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Abstract
Motivated by homothetic solutions in curvature-driven flows of planar curves, as well as
their many physical applications, this article carries out a systematic study of oriented smooth
curves whose curvature κ is a given function of position or direction. The analysis is informed
by a dynamical systems point of view. Though focussed on situations where the prescribed
curvature depends only on the distance r from one distinguished point, the basic dynamical
concepts are seen to be applicable in other situations as well. As an application, a com-
plete classification of all closed solutions of κ = arb, with arbitrary real constants a, b, is
established.
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1 Introduction

Modulo rotations and translations, an oriented smooth planar curve is completely determined
by its curvature [10, 17, 27]. Naturally, therefore, curvature plays a central role in the study
of planar shapes. The evolution and characterization of planar shapes has been studied exten-
sively and in a great variety of contexts, including curve flows [1, 4, 5, 8, 34], growth and
abrasion processes [18, 19, 22, 24], optimization problems [20, 26], among many others. In
these contexts, curvature typically is but one aspect of a more complicated process or model.
Leaving aside all additional layers of complexity, the present article aims at classifying those
planar curves whose curvature simply is a (given) function of position or direction. Formally,
given any smooth function k : U × S1 → R, where U ⊂ C is open, it aims at studying all
smooth curve solutions Z of

κ = k(Z , N ); (1.1)
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here κ ∈ R and N ∈ S1 denote the curvature and unit normal vector at Z(s) ∈ C, respectively.
In particular, the article asks whether or not (1.1) allows for solutions that have further
desirable properties such as being, for instance, simple, closed, or convex. The main goal is
to address these questions in a systematic way, informed by a dynamical systems point of
view. Although the pertinent dynamical ideas apply in greater generality, for concreteness
most of the analysis is focussed on situations where k in (1.1) depends only on |Z | and is
independent of N , that is, on the special case

κ = f (|Z |), (1.2)

where f : R
+ → R is a given smooth function. Thus, whereas solving (1.1) amounts to

finding planar curves with prescribed position- and direction-dependent curvature, in (1.2)
the prescribed curvature only depends on the distance from one distinguished point (namely,
the origin).

One key tool in this article is a planar (topological) flow� f associated with (1.2). Proper-
ties of� f translate into properties of solutions of (1.2) that may be hard to recognize directly.
For a simple illustration, take for instance f (r) = r4. Figure 1 displays a few solutions of
(1.2) in this case; see also the illustrations in [34]. As it turns out, the family of all (maximal)
solutions of κ = |Z |4 is most easily understood by considering the flow on C generated by

ż = i z|z|4 − i . (1.3)

Notice that (1.3) is Hamiltonian, with H(z) = Re z − 1
6 |z|6 being strictly convex and having

a unique, non-degenerate global minimum at z = 1. Moreover, one of the main results of the
present article, Theorem 5.6 below, implies that modulo rotations, κ = |Z |4 has precisely
two solutions that are simple closed (counter-clockwise oriented) curves: the unit circle and
one non-circular oval; see Fig. 1.

One prominent natural source for (1.1) are curvature-driven curve flows which continue to
be studied for their deep mathematical properties as well as their broad physical applications.
Consider for example the Andrews–Bloore flow generated by

∂ Zt

∂t
= −(a + κb)N ; (1.4)

here (Zt )0≤t<T with the appropriate T > 0 describes a parametrized family of oriented
simple closed smooth curves, and a, b ≥ 0 are real constants. Curve flows such as Andrews–
Bloore have been suggested as simple models for a variety of physical processes, ranging
from the growth of crystal surfaces to the abrasion of pebbles. As detailled in [22], some
aspects of the dynamics of (1.4) in general remain a challenge, both mathematically and
computationally. However, important special cases, including b = 0 (also referred to as the
eikonal flow), a = 0, b = 1 (the curve-shortening flow), and a = 0, b = 1

3 (the affine curve-
shortening flow), are now well understood; see, e.g., [1, 4, 5, 34] and the many references
therein. Since they may represent limiting or equilibrium shapes, homothetic solutions, i.e.,
solutions Zt that are mere t-dependent rescalings of one fixed curve Z , play a key role in
any analysis of (1.4). Assume for instance that Zt (s) = ϕ(t)Z(s), with ϕ : [0, T [ → R

+,
is a solution of (1.4) with a = 0. Then ϕ̇ = λϕ−b for some real constant λ �= 0, and Z is a
solution of

κ = ∣
∣λ Re (Z N )

∣
∣1/b

. (1.5)

While the (counter-clockwise oriented) circle with radius |λ|−1/(1+b) centered at the origin
obviously solves (1.5), it is much less obvious whether or not any other (simple closed)
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Fig. 1 Among all smooth-curve solutions of κ = |Z |4, modulo rotations only precisely two are closed and
simple: the unit circle and one non-circular oval, labelled 1 and 3, respectively (top left). The structure of
all solutions is best understood by means of the associated planar flow generated by (1.3), notably its phase
portrait (top right)

solutions exist. In essence, this question is answered in [5] by means of an ad-hoc analysis,
with the answer depending on b in a non-trivial way. Note that (1.5) has the form (1.1).
Towards the end of the present article, it will become clear that an analysis similar to, but
simpler than the one presented here can be carried out, for instance, when k in (1.1) depends
only on Re (Z N ), a scenario that includes (1.5).

The unique non-circular oval solution of κ = |Z |4 is readily seen to not be an ellipse.
This observation nicely contrasts the ellipticity of all limiting shapes for the affine curve-
shortening flow [5, 22]. From a physical point of view, therefore, if (1.2)were to be interpreted
as describing (rescaled) limiting shapes of a curvature-driven abrasion process on pebbles,
say, then such an interpretation, however physically questionable it may be in other respects,
would at least be consistent with the well-documented empirical observation that shapes of
worn stones are not exactly elliptical either, but rather appear to be a bit bulkier [18, 19, 23,
24].

Organization and notation

This article is organized as follows. Section 2 introduces the planar flow � f associated with
(1.2) and discusses a few of its basic properties. Section 3 establishes the crucial correspon-
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dance between the dynamics of � f on the one hand and solutions of (1.2) on the other. For
a reasonably wide class of smooth functions f , Sect. 4 characterizes simple closed solutions
of (1.2) and provides tools to find all such solutions, or else to prove that none exist. Section 5
employs the machinery developed in earlier sections for an in-depth study of the monomial
family f (r) = rb, where b is an arbitrary real constant. A concluding supplemental section
illustrates how the analysis, though quite specific and delicate, nonetheless is representative
of arguments and techniques that can be applied to other classes of functions in (1.2), as well
as variants thereof; as such, it is quite similar in spirit to analyses in, e.g., [5, 9, 29, 37].

The following, mostly standard symbols, notation, and terminology are used throughout.
The sets of all positive integers, non-negative integers, integers, rational, positive real, real,
and complex numbers are denoted N, N0, Z, Q, R

+, R, and C, respectively, and R∞ :=
R ∪ {−∞,∞} is the extended real line with its familiar order, topology, and arithmetic
[32,Sec. 1.22]. As usual, ∅ is the empty set, with inf ∅ := ∞ and sup∅ := −∞. Limits of
real-valued objects (such as sequences, functions, or integrals) are understood in R∞ unless
stated otherwise. The terms increasing (respectively, decreasing) for sequences (an) in R∞
are interpreted strictly, i.e., an > am (respectively, an < am) whenever n > m, and similarly
for functions. Usage of an inequality such as, e.g., a > b with a, b ∈ C is understood to
automatically imply that a, b ∈ R∞. Numerical values of real numbers are displayed to
four correct significant decimal digits. The real part, imaginary part, complex conjugate,
and Euclidean norm of z ∈ C are Re z, Im z, z, and |z|, respectively. For convenience, let
C× := C \ {0}, D = {z ∈ C : |z| < 1}, and S1 = ∂D = {z ∈ C : |z| = 1}. Also, for every
p, w ∈ C and A ⊂ C let p + wA = {p + wz : z ∈ A}, as well as A = {z : z ∈ A} and
dist(p, A) = inf z∈A |p − z|, and denote the cardinality of A by #A. Moreover, [p, w] is the
closed line segment with end-points p, w, i.e., [p, w] = {(1 − t)p + tw : 0 ≤ t ≤ 1}, and
similarly for the open line segment ]p, w[ etc. Given any function f : A → R∞, write the
set {z ∈ A : f (z) = a} simply as { f = a}, and its complement in A as { f �= a}. As usual,
� denotes the Euler Gamma function. In a slight abuse of familiar notation, let O(2) be the
group of all isometries of C that fix 0. Recall that for every Q ∈ O(2) there exist ϑ ∈ R and
εQ ∈ {−1, 1} such that Q(z) = eiϑ(Re z + iεQ Im z) for all z ∈ C. Say that A, B ⊂ C are
O(2)-congruent if Q(A) = B for some Q ∈ O(2).

2 An Auxiliary Planar Flow

Throughout, let f : R
+ → R be a smooth, that is, C∞-function, with additional properties

specified explicitly whenever needed. Given f , fix an F : R
+ → R with F ′(s) = s f (s) − 1

for all s ∈ R
+. (The particular choice of F is not going to matter prior to Proposition 4.7

below.) Also, let F f = {

z ∈ C× : z f (|z|) = 1
}

, a (possibly empty) subset of the real axis.
On C×, consider the ODE for z = z(t),

ż = i z f (|z|) − i . (2.1)

Recall that (2.1) generates a local flow � f on C×, in that for every p ∈ C× there exists an
open interval J ⊂ R with 0 ∈ J such that z(t) = � f (t, p) for all t ∈ J yields the unique,
non-extendable solution of (2.1) with z(0) = p; see, e.g., [7, 10, 30]. Since

∣
∣d|z|/dt

∣
∣ =

∣
∣ − Im z/|z|∣∣ ≤ 1, it is impossible that z(t) → ∞ for finite t . By contrast, it is possible
that z(t) → 0 for finite t ; as recorded in Proposition 2.1 below, however, such behaviour is
unproblematic.More precisely,� f can be extended to a unique (global) flowonC, henceforth
also denoted� f . (Here and throughout, the term flow is understood tomean topological flow,
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so � f corresponds to a one-parameter group of homeomorphisms of C; see [25,Sec. 1.I]
and Remark 2.3(v) below.) If lim sups→0 | f ′(s)| < ∞ then this immediately follows from
standard facts [3, 7, 30, 36], but otherwise a more tailor-made argument is required. With a
view towards the subsequent analysis of (2.1), one such argument utilizes the smooth function
H f : C× → R given by

H f (z) = Re z − F(|z|) − |z| ∀z ∈ C×.

Evidently, H = H f has the property that H(z) − Re z is constant along circles centered at
0, i.e.,

for every s ∈ R
+ there exists a ∈ R such that H(z) − Re z = a for all |z| = s. (2.2)

Every smooth function H : C× → R satisfying (2.2) equals H f for an appropriate f —
simply take f (s) = (1− dH(s)/ds)/s. Most importantly, H f is a first integral of (2.1), and
hence the study of the latter ODE for the most part reduces to an analysis of the level sets of
H f . Notice that H f (z) = H f (z) for all z ∈ C×, so all level sets are symmetric w.r.t. the real
axis. Correspondingly, (2.1) has a basic symmetry as well: If z(·) is a solution then so is its
conjugate-reversal z(− · ). Utilizing H f , it is a routine exercise to establish the basic fact
alluded to earlier.

Proposition 2.1 Let f : R
+ → R be smooth. Then (2.1) generates a unique flow � f on C,

and

� f (t, z) = � f (−t, z) ∀(t, z) ∈ R × C. (2.3)

For the flow � f , the time-t map � f (t, · ) is a homeomorphism of C for every t ∈ R, and
� f (R, z) := {� f (t, z) : t ∈ R} is the orbit of z ∈ C. To exploit the basic symmetry (2.3), say
that z, p ∈ C are� f -conjugate if� f (t, z) ∈ {p, p} for some t ∈ R. Plainly,� f -conjugacy
is an equivalence relation, and z, p are � f -conjugate if and only if � f (R, z) equals either
� f (R, p) or � f (R, p). For every z ∈ C, let T f (z) = inf{t ∈ R

+ : � f (t, z) = z}. Thus
z ∈ C is a periodic (respectively, fixed) point of � f , or � f (R, z) is a periodic orbit, in
symbols z ∈ Per� f (respectively, z ∈ Fix� f ), if and only if T f (z) < ∞ (respectively,
T f (z) = 0). Notice that if z ∈ Per� f then z, w are� f -conjugate precisely if� f (t, z) = w

for some 0 ≤ t < T f (z). Also, Fix� f \ {0} = F f , whereas 0 may or may not be a fixed
point; see Examples 2.10 to 2.12 below. To clarify the nature of the fixed points of� f , recall
the notions of a (topological) saddle and a center, e.g., from [30,Sec. 2.10]. Specifically,
z ∈ C is a center of � f if a punctured neighbourhood of z is the disjoint union of periodic
orbits, each of which has z in its interior. For instance, the linearization of (2.1) at z ∈ F f is

ṗ = i F ′′(|z|) Re p − f (|z|) Im p, (2.4)

suggesting that z is a center when zF ′′(|z|) > 0, and a saddle when zF ′′(|z|) < 0; see Lemma
2.5 below. The origin may be a fixed point as well; if it is, it cannot be a saddle due to (2.2),
but may be a center, a situation that is straightforward to characterize.

Proposition 2.2 Let f : R
+ → R be smooth. Then 0 is a center of � f if and only if both of

the following conditions hold:

(i) dist(0, F f ) > 0;
(ii) for every a ∈ R there exists a decreasing sequence (sn) with limn→∞ sn = 0 such that

|F(sn) + sn + a| > sn for all n.
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Remark 2.3 (i) By Proposition 2.2, the point 0 is a center of � f precisely if it is not an
accumulation point of F f , and F(0+) := lims→0 F(s) either does not exist in R, or else
(

F(s) − F(0+)
)

/s /∈ [−2, 0] for arbitrarily small s ∈ R
+. Letting a = lim infs→0 s| f (s)|,

therefore, 0 is a center when a > 1, but is not a center when a < 1; if a = 1 then 0 may or
may not be a center as the examples f (s) = 1 + 1/s and f (s) = 1/s show.

(ii) Though this is of no direct consequence for the present article, note that (2.1) actually
is Hamiltonian since

dRe z

dt
= ∂ H f

∂ Im z
,

dIm z

dt
= − ∂ H f

∂Re z
.

Being a 1-DOF Hamiltonian flow severely constrains the dynamical complexity of � f ,
notably the nature of its fixed and periodic points (e.g., no sources, sinks, or limit cycles).

(iii) In the setting of Proposition 2.1, note that

�− f (t, z) = −� f (−t,−z) ∀(t, z) ∈ R × C.

As far as the dynamics of � f is concerned, therefore, f may be replaced by − f whenever
convenient, e.g., if f (s) �= 0 or f ′(s) �= 0 for all s ∈ R

+ then it may be assumed that f > 0
or that f is increasing, respectively.

(iv) With � f (t,∞) := ∞ for all t ∈ R, the flow � f may be considered a flow on the
compactified complex plane C ∪ {∞}. In this setting, the fixed point ∞ cannot be a saddle,
but may be a centre. In perfect analogy to Proposition 2.2, it is straightforward to show that
∞ is a center of � f if and only if F f is bounded, and for every a ∈ R there exists an
increasing sequence (sn) with limn→∞ sn = ∞ such that |F(sn) + sn + a| > sn for all n;
see Proposition 2.7 below.

(v) Smoothness of f : R
+ → R is assumed throughout for convenience only. All results

remain valid under appropriate finite differentiability assumptions; in most instances it suf-
fices to assume the function f to be C1. Also note that � f is not in general a smooth flow,
due to f (|z|) being non-smooth or indeed undefined at z = 0. However, if for instance f is
an even polynomial, as it is, e.g., in (1.3), then clearly � f is smooth (on R × C).

Given z ∈ Per� f , say that the orbit � f (R, z) is untwisted if 0 lies in the exterior
of the closed path � f ( ·, z); otherwise � f (R, z) is twisted. Note that � f (R, 0), if at all
periodic, is twisted. By contrast, � f (R, z) = {z} is untwisted for every z ∈ F f . Given
z ∈ Per� f \ � f (R, 0), define the net winding of z as

ω f (z) = ± 1

2π

∫ T f (z)

0
f (|� f (t, z)|) dt, (2.5)

where the plus sign (respectively, minus sign) applies in (2.5) when � f ( ·, z) is oriented
counter-clockwise (respectively, clockwise). Net winding plays a key role in later sections.
Here only a few basic properties are recorded. Clearly, ω f is constant along orbits. If z ∈
� f (R, 0) then the integral in (2.5) may or may not exist (in R∞); it does exist, for instance,
if f ≥ 0 or f ′ ≥ 0. Notice, however, that strictly speaking ω f (z) is defined only for
z ∈ Per� f \ � f (R, 0). The following is an immediate consequence of (2.1) and (2.5).

Proposition 2.4 Let f : R
+ → R be smooth, and z ∈ Per � f \ � f (R, 0). Then, with the

same signs as in (2.5),

ω f (z) − kz = ± 1

2π

∫ T f (z)

0

dt

� f (t, z)
= ± 1

2π

∫ T f (z)

0

Re� f (t, z)

|� f (t, z)|2 dt, (2.6)

where kz = 0 or kz = 1 when � f (R, z) is untwisted or twisted, respectively.
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On the (possibly empty or disconnected) set Per� f \(� f (R, 0)∪ Fix� f ), the function
ω f is continuous, but it is not in general continuous at z ∈ Fix� f as, for instance, ω f (z) =
0 �= lim p→z ω f (p) for z ∈ F f , provided that z is a non-degenerate center. (Recall that
F f ⊂ R.)

Lemma 2.5 Let f : R
+ → R be smooth. If z ∈ F f and zF ′′(|z|) > 0 then z is a center of

� f , and

lim p→z ω f (p) = 1√
zF ′′(|z|) . (2.7)

Proof It is readily seen that z ∈ F f is a non-degenerate maximum or minimum of H f if and
only if f (|z|)F ′′(|z|) = zF ′′(|z|)/|z|2 > 0. In this case, z is a center, and f (|� f (t, p)|) →
f (|z|) uniformly in t as p → z, whereas T f (p) → 2π/

√

f (|z|)F ′′(|z|), the minimal period
of (2.4). Consequently,

lim p→z ω f (p) = ± 1

2π
f (|z|) · 2π

√

f (|z|)F ′′(|z|) = ± |z|
z
√

zF ′′(|z|) ,

and since � f ( ·, z) is oriented counter-clockwise (respectively, clockwise) when z > 0
(respectively, z < 0), this proves (2.7). 
�

Recall from Remark 2.3(i) that 0 is a center of � f whenever lim infs→0 s| f (s)| > 1.
Under a slightly stronger assumption, the behaviour of ω f near 0 is as follows.

Lemma 2.6 Let f : R
+ → R be smooth. If lims→0 s| f (s)| = a > 1 then 0 is a center of

� f , and

limz→0 ω f (z) = 1
√

1 − 1/a2
. (2.8)

Proof By Proposition 2.2, 0 is a center, and clearly s0D \ {0} ⊂ Per� f \ Fix� f for some
s0 ∈ R

+. To establish (2.8), assume first that a = ∞, and in fact lims→∞ s f (s) = ∞. Given
any b ∈ R

+, it can be assumed that |� f (t, z)| f (|� f (t, z)|) ≥ b + 1 for all 0 < |z| < s0 and

all t ∈ R. Noting that � f ( ·, z) winds around 0 counter-clockwise, write � f (t, z) = ρeiϕ ,
with smooth functions ρ = ρ(t) > 0 and ϕ = ϕ(t). With this, (2.1) reads

ρ̇ = − sin ϕ, ϕ̇ = f (ρ) − cosϕ

ρ
.

Note that ϕ̇ ≥ (ρ f (ρ) − 1)/ρ ≥ b/ρ > 0. It follows that

ω f (z) = 1

2π

∫ T f (z)

0
f (ρ) dt = 1

2π

∫ T f (z)

0

(

ϕ̇ + cosϕ

ρ

)

dt = 1 + 1

2π

∫ T f (z)

0

cosϕ

ρ
dt,

and consequently

|ω f (z) − 1| ≤ 1

2π

∫ T f (z)

0

dt

ρ
≤ 1

2π

∫ T f (z)

0

ϕ̇

b
dt = 1

b
.

Since b ∈ R
+ has been arbitrary, limz→0 ω f (z) = 1. The argument in case lims→0 s f (s) =

−∞ is completely analogous, and hence (2.8) is correct when a = ∞.
It remains to consider the case 1 < a < ∞. Assume first that lims→0 s f (s) = a. Note that

lims→0 F(s) exists inR, and so does limz→0 H f (z). Since 0 is a center, it suffices to consider
ω f (s) for sufficiently small s ∈ R

+. For every such s, there exists a unique 0 < s∗ < s
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with H f (−s∗) = H f (s) = −F(s), or equivalently s∗ + s = ∫ s
s∗ u f (u) du. From the latter,

it is easily deduced that lims→0 s∗/s = (a − 1)/(a + 1). By the symmetry of (2.1) and
d|z|/dt = −Im z/|z|,

ω f (s) = 1

π

∫ 1
2 T f (s)

0
f (|� f (t, s)|) dt = 1

π

∫ s

s∗
u f (u)

y(u)
du,

where y = y(u) ≥ 0 is determined uniquely by |x + iy| = u and H f (x + iy) = −F(s), that
is,

y2 = u2 − x2 = u2 − (

u + F(u) − F(s)
)2 = (

F(s) − F(u)
)(

2u + F(u) − F(s)
)

= (s − u)

(
1

s − u

∫ s

u
v f (v) dv − 1

)

(u − s∗)
(

1

u − s∗

∫ u

s∗
v f (v) dv + 1

)

,

and consequently

ω f (s) = 1

π

∫ 1

s∗/s

f̂s(u) du√
(1 − u)(u − s∗/s)

,

where f̂s : [0, 1] → R is the continuous function with

f̂s(u) = su f (su)
√

1
1−u

∫ 1
u sv f (sv) dv − 1

√
1

u−s∗/s

∫ u
s∗/s sv f (sv) dv + 1

∀0 < u < 1, u �= s∗

s
.

Notice that lims→0 f̂s(u) = a/
√

a2 − 1 uniformly on [0, 1], and hence

lims→0 ω f (s) = 1

π

∫ 1

a−1
a+1

a√
a2 − 1

· du
√

(1 − u)
(

u − a−1
a+1

)
= 1
√

1 − 1/a2
.

This establishes (2.8) when lims→0 s f (s) = a, and again the case lims→0 s f (s) = −a is
completely analogous. 
�

In order for ω f (z) to be defined whenever |z| is large, note that z ∈ Per� f \ Fix� f

for all sufficiently large |z|, provided that lim infs→∞ s| f (s)| > 1. In the terminology of
Remark 2.3(iv), the fixed point ∞ is a center of � f in this case. The following, then, is an
analogue of Lemma 2.6; its very similar proof is left to the interested reader.

Proposition 2.7 Let f : R
+ → R be smooth. If lims→∞ s| f (s)| = a > 1 then every solution

of (2.1) is bounded, C \ sD ⊂ Per � f \ Fix � f for some s ∈ R
+, and

limz→∞ ω f (z) = 1
√

1 − 1/a2
.

Remark 2.8 By its very definition (2.5), the function ω f bears some resemblance to the
minimal period function T f . The literature on minimal periods in Hamiltonian systems,
notably near non-degenerate centers, is substantial; see, e.g., [9, 11–15, 31, 35, 36, 38]
and the many references therein. The author does not know whether these fine studies can
fruitfully be applied for the purpose of the present article, and in particular whether a multiple
of ω f can be interpreted as the true period in a 1-DOF Hamiltonian flow. Usage of ω f in
later sections may also remind the reader of the basic differential geometry notions of total
curvature and rotation index [10, 17, 27, 28]. Unlike the latter, however, the value of ω f need
not be an integer but can in fact be any (extended) real number.
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For the analysis in later sections, it is crucial whether or not ω f attains certain particular
values. To state a simple first observation in this regard, note that if f (s) �= 0 or f ′(s) �= 0
for all s ∈ R

+ then ω f (z) is well-defined (in R∞) for every z ∈ Per� f , unless z = 0 ∈
Fix� f , inwhich case simply defineω f (0) = 0.With this,ω f (z) = 0 for every z ∈ Fix� f .
Moreover, the possible values of ω f always are constrained as follows.

Lemma 2.9 Let f : R
+ → R be smooth, and z ∈ Per � f \ Fix � f .

(i) If f (s) �= 0 for all s ∈ R
+ then ω f (z) > 0.

(ii) If f ′(s) �= 0 for all s ∈ R
+ then ω f (z) �= 1.

(iii) If f (s) f ′(s) �= 0 for all s ∈ R
+ then 0 < ω f (z) < 1 when f f ′ > 0, and ω f (z) > 1

when f f ′ < 0.

Proof To see (i), simply note that � f ( ·, z) is positively (respectively, negatively) oriented
when f > 0 (respectively, f < 0), and hence ω f (z) > 0 in either case, by (2.5).

To prove (ii), let s1 < s2 be the intersection points of � f (R, z) with the real axis. For
convenience, let a = H f (z) = H f (s1) = H f (s2). ByRemark 2.3(iii), it may be assumed that
f ′ > 0. Let s0 = inf{ f > 0}. If max{|s1|, |s2|} ≤ s0 then, utilizing (2.1) and its symmetry,

ω f (z) = ω f (s1) = − 1

π

∫ 1
2 T f (s1)

0
f (|� f (t, s1)|) dt = 1

π

∫ s2

s1

ds

y(s)
,

where y = y(s) > 0 for s1 < s < s2 is given implicitly by H f (s + iy) = a. Since
f is increasing, it is readily seen that the relevant component of the level set {H f = a}
intersects the set

{

z ∈ C : (s1 + s2)Re z = |z|2 + s1s2
}

, i.e., the circle with radius 1
2 (s2 − s1)

centered at 1
2 (s2 + s1), only in s1, s2, or, more algebraically, y(s) �= √

(s2 − s)(s − s1) for
all s1 < s < s2. With this,

ω f (z) − 1 = 1
π

∫ s2
s1

ds
y(s) − 1

π

∫ s2
s1

ds√
(s2−s)(s−s1)

= 1
π

∫ s2
s1

√
(s2−s)(s−s1)−y(s)

y(s)
√

(s2−s)(s−s1)
ds �= 0. (2.9)

Since a virtually identical argument applies when min{|s1|, |s2|} ≥ s0, it only remains to
consider the case min{|s1|, |s2|} < s0 < max{|s1|, |s2|}. Thus assume for instance that
|s1| > s0 > |s2|. There exists a unique s2 < s3 < s0 such that Re ż = 0 when Re z = s3, and
consequently

ω f (z) = − 1

π

∫ s3

s2

ds

y−(s)
− 1

π

∫ s1

s3

ds

y+(s)

= 1

π

∫ s2

s1

ds

y+(s)
+ 1

π

∫ s3

s2

(
1

y+(s)
− 1

y−(s)

)

ds <
1

π

∫ s2

s1

ds

y+(s)
,

where 0 < y−(s) < y+(s) for s2 < s < s3 are the two solutions of H f (s + iy) = a. Since
y+ >

√
(s2 − s)(s − s1) for all s1 < s < s2, similarly to (2.9),

ω f (z) − 1 <
1

π

∫ s2

s1

ds

y+(s)
− 1 = 1

π

∫ s2

s1

√
(s2 − s)(s − s1) − y+(s)

y+(s)
√

(s2 − s)(s − s1)
ds < 0.

A completely analogous argument applies when |s1| < s0 < |s2|.
To prove (iii), again assume w.l.o.g. that f ′ > 0. Using the same quantities as in the proof

of (ii), it is readily checked that f > 0 implies y(s) >
√

(s2 − s)(s − s1) for all s1 < s < s2,
whereas this inequality is reversed when f < 0. By (2.9), therefore, ω f (z) < 1 when f > 0,
and ω f (z) > 1 when f < 0. 
�
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Fig. 2 For f (s) = 1/(1 + s), no point is periodic under � f (left; see Example 2.10), whereas for f (s) = s
every point is periodic, with the center 1 being the only fixed point (right; see Example 2.11)

The following examples illustrate the notions introduced in this section; in particular, they
show how 0 may be non-periodic, a periodic but non-fixed point, or a fixed point of � f ,
respectively.

Example 2.10 Let f (s) = 1/(1 + s) for all s ∈ R
+. Then Per� f = ∅, and every solution

of (2.1) is unbounded. In particular, 0 is non-periodic, its orbit given implicitly by Re z =
|z| − log(1 + |z|); see Fig. 2.
Example 2.11 Let f (s) = s for all s ∈ R

+. Then Fix� f = F f = {1}, and 1 is a center with
F ′′(1) = 2, so limz→1 ω f (z) = 1

2

√
2. Every orbit is periodic, and correspondingly every

solution of (2.1) is bounded. In particular, 0 is periodic with T f (0) = 1
4

√
6�( 14 )

2/
√

π =
4.541, its orbit given implicitly by 3 Re z = |z|3, and ω f (0) = 3

4 . Proposition 2.7 and
Lemma 2.9 imply that limz→∞ ω f (z) = 1, and 0 < ω f (z) < 1 for every z ∈ C \ {1}; see
Fig. 2.

Example 2.12 This example illustrates several different ways how 0 may be a fixed point of
� f ; see Fig. 3.

(i) Let f (s) = 1/s2 for all s ∈ R
+. Then F f = {1}, and F ′′(1) = −1, so the fixed point

1 is a saddle. By Proposition 2.2, the fixed point 0 is a center, and limz→0 ω f (z) = 1, by
Lemma2.6.All other periodic orbits are twisted; they lie inside the homoclinic loop associated
with the saddle and given implicitly by Re z = 1 + log |z|. By Lemma 2.9, ω f (z) > 1 for
every z ∈ Per� f \ {0, 1}, and ω f (z) → ∞ as z approaches the homoclinic loop.

(ii) Let f (s) = 1/s for all s ∈ R
+. Then Fix� f = Per� f = {z ∈ C : Re z ≥

0, Im z = 0}, hence the fixed point 0 is not isolated. Every point not on the non-negative real
axis has an unbounded orbit which in fact is a parabola.

(iii) Let f (s) = (1+ 3s4)/(s + 3s3) for all s ∈ R
+. Again, F f = {1}, but F ′′(1) = 3

2 , so
unlike in (i), thefixedpoint 1 now is a center. Everypoint not on the homoclinic loop associated
with the fixed point 0 and given implicitly by 3 Re z = |z|3 − |z| + 4

3

√
3 arctan(|z|√3) is

periodic. Note thatω f (z) → ∞ as z approaches the homoclinic loop. Also, limz→1 ω f (z) =
1
3

√
6 < 1 and limz→∞ ω f (z) = 1. Since f ′(0.8294) = 0, Lemma 2.9(ii,iii) do not apply.

By the intermediate value theorem there exists at least one untwisted periodic orbit for which
ω f = 1.
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Fig. 3 When 0 is a fixed point of � f , it may be a center (i), non-isolated (ii), or isolated (iii); see Example
2.12

Remark 2.13 (i) Note that f (s) f ′(s) �= 0 for all s ∈ R
+, and hence Lemma 2.9(iii) applies

in most examples above, the only exception being Example 2.12(iii).
(ii) If 0 ∈ Fix� f then 0 can be neither a (topological) saddle nor a source or sink, due to

(2.2) and the fact that � f preserves Lebesgue measure on C. Rather, the fixed point 0 must
be a center or degenerate, as in Example 2.12(i) or (ii,iii), respectively.

3 Characterizing Closed Solutions of � = f (r)

In all that follows, let Jc ⊂ R be a non-empty open interval with 0 ∈ Jc and c : Jc → C a
smooth path parametrized by arc length, that is, |ċ(t)| = 1 for all t ∈ Jc. For every Q ∈ O(2)
let cQ(t) = Q ◦ c(εQt) for all t ∈ JcQ = εQJc. Thus cQ is either a rotated (if εQ = 1) or
a reflection-reversed (if εQ = −1) copy of c. Two smooth paths c, ĉ parametrized by arc
length are equivalent if Jĉ = a +Jc for some a ∈ R and ĉ(t) = c(t −a) for all t ∈ Jĉ. Refer
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to any equivalence class as an oriented smooth curve C, and let [C] = c(Jc) where c ∈ C;
thus [C] ⊂ C simply is the set of points parametrized by some (and hence any) c ∈ C. Also,
for every Q ∈ O(2) let CQ be the equivalence class of cQ for some c ∈ C. Note that Ĉ = CQ

implies
[Ĉ] = Q([C]), but the converse is not true in general.

Given any c : Jc → C, associate with it a smooth function ϑc : Jc → R such that
ċ = eiϑc . Clearly, ϑc is determined by c only up to an additive integer multiple of 2π . Recall
that the curvature of c is κc = ϑ̇c. If c, ĉ are equivalent then κĉ(t) = κc(t − a) for all t ∈ Jĉ.
It makes sense, therefore, so say that, given any smooth function f : R

+ → R, the oriented
smooth curve C is a solution of

κ = f (r) (3.1)

if κc(t) = f (|c(t)|) for all t ∈ Jc with c(t) �= 0, where c is some (and hence any) element
of C. A solution C of (3.1) ismaximal if the set [C] cannot be enlarged any further, that is, if
[C] ⊂ [Ĉ] for any solution Ĉ of (3.1) necessarily implies that [C] = [Ĉ]; see, e.g., [34,Sec.
1]. Note that C is a (maximal) solution of (3.1) if and only if CQ is a (maximal) solution for
every Q ∈ O(2). Also, given any p ∈ C× and ϑ ∈ R, there exists a (locally unique) maximal
solution C of (3.1) such that c(0) = p and ϑc(0) = ϑ for some c ∈ C.

As alluded to already in the Introduction, the main objective of this article is to systemati-
cally study all (maximal) solutions of (3.1). This is accomplished by making these solutions
correspond to the orbits of the planar flow� f introduced in the previous section. To establish
such a correspondance, notice first that for a smooth path c : Jc → C parametrized by arc
length, (3.1) with p = eiϑ ∈ S1 simply reads

ċ = p, ṗ = i f (|c|)p,

provided that c �= 0. While this may be read as an ODE on C× × S1, the dimension of
the latter phase space can actually be reduced with very little effort. Specifically, given c,
associate with it the smooth path zc : Jc → C with

zc(t) = ic(t)e−iϑc(t) = −i c(t)eiϑc(t) ∀t ∈ Jc. (3.2)

Note that |zc| = |c|. Now, assume that the oriented smooth curve C is a solution of (3.1), and
pick any c ∈ C. Differentiation of (3.2) yields, for t ∈ Jc,

żc(t) = −i ċ(t)eiϑc(t) − i c(t)eiϑc(t)iκc(t) = −i + i zc(t) f (|zc(t)|),
provided that c(t) �= 0. At least on the non-empty open set {t ∈ Jc : c(t) �= 0}, therefore, zc

is a solution of (2.1), an ODE on C×. It is the purpose of this section to demonstrate that the
correspondance c ↔ zc indeed enables the systematic study of (3.1) by way of � f . A first
simple observation in this regard is that most solutions of (3.1) can be reconstructed from the
corresponding orbit of � f ; the routine proof is left to the interested reader, as are the proofs
of several equally elementary observations below.

Proposition 3.1 Let f : R
+ → R be smooth. For every p ∈ C \ � f (R, 0) and ϑ ∈ R, the

smooth path c : R → C× given by

c(t) = |p|eiϑ + i
∫ t
0 du/� f (u, p) ∀t ∈ R,

is parametrized by arc length, satisfies κc = f (|c|), and zc(t) = � f (t, p) for all t ∈ R.
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Remark 3.2 Arguably, (3.2) might be more natural still if it were made the definition of zc

rather than of zc, amodification that would not affect the substance of the subsequent analysis.
However, the specific form of (3.2) has been chosen in order to ensure that, in all relevant
situations, the paths c and zc have the same orientation; see, for instance, the proof of Lemma
3.10 below.

Another basic observation is that replacing c with ĉQ , where ĉ is equivalent to c and
Q ∈ O(2), affects zc only in a trivial way.

Proposition 3.3 Let C be an oriented smooth curve, and c, ĉ ∈ C. For every Q ∈ O(2) there
exists a ∈ R such that

zĉQ (t) =
{

zc(t − a) if εQ = 1,
zc(a − t) if εQ = −1,

for all t ∈ JĉQ = a + εQJ.

With Propositions 2.1 and 3.3, every solution C of (3.1) corresponds to a uniquely deter-
mined � f -orbit, namely � f

(

R, zc(0)
)

, and it is easily seen that every � f -orbit, with the
possible exception of � f (R, 0), can be obtained that way. Moreover, by Proposition 3.3 a
� f -conjugate orbit is obtained if C is replaced by CQ for any Q ∈ O(2). Leaving aside
trivial exceptions, a stronger statement can be made that has the additional benefit of being
reversible.

Proposition 3.4 Let f : R
+ → R be smooth with sup{ f �= 0} = ∞. For every two maximal

solutions C, Ĉ of (3.1) the following are equivalent:

(i) [C], [Ĉ] are O(2)-congruent;
(ii) zc(0), zĉ(0) are � f -conjugate for some (and hence every) c ∈ C, ĉ ∈ Ĉ.

Whenever { f �= 0} is unbounded, therefore, Proposition 3.4 establishes a bijection
between the maximal solutions of (3.1) modulo rotations and reflection-reversals on the
one hand, and the orbits of � f modulo � f -conjugacy on the other hand. As a consequence,
the study of maximal solutions of (3.1) modulo O(2)-congruence, the central theme through-
out the remainder of the present article, can proceed mostly via a careful analysis of the orbits
of � f .

Remark 3.5 Maximality of C, Ĉ is essential for both implications in Proposition 3.4. More-
over, (i)⇒(ii) may fail when { f �= 0} is bounded, whereas (ii)⇒(i) remains correct in this
case also.

Say that an oriented smooth curve C is closed if [C] is compact, and simple closed if [C]
is homeomorphic to the unit circle. Though not without precursors in the literature, e.g., in
[28], this terminology is tailor-made for the present article andmay seem unconventional. For
maximal solutions of (3.1), though, it is easily seen to be equivalent to a more conventional
notion [10, 17, 27].

Proposition 3.6 Let f : R
+ → R be smooth. For every maximal solution C of (3.1) the

following are equivalent:

(i) there exists an oriented smooth curve Ĉ and a ∈ R
+ with

[Ĉ] = [C] and ĉ(t + a) = ĉ(t)
for some ĉ ∈ Ĉ and all t ∈ Jĉ = R;

(ii) C is closed.
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Moreover, C is simple closed if and only if ĉ in (i) can be chosen to be one-to-one on [0, a[.
Remark 3.7 Plainly, (i)⇒(ii) in Proposition 3.6 for every oriented smooth curve C. However,
(ii)⇒(i) may fail when C is not a maximal solution of (3.1).

Notice that if two closed solutions C, Ĉ of (3.1) are O(2)-congruent then in fact [C] =
eiϑ [Ĉ] for some ϑ ∈ R. The main goal of the remainder of this section is to characterize
maximal solutions that are closed, perhaps even simple closed curves. As the readermay have
suspected all along, the planar flow � f and in particular the net winding ω f of its periodic
points are instrumental in this characterization.

Lemma 3.8 Let f : R
+ → R be smooth. For every maximal solution C of (3.1) with

dist(0, [C]) > 0 the following are equivalent:

(i) C is closed;
(ii) zc(0) ∈ Per � f and ω f

(

zc(0)
) ∈ Q for some (and hence every) c ∈ C.

Proof To prove (i)⇒(ii), let C be a closed maximal solution of (3.1), and c ∈ C. By Proposi-
tions 3.4 and 3.6, it can be assumed that c(t +a) = c(t) for some a ∈ R

+ and all t ∈ Jc = R.
Differentiation yields ϑc(t +a)−ϑc(t) = 2πk for some k ∈ Z and all t ∈ R. From (3.2), it is
clear that zc(t +a) = zc(t), and hence zc(0) ∈ Per� f . Since obviouslyω f

(

zc(0)
) = 0 ∈ Q

whenever zc(0) ∈ Fix� f , henceforth assume that zc(0) ∈ Per� f \ Fix� f , in which
case a = mT f

(

zc(0)
)

for some m ∈ N. Moreover, since κc(t) = f (|c(t)|) for almost all t ,

2πk =
∫ a

0
ϑ̇c(t) dt =

∫ a

0
f (|zc(t)|) dt

= m
∫ T f (zc(0))

0
f
(∣
∣� f

(

t, zc(0)
)∣
∣
)

dt = ±2πmω f
(

zc(0)
)

, (3.3)

and so ω f
(

zc(0)
) ∈ Q, as claimed.

To prove (ii)⇒(i), assume that zc(0) ∈ Per� f and ω f
(

zc(0)
) ∈ Q. Note that 0 /∈

� f
(

R, zc(0)
)

since otherwise dist(0, [C]) = 0. If zc(0) ∈ Fix� f then [C] equals the
circle with radius |zc(0)| > 0 centered at 0, so clearly C is closed. Assume from now on
that zc(0) ∈ Per� f \ Fix� f , with b := 1

2T f
(

zc(0)
)

> 0 for convenience. Also, let

p = zc(0), and pick ϑ ∈ R such that c(0) = |p|eiϑ . (This is possible because |c(0)| = |p|.)
By Proposition 3.1, the smooth path ĉ : R → C given by

ĉ(t) = |p|eiϑ + i
∫ t
0 du/� f (u, p) ∀t ∈ R,

is parametrized by arc length, and κĉ = f (|̂c|). Moreover, ĉ(0) = c(0), ˙̂c(0) = ċ(0), and
consequently c(Jc) ⊂ ĉ(R). By maximality, [C] = ĉ(R), so it suffices to show that ĉ(R) is
compact. To this end, simply notice that by (2.6),

ĉ(t + 2b) = ĉ(t)ei
∫ 2b
0 du/� f (u, p) = ĉ(t)e±2π i(ω f (p) − k p) = ĉ(t)e±2π iω f (p) ∀t ∈ R.

Picking n ∈ N such that nω f (p) ∈ Z yields ĉ(t + 2nb) = ĉ(t) for all t ∈ R. Thus
ĉ(R) = ĉ([0, 2nb]) indeed is compact, and C is closed. 
�
Remark 3.9 As can be seen from the above proof, the assumption dist(0, [C]) > 0 is not
needed for (i)⇒(ii). By contrast, (ii)⇒(i) may fail without it. Notice, however, that (i)⇔(ii)
for every maximal solution C of (3.1) provided that f can be extended smoothly to s = 0,
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e.g., if f is a polynomial. In this case, C ↔ � f
(

R, zc(0)
)

establishes a bijection between the
closed maximal solutions of (3.1) modulo rotations and those periodic orbits of � f whose
net winding is a rational number.

Let C be a closed maximal solution of (3.1). By Proposition 3.3 and Lemma 3.8, zc(0) is
contained in the same � f -orbit for every c ∈ C. It makes sense, therefore, to refer to C as
being (un)twisted whenever � f

(

R, zc(0)
)

is (un)twisted, and to let ω f (C) = ω f
(

zc(0)
)

for
any c ∈ C. Not too surprisingly, if C is simple closed then the possible values of ω f (C) are
severely constrained. Henceforth the term Jordan solution is used to refer to any maximal
solution of (3.1) that is simple closed. The following observation and its partial converse
(Theorem 3.13 below) are the main results of this section.

Lemma 3.10 Let f : R
+ → R be smooth, and C a Jordan solution of (3.1).

(i) If C is untwisted then ω f (C) = 0 or ω f (C) = 1/n for some n ∈ N.
(ii) If C is twisted then ω f (C) = 1.

Proof Let C be a Jordan solution, and c ∈ C. By Proposition 3.6, it may be assumed that
c(t + a) = c(t) for some a ∈ R

+ and all t ∈ Jc = R, with c being one-to-one on [0, a[.
If zc(0) ∈ Fix� f then {zc(0)} �= {0} clearly is untwisted, and ω f (C) = 0, so henceforth
assume that zc(0) ∈ Per� f \ Fix� f .

It will first be shown that � f
( ·, zc(0)

)

and c have the same orientation: Either both are
oriented counter-clockwise, or both are oriented clockwise. To see this, let s1 < s2 be the
intersection points of � f

(

R, zc(0)
)

with the real axis. Then H f (s1) = H f (s2), and hence
|s1| �= |s2|. Assume for instance that |s1| < |s2|. In this case, s2 = maxt∈R

∣
∣� f

(

t, zc(0)
)∣
∣ =

maxt∈R |c(t)| > 0. Since d|z|/dt = −Im z/|z| < 0 whenever Im z > 0, and ż|z=s2 =
i(s2 f (s2) − 1), necessarily s2 f (s2) > 1. Thus f (s2) > 1/s2 > 0, and � f

( ·, zc(0)
)

is
oriented counter-clockwise. Pick t0 with |c(t0)| = s2. Since |c| attains a maximum for t = t0,
and κc(t0) = f (s2) > 0, clearly c is oriented counter-clockwise also.A completely analogous
argument shows that � f

( ·, zc(0)
)

and c both are oriented clockwise when |s1| > |s2|.
With k ∈ Z and m ∈ N as in the proof of Lemma 3.8, the theorem of turning tangents (see,

e.g., [17,Thm. 5.7.2]) yields k = ±1, and (3.3) simply reads ±2π = ±2πmω f (C), where
the plus (respectively, minus) signs apply when � f

( ·, zc(0)
)

and c are oriented counter-
clockwise (respectively, clockwise). Thusω f (C) = 1/m regardless of whether C is untwisted
or twisted. Clearly, this proves (i).

To prove (ii), let C be twisted, and assume first that 0 ∈ [C]. Then ω f (C) = ω f (0) and
0 ∈ Per� f \ Fix� f .Assumew.l.o.g. that c(0) = 0, so zc(0) = 0 aswell. But c

(

T f (0)
) = 0

also, and hence T f (0) ≥ a = mT f (0) > 0, yielding m ≤ 1, that is, ω f (C) = 1.
To complete the proof of (ii), let C be twisted but assume that 0 /∈ [C]. With the numbers

s1 < s2 as above, this means that s1 < 0 < s2. Assume for instance that |s1| < s2, and
w.l.o.g. that c(0) = s2 and ϑc(0) = 1

2π . Then zc(0) = s2, and � f ( ·, s2) is oriented counter-

clockwise. As in the proof of Lemma 2.6, write � f (t, s2) = |� f (t, s2)|eiϕ(t), where ϕ is
smooth and ϕ(0) = 0. As seen there,

ϕ̇(t) = f (|zc(t)|) − cosϕ(t)

|zc(t)| = f (|zc(t)|) − Re zc(t)

|zc(t)|2 ∀t ∈ R. (3.4)

Deduce from (3.2) that c(t) = |c(t)|eiα(t) for all t ∈ R, with the smooth function α =
ϑc − 1

2π − ϕ. Notice that α(0) = 0, and by (3.4),

α̇(t) = ϑ̇c(t) − ϕ̇(t) = Re zc(t)

|zc(t)|2 = Re
1

zc(t)
∀t ∈ R. (3.5)
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Fig. 4 A closed maximal solution C of (3.1) with ω f (C) = 1
6 may or may not be a Jordan solution; see

Example 3.11

In particular, α̇(0) > 0 and α̇(b) < 0, where b := 1
2T f (s2) ≤ 1

2a for convenience. Also,
from the basic symmetry (2.3) it is readily deduced that

c(−t) = c(t) and c(2b − t) = e2iα(b)c(t) ∀t ∈ R. (3.6)

Now, suppose that α(t0) ≥ π or α(t0) ≤ 0 for some 0 < t0 < b. Then c(t0) = c(t0),
and so c(−t0) = c(t0), by the left equality in (3.6). Thus c would not be one-to-one on
]−b, b[⊂]−1

2a, 1
2a[, contradicting the initial assumption on c. Consequently, 0 < α(t) < π

for all 0 < t < b, and 0 ≤ α(b) ≤ π . Similarly, if α(b) > 0 then α(t0) = α(b) for some
0 < t0 < b, so e2iα(b)c(t0) = c(t0), and hence c(2b − t0) = c(t0), by the right equality in
(3.6), leading again to the contradictory conclusion that c is not one-to-one on ]0, 2b[⊂ [0, a[.
In summary, therefore, α(b) = 0. Utilizing (2.6) and (3.5) yields

0 = α(b) =
∫ 1

2 T f (s2)

0
α̇(t) dt =

∫ 1
2 T f (s2)

0

dt

� f (t, s2)
= π(ω f (s2) − 1),

and so ω f (C) = ω f (s2) = 1. Since the case |s1| > s2 is completely analogous, ω f (C) = 1
for every twisted Jordan solution C. 
�

The following two examples illustrate how reversing the conclusion of Lemma 3.10 in
general may be delicate: Whether or not an untwisted closed maximal solution C of (3.1)
with ω f (C) = 1/n for some n ∈ N actually is a Jordan solution may depend on properties
of f not obvious from the outset.

Example 3.11 Consider three touching discs with radii 1, 1, and a, respectively, positioned as
shown in Fig. 4 (dark grey), where simple trigonometry yields a = 2

3

√
3 − 1 = 0.1547 and

s0 =
√

5 − 2
√
3 = 1.239. Let f (s) = −1/a when 0 < s < s0 (light grey), and f (s) = 1

when s > s0. The closed solution C indicated in Fig. 4 is not simple, and yet ω f (C) = 1
6 . Of

course, f is not continuous, but given any ε > 0, it is straightforward to construct smooth
functions fε, f̂ε : R

+ → R with ‖ fε − f̂ε‖∞ + ‖ f ′
ε − f̂ ′

ε‖∞ < ε, and corresponding closed
maximal solutions Cε, Ĉε with ω fε (Cε) = ω f̂ε (Ĉε) = 1

6 such that Cε is simple closed whereas

Ĉε is not.
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Fig. 5 For f (s) = 3 − 2/s every point not on the two homoclinic loops associated with the saddle − 1
3 is

periodic, with the centers 0 and 1 being the only other fixed points (left); see Example 3.12. Although (3.1)
has, for every n ∈ N \ {1}, an untwisted closed maximal solution Cn with ω f (Cn) = 1/n, only finitely many
Cn are Jordan solutions, and none are convex (right)

Example 3.12 Let f (s) = 3−2/s for all s ∈ R
+. Note that f ′(s) = 2/s2 > 0 and F ′′(s) = 3

for all s ∈ R
+. The flow � f has exactly three fixed points: − 1

3 which is a saddle with two
associated homoclinic loops given implicitly by 6 Re z = 9|z|2 − 12|z| + 1, and two centers
0 and 1, with limz→0 ω f (z) = 2

3

√
3 > 1 and limz→1 ω f (z) = 1

3

√
3 < 1. Every point not

on the two homoclinic loops is periodic, and limz→∞ ω f (z) = 1. Note that ω f (z) �= 1 for
every z ∈ Per� f , by Lemma 2.9(ii). From the phase portrait of � f in Fig. 5, it is clear that
ω f (z) → −∞ (respectively, ω f (z) → ∞) as z approaches a homoclinic loop from within
the untwisted or outer twisted (respectively, inner twisted) regions. Since 1

3

√
3 > 1

2 , for
every n ∈ N\ {1} there exists at least one untwisted closed maximal solution Cn of (3.1) with
ω f (Cn) = 1/n. Numerical evidence strongly suggests that ω f (s) > 1

2 for all 2
3 ≤ s ≤ 4

3 ,
and hence the sign of f changes along each Cn . In other words, Cn is not convex for any
n, by [28,Thm. 2.31]. Moreover, it is not hard to see that Cn is not a simple closed curve
if n is large. In this example, therefore, (3.1) has, modulo rotations, only a finite number
of Jordan solutions, of which only the two circles with radii 1

3 and 1, centered at 0 and
oriented clockwise and counter-clockwise, respectively, are convex. Rigorously determining
the precise number of non-circular Jordan solutions may be a delicate task.

The above examples make it clear that for the conclusion of Lemma 3.10 to be reversed in
any generality, additional, possibly rather restrictive assumptions on f have to be imposed.
While many assumptions are conceivable in this regard, one clearly suggesting itself through
Lemma 2.9 is that

f (s) f ′(s) �= 0 ∀s ∈ R
+. (3.7)

For example, the monomial fb(s) = sb, with b ∈ R, to be studied in detail in Sect. 5
below, satisfies (3.7) for every b �= 0. Assuming (3.7), the conclusion of Lemma 3.10 can be
strengthened and reversed rather neatly.

Theorem 3.13 Let f : R
+ → R be smooth and satisfy (3.7). For every closed maximal

solution C of (3.1) the following are equivalent:
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(i) C is untwisted, and ω f (C) = 0 or ω f (C) = 1/n for some n ∈ N \ {1};
(ii) C is a Jordan solution.

Moreover, ω f (C) = 0 if and only if C is a circle of radius |z| centered at 0, with z ∈ F f ,
oriented counter-clockwise when z > 0, and clockwise when z < 0.

Proof Throughout, let C be a closed maximal solution, and c ∈ C and c(t + a) = c(t) for
some a ∈ R

+ and all t ∈ Jc = R. By Remark 2.3(iii) assume w.l.o.g. that f > 0.
To prove (i)⇒(ii), recall from Lemma 3.8 that zc(0) ∈ Per� f . (This part of the lemma

does not require 0 /∈ [C]; see Remark 3.9.) By Lemma 2.9, ω f (C) > 0 unless zc(0) ∈
Fix� f , in which case zc(0) �= 0, and C is a circle with radius |zc(0)| centered at 0, hence
obviously a Jordan solution; since κc = f (|zc(0)|) = 1/zc(0), this circle is oriented counter-
clockwise when zc(0) > 0, and clockwise when zc(0) < 0. Thus it only remains to consider
the case ω f (C) = 1/n where necessarily zc(0) ∈ Per� f \ Fix� f . As in the proof of
Lemma 3.10, let s1 < s2 be the intersection points of � f

(

R, zc(0)
)

with the real axis, and
assume w.l.o.g. that zc(0) = s2. Noticing that s1s2 > 0 since C is untwisted, assume, for
instance, that 0 < s1 < s2. Since Re żc = −Im zc f (|zc|) is negative (respectively, positive)
whenever Im zc > 0 (respectively, Im zc < 0), clearly Re� f (t, s2) ∈ [s1, s2] for all t ∈ R.

Also, writing c(t) = |c(t)|eiα(t) with the smooth function α satisfying α(0) = 0 yields

α̇(t) = Im
(

ċ(t)c(t)
)

|c(t)|2 = Re� f (t, s2)

|� f (t, s2)|2 = Re
1

� f (t, s2)
> 0 ∀t ∈ R,

in accordance with (3.5). Thus α is increasing, and with b := 1
2T f (s2) for convenience,

α(t + 2b) − α(t) = Re
∫ t+2b

t

du

� f (u, s2)

=
∫ T f (s2)

0

du

� f (u, s2)
= 2πω f (s2) = 2π

n
∀t ∈ R,

as well as α(b) = π/n. It follows that c is one-to-one on [0, 2nb[, but also
c(t + 2nb) = |zc(t + 2nb)|eiα(t + 2nb) = |zc(t)|eiα(t) = c(t) ∀t ∈ R.

Thus C is a Jordan solution. An analogous argument for the case s1 < s2 < 0 completes the
proof of (i)⇒(ii).

To see that (ii)⇒(i) simply recall from Lemma 2.9 that (3.7) implies ω f (C) �= 1, and
hence the claim immediately follows from Lemma 3.10. 
�
Remark 3.14 The reader may have noticed that the proof of Lemma 3.10 presented above
does contain a possible, if rather unpractical necessary and sufficient condition for a closed
maximal solution to be Jordan. To illustrate the simple idea, let C be, for instance, a (non-
circular) untwisted closed maximal solution, with associated numbers 0 < s1 < s2 as in the
proof of Lemma 3.10. Define ω∗

f : ]0, 1
2T f (s2)

[→ R by

ω∗
f (t) = ± 1

π
Re
∫ t

0

du

� f (u, s2)
∀0 < t <

1

2
T f (s2),

with the sign as in (2.5) and (2.6). Notice that ω∗
f (0+) = 0 and ω∗

f

( 1
2T f (s2)−

) = ω f (C);
in fact, by (3.5) simply ω∗

f (t) = ±α(t)/π . With this, it is clear that C is a Jordan solution if
and only if ω f (C) = 1/n for some n ∈ N, and

0 < ω∗
f (t) < ω f (C) ∀0 < t < 1

2T f (s2). (3.8)
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Notice that in the setting of Theorem 3.13, i.e., with f satisfying (3.7), the function ω∗
f is

increasing, as seen in the proof, and hence the otherwise unwieldy condition (3.8) holds
automatically.

4 Jordan Solutions andMonotone NetWinding

By Lemma 3.8, closed (maximal) solutions of (3.1) are plentiful unless ω f is constant on
Per� f \ Fix� f . By contrast, Lemma 3.10 and Example 3.12 suggest that Jordan solutions
are much rarer. In fact, as detailed in this section and the next, Jordan solutions of (3.1) are
exceedingly rare formany f . Thoughmuchof the analysis could be carried out, at least locally,
for far more general f , assume from now on that the smooth function f : R

+ → R satisfies
(3.7). This allows Lemma 2.9 and Theorem 3.13 to be applied together. By Theorem 3.13,
clearly (3.1) has at least as many different (circular) Jordan solutions as F f has elements. For
instance, F f = R

+ for f (s) = 1/s, and correspondingly every (counter-clockwise oriented)
circle centered at 0 is a Jordan solution; see Example 2.12(ii). To rule out degenerate situations
like this, and thus tomake the ultimate results particularly complete and transparent, assume in
addition that F ′′(s) �= 0 for all s ∈ R

+, so F f is either empty or a singleton. For convenience,
then, let

F = {

f : R
+ → R is smooth with f (s) f ′(s)F ′′(s) �= 0 ∀s ∈ R

+}.

Plainly, a f ∈ F for every a ∈ R \ {0} and f ∈ F . Given f ∈ F let ε f = ±1 be such that
ε f F ′′ > 0, and notice that the open interval

I f = ]

lims→0 ε f s f (s), lims→∞ ε f s f (s)
[

is well-defined, non-empty, and does not contain 0. For example, with f fromExamples 2.10,
2.11, and 2.12(ii), clearly f ∈ F , and I f equals ]0, 1[, R

+, and −R
+, respectively. Every

open interval contained in R \ {0} equals I f for an appropriate f ∈ F . To analyze (3.1)
with f ∈ F , it is convenient to distinguish four cases, depending on the position of I f

relative to the two-point set {−1, 1}. Three of the four cases are straightforward, as recorded
in Propositions 4.1 to 4.3 below.

Proposition 4.1 Let f ∈ F , and assume that I f ∩ [−1, 1] = ∅. Then every closed maximal
solution of (3.1) is twisted; in particular, (3.1) has no Jordan solution.

It is easy to see that with f as in Proposition 4.1, every periodic orbit of � f is twisted,
and the center 0 is the only fixed point. Moreover, Per� f = C, except perhaps when
sup I f = −1, in which case � f may have non-periodic points; see Fig. 6.

Proposition 4.2 Let f ∈ F , and assume that I f ⊂ ] −1, 1[. Then every maximal solution of
(3.1) is unbounded; in particular, (3.1) has no Jordan solution.

Again, with f as in Proposition 4.2, it is easy to see that all orbits of � f are unbounded,
and Per� f = ∅, except perhaps when inf I f = −1, in which case 0 may be a fixed point;
see Fig. 7 and also Example 2.10.

Proposition 4.3 Let f ∈ F , and assume that −1 ∈ I f . Then F f = {s}, with s ∈ R \ {0}
uniquely determined by s f (|s|) = 1. Every closed maximal solution of (3.1) either is twisted,
or else equals the circle with radius |s| centered at 0, oriented counter-clockwise when s > 0,
and clockwise when s < 0; in particular, (3.1) has exactly one Jordan solution (namely, that
circle).
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Fig. 6 If f ∈ F and I f ∩[−1, 1] = ∅ then every periodic orbit of� f is twisted (left); onlywhen sup I f = −1
may non-periodic orbits exist (right)

Fig. 7 If f ∈ F and I f ⊂ ] −1, 1[ then Per� f = ∅ (left), except when inf I f = −1 where 0 may be a
fixed point (right)

Note that under the assumptions of Proposition 4.3 the fixed point s is a saddle, its associ-
ated homoclinic loop containing the center 0 and all periodic orbits, each of which is twisted;
see Example 2.12(i) for a typical phase portrait.

By Propositions 4.1 to 4.3, non-circular Jordan solutions of (3.1) with f ∈ F , if at all
existant, can be found only in the remaining (fourth) case, that is, when 1 ∈ I f . Again, for
convenience let

F∗ = { f ∈ F : 1 ∈ I f }.
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For example, fb ∈ F for every b ∈ R \ {−1, 0}, but fb ∈ F∗ only when b > −1. For every
f ∈ F∗, note that ε f f > 0, i.e., ε f simply is the (constant) sign of f . Also, F f = {ε f s f } =
Fix� f , where s f ∈ R

+ is the unique solution of s f (s) = ε f . The sole fixed point of � f is
a center, and Per� f = C; see Example 2.11 for a typical phase portrait. Observe that every
(periodic) orbit not intersecting the line segment ε f ]0, s f ] is twisted. With Proposition 3.4
and Theorem 3.13, therefore, modulo rotations all maximal solutions of (3.1) with f ∈ F∗
that could potentially be Jordan solutions are parametrized by that segment. More formally,
given f ∈ F∗ and 0 < s ≤ s f , let C f ,s be a maximal solution of (3.1) with c(0) = ε f s and
ϑc = 1

2π for some c ∈ C f ,s . For instance, [C f ,s f ] simply is a circle with radius s f centered
at 0. Note that s �→ [C f ,s] is one-to-one, and clearly [C f ,s] is not a circle when s < s f .
The following properties of the curve C f ,s are immediate consequences of Lemma 3.8 and
Theorem 3.13.

Proposition 4.4 Let f ∈ F∗ and 0 < s ≤ s f .

(i) C f ,s is closed if and only if ω f (ε f s) ∈ Q.
(ii) C f ,s is simple closed if and only if either s = s f , or else s < s f and ω f (ε f s) = 1/n for

some n ∈ N \ {1}.
It is clear that, as mentioned earlier and modulo rotations, the family (C f ,s)0<s≤s f contains
all closed maximal solutions that are untwisted, so in particular all Jordan solutions.

Proposition 4.5 Let f ∈ F∗, and assume that C is a closed maximal solution of (3.1). If C is
untwisted then [C] = eiϑ [C f ,s] for some ϑ ∈ R and a unique 0 < s ≤ s f .

Combining Propositions 4.4 and 4.5, it is a simple task to find, at least formally, all Jordan
solutions. For convenience, let

O f =
⋃

n≥2

{

0 < s < s f : ω f (ε f s) = 1

n

}

.

Though a next-to-trivial consequence of the above, the following theorem may nevertheless
be regarded the main result of this section as it completely describes all Jordan solutions of
(3.1) when f ∈ F∗, and hence in fact even when merely f ∈ F .

Theorem 4.6 Let f ∈ F∗, and assume that C is a closed maximal solution of (3.1). Then
C is oriented counter-clockwise when f > 0, and clockwise when f < 0. Moreover, the
following are equivalent:

(i) C is a Jordan solution;
(ii) [C] either is a circle with radius s f centered at 0, or else [C] = eiϑ [C f ,s] for some ϑ ∈ R

and a unique s ∈ O f .

Proof Recall that either f > 0 or f < 0 since f ∈ F∗, and correspondingly ε f = 1 or ε f =
−1. Clearly, C is oriented counter-clockwise in the former case, and clockwise in the latter
[27,Ch. 1]. That (i)⇔(ii) is immediate from Theorem 3.13 together with Propositions 4.4
and 4.5. 
�

For every f ∈ F∗, Theorem 4.6 establishes a bijection between O f ⊂ ]0, s f [ and the
non-circular Jordan solutions of (3.1) modulo rotations. Thus, to find all such solutions one
only has to determine the set O f , most basically its cardinality. The remainder of this section
aims at determining #O f , on the one hand by establishing a practicable lower bound for ω f ,
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and on the other hand by devising a condition that ensures ω f is monotone. For both tasks,
it is convenient to assume henceforth that F(s f ) = 0 for every f ∈ F∗. (The function F
has been determined only up to an additive constant so far.) Note that | f | ∈ F∗ whenever
f ∈ F∗, and s| f | = s f . For convenience, therefore, assume that f > 0 from now on. (If
f < 0 then simply replace f by− f in all that follows.) Then F is non-negative and (strictly)
convex. Let Fk = F (k)(s f ) for k ∈ N0, so in particular F0 = F1 = 0 and F2 > 0. With a
view towards Theorem 4.6, for the further analysis it is helpful to derive an explicit formula
for ω f on ]0, s f [ as follows: For every 0 < s < s f there exists a unique s∗ > s f such that
F(s∗) = F(s), or more geometrically, s, s∗ are the two intersection points of � f (R, s) with
the real axis. Note that s �→ s∗ is smooth and decreasing, with 0∗

f := lims→0 s∗ < ∞ and
lims→s f s∗ = s f . With this,

ω f (s) = 1

π

∫ s∗

s

u f (u) du√
F(s) − F(u)

√
2u + F(u) − F(s)

∀0 < s < s f . (4.1)

Utilizing (4.1), the proof of the following is a straightforward calculus exercise.

Proposition 4.7 Let f ∈ F∗. Then ω f is smooth and positive on ]0, s f [, with

ω f (s f −) = 1√
s f F2

, ω′
f (s f −) = 0,

ω′′
f (s f −) = 9F2

2 −3s f F2(3F2
2 −2F3)−s2f (3F2F4−5F2

3 )

24
√

s f F2
5 .

Since F is non-negative and convex, with F(s f ) = F ′(s f ) = 0, the ratios F ′′F/(F ′)2
and (F ′)2/F define positive smooth functions on R

+, with their value for s = s f equal to
1
2 and 2F2, respectively. The following simple observations are useful when establishing a
lower bound for ω f .

Proposition 4.8 Let f ∈ F∗, and assume that F ′′F/(F ′)2 is increasing (respectively,
decreasing) on R

+. Then:

(i) s �→ s∗ is concave (respectively, convex) on ]0, s f [;
(ii) (F ′)2/F is increasing (respectively, decreasing) on R

+;
(iii) F ′ is convex (respectively, concave) on R

+.

Using Proposition 4.8, it is now possible to establish a reasonably tight lower bound for ω f

on ]0, s f [, provided that f is increasing.

Lemma 4.9 Let f ∈ F∗ be increasing. If F ′′F/(F ′)2 is increasing on R
+ then

ω f (s) >

√
s f

π

√

s∗ − s f

F ′(s∗)

∫ π

0
f

⎛

⎝

√

(s∗)2 + s2

2
− (s∗)2 − s2

2
cos u

⎞

⎠ du ∀0 < s < s f .

(4.2)

If F ′′F/(F ′)2 is decreasing on R
+ then (4.2) holds with

s∗ − s f

F ′(s∗)
replaced by

s − s f

F ′(s)
.

Proof Assume for the time being that F ′′F/(F ′)2 is increasing. It will first be shown that

− F ′(s)
s∗ − s

≤ F(s) − F(u)

(s∗ − u)(u − s)
≤ F ′(s∗)

s∗ − s
∀s < u < s∗. (4.3)
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To establish the left inequality in (4.3), notice that g : [s, s∗] → R given by

g(u) = F(s) − F(u) + F ′(s)
s∗ − s

(s∗ − u)(u − s) ∀s ≤ u ≤ s∗

satisfies g(s) = g(s∗) = 0, g′(s) = 0, and

g′(s∗) = −F ′(s∗) − F ′(s) = √

F(s)

⎛

⎝

√

F ′(s)2
F(s)

−
√

F ′(s∗)2
F(s∗)

⎞

⎠ ≤ 0,

by Proposition 4.8(ii); also, by (iii) the function g′ is concave. Consequently, if g′(u0) = 0
for some s < u0 < s∗ then g′(u) ≥ 0 for all s ≤ u ≤ u0, and g(u0) ≥ 0. Thus g(u) ≥ 0 for
all s ≤ u ≤ s∗, which proves the left inequality in (4.3). A completely analogous argument
establishes the right inequality.

Next it will be shown that

(s∗ + u)(u + s)

2u + F(u) − F(s)
≥ s∗ + s ∀s ≤ u ≤ s∗. (4.4)

To see (4.4), similarly to before observe that h : [s, s∗] → R given by

h(u) = 2u + F(u) − F(s) − (s∗ + u)(u + s)

s + s∗ ∀s ≤ u ≤ s∗

satisfies h(s) = h(s∗) = 0, and h′ is convex. Since f is increasing, h′(u0) = 0 for a unique
s ≤ u0 ≤ s∗, and h(u0) is a minimal value ≤ 0. In other words, h(u) ≤ 0 for all s ≤ u ≤ s∗,
i.e., (4.4) holds.

Lastly, deduce from differentiating F(s∗) = F(s) twice that ds∗/ds|s=s f = −1, and
hence s∗ ≤ 2s f − s by Proposition 4.8(i), so

(s∗)2 − s2 ≥ (s∗)2 − (2s f − s∗)2 = 4s f (s
∗ − s f ). (4.5)

With these preparations, for every 0 < s < s f deduce from (4.1), together with (4.3), (4.4),
and (4.5) that

ω f (s) = 1

π

∫ s∗

s

u f (u)√
(s∗ − u)(u − s)

√
(s∗ + u)(u + s)

√

(s∗ − u)(u − s)

F(s) − F(u)

√

(s∗ + u)(u + s)

2u + F(u) − F(s)
du

≥ 1

π

√

s∗ − s

F ′(s∗)

√
s∗ + s

∫ s∗

s

u f (u) du
√
(

(s∗)2 − u2
)

(u2 − s2)

>
1

π

√

s∗ − s f

F ′(s∗)

∫ π

0
f

⎛

⎝

√

(s∗)2 + s2

2
− (s∗)2 − s2

2
cos u

⎞

⎠ du,

which is precisely (4.2). Finally, if F ′′F/(F ′)2 is decreasing then it is readily checked that
(4.3) holds with both inequalities reversed, whereas (4.4) remains valid unchanged, and
s∗ ≥ 2s f − s since s �→ s∗ is convex, so (4.5) now reads

(s∗)2 − s2 ≥ (2s f − s)2 − s2 = 4s f (s f − s).

This shows that (4.2) remains valid, provided that
s∗ − s f

F ′(s∗)
is replaced by

s − s f

F ′(s)
. 
�
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Remark 4.10 (i) The right-hand side in (4.2) tends to 1/
√

s f F2 as s → s f . Thus the lower
bound in Lemma 4.9 is sharp at the right end of ]0, s f [. Moreover, equality holds in (4.2) for
every s in case f is constant — although, strictly speaking, the lemma does not apply in this
case because f /∈ F .

(ii) A variant of Lemma 4.9 holds for decreasing f ∈ F∗ as well: While (4.3) remains
valid in this case also, the right-hand side in (4.4) has to be replaced by the trivial lower
bound 1

2 (s
∗ + s). As a consequence, the right-hand side in (4.2) has to be divided by

√
2,

resulting in a lower bound for ω f (s) that typically is not sharp anywhere.

This section concludeswith a discussion of themonotonicity ofω f . Clearly, if one assumes
ω f to be, say, decreasing on ]0, s f [, then Theorem 4.6 together with Proposition 4.7 imme-
diately yields the cardinality of O f , and thus the number of non-circular Jordan solutions of
(3.1).

Theorem 4.11 Let f ∈ F∗, and assume that ω f is decreasing on ]0, s f [. Then (3.1) has pre-

cisely #
((

N \ {1})∩ ]1/ω f (0+),
√

s f F2
[ )

different non-circular Jordan solutions, modulo

rotations.

Proof Since ω f is continuous and decreasing on ]0, s f [,
{

ω f (s) : 0 < s < s f
} =

]

1
√

s f F2
, ω f (0+)

[

,

and hence #O f equals the number of integers n ≥ 2 with 1/ω f (0+) < n <
√

s f F2. 
�
To establish a condition that ensures ω f is decreasing on ]0, s f [, notice that for every

f ∈ F∗ the ratio F/F ′ defines a smooth function on R
+, with its value and derivative for

s = s f equal to 0 and 1
2 , respectively.

Lemma 4.12 Let f ∈ F∗, and assume there exists a ∈ R such that

2
√

s
d

ds

(√
s f (s)

F(s)

F ′(s)

)

− s f (s) + f (s)F(s)

4
≥ aF ′(s)

√
s ∀0 < s < 0∗

f . (4.6)

Then ω′
f (s) < 0 for all 0 < s < s f .

Remark 4.13 The left- and right-hand sides in (4.6) both vanish for s = s f , with derivatives
equal to F2 − 1/(2s f ) − F3/(3F2) and aF2

√
s f , respectively. Thus, if a as in Lemma 4.12

exists at all then necessarily a = (s f (F2
2 − 1

3 F3) − 1
2 F2)/(s

3/2
f F2

2 ).

The proof of Lemma 4.12 makes use of a simple tailor-made calculus fact the verification
of which once more is left to the interested reader; see also [13,Thm.2.1].

Proposition 4.14 Let f ∈ F∗, and assume g : R
+ → R is smooth. Then, for every 0 < s <

s f ,

d

ds

∫ s∗

s

g(u) du√
F(s) − F(u)

= F ′(s)
F(s)

∫ s∗

s

1√
F(s) − F(u)

(
d

du

(
g(u)F(u)

F ′(u)

)

− g(u)

2

)

du.

Proof of Lemma 4.12 For every 0 < s < s f ,

0 ≤ F(s) − F(u)

2u
≤ 1 − s

s∗ < 1 ∀s < u < s∗, (4.7)
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and consequently, with (4.1) and the binomial formula,

ω f (s) = 1

π
√
2

∫ s∗

s

√
u f (u)√

F(s) − F(u)

(

1 − F(s) − F(u)

2u

)−1/2

du

= 1

π
√
2

∫ s∗

s

∑∞
n=0

(−1/2
n

)

(−1)n2−nu1/2−n f (u)
(

F(s) − F(u)
)n−1/2 du

= 1

π
√
2

∑∞
n=0

(

2n
n

)

2−3ngn(s)

= 1

π
√
2

(

g0(s) + g1(s)

4
+
∑∞

n=2

(

2n
n

)

2−3ngn(s)

)

,

where the second-to-last equality is due to uniform convergence, and for every integer n ≥ 0,

gn(s) =
∫ s∗

s
u1/2−n f (u)

(

F(s) − F(u)
)n−1/2 du ∀0 < s < s f .

The derivative of g0 can be computed using Proposition 4.14, for every 0 < s < s f ,

g′
0(s) = F ′(s)

2F(s)

∫ s∗

s

1
√

u
(

F(s) − F(u)
)

(

2
√

u
d

du

(√
u f (u)

F(u)

F ′(u)

)

− u f (u)

)

du,

whereas for n ≥ 1, the derivative of gn simply is obtained by formal differentiation,

g′
n(s) = (

n − 1
2

)

F ′(s)
∫ s∗

s
u1/2−n f (u)

(

F(s) − F(u)
)n−3/2 du ∀0 < s < s f .

Note that g′
n < 0 for all n ≥ 1 since F ′ < 0 on ]0, s f [. By means of (4.7), it is easily seen

that the termwise differentiated series
∑∞

n=2

(

2n
n

)

2−3ng′
n(s) converges locally uniformly on

]0, s f [, and hence

ω′
f (s) = 1

π
√
2

(

g′
0(s) + g1(s)′

4
+
∑∞

n=2

(

2n
n

)

2−3ng′
n(s)

)

<
1

π
√
2

(

g′
0(s) + g′

1(s)

4

)

= F ′(s)
2π

√
2F(s)

∫ s∗

s

1
√

u
(

F(s) − F(u)
)

(

2
√

u
d

du

(√
u f (u)

F(u)

F ′(u)

)

− u f (u) + f (u)F(s)

4

)

du

≤ aF ′(s)
2π

√
2F(s)

∫ s∗

s

F ′(u) du√
F(s) − F(u)

= 0,

where the last inequality is a consequence of (4.6) and (4.7). 
�
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Remark 4.15 With a view towards Proposition 4.14 and the proof of Lemma 4.12, it is tempt-
ing to write down an exact formula (rather than an upper bound) for ω′

f (s), namely

ω′
f (s) = F ′(s)

2π
√
2F(s)

∫ s∗

s

1
√

u
(

F(s) − F(u)
)

(

2
√

u
d

du

(√
u f (u)

F(u)

F ′(u)

)

− u f (u)

(4.8)

+ f (u)F(s)

4
ψ

(
F(s) − F(u)

2u

))

du,

with the (real-analytic) function

ψ(t) = 2t√
1 − t

3 + 2

1 + √
1 − t

∀t < 1.

Note that ψ is convex on [0, 1[, with ψ(0) = 1 and ψ ′(0) = 9
4 . Due to its “non-local”

nature, (4.8) appears to be rather unwieldy. In particular, the integrand typically changes sign
in ]s, s∗[. As a consequence, any general statement about the sign of ω′

f is bound to be a
delicate affair, a fact for which the next section is going to provide ample evidence.

5 An Example: TheMonomial Family

This final section applies the results of the preceding sections to the monomials fb(s) = sb,
with b ∈ R. Naturally, the analysis is quite specific to that particular family of functions,
though the techniques applied here likely are useful also when dealing with other classes of
functions. Moreover, the section illustrates how applying the results of the present article,
notably Theorem 4.11, though quite trivial in theory, may nonetheless pose a considerable
challenge in practice. This is not an uncommon situation: The reader likely is familiar with
similar, seemingly simple problems in non-linear analysis that also require for their resolution
lengthy, potentially delicate and unenlightening computations; see, for instance, [1, 9, 29,
37].

Recall from the previous section that fb ∈ F for every b ∈ R \ {−1, 0}, and first consider
the case b < −1, where ε fb = −1 and I fb = −R

+. Consequently, Proposition 4.3 shows
that the only Jordan solution of κ = rb is the (counter-clockwise oriented) unit circle. Next,
the case b = −1 has been considered already in Example 2.12(ii): Every (counter-clockwise
oriented) circle centered at 0 is a Jordan solution of κ = 1/r , and there are no other maximal
solutions that are bounded, let alone closed or Jordan. It remains to consider the case b > −1,
where fb ∈ F∗ unless b = 0. In this case, ε fb = 1 and I fb = R

+, so Theorem 4.6 applies.
Moreover, s fb = 1, 0∗

fb
= (b + 2)1/(b+1), and

F(s) = sb+2 − (b + 2)s + b + 1

b + 2
∀s ∈ R

+,

as well as Fk = ∏k
�=2(b + 3− �) for all k ≥ 2. By Proposition 4.7, ω fb is a smooth positive

function on ]0, 1[ with

ω fb (1−) = 1√
b + 1

, ω′
fb
(1−) = 0, ω′′

fb
(1−) = b2

12
√

b + 1
. (5.1)

Thus if −1 < b < 0 then ω fb (s) > 1 for all 0 < s < 1, by Lemma 2.9, hence O fb = ∅,
and again the only Jordan solution of κ = rb is the (counter-clockwise oriented) unit circle.
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By contrast, if b = 0 then ω f0(s) = 1 for all 0 < s < 1. Though (3.7) fails in this case, as
f0 /∈ F , it is clear that every (counter-clockwise oriented) circle with radius 1 is a Jordan
solution, and there are no other maximal solutions whatsoever. Correspondingly, s∗ = 2− s
and

ω f0(s) = 2

π

∫ 2−s

s

u du√
u2 − s2

√

(2 − s)2 − u2

= 1

π

∫ (2−s)2

s2

du√
u − s2

√

(2 − s)2 − u
= 1 ∀0 < s < 1.

The only case yet to be considered, therefore, is b > 0. In this case,

ω fb (0+) = 1

π

∫ 0∗
fb

0

ub+1du√
F(0) − F(u)

√
2u + F(u) − F(0)

= 1

π

∫ (b+2)1/(b+1)

0

ub+1du
√

u2 − u2b+4/(b + 1)2
= 1

2
+ 1

2(b + 1)
, (5.2)

and consequently

ω fb (0+) − ω fb (1−) = b2

2(b + 1)(b + 2 + 2
√

b + 1)
> 0.

Since ω fb attains a non-degenerate local minimum as s → 1 by (5.1), the following certainly
is a plausible speculation.

Conjecture 5.1 For every b > 0 the function ω fb is decreasing on ]0, 1[.
At the time of this writing, the author has been able to establish the correctness of this

conjecture only for b ≥ 3
2 ; see Lemma5.3 below. For smaller b, a somewhatweaker substitute

is presented. Concretely, observe that 1
2 < ω fb (0+) < 1 for all b > 0, and if 0 < b < 3 then

also 1
2 < ω fb (1−) < 1. If b is not too large then these bounds are valid for all intermediate

values as well.

Lemma 5.2 If 0 < b ≤ 3
2 then 1

2 < ω fb (s) < 1 for all 0 < s < 1.

The proof of Lemma 5.2 presented below makes use of several inequalities, two of which
may be of independent interest: On the one hand, elementary calculus shows that

a ≤
(

(a + 1)b+1 − 1

a

)1/b

− (b + 1)1/b ≤ a
(b + 1)1/b

2
∀a ∈ R

+, 0 < b ≤ 1,

whereas for b ≥ 1 both inequalities are reversed. In other words, since max
{ 1
2 (b + 1)1/b, 1

}

equals 1
2 (b + 1)1/b if 0 < b ≤ 1, and equals 1 if b ≥ 1,

a min

{
(b + 1)1/b

2
, 1

}

≤
(

(a + 1)b+1 − 1

a

)1/b

−(b + 1)1/b ≤ a max

{
(b + 1)1/b

2
, 1

}

∀a, b ∈ R
+. (5.3)

On the other hand, as a special case of an optimal Gautschi inequality established in [21],

a + 1

4
<

�(a + 1)2

�(a + 1/2)2
< a + 1

π
∀a ∈ R

+, (5.4)
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and both bounds are sharp, as the left (respectively, right) inequality becomes an equality as
a → ∞ (respectively, a → 0).

Proof of Lemma 5.2 Since 0 < ω fb (s) < 1 for all 0 < s < 1 whenever b > 0, by Lemma
2.9(iii), it only needs to be shown that ω fb (s) > 1

2 . Clearly, fb is increasing, and it is readily
checked that F ′′F/(F ′)2 is increasing on R

+ as well. By (4.2),

ω fb (s) ≥ 1

2b/2π

√

s∗ − 1

(s∗)b+1 − 1

(

(s∗)2 + s2
)b/2

∫ π

0

(

1 − (s∗)2 − s2

(s∗)2 + s2
cos u

)b/2

du ∀0 < s < 1,

and utilizing the elementary estimate
∫ π

0
(1 − a cos u)bdu ≥ 2b√π �(b + 1/2)

�(b + 1)
∀0 ≤ a, b ≤ 1,

it follows that, for every 0 < b ≤ 2,

ω fb (s)
2 ≥ 1

π
· s∗ − 1

(s∗)b+1 − 1

(

(s∗)2 + s2
)b �

(

(b + 1)/2
)2

�
(

(b + 2)/2
)2 ∀0 < s < 1.

Recall that s∗ > 1 for every 0 < s < 1. Thus, applying (5.3) and (5.4) yields the lower
bound, valid whenever 0 < b ≤ 2,

ω fb (s)
2 >

(

(s∗)2 + s2
)b

(

(b + 1)1/b + (s∗ − 1)max{(b + 1)1/b/2, 1})b
· 2

πb + 2
∀0 < s < 1. (5.5)

Also, recall from Proposition 4.8(i) that s �→ s∗ is concave, with s∗|s=0 = 0∗
fb

= (b +
2)1/(b+1) and s∗|s=1 = 1, and hence

s∗ ≥ (b + 2)1/(b+1)(1 − s) + s ∀0 < s < 1. (5.6)

Replacing s on the right in (5.5) by the lower bound in terms of s∗ provided by (5.6), and
requiring that the resulting expression still be> 1

4 for all 0 < s < 1 is equivalent to requiring
that

p(b, s∗ − 1) > 0 ∀1 < s∗ < (b + 2)1/(b+1),

with the continuous function p : R
+ × R → R given by

p(b, t) = (t + 1)2 +
(

t

(b + 2)1/(b+1) − 1
− 1

)2

−
(

πb + 2

8

)1/b (

(b + 1)1/b + t max

{
(b + 1)1/b

2
, 1

})

.

Thus the assertion of the lemma immediately follows, as soon as it is shown that in fact

p(b, t) > 0 ∀0 < b ≤ 3

2
, t ∈ R. (5.7)

In other words, to prove the lemma it suffices to establish (5.7), and this will now be done.
To this end, notice that p(b, · ) is a quadratic polynomial,

p(b, t) = p2(b)t2 − 2p1(b)t + p0(b) ∀b > 0, t ∈ R,
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with continuous, positive coefficients p0, p1, p2 : R
+ → R

+ given by

p0(b) = 2 −
(

πb + 2

8

)1/b

(b + 1)1/b,

p1(b) = 1

(b + 2)1/(b+1) − 1
− 1 + 1

2

(
πb + 2

8

)1/b

max

{
(b + 1)1/b

2
, 1

}

,

p2(b) = 1
(

(b + 2)1/(b+1) − 1
)2 + 1,

and hence (5.7) holds, provided that

p0(b)p2(b) > p1(b)2 ∀0 < b ≤ 3

2
. (5.8)

Now, it is readily checked that p0 and p1 are decreasing and increasing on ]0, 3
2 ], respectively,

and hence to establish (5.8), it suffices to verify that
√

p0(1)
√

p2(b) > p1(1) ∀0 < b ≤ 1 and
√

p0

(
3

2

)
√

p2(b) > p1

(
3

2

)

∀1 ≤ b ≤ 3

2
. (5.9)

Notice that

√

p2(b) ≥ 1√
2

· (b + 2)1/(b+1)

(b + 2)1/(b+1) − 1
∀b ∈ R

+,

and since the lower bound on the right is increasing in b, clearly (5.9) holds, provided that

√

p0(1)
2√
2

> p1(1) and

√

p0

(
3

2

)
1√
2

·
√
3√

3 − 1
> p1

(
3

2

)

. (5.10)

Utilizing the rough (rational) estimates

p0(1) = 6 − π

4
>

2

3
, p0

(
3

2

)

= 2 − 1

16
(40 + 30π)2/3 >

(
3

5

)2

,

p1(1) = 8
√
3 − 6 + π

16
<

3

4
, p1

(
3

2

)

= 27/5 − 72/5

72/5 − 22/5
+ 1

32
(16 + 12π)2/3 < 1,

it is readily seen that (5.10) indeed is correct. This proves (5.8), which in turn implies (5.7).
As detailed earlier, the latter proves the lemma. 
�

As a consequence of Lemma 5.2, O fb = ∅ also when 0 < b ≤ 3
2 , and again the only

Jordan solution of κ = rb is the (counter-clockwise oriented) unit circle.
Lastly consider the case b ≥ 3

2 . In this case, the conclusion of Conjecture 5.1 definitely
holds.

Lemma 5.3 If b ≥ 3
2 then the function ω fb is decreasing on ]0, 1[.

The proof of Lemma 5.3 presented below makes use of a simple calculus fact: Given
n ∈ N, non-zero real numbers a1, . . . , an , and real numbers b1 > . . . > bn , consider the
real-analytic function g : R → R given by

g(t) =
∑n

�=1
a�eb�t , (5.11)
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and let σ(g) be the number of sign changes in the finite sequence (a1, . . . , an), more formally,
σ(g) = #{1 ≤ � ≤ n : a�−1a� < 0} where a0 := a1. Plainly, 0 ≤ σ(g) ≤ n − 1. Since
limt→−∞ g(t)e−bnt = an �= 0 and limt→∞ g(t)e−b1t = a1 �= 0, the equation g(t) = 0
has only finitely many real roots, each of which has finite multiplicity. The following variant
of Descartes’ rule [16] makes this more precise.

Proposition 5.4 Let n ∈ N, a1, . . . , an ∈ R \ {0}, and b1, . . . , bn ∈ R with b1 > . . . > bn.
Then the total number of real roots (counted with multiplicities) of g(t) = 0, with g as in
(5.11), equals σ(g) − 2k for some k ∈ N0.

Proof of Lemma 5.3 Though computationally intense in its details, the following argument
has a simple basic strategy: Intending to utilize Lemma 4.12 with f = fb, notice first that
(4.6), with a = 1

6 (4b + 3)/(b + 1) as per Remark 4.13, can be written equivalently but more
concisely as

p

(

2(b + 1),
log s

2

)

≥ 0 ∀0 < s < (b + 2)1/(b+1),

with the real-analytic function p : R
2 → R given by

p(ε, t) = 6εe(4ε−1)t − 4(ε + 2)(2ε − 1)e3εt + 9ε(ε − 2)e(3ε−1)t + 3ε2t3(ε−1)t

+ 12(ε + 2)(2ε − 1)e2εt − 6ε(5ε − 3)e(2ε−1)t − 18ε2e(2ε−3)t

− 12(ε + 2)(2ε − 1)eεt + 3ε(ε + 2)(4ε − 1)e(ε−1)t

− 3ε2(4ε − 5)e(ε−3)t + 4(ε + 2)(2ε − 1). (5.12)

Since b ≥ 3
2 precisely if ε = 2(b + 1) ≥ 5, the assertion of the lemma immediately follows

from Lemma 4.12, as soon as it is shown that in fact

p(ε, t) ≥ 0 ∀ε ≥ 5, t ∈ R. (5.13)

Thus, to prove the lemma it suffices to establish (5.13), and this will now be done in several
steps. Usage of the same symbols as in the proof of Lemma 5.2 will hopefully not confuse
the reader but rather highlight the parallels between both proofs.

Henceforth assume ε ≥ 5, and notice at the outset that σ
(

p(ε, · )) = 6, as well as
∂k p/∂tk(ε, 0) = 0 for k = 0, 1, 2, 3,whereas ∂4 p/∂t4(ε, 0) = 24ε3(ε+2)(2ε2−11ε+8) >

0. For every ε > 0, therefore, p(ε, · ) has t = 0 as a 4-fold root, and so by Proposition 5.4
has either two or zero additional real roots. In the latter case, clearly (5.13) is correct.

First it will be shown that p(ε, t) ≥ 0 for all t ∈ R, provided that ε is large enough. To
this end, consider the real-analytic function p̂ : R

2 → R given by

p̂(ε, t) = 2εe(4ε−1)t − (2ε − 1)(3ε − 1)e3εt + 2ε(3ε − 1)e(3ε−1)t

−2(3ε − 1)e2εt + (ε − 1)eεt .

Notice that σ
(

p̂(ε, · )) = 4, with t = 0 being a 4-fold root, and consequently p̂(ε, t) ≥ 0
for all t ∈ R, by Proposition 5.4. Thus

p(ε, t) ≥ p(ε, t) − 4
ε + 2

3ε − 1
p̂(ε, t)

= 2ε
5ε − 11

3ε − 1
εe(4ε−1)t + 0 · e3εt + ε(ε − 34)e(3ε−1)t + 3ε2e3(ε−1)t + . . . , (5.14)

where . . . indicates the remaining terms of p(ε, t) from (5.12), of which only the coefficients
of e2εt and eεt differ from those in (5.12), both being larger now in absolute value but having

123



Journal of Dynamics and Differential Equations

kept their respective signs. Now, if ε ≥ 34 then σ
(

p(ε, · )− 4(ε + 2)/(3ε − 1) p̂(ε, · )) = 4,
and since t = 0 is a 4-fold root of both p(ε, · ) and p̂(ε, · ), the right-hand side of (5.14) is
≥ 0 for all t ∈ R, by Proposition 5.4. In particular, p(ε, t) ≥ 0 for all ε ≥ 34 and t ∈ R.

To consider the remaining cases in (5.13), for the remainder of this proof assume 5 ≤ ε ≤
34, and for computational convenience let ε = ν + 5, so 0 ≤ ν ≤ 29. Notice that

p(ε, t) =
∑∞

n=0

∂n p

∂tn
(ε, 0)

tn

n! = t4
∑∞

n=0
pn(ν)

tn

(n + 4)! ,

where for every n ∈ N0,

pn(ν) = ∂n+4 p

∂tn+4 (ν + 5, 0)

= 6(ν + 5)(4ν + 19)n+4 − 4(ν + 7)(2ν + 9)(3ν + 15)n+4

+ 9(ν + 5)(ν + 3)(3ν + 14)n+4 + 3(ν + 5)2(3ν + 12)n+4

+ 12(ν + 7)(2ν + 9)(2ν + 10)n+4

− 6(ν + 5)(5ν + 22)(2ν + 9)n+4 − 18(ν + 5)2(2ν + 7)n+4

− 12(ν + 7)(2ν + 9)(ν + 5)n+4

+ 3(ν + 5)(ν + 7)(4ν + 19)(ν + 4)n+4 − 3(ν + 5)2(4ν + 15)(ν + 2)n+4

is a polynomial of degree n + 6; for example,

p0(ν) = 48ν6 + 1272ν5 + 13464ν4 + 71664ν3 + 195360ν2 + 235800ν + 63000

= 24(ν + 5)3(ν + 7)(2ν2 + 9ν + 3),

p1(ν) = 336ν7 + 10440ν6 + 135240ν5 + 939840ν4

+ 3734784ν3 + 8270760ν2 + 8893800ν + 2898000

= 24(ν + 5)3(ν + 7)(14ν3 + 127ν2 + 321ν + 138).

To establish (5.13) for all 5 ≤ ε ≤ 34 and t ≥ 0, clearly it is enough to demonstrate that

pn(ν) ≥ 0 ∀0 ≤ ν ≤ 29, n ∈ N0. (5.15)

In order to do this, notice that for all 0 ≤ ν ≤ 29 the three inequalities

3(ν + 5)(4ν + 19)n+4 ≥ 2(ν + 7)(2ν + 9)(3ν + 15)n+4,

3(ν + 3)(3ν + 14)n+4 ≥ 2(5ν + 22)(2ν + 9)n+4,

(3ν + 12)n+4 ≥ 6(2ν + 7)n+4,

hold simultaneously, and hence pn(ν) ≥ 0, provided that n ≥ 13. Thus (5.15) is correct for
all n ≥ 13. For the remaining cases 2 ≤ n ≤ 12, a straightforward albeit tedious calculation
(involving only integers, and much aided by symbolic mathematical software) shows that,
just as for p0 and p1, all coefficients of pn are positive (integers). Hence pn(ν) ≥ 0 for all
0 ≤ ν ≤ 29 and n ∈ N0, i.e., (5.15) indeed is correct. As seen earlier, this yields p(ε, t) ≥ 0
for all 5 ≤ ε ≤ 34 and t ≥ 0.
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Finally, it remains to establish (5.13) for 5 ≤ ε ≤ 34 and t < 0. To this end, consider the
real-analytic function q : R

2 → R given by

q(ε, t) = e(4ε−1)t p(ε,−t)

= 4(ε + 2)(2ε − 1)e(4ε−1)t − 3ε2(4ε − 5)e(3ε+2)t + 3ε(ε + 2)(4ε − 1)e3εt

− 12(ε + 2)(2ε − 1)e(3ε−1)t − 18ε2e2(ε+1)t

− 6ε(5ε − 3)e2εt + 12(ε + 2)(2ε − 1)e(2ε−1)t

+ 3ε2t (ε+2)t + 9ε(ε − 2)eεt − 4(ε + 2)(2ε − 1)e(ε−1)t + 6ε,

and observe that the validity of p(ε, t) ≥ 0 for 5 ≤ ε ≤ 34 and t < 0 follows from

q(ε, t) ≥ 0 ∀5 ≤ ε ≤ 34, t ≥ 0, (5.16)

so it is sufficient to establish (5.16). To do this, it is natural to imitate the earlier argument:
Write

q(ε, t) =
∑∞

n=0

∂nq

∂tn
(ε, 0)

tn

n! = t4
∑∞

n=0
qn(ν)

tn

(n + 4)! ,

where for every n ∈ N0,

qn(ν) = ∂n+4q

∂tn+4 (ν + 5, 0)

= 4(ν + 7)(2ν + 9)(4ν + 19)n+4 − 3(ν + 5)2(4ν + 15)(3ν + 17)n+4

+ (ν + 7)(4ν + 19)(3ν + 15)n+5 − 12(ν + 7)(2ν + 9)(3ν + 14)n+4

− 18(ν + 5)2(2ν + 12)n+4 − 3(5ν + 22)(2ν + 10)n+5 + 12(ν + 7)(2ν + 9)n+5

+ 3(ν + 5)2(ν + 7)n+4 + 9(ν + 3)(ν + 5)n+5 − 4(ν + 7)(2ν + 9)(ν + 4)n+4

again is a polynomial of degree n + 6; for example,

q0(ν) = p0(ν) = 24(ν + 5)3(ν + 7)(2ν2 + 9ν + 3),

q1(ν) = 624ν7 + 19560ν6 + 254880ν5 + 1772520ν4 + 6980496ν3 + 15004440ν2

+ 14767200ν + 3087000

= 24(ν + 5)3(ν + 7)(26ν3 + 243ν2 + 594ν + 147).

In complete analogy to (5.15), it suffices to show that

qn(ν) ≥ 0 ∀0 ≤ ν ≤ 29, n ∈ N0. (5.17)

For all 0 ≤ ν ≤ 29, it is readily checked that

(4ν + 19)n+4 ≥ max

{
3(ν + 5)2(4ν + 15)

(ν + 7)(2ν + 9)
(3ν + 17)n+4, 12(3ν + 14)n+4,

18(ν + 5)2

(ν + 7)(2ν + 9)
(2ν + 12)n+4,

3(5ν + 22)

(ν + 7)(2ν + 9)
(2ν + 10)n+5

}

,

and hence qn(ν) ≥ 0, provided that n ≥ 44. Similarly to before, it can be confirmed by direct
calculation that for q2, . . . , q43 all coefficients are positive (integers), just as for q0 and q1.
In other words, (5.17) is correct, which in turn yields p(ε, t) ≥ 0 for all 5 ≤ ε ≤ 34 and
t ≤ 0. At long last, therefore, (5.13) has been established. As detailed earlier, an application
of Lemma 4.12 now completes the proof. 
�
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Remark 5.5 (i) With the same symbols as in the proof of Lemma 5.3, for every n ∈ N0 let νn

be the largest real root of pnqn . In essence, the above proof hinges on the fact that νn < 0
for every n. A careful analysis reveals that supn∈N0

νn = ν1 = −0.2781, and hence the
same argument could be used to establish the monotonicity of ω fb , i.e., the conclusion of
Conjecture 5.1,whenever b ≥ 1

2 (5+ν1)−1 = 1.360. It can be checked numerically, however,
that inf t∈R p(ε, t) < 0 whenever 2 < ε ≤ 4.660. Lemma 4.12 therefore is incapable of
establishing Conjecture 5.1 for 0 < b ≤ 1.330.

(ii) Numerical evidence strongly suggests that p(ε, t) ≥ at4e2εt for an appropriate a > 0
and all ε ≥ 5, t ∈ R. Obviously, such a lower bound on p, if indeed correct, implies (5.13).
In the light of this, an alternative proof of Lemma 5.3 might be provided using rigorous (or
validated) numerics; see, e.g., [2, 33] for context. For ε ≥ 5, it is easy to see that p(ε, t)/t4 > 0
whenever ε ≥ 34 or |t | ≥ 2. Thus in order to prove Lemma 5.3, one only has to rigorously
verify that minA p/t4 > 0 for the compact rectangle A = [5, 34] × [−2, 2]; see Fig. 8.
The reader may want to notice that usage of rigorous numerics or other forms of computer
assistance is not uncommon for problems of a similar flavour in non-linear analysis; see, e.g.,
[1, 6].

(iii) Given any specific rational b ≥ 3
2 , or ε ≥ 5, the conclusion of Lemma 5.3 may be

arrived at in yet another way: Letting ε = m/n ≥ 5 with coprime m, n ∈ N, notice that

n3 p(m/n, nt)

(et − 1)4
= pm,n(et ) ∀t ∈ R,

with the appropriate polynomial pm,n with integer coefficients and degree 4m −n −4. Using
classical algebra tools, it may be straightforward to see directly that pm,n(s) > 0 for all
s ∈ R

+. For example, take b = 3
2 , hence ε = 5, so m = 5, n = 1, and a short calculation

yields

p5,1(s) = 30s15 + 120s14 + 300s13 + 600s12 + 798s11 + 807s10 + 540s9 − 15s8

− 870s7 − 1281s6 − 1164s5 − 435s4 + 540s3 + 1395s2 + 1008s + 252.
(5.18)

By Descartes’ rule, p5,1 = 0 has precisely zero or two real roots (counted with multiplicities)
on R

+, and the rough estimate implied by (5.18),

p5,1(s) ≥ 15
(

213s9 min{1, s}6 − 251s4 max{1, s}4 + 213min{1, s}3) ∀s ∈ R
+,

can be used to show that in fact p5,1(s) > 0 for all s ∈ R
+. Thus p(5, t) ≥ 0 for all t ∈ R,

and hence ω f3/2 is decreasing on ]0, 1[.
As a consequence of Lemma 5.3, Theorem 4.11 together with (5.1) and (5.2) yields

#

(
(

N \ {1}) ∩
]

2
b + 1

b + 2
,
√

b + 1
[)

= ⌈√
b + 1

⌉− 2

as the number of different non-circular Jordan solutions ofκ = rb modulo rotations,whenever
b ≥ 3

2 ; here �a� denotes the smallest integer not smaller than a ∈ R. By means of an obvious
rescaling, the results of this section so far can be summarized and slightly extended as follows.

Theorem 5.6 Let a ∈ R
+, b ∈ R, and assume that C is a Jordan solution of κ = arb. Then

C is oriented counter-clockwise, and the following hold:

(i) if b ≤ 3 and b �= −1, 0 then [C] is the circle with radius a−1/(b+1) centered at 0;
(ii) if b = −1 then a = 1, and [C] is a circle centered at 0;
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Fig. 8 Solid black curves indicate the zero locus of p = p(ε, t) given by (5.12), with the set {p > 0} shown
in grey (left). Plotting the real-analytic function p(ε, t)e−2εt /t4 suggests that p(ε, t) ≥ at4e2εt for all ε ≥ 5,
t ∈ R

+, where a may be as large as 103.416 = 2606 (right)

(iii) if b = 0 then [C] is a circle with radius a−1;
(iv) if b > 3 then either [C] is the circle with radius a−1/(b+1) centered at 0, or else [C] is

non-circular, [C] = a−1/(b+1)eiϑ [C fb,s] for some ϑ ∈ R and a unique s ∈ O fb , with
O fb ⊂ ]0, 1[ containing precisely

⌈√
b + 1

⌉− 2 elements.

Proof of Lemma 4.12 Replacing c ∈ C by a1/(b+1)c, it can be assumed that a = 1, provided
that b �= −1. Thus only the assertion regarding b = −1 requires further justification. For
f (s) = a/s with a ∈ R

+, it is readily seen that Per� f = ∅ if a > 1. By contrast, if a < 1
then 0 is a center, by Proposition 2.2, and every other orbit is periodic and twisted. In either
case, C is not Jordan, by Theorem 3.13, so necessarily a = 1. 
�

Notice that Theorem 5.6 asserts in particular that κ = arb with a ∈ R
+ has no non-

circular Jordan solution when b ≤ 3, but has, modulo rotations, precisely n ∈ N different
such solutions when n2 + 2n < b ≤ n2 + 4n + 3. For instance, κ = r4 and κ = r9

have precisely one and two non-circular Jordan solutions, respectively, modulo rotations; see
Figs. 1 and 9.

Remark 5.7 As mentioned already in the Introduction, it is a well-documented empirical
observation that the oval shapes of worn stones never seem to be exact ellipses, but rather
appear to be a bit bulkier. In this regard, the reader may find it interesting to note that none
of the non-circular ovals [C fb,s] of Theorem 5.6(iv) is an ellipse either. Indeed, suppose
that for a Jordan solution C of κ = arb with a ∈ R

+ the set [C] was an ellipse with
semi-axes A ≥ B > 0. If b ≥ 0 then A/B2 = a Ab as well as B/A2 = aBb, thus
a2A4 = B2(1−b) = ab−1A(1−b)2 , and hence a3−b = A(b−3)(b+1). It follows that either
a = A−b−1 and consequently A = B, or else b = 3. By Theorem 5.6, A = B in any case,
i.e., [C] is a circle. (Usage of Theorem 5.6, though convenient, is not essential here: A simple
calculation shows directly that any ellipse solving κ = ar3 necessarily is a circle.) A similar
argument applies when b < 0.
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Fig. 9 Apart from the unit circle (dotted), and modulo rotations, κ = rb has precisely one (non-circular)
Jordan solution when b = 4 (left; see also Fig. 1), and has precisely two such solutions when b = 9 (right)

Supplement: The limiting shapes in [5] revisited

As noted earlier, the results of this section are quite specific to themonomial family. However,
the basic tools developed earlier in order to obtain these results, notably the auxiliary planar
flow � f (Sect. 2), geometric correspondances (Sect. 3), and analytic estimates (Sect. 4), all
may be useful in other contexts as well. This supplementary section briefly describes one
such context, motivated by the classification of limiting shapes for isotropic curve flows in
[5]. As the author intends to give a detailed account elsewhere, only an outline is presented
here that highlights the similarity to the main results of the present article; as such, a few
non-essential assumptions are made to simplify the exposition.

Let g : R
+ → R be smooth, and assume for convenience that g is increasing and

g(0+) ≥ 0. Fix any G : R \ {0} → R with G ′(s) = 2s − 2/g(|s|) for all s ∈ R \ {0}. Note
that G is convex on R

+, with a global non-degenerate minimum at sg , where sg > 0 is the
unique solution of sg(s) = 1. This usage of the symbol sg is consistent with earlier usage
of s f . Assume henceforth that G(sg) = 0. On C \ iR consider an ODE for z = z(t) very
similar to (2.1),

ż = i zg(|Re z|) − i . (5.19)

Note that G( Re z) + ( Im z)2 is a first integral of (5.19). While (5.19) does not in general
generate a (global, topological) flow on C, unlike (2.1), it does generate a flow, henceforth
denoted�g , on the open convex setAg := {z ∈ C : Re z > 0, G( Re z)+( Im z)2 < G(0+)}.
For instance, if g can be extended smoothly (or merely as a Lipschitz function) to s = 0
then Ag = {z ∈ C : Re z > 0}. In any case, every z ∈ Ag is a periodic point of �g , and
Fix�g = {sg}. Similarly to (2.5), define

νg(z) = 1

2π

∫ Tg(z)

0
g(|Re�g(t, z)|) dt ∀z ∈ Ag.
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Thus νg(sg) = 0 whereas νg(z) > 0 for every z ∈ Ag \ {sg}. In analogy to (2.7) it is readily
confirmed that

limz→sg νg(z) =
√

2

G ′′(sg)
= 1
√

1 + s2g g′(sg)
∈ ]0, 1[.

Next, similarly to Sect. 3 say that an oriented smooth curve C is a solution of

κ = g
(∣
∣Re (zn)

∣
∣
)

, (5.20)

if κc(t) = g
(∣
∣Re

(

c(t)(−i)ċ(t)
)∣
∣
) = g

(∣
∣Im

(

c(t)ċ(t)
)∣
∣
)

for all t ∈ Jc with c(t)ċ(t) /∈ R,
where c is some (and hence any) element of C. By the same calculation as in Sect. 3, if
C is a solution of (5.20) and c ∈ C then zc given by (3.2) solves (5.19). Thus, just as for
(3.1), a correspondance can be established between maximal solutions of (5.20) modulo
O(2)-congruence on the one hand and orbits of �g on the other hand. (A careful analysis
needs to pay attention to the possibility of Im (cċ) = 0, a situation reflected for g(0+) = 0
by the invariance in (5.19) of the imaginary axis.) In particular, it makes sense to define
νg(C) = νg

(

zc(0)
)

for any c ∈ C. With this, if C is a Jordan solution of (5.20) other than the
(counter-clockwise oriented) circle with radius sg centred at 0 then νg(C) = 1/n for some
n ∈ N. As in the case of (3.1), it is natural to find all Jordan solutions of (5.20), and to do so
by determining the range of νg as accurately as possible. With s∗ > sg defined uniquely by
G(s∗) = G(s) for every 0 < s < sg , as in Sect. 4,

νg(s) = 1

π

∫ s∗

s

du√
G(s) − G(u)

∀0 < s < sg. (5.21)

This usage of the symbol s∗ is slightly inconsistent with its earlier usage. However, rather than
confusing the reader, it will hopefully highlight the parallels between the analyses of (3.1) and
(5.20), respectively. Note that (5.21), though very similar in spirit to (4.1), is considerably
simpler, in at least two respects: On the one hand, utilizing the smooth positive function
K := G/(G ′)2, together with (a trivially adjusted version of) Proposition 4.14, yields

ν′
g(s) = G ′(s)

2πG(s)

∫ s∗

s

G ′(u)K ′(u)√
G(s) − G(u)

du

= G ′(s)
πG(s)

∫ s∗

s

√

G(s) − G(u)K ′′(u) du ∀0 < s < sg, (5.22)

which is far less unwieldy than (4.8). For instance, (5.22) makes obvious the known fact
that s �→ νg(s) is monotone whenever K is convex or concave [9, 11, 13, 29, 37]. Applying
Proposition 4.14 once more yields, for every 0 < s < sg ,

ν′′
g (s) = 1

2πG(s)K (s)

∫ s∗

s

G(u)K ′′(u)√
G(s) − G(u)

du

− G ′(s)K ′(s)
2πG(s)K (s)

∫ s∗

s

√

G(s) − G(u)K ′′(u) du.
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In analogy to Proposition 4.7, therefore, νg is smooth on ]0, sg[, with

νg(sg−) =
√

2

G ′′(sg)
, ν′

g(sg−) = 0,

ν′′
g (sg−) = 5G(3)(sg)

2 − 3G ′′(sg)G(4)(sg)

12
√
2G ′′(sg)5/2

. (5.23)

On the other hand, notice that πνg(s) can be interpreted as the true minimal period of the
point s ∈ Ag in the planar Hamiltonian flow on Ag generated by

ẇ = 2 Imw − iG ′( Rew), (5.24)

which has sg as a non-degenerate center; cf. [5,Sec. 2]. This interpretation makes νg directly
amenable to the substantial literature on 1-DOF Hamiltonian systems, notably on the periods
of such systems; see, e.g., [9, 11–15, 31, 35, 36, 38]. By contrast, much of the delicate analysis
from Proposition 4.7 onward has been necessitated by the fact that no similar interpretation
seems to exist for ω f ; see also Remark 2.8.

Finally, to illustrate the above for a familiar example, consider once again the monomial
family, that is, let g = fb with b ∈ R

+. Here, for all s ∈ R
+,

G(s) =
⎧

⎨

⎩

s2 + 2

b − 1
s1−b − b + 1

b − 1
if b �= 1,

s2 − 2 log s − 1 if b = 1,

and A fb = {z ∈ C : Re z > 0} precisely if b ≥ 1. Also, s fb = 1, and (5.23) yields

ν fb (1−) = 1√
b + 1

, ν′
fb
(1−) = 0, ν′′

fb
(1−) = b(b − 3)

12
√

b + 1
.

Thus, as s → 1 the function ν fb attains a non-degenerate maximum (respectively, minimum)
if 0 < b < 3 (respectively, if b > 3). In addition, a straightforward calculation shows that

ν fb (0+) = 1

1 + min{b, 1} ∀b ∈ R
+.

As a consequence, (b − 3)
(

ν fb (0+)− ν fb (1−)
)

> 0 for every b ∈ R
+ \ {3}, which certainly

makes it plausible to speculate that ν fb is increasing (respectively, decreasing) on ]0, 1[ if
0 < b < 3 (respectively, if b > 3). Notice how this is the precise analogue of Conjecture 5.1.
Unlike for the latter, it is not hard to prove this speculation correct in its entirety. Given that
(5.21) is considerably simpler than (4.1), as noted above, this may not come as a complete
surprise [5].

Proposition 5.8 On ]0, 1[, the function ν fb is increasing for 0 < b < 3, and decreasing for
b > 3.

As Proposition 5.8 suggests, the case b = 3 is somewhat special: Indeed, here s∗ = 1/s
for every 0 < s < 1, and hence
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Fig. 10 Finding all Jordan solutions of κ = rb (left) and κ = |Re (zn)|b (right) with b ∈ R
+, by qualitatively

graphing ω fb and ν fb , respectively. At the time of this writing, monotonicity (in s) of ω fb for 0 < b < 3
2 is

conjectural only (grey region). Solid black dots indicate non-circular Jordan solutions, while circles represent
circular solutions with radius 1

ν f3(s) = 1

π

∫ 1/s

s

du
√

(s − 1/s)2 − (u − 1/u)2

= 1

2π

∫ 1/s2

s2

du
√

(u − s2)(1/s2 − u)
= 1

2
∀0 < s < 1.

In other words, the center 1 of (5.24) is isochronous for g = f3. This “surprising affine
invariance property” [5] reflects the fact that the phase portrait of (5.24) for g = f3 is
invariant under the diffeomorphism z �→ ( Re z)−1 − i Im z of A f3 . Further analysis shows
that every orbit� f3(R, s)with s ∈ R

+ corresponds to a (counter-clockwise oriented) ellipse
with semi-axes s, 1/s. Thus, every maximal solution of κ = |Re (zn)|3 is an ellipse centered
at 0 with interior area π .

As a consequence of Proposition 5.8, for every 0 < b ≤ 8 with b �= 3 the only Jordan
solution of

κ = |Re (zn)|b (5.25)

is the (counter-clockwise oriented) unit circle, whereas for b > 8 there exist precisely
⌈√

b + 1
⌉−3 different non-circular Jordan solutions of (5.25), modulo rotations; see Fig. 10

and [5,Thm. 5.1].

Acknowledgements The authorwas partially supported by anNsercDiscoveryGrant.He owes deep gratitude
to T.P. Hill and K.E. Morrison who in 2005 conjectured (correctly, as it turned out) that the only Jordan
solution of κ = r is the (counter-clockwise oriented) unit circle, and who greatly helped this work come
to fruition through continued interest and advice. Insightful comments by an anonymous referee led to a
much improved presentation. Thanks also to J. Muldowney, M. Niksirat, T. Schmah, and C. Xu for several
enlightening conversations over the years. Parts of this work were completed while the author was a visitor at
the Universität Wien. He is much indebted to R. Zweimüller for many kind acts of hospitality.

123



Journal of Dynamics and Differential Equations

References

1. Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Differ. Geom.
23, 175–196 (1986)

2. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, Cambridge (1983)
3. Amann, H.: Ordinary Differential Equations: An Introduction to Non-linear Analysis. De Gruyter, Berlin

(1990)
4. Andrews, B.: Evolving convex curves. Calc. Var. Partial Differ. Equ. 7, 315–371 (1998)
5. Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Am. Math. Soc. 16, 443–459

(2002)
6. Arai, Z., Kokubu, H., Pilarczyk, P.: Recent development in rigorous computational methods in dynamical

systems. Jpn. J. Ind. Appl. Math. 26, 393–417 (2009)
7. Arnold, V.I.: Ordinary Differential Equations, 3rd edn. Springer, Berlin (1992)
8. Ayala, J.: On the topology of the spaces of curvature constrained plane curves. Adv. Geom. 17, 283–292

(2017)
9. Benguria, R.D., Depassier, C., Loss, M.: Monotonicity of the period of a non linear oscillator. Nonlinear

Anal. 140, 61–68 (2016)
10. Berger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves, and Surfaces. Graduate Texts in

Mathematics, vol. 115. Springer, Berlin (1988)
11. Chicone, C.: The monotonicity of the period function for planar Hamiltonian vector fields. J. Differ. Equ.

69, 310–321 (1987)
12. Chicone, C., Dumortier, F.: A quadratic system with a nonmonotonic period function. Proc. Am. Math.

Soc. 102, 706–710 (1988)
13. Chow, S.-N., Wang, D.: On the monotonicity of the period function of some second order equations.
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21. Elezović, N., Giordano, C., Pečarić, J.: The best bounds in Gautschi’s inequality. Math. Inequal. Appl. 3,

239–252 (2000)
22. Fehér, E., Domokos, G., Krauskopf, B.: Computing planar shape and critical point evolution under

curvature-driven flows. arXiv:2010.11169 [v1] (2020)
23. Firey, W.J.: Shapes of worn stones. Mathematika 21, 1–11 (1974)
24. Hill, T.P.: On the oval shapes of beach stones. Appl. Math. 2, 16–38 (2022)
25. Irving, M.C.: Smooth Dynamical Systems. Advanced Series in Nonlinear Dynamics, vol. 17. World

Scientific, Singapore (2001)
26. Kim, H.-S., Cheong, O.: The cost of bounded curvature. Comput. Geom. 46, 648–672 (2013)
27. Klingenberg, W.: A Course in Differential Geometry. Graduate Texts in Mathematics, vol. 51. Springer

(1978)
28. Kühnel, W.: Differential Geometry: Curves-Surfaces-Manifolds. Student Mathematical Library, vol. 16,

2nd edn. American Mathematical Society, Providence (2006)
29. Miyamoto, Y., Yagasaki, K.: Monotonicity of the first eigenvalue and the global bifurcation diagram for

the branch of interior peak solutions. J. Differ. Equ. 254, 342–367 (2013)
30. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, 3rd edn.

Springer, Berlin (2001)
31. Rothe, F.: Remarks on periods of planar Hamiltonian systems. SIAM J. Math. Anal. 24, 129–154 (1993)
32. Rudin, W.: Real and Complex Analysis. McGraw Hill, New York (1973)
33. Tucker, W.: Validated Numerics. A Short Introduction to Rigorous Computations. Princeton University

Press, Princeton (2011)
34. Urbas, J.: Convex curves moving homothetically by negative powers of their curvature. Asian J. Math. 3,

635–656 (1999)

123

http://arxiv.org/abs/2010.11169


Journal of Dynamics and Differential Equations

35. Villadelprat, J., Zhang, X.: The period function of Hamiltonian systems with separable variables. J. Dyn.
Differ. Equ. 32, 741–767 (2020)

36. Walter, W.: Ordinary Differential Equations. Graduate Texts in Mathematics, vol. 182. Springer, Berlin
(1998)

37. Yagasaki, K.: Monotonicity of the period function for u′′ − u + u p = 0 with p ∈ R and p>1. J. Differ.
Equ. 255, 1988–2001 (2013)

38. Zevin, A.A., Pinsky, M.A.: Monotonicity criteria for an energy-period function in planar Hamiltonian
systems. Nonlinearity 14, 1425–1432 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	On Planar Curves with Position-Dependent Curvature
	Abstract
	1 Introduction
	Organization and notation

	2 An Auxiliary Planar Flow
	3 Characterizing Closed Solutions of κ= f(r)
	4 Jordan Solutions and Monotone Net Winding
	5 An Example: The Monomial Family
	Supplement: The limiting shapes in andrews revisited

	Acknowledgements
	References




