition 4.3 together imply the familiar fact [6, Ch.
A] that μ−1 is singular if and only if μ is singular, and hence yield a direct analogue
of Proposition 3.2 in the context of best approximations.
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Proposition 4.4 For every μ ∈ P and ε > 0, the following are equivalent:

(i) limn→∞ ndε(μ, δ•,n• ) = 0;
(ii) μA = 0;
(iii) (μ−1)A = 0.

Just as in the case of best uniform approximations, Theorem 4.1 can be refined through
further assumptions on μ. For instance, if g = F−1

μ is C4 on ]0, 1[, if both g, g′ �= 0
are convex and ifΩ(εg′) has aC3-extension toR, thenmild boundedness assumptions
on g and its derivatives (ensuring all relevant integrals are finite) guarantee that, as a
refinement of (4.1),

ndε(μ, δ•,n• ) = c1 + c21c2
12

n−2 + o(n−2) as n → ∞, (4.15)

where c1 = ∫
Ω(εg′) dλ and

c2 =
∫

2(1 + εg′)(g′′)2 − (2 + εg′)g′g′′′

(1 + εg′)2(g′)2
dλ.

When compared to
(
ndε(μ, δ

un• )
)
, therefore, not only does

(
ndε(μ, δ•,n• )

)
converge

to a smaller value (unless g′ is constant), but also it converges at the rate (n−2) which
often is faster than the rate in (3.10). For example, (4.15) applies to exponential as
well as Benford distributions, and the reader may want to check that (2.7) and (2.9)
both are consistent with it. If μ is a normal distribution with variance σ 2 > 0, then
Ω(εg′) does not have even a C1-extension to R, and correspondingly c2 = −∞,
which suggests that

(
ndε(μ, δ•,n• )

)
converges at a slower rate. This indeed is the case:

an elementary albeit lengthy analysis yields

ndε(μ, δ•,n• ) = −ε

√
πσ 2

2
Li1/2

(

− 1

ε
√
2πσ 2

)

+ O
(
log n

n2

)

as n → ∞,

where Li1/2 denotes the polylogarithm of order 1
2 ; see, e.g. [26, §25.12]. Though

slower than (4.15), this rate of convergence again is considerably faster than its coun-
terpart (3.9) for best uniform approximations. It should be noted, however, that such
a hierarchy of rates, though observed for many familiar distributions, is by no means
universal: as mentioned already in Introduction, for the 1-Pareto distribution both
sequences

(
ndε(μ, δ

un• )
)
and

(
ndε(μ, δ•,n• )

)
converge to their respective limits 1

2 and
π
8 at the same rate (n−2), as is evident from (1.7) and (1.8). For the 1

2 -Pareto distribu-
tion, i.e. Fμ(x) = 1 − x−1/2 for all x ≥ 1, (3.10) yields

nd1(μ, δun• ) = 0.5000 − 0.03125 n−3 + o(n−3) as n → ∞,
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whereas (4.15), with c1 = ∫ 1
0 (2 + t3)−1dt = 0.4508 and c2 = 6

∫ 1
0 t(2 − t3)(2 +

t3)−2dt = 0.9102, reads

nd1(μ, δ•,n• ) = 0.4508 + 0.01541 n−2 + o(n−2) as n → ∞.

Here,
(
nd1(μ, δ

un• )
)
converges at an even faster rate than

(
nd1(μ, δ•,n• )

)
.

Example 6 For the Cantor distribution μ and its inverse μ−1 in Example 5, Theo-
rem 4.1 yields limn→∞ ndε(μ, δ•,n• ) = limn→∞ ndε(μ

−1, δ•,n• ) = 0. An elementary
analysis shows that

(
n1/cdε(μ, δ•,n• )

)
and

(
n1/cdε(μ

−1, δ•,n• )
)
both are divergent, yet

bounded above and below by positive constants, where c = log 2/ log 3 < 1 is the
Hausdorff dimension of both the set C = Gμ and the measure μ. It seems plausible
that Theorem 4.1 can similarly be refined for a wide class of self-similar (singular)
distributions, thus complementing known dW-quantization results [18,19,25,29].

To establish one further interesting property of best dε-approximations, recall from
Proposition 2.5 that if dε(μ, δ

pn
xn ) = �•,n• , then pn can easily be determined from xn (or

vice versa). Thus, xn (or pn) alone already captures δ
pn
xn to a large extent, and it is natural

to ask, for instance, whether xn,1, . . . , xn,n , i.e. the locations of best dε-approximations
of μ ∈ P conform to an asymptotic point distribution as n → ∞, referred to as the
point density measure of μ in [19]. In the context of best dW-approximations (or -
quantizations), and under the appropriate assumptions, this question has a positive
answer; see, e.g. the “empirical measure theorem” [18, Thm. 7.5] and variants thereof
[19]. As is the case with Theorem 4.1 and Proposition 4.3, the result for best dε-
approximations again is simpler than its dW-counterpart in that the asymptotic point
distribution is readily identified whenever μ ∈ P is non-singular, and no further
assumptions on μ are needed. In fact, it even is possible to allow for slightly more
general xn . To concisely state the result, for every μ ∈ P with μA �= 0, define μ∗

ε ∈ P
via

dμ∗
ε

dλ
=

Ω

(
1

ε
· dμA

dλ

)

∫

R

Ω

(
1

ε
· dμA

dλ

)

dλ
∀ε > 0.

Clearly, μ∗
ε is absolutely continuous, and μ∗

ε = μ for some (in fact, all) ε > 0 if and
only if μ is uniform, i.e. μ = λ( · ∩ B)/λ(B) for some Borel set B with λ(B) ∈ R

+.
Also, given any μ ∈ P\P∗∞, i.e. # suppμ = ∞, call a sequence (xn), with xn ∈ Ξn

for every n ∈ N, asymptotically dε-minimal for μ if

limn→∞
dε(μ, δ•

xn
)

dε(μ, δ
•,n• )

= 1.

Thus, for instance, (xn) is asymptotically dε-minimal for μ ∈ P\P∗∞ whenever δ
pn
xn ,

with xn ∈ Ξn , pn ∈ Πn , is a best dε-approximation of μ for every n ∈ N.
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Theorem 4.5 Let μ ∈ P and ε > 0. If μA �= 0 and (xn) is asymptotically dε-minimal
for μ, then

limn→∞
#{1 ≤ j ≤ n : xn, j ∈ I }

n
= μ∗

ε (I ) ∀I ⊂ R, I an interval. (4.16)

Proof For convenience, write f = Fμ = fA+ fS with fA, fS ∈ F such that λ fA = μA
and λ fS = μS (the functions fA, fS can be made unique, for instance, by requiring
that fA(−∞) = fS(−∞) = 0). Also, let G = Gμ, �n = dε(μ, δ•

xn
) for all n ∈ N,

and define G† as in (4.2). Once again, it suffices to consider the case of ε = 1. Note
that μA �= 0 implies �n > 0 for every n, and limn→∞ n�n = ∫

R
Ω(dμA/dλ) > 0, by

Proposition 4.3 and the assumed asymptotic dε-minimality of (xn).
Fix a non-empty interval I = ]y, z] with y, z ∈ R. Perturbing xn slightly if neces-

sary, without altering #{1 ≤ j ≤ n : xn, j ∈ I } or increasing d1(μ, δ•
xn

) for any n, it
may be assumed that xn, j < xn, j+1 for all n ∈ N and j = 0, . . . , n. Thus, for every
x ∈ R, there exists a unique jn(x) ∈ {0, . . . , n} with xn, jn(x) ≤ x < xn, jn(x)+1. By
Proposition 2.5,

fA(xn, j+1 − �n) + fS−(xn, j+1 − �n) − �n ≤ fA(xn, j + �n) + fS(xn, j + �n) + �n,

for every j = 0, . . . , n, and consequently also

fA(xn, j+1 − �n) − fA(xn, j + �n) ≤ 2�n ∀ j = 0, . . . , n. (4.17)

Fix any a > 0, and recalling that fA is differentiable λ-almost everywhere with
f ′
A ≥ 0 and 0 <

∫
R

f ′
A dλ = μA(R) ≤ 1, pick a continuous function g : R → R

+
with

∫
R

| f ′
A − g| dλ < a.

Let Kn = {0 ≤ j ≤ n : xn, j + �n < xn, j+1 − �n} which may not be all of the set
{0, . . . , n} but does contain 0, n in any case. On the one hand, if j ∈ Kn\{0, n} let
Jn, j = [xn, j + �n, xn, j+1 − �n] and λn, j = λ(Jn, j ) = xn, j+1 − xn, j − 2�n > 0, and
deduce from (4.17) that

1

λn, j

∫

Jn, j

g dλ ≤
2�n −

∫

Jn, j

( f ′
A − g) dλ

xn, j+1 − xn, j − 2�n
,

and consequently

�n ≥ Ω

(
1

λn, j

∫

Jn, j

g dλ

)

(xn, j+1 − xn, j ) − 1

2

∫

Jn, j

| f ′
A − g| dλ; (4.18)

with the usual convention 0 · (±∞) = 0, (4.18) is correct also for j = 0, n. On the
other hand, if j /∈ Kn then clearly �n ≥ 1

2 (xn, j+1 − xn, j ). With (4.18) as well as the
definitions of jn(x) and Kn , therefore,
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(
1 + jn(z) − jn(y)

)
�n

≥
∑

j∈{ jn(y),..., jn(z)}∩Kn

Ω

(
1

λn, j

∫

Jn, j

g dλ

)

(xn, j+1 − xn, j )

− 1

2

∑

j∈{ jn(y),..., jn(z)}∩Kn

∫

Jn, j

| f ′
A − g| dλ

+
∑

j∈{ jn(y),..., jn(z)}\Kn

1

2
(xn, j+1 − xn, j )

≥
∫

[xn, jn (y),xn, jn (z)+1]
hn dλ − 1

2

∫

[xn, jn (y),xn, jn (z)+1]
| f ′

A − g| dλ

≥
∫

I
hn dλ − a

2
, (4.19)

where the piecewise constant function hn : R → R
+ is given by

hn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

Ω

(
1

λn, jn(x)

∫

Jn, jn (x)

g dλ

)

if jn(x) ∈ Kn,

1

2
if jn(x) /∈ Kn .

If jn(x) /∈ Kn for all sufficiently large n, then limn→∞ hn(x) = 1
2 , whereas if x ∈

G\G† and jn(x) ∈ Kn for infinitely many n, then lim infn→∞ hn(x) ≥ Ω
(
g(x)

)

because similarly to (4.3),

limn→∞[xn, jn(x), xn, jn(x)+1] = {x} ∀x ∈ G\G†.

In summary, therefore,

lim infn→∞ hn(x) ≥ Ω
(
g(x)1G(x)

)
for λ-almost every x ∈ R. (4.20)

Note that jn(z) − jn(y) = #{1 ≤ j ≤ n : xn, j ∈ I }. Consequently, (4.19), Proposi-
tion 4.3 with

∫
R

Ω( f ′
A) dλ > 0, and Fatou’s lemma applied to (4.20), together yield

lim infn→∞
#{1 ≤ j ≤ n : xn, j ∈ I }

n
≥

∫

I
Ω(g1G) dλ − a

2
∫

R

Ω( f ′
A) dλ

.

Recall that f ′
A = 0 on R\G; hence,
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∫

I
Ω(g1G) dλ =

∫

I
Ω( f ′

A) dλ +
∫

I∩G

(
Ω(g1G) − Ω( f ′

A)
)
dλ

≥
∫

I
Ω( f ′

A) dλ − 1

2

∫

I
| f ′

A − g| dλ ≥
∫

I
Ω( f ′

A) dλ − a

2
,

and consequently

lim infn→∞
#{1 ≤ j ≤ n : xn, j ∈ I }

n
≥ μ∗

1(I ) − a
∫

R

Ω( f ′
A) dλ

.

Since the number a > 0 and the interval I ⊂ R have been arbitrary, and since
μ∗
1(R) = 1,

limn→∞
#{1 ≤ j ≤ n : xn, j ∈ I }

n
= μ∗

1(I ) ∀I ⊂ R, I an interval,

i.e. (4.16) holds as claimed. ��
Note that Theorem 4.5 in particular asserts that if μ ∈ P is non-singular and

(δ
pn
xn ), with xn ∈ Ξn and pn ∈ Πn for every n ∈ N, is any sequence of best dε-

approximations of μ, then the sequence (δ
un
xn ), obtained by “forgetting” the optimal

weights and instead assigning equal weight 1/n to each atom, converges weakly to
μ∗

ε . It seems rather remarkable that (δ
un
xn ) always converges, and to a limit that is

independent of (xn). By contrast, simple examples show that (δ
un
xn ) may diverge if μ

is singular; cf. [19].

Example 7 Let μ = exp(a) with a > 0. With �•,n• and the (unique) best dε-
approximation δ

pn
xn of μ found in Example 1, it is readily confirmed that for any

n ∈ N and x ∈ R
+ the number #{1 ≤ j ≤ n : xn, j ≤ x} equals the largest integer not

larger than

n − ε

2a�
•,n•

log

(

1 +
(

e−a(x+�
•,n• /ε)

�
•,n•

− 1

)

tanh
a�•,n•

ε

)

.

From this, a straightforward calculation utilizing (2.7) yields

limn→∞
#{1 ≤ j ≤ n : xn, j ≤ x}

n
= 1 − log(1 + ae−ax/ε)

log(1 + a/ε)
∀x ∈ R

+.

Thus, the asymptotic point density of (xn) is

a2

log(1 + a/ε)
· 1

a + εeax
= Ω(ae−ax/ε)
∫
R

Ω(ae−ay/ε) dy
= dμ∗

ε

dλ
(x) ∀x ∈ R

+,

in perfect agreement with Theorem 4.5. Note that unlike for best dW-approximations
[18, Thm. 7.5], this asymptotic point distribution is not exponential; see also Fig. 3.
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Fig. 3 Comparing the standard exponential (left) and standard normal densities (broken curves) to the
asymptotic point densities of their respective best d1-approximations (solid curves); see Example 7

For another simple example, letμ be a normal distributionwithmean 0 and variance
σ 2 > 0. While no explicit formula is available for the (unique) best dε-approximation
δ

pn
xn of μ in general, Theorem 4.5 yields

dμ∗
ε

dλ
(x) = − 1

Li1/2

(

− 1

ε
√
2πσ 2

) · 1√
2πσ 2 + 2πεσ 2ex2/(2σ 2)

∀x ∈ R,

as the asymptotic point density of (xn). Again, this asymptotic point distribution is
not normal, unlike its dW-counterpart.
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