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Abstract. Planar triangles with each side having a positive integer length are among the sim-
plest geometrical objects imaginable. What can be said about the angles of such triangles? In
particular, are these angles rational or at least algebraic numbers when measured in degrees?
This article demonstrates that the answer in general is negative, except for three distinguished
families of triangles. One family is well known since antiquity: With the largest angle equal
to 90 degrees, it simply is the family of Pythagorean right triangles. Though not nearly as
well-known, the other two families also deserve to be part of every geometry teacher’s toolkit.

1. INTRODUCTION. Planar triangles are a bedrock of the geometry curriculum and
have been for centuries, if not millennia. Besides their natural beauty, one main reason
for this longevity is that they provide an ideal playground for anyone learning to trans-
late pictures into numbers. Aimed at making this important transition from geometry
to trigonometry, algebra, and number theory easy and enjoyable, the triangles encoun-
tered in the classroom often yield numbers that are especially simple. For instance, all
three side lengths may be positive integers, or all three angles, measured in degrees,
may be rational or perhaps even both. Correspondingly, right triangles with integer
side lengths as well as isosceles triangles with rational angles figure prominently in
grade school geometry. In fact, such is their prominence that one is led to suspect that
no other simple triangles exist at all. As the present article is going to demonstrate,
this suspicion is largely correct. The article is inspired by the charming paper [3] that
focuses on simple right triangles.

To fix notation and terminology, denote by �1, �2, and �3 the shortest, middle, and
longest side length, respectively, of a nondegenerate planar triangle; hence, 0 < �1 ≤
�2 ≤ �3 < �1 + �2. Arguably, the simplest situation arises when each � j is a positive
integer multiple of a common unit length. For lack of a widely accepted term in this
regard, call any such triangle elementary. In other words, with the appropriate pos-
itive integers n j , an elementary triangle satisfies �1/�2 = n1/n2 and �2/�3 = n2/n3,
henceforth written simply as �1 : �2 : �3 = n1 : n2 : n3.

Ideally, when measured in degrees, the three angles of a student’s favorite triangle
are simple numbers as well; at the very least, they should be rational. Denote by δ j

the angle vis-à-vis � j , hence 0 < δ1 ≤ δ2 ≤ δ3 and δ1 + δ2 + δ3 = 180, and call the
triangle � = 〈δ1, δ2, δ3〉 rational if each δ j is a rational number. (Notice that 〈δ1, δ2, δ3〉
and �1 : �2 : �3, while uniquely determining one another, determine a triangle only up
to similarity. Strictly speaking, therefore, � = 〈δ1, δ2, δ3〉 is the similarity type of a
planar triangle; to avoid clumsy terminology, however, simply refer to � as a triangle.)

Naturally, it may be every geometry student’s (and teacher’s) dream to have a rich
supply of triangles that are both elementary and rational. This, alas, is too much to hope
for: The only rational elementary triangle is equilateral; see, e.g., [2, Cor. 6] or [5, p.
228]. Thus, in order for there to be any nonequilateral triangle at all with simple side
lengths and angles, either the rationality or the elementariness assumption has to be
relaxed. On the one hand, every Pythagorean right triangle, for instance, is elementary
with δ3 = 90, but it turns out that neither δ1 nor δ2 can be rational. On the other hand,

http://dx.doi.org/10.4169/amer.math.monthly.124.4.324
MSC: Primary 11A99, Secondary 97G40

324 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 124



rational triangles with δ3 = 90 do exist—provided that the lengths � j are allowed to
be quadratic irrational numbers, in which case of course the triangle may not quite be
elementary. In fact, the main result of [3] asserts that there are exactly three triangles
with this property (see Figure 4 below), and they are often encountered in grade school
geometry.

The present article complements and extends [3] by venturing beyond right
triangles. One main result (Theorem 7 below) shows that every elementary triangle
with at least one rational angle belongs to one of only three distinguished families
of triangles. To catch a first glimpse of these families, consider �1, �2, and �3 with
�1 : �2 : �3 given by

3 : 4 : 5 , 3 : 5 : 7 , and 3 : 7 : 8 , (1)

respectively. Do the three elementary triangles in (1) have anything interesting in com-
mon? Being elementary alone is clearly not that remarkable a property: Given any
positive integers n1 ≤ n2 ≤ n3 < n1 + n2, taking �1 : �2 : �3 = n1 : n2 : n3 yields an
elementary triangle, and all elementary triangles arise that way. What is interesting
about �1, though, is that 32 + 42 = 52, and hence, �1 is a right (or Pythagorean)
triangle, so δ3 = 90. In the case of �2, it follows from 32 + 52 + 3 · 5 = 72 and the
law of cosines that δ3 = 120. Similarly, 32 + 82 − 3 · 8 = 72, and so δ2 = 60 for �3.
Triangles with δ2 = 60 or δ3 = 120 are referred to informally as pseudo-Pythagorean;
see Section 3 for precise definitions. In summary, each triangle in (1) is elementary
and has one rational (in fact, integer) angle. (When measured in radians, one angle is a
rational multiple of π ; for simplicity and in adherence to the tradition of grade school
geometry, all angles in this article are measured in degrees.)

Now, the remarkable feature of (1) is that, in a sense, these three triangles represent
all possible ways a rational angle may ever occur in an elementary triangle.

Claim 1. Let � = 〈δ1, δ2, δ3〉 be an elementary triangle. If one angle δ j is rational,
then either δ2 = 60 or δ3 ∈ {90, 120}, i.e., � is Pythagorean or pseudo-Pythagorean.

3 : 4 : 5
δ3 = 90

90° 60°
Δ1 120°

Δ2 Δ3

3 : 5 : 7
δ3 = 120

3 : 7 : 8
δ2 = 60

Figure 1. Realizations with equal area of the triangles in (1). Claim 1 asserts that every elementary triangle
with at least one rational angle is either Pythagorean (left) or pseudo-Pythagorean.

Proving a stronger, more precise version of Claim 1 is one main goal of this arti-
cle; see Section 3. In preparation for this, Section 2 reviews simple algebraic prop-
erties of trigonometric numbers. With their special role established by Theorem 7,
Pythagorean and pseudo-Pythagorean triangles are given a unified treatment in Sec-
tion 4; the ensuing complete classification of such triangles (Theorem 8) is another
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main result of this article. The concluding Section 5 briefly explores how the elemen-
tariness assumption (rather than the rationality assumption, as in Claim 1) might be
relaxed. For instance, call a triangle almost elementary if at least two of the numbers
u j in �1 : �2 : �3 = u1 : u2 : u3 are integers. Every isosceles triangle, for example, is
almost elementary since either u1 = u2 or u2 = u3 can be scaled so as to be an integer
in this case. (Equivalently, an appropriate unit length can be chosen.) This example
yields an infinite supply of rational almost elementary triangles. Perhaps surprisingly,
as shown in Section 5, there exists only a single rational almost elementary triangle
that is not isosceles.

Claim 2. Let � = 〈δ1, δ2, δ3〉 be an almost elementary triangle. If � is rational, then
either δ1 = δ2 or δ2 = δ3, i.e., � is isosceles, or else � = 〈30, 60, 90〉.

2. TRIGONOMETRIC NUMBERS. As a first step toward establishing Claim 1,
consider any triangle � = 〈δ1, δ2, δ3〉, with corresponding side lengths �1, �2, and �3.
By the law of cosines,

2 cos δ◦
1 = �3

�2
+ �2

�3
− �1

�2
· �1

�3
, (2)

and similarly for cos δ◦
2 and cos δ◦

3. Thus, if � is elementary, then each number cos δ◦
j is

rational. Here and throughout, usage of the degree symbol (◦) is reminding the reader
that arguments of trigonometric functions are interpreted as angles and measured in
degrees; formally, cos δ◦ = cos(πδ/180). In view of Claim 1, the crucial question is
whether in an elementary triangle any angle δ j may be rational as well. In other words,
can the two numbers δ j and cos δ◦

j both be rational? Similarly, Claim 2 turns out to
hinge on whether the three numbers δ j , δk , and cos δ◦

j / cos δ◦
k can all be rational for

j �= k; see Section 5. Fortunately, these questions can be resolved easily (Corollaries
4 and 5 below), but in order to do so, first a bit of algebraic notation and terminology
needs to be reviewed.

Denote the sets of all positive integers, integers, rational, and complex numbers by
N, Z, Q, and C, respectively, and the empty set by ∅, as usual. For any number w ∈ C

and any set W ⊂ C, let wW = {wz : z ∈ W}. Recall that w ∈ C is algebraic if there
exists a nonconstant polynomial P with integer coefficients such that P(w) = 0; if w

is not algebraic, then it is transcendental. Thus, for instance,
√

5 + 1 and
√

5 − √
5

both are algebraic, as they solve w2 − 2w − 4 = 0 and w4 − 10w2 + 20 = 0, respec-
tively. Well-known examples of transcendental numbers include e, π , and 2

√
2; see

also Proposition 6 below. Note that if a number is algebraic, then so is its complex
conjugate. For convenience, denote by A ⊂ C the set of all algebraic numbers. With a
bit of work, it can be shown that A in fact is a field; see, e.g., [12, Thm. 7.2]. Hence,
if w is algebraic, then so is wn for every n ∈ N, but also the real and imaginary parts
of w. Specifically, notice that cos r ◦ with r ∈ Q is algebraic since it is the real part
of the algebraic number eπ ır/180. Algebraic properties of trigonometric numbers such
as cos r ◦, sin r ◦, or tan r ◦ have long been of interest, not least to authors and readers
of the MONTHLY [2, 3, 4, 8, 10, 13, 18, 19, 20]. For simplicity, in what follows only
numbers cos r ◦ are considered, though analogous considerations pertain to sin r ◦ and
tan r ◦ as well. Finally, recall that the field C is a linear space over any of its subfields,
such as, e.g., Q or A. In particular, therefore, it makes sense to ask whether W ⊂ C is
linearly (in)dependent over Q, or Q-(in)dependent, for short. A simple linear algebra
exercise shows that for w ∈ C \ {0} and z ∈ C the quotient z/w is rational if and only
if {w, z} is Q-dependent.
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Using the above terminology, the two questions encountered earlier can be con-
cisely rephrased as follows: For which rational r1 is {1, cos r ◦

1 } Q-dependent? And,
for which rational r1, r2 is {cos r ◦

1 , cos r ◦
2 } Q-dependent? Note that if either set is Q-

dependent, then so is {1, cos r ◦
1 , cos r ◦

2 }, and hence, a complete analysis of the lat-
ter allows one to answer both questions at once. For which r1, r2 ∈ Q, then, is the
set {1, cos r ◦

1 , cos r ◦
2 } Q-dependent? As every student of trigonometry discovers very

early on, if r1 is an integer multiple of 60 or 90, then cos r ◦
1 actually is rational,

and hence, {1, cos r ◦
1 } is Q-dependent. Also, if {r1 − r2, r1 + r2} ∩ 180Z �= ∅, i.e.,

if r1 − r2 or r1 + r2 is an integer multiple of 180, then | cos r ◦
1 | = | cos r ◦

2 |, and hence,
{cos r ◦

1 , cos r ◦
2 } is Q-dependent. Moreover,

4 cos 36◦ − 4 cos 72◦ =
√

5 + 1 − (√
5 − 1

) = 2 .

As it turns out, the only ways for {1, cos r ◦
1 , cos r ◦

2 } to be Q-dependent are the ones just
described. While this fact is stated here without proof, the interested reader is referred
to [1] for a simple ad hoc derivation involving only the divisibility of polynomials with
integer coefficients and to [6, 9, 11] for a systematic study of vanishing sums of roots
of unity utilizing algebraic number theory.

Theorem 3. Let r1, r2 ∈ Q, and assume that {r1 − r2, r1 + r2} ∩ 180Z = ∅. Then the
following are equivalent:

(i) The set {1, cos r ◦
1 , cos r ◦

2 } is Q-dependent;
(ii) Both numbers r1, r2 are integer multiples of 36, or at least one of them is an

integer multiple of 60 or 90.

This article only utilizes Theorem 3 via two immediate corollaries. Though already
recorded in [18], the first corollary sometimes is attributed to [12] as Niven’s Theorem.

Corollary 4. Let r ∈ Q. Then the following are equivalent:

(i) cos r ◦ ∈ {−1, − 1
2 , 0, 1

2 , 1
}
;

(ii) cos r ◦ is rational;
(iii) r is an integer multiple of 60 or 90.

Proof. Plainly, (i)⇒(ii). To see (ii)⇒(iii), assume that cos r ◦ is rational, and let r1 = r .
Suppose r1 was not an integer multiple of 60 or 90. Then it would be possible to choose
r2 ∈ Q with 0 < r2 < 1 so small that {r1 − r2, r1 + r2} ∩ 180Z = ∅. By Theorem
3, the set {1, cos r ◦

1 , cos r ◦
2 } would be Q-independent, which clearly contradicts the

rationality of cos r ◦
1 . Hence, r1 must be an integer multiple of 60 or 90. To establish

(iii)⇒(i), simply note that the function r 
→ cos r ◦ is even, has period 360, and at
r ∈ {0, 60, 90, 120, 180} attains the values listed in (i).

Corollary 5. Let r1, r2 ∈ Q, and assume that 0 < r1, r2 < 90. Then cos r ◦
1 / cos r ◦

2 is
rational if and only if r1 = r2.

Proof. Let w = cos r ◦
1 / cos r ◦

2 be rational and suppose r1 �= r2. Then {r1 − r2, r1 +
r2} ∩ 180Z = ∅, so by Theorem 3 either both numbers r1, r2 are integer multiples of
36 or else one of them is 60. In the first case, w or w−1 equals

(√
5 + 1

)
/
(√

5 − 1
) =

1
2

(√
5 + 3

)
and hence is irrational, contradicting the rationality of w. In the second

case, assume without loss of generality that r1 = 60, hence cos r ◦
1 = 1

2 . Then cos r ◦
2 is
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rational as well, and so r2 = 60 = r1, by Corollary 4, contradicting r1 �= r2. In sum-
mary, if w is rational, then r1 = r2. The converse is obvious.

To conclude this section, recall that for any r ∈ Q the trigonometric number cos r ◦,
though rarely rational, always is algebraic. In general, however, as the reader may
know or suspect, deciding whether a given complex number is algebraic or transcen-
dental can be very difficult. The following contains two cherished classical results in
this regard, to be utilized in the next section.

Proposition 6. Let w ∈ C \ {0}. Then:

(i) At least one of the numbers w and ew is transcendental;
(ii) For each z ∈ C \ Q, at least one of the numbers z, ew, and ezw is transcendental.

Note that (i), often referred to as the Hermite–Lindemann theorem, implies the tran-
scendence of e (take w = 1) and π (take w = π ı), whereas (ii), also known as the
Gelfond–Schneider theorem, shows that 2

√
2 is transcendental (take z = √

2 and w =
ln 2); see, e.g., [12, Ch. 9-10] for details and proofs.

3. ELEMENTARY TRIANGLES. The scene is now set for proving Claim 1 in a
somewhat stronger, more precise form. In the proof, the integer solutions of

x2 + νxy + y2 = z2 , (3)

with ν ∈ {−1, 0, 1}, play a key role. In analogy to the classical Pythagorean triples that
correspond to the case ν = 0, call any integer solution (x, y, z) of (3) a ν-Pythagorean
triple if x , y, and z all are positive; informally, ν-Pythagorean triples for |ν| = 1 are
referred to as pseudo-Pythagorean. In addition, say a ν-Pythagorean triple is primitive
if gcd(x, y, z) = 1 and ordered if x ≤ y. For example, the triples (3, 4, 5), (3, 5, 7),
and (3, 8, 7) are primitive, ordered, and, as seen in the Introduction, 0-Pythagorean, 1-
Pythagorean, and (−1)-Pythagorean, respectively. The significance of ν-Pythagorean
triples is highlighted by the following precise form of Claim 1; notice the interchange
of the symbols �2 and �3 in alternative (iii).

Theorem 7. Let � = 〈δ1, δ2, δ3〉 be an elementary triangle. Then exactly one of the
following alternatives applies:

(i) δ3 = 90 but δ1, δ2 are both transcendental, and �1 : �2 : �3 = x : y : z for a
uniquely determined ordered primitive 0-Pythagorean triple (x, y, z);

(ii) δ3 = 120 but δ1, δ2 both are transcendental, and �1 : �2 : �3 = x : y : z for a
uniquely determined ordered primitive 1-Pythagorean triple (x, y, z);

(iii) δ2 = 60 but δ1, δ3 both are transcendental unless δ1 = δ3 = 60, and �1 : �3 :
�2 = x : y : z for a uniquely determined ordered primitive (−1)-Pythagorean
triple (x, y, z);

(iv) δ1, δ2, δ3 all are transcendental.

Proof. Fix any realization of the elementary triangle � = 〈δ1, δ2, δ3〉. As seen from
(2), each number cos δ◦

j is rational. If δ j �∈ Q, then, with w = π ı/180, the numbers
ew and ewδ j = cos δ◦

j + ı sin δ◦
j both are algebraic, and hence, δ j �∈ A by Proposition

6(ii). In other words, each angle of an elementary triangle is either rational or tran-
scendental. Since δ1 ≤ 60 ≤ δ3, it follows from Corollary 4 that δ j ∈ Q if and only if
δ j ∈ {60, 90, 120}. This leaves the following four alternatives.

328 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 124



(i) δ3 = 90. If one of the two angles δ1, δ2 were rational, then so would be the
other, and in fact δ1 = δ2 = 60. This, however, is impossible, as δ1 + δ2 = 90. Hence,
δ1, δ2 are both transcendental. Moreover, �2

1 + �2
2 = �2

3, and since � is elementary,
there exists a real number u > 0 such that (u�1, u�2, u�3) = (x, y, z) for one and only
one ordered primitive 0-Pythagorean triple (x, y, z). Clearly, �1 : �2 : �3 = x : y : z in
this case.

(ii) δ3 = 120. As in (i), neither δ1 nor δ2 can be rational since that would entail
{δ1, δ2} ⊂ {60, 90} and contradict δ1 + δ2 = 60. Also, �2

1 + �1�2 + �2
2 = �2

3, and so
�1 : �2 : �3 = x : y : z for a unique ordered primitive 1-Pythagorean triple (x, y, z).

(iii) δ2 = 60. Here, either δ3 = 60, in which case � = 〈60, 60, 60〉 and �1 : �2 :
�3 = 1 : 1 : 1, or else δ1, δ3 both are transcendental. In either case, �2

1 − �1�3 + �2
3 =

�2
2, and hence, �1 : �3 : �2 = x : y : z for a unique primitive (−1)-Pythagorean triple

(x, y, z); since �1 ≤ �3 by assumption, this triple is ordered.
(iv) If δ2 �= 60 and δ3 �∈ {60, 90, 120}, then, as seen above, each angle δ j is tran-

scendental.

30 60

60

90

120

150

180

90

0-Pythagorean

1-Pythagorean

(–
1)

-P
yt

ha
go
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Δ2

Δ1
Δ3

δ
1  = δ

2

δ1 =
 δ2

δ2

δ3

Figure 2. Elementary triangles densely fill the space of all triangles (gray region). However, by Theorem 7
every elementary triangle having at least one algebraic angle lies on one of only three distinguished lines since
it is either Pythagorean (δ3 = 90) or pseudo-Pythagorean (δ2 = 60 or δ3 = 120); the triangles of Figure 1
illustrate each case.

In light of the above proof of Theorem 7, it will come as no surprise to the reader that
it is alternative (iv) that applies to the overwhelming majority of elementary triangles.
In other words, most elementary triangles do not have any algebraic angle at all. Uti-
lizing the classification of ν-Pythagorean triples provided in the next section, an easy
counting exercise illustrates this quantitatively. For instance, there exist exactly 94 dif-
ferent elementary triangles for which �1 : �2 : �3 = n1 : n2 : n3 with max j n j ≤ 10.
Among these 94 triangles, only one is 0-Pythagorean, one is 1-Pythagorean, and three
are (−1)-Pythagorean; see also Figure 3 below. For max j n j ≤ 100, the respective
total is 71,674 elementary triangles, among which a mere 16 are 0-Pythagorean, 14
are 1-Pythagorean, and 27 are (−1)-Pythagorean. Thus, fewer than 0.08 % of all ele-
mentary triangles with max j n j ≤ 100 have even a single algebraic angle. It was this
remarkable scarcity of elementary triangles with an algebraic angle that prompted the
present article.

April 2017] MORE GRADE SCHOOL TRIANGLES 329



Remark. In Theorem 7, if δ j is measured in radians, then either δ j/π ∈ { 1
3 ,

1
2 ,

2
3 } or

δ j/π �∈ A. In the latter case, Proposition 6(i) implies that δ j �∈ A as well, i.e., the angle
δ j also is transcendental when measured in radians; see [3, Fact 2].

4. PYTHAGOREAN AND PSEUDO-PYTHAGOREAN TRIPLES. By Theorem
7, every elementary triangle that has at least one algebraic angle corresponds to an
ordered primitive Pythagorean or pseudo-Pythagorean triple. By (2) and Corollary 4,
the converse also is true: Every such triple determines an elementary triangle having
one angle that is an algebraic number (and in fact equals 60, 90, or 120 degrees).
In light of this, every student of geometry will find it useful to have a complete list
of ordered primitive ν-Pythagorean triples available. The following theorem provides
such a list, thereby extending the Pythagorean case known since antiquity and pre-
sented in virtually every basic number theory text; e.g., see [17, Sec. 13.1]. The case
ν = 0 is included for completeness and also to enable the reader to appreciate the anal-
ogy to the cases ν = ±1 for which the author has not been able to identify an explicit
reference; see, however, [15, 16] and the references therein.

Theorem 8. Let ν ∈ {−1, 0, 1}, and assume that (x, y, z) �= (1, 1, 1) is an ordered
primitive ν-Pythagorean triple. Then there exists a unique pair (m, n) of coprime pos-
itive integers with the following properties:

(i) For ν = 0, the number m − n is positive and odd, and

x = min{2mn, m2 − n2} , y = max{2mn, m2 − n2} , z = m2 + n2 ;

(ii) For ν = 1, the number m − n is positive and not divisible by 3, and

x = min{2mn + n2, m2 − n2} , y = max{2mn + n2, m2 − n2} ,

z = m2 + mn + n2 ;

(iii) For ν = −1, the number m − 2n is positive and not divisible by 3, and

x = m2 − 2mn or x = 2mn − n2 , y = m2 − n2 ,

z = m2 − mn + n2 .

Conversely, every (x, y, z) given by (i), (ii), and (iii), respectively, with coprime posi-
tive integers m, n is an ordered primitive ν-Pythagorean triple.

Proof. Let (x, y, z) �= (1, 1, 1) be an ordered primitive ν-Pythagorean triple. The chal-
lenge here is to demonstrate that (x, y, z) has the form claimed in (i), (ii), and (iii),
respectively. Once this is achieved, the converse follows easily.

To begin, note the following simple fact: If (x, y, z) = r(X, Y, Z) for some r > 0
and X, Y, Z ∈ N with gcd(X, Y, Z) = 1, then r = 1. To see this, observe that r is
rational, say r = p/q with coprime p, q ∈ N; hence, the integers qx , qy, and qz all
are divisible by p and so are x , y, and z since gcd(p, q) = 1. Similarly, pX , pY , and
pZ are divisible by q and so are X , Y , and Z . But then p = 1 as gcd(x, y, z) = 1, and
q = 1 as gcd(X, Y, Z) = 1.

Next, letting ξ = x/z and η = y/z, rewrite (3) in the form

ξ 2 + νξη + η2 = 1 . (4)
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Since ξ, η are rational and 0 < ξ ≤ η, there exist coprime M , N ∈ N with M > N
such that (η + 1)/ξ = M/N . Plugging the latter into (4) yields

x

z
= ξ = 2M N + νN 2

M2 + νM N + N 2
,

y

z
= η = M2 − N 2

M2 + νM N + N 2
; (5)

note that M2 + νM N + N 2 > 0. From (5) and x ≤ y, it follows that

(x, y, z) = z

Zν(M, N )

(
Xν(M, N ), Yν(M, N ), Zν(M, N )

)
, (6)

where the functions Xν, Yν, Zν : N2 → Z are

Xν(p, q) = min{2pq + νq2, p2 − q2} ,

Yν(p, q) = max{2pq + νq2, p2 − q2} ,

Zν(p, q) = p2 + νpq + q2 .

The crux of the proof, then, is to show that (6) holds with (M, N ) replaced by a unique
pair (m, n) having the additional properties claimed in (i), (ii), and (iii), respectively,
for which Xν(m, n), Yν(m, n), and Zν(m, n) have no common factor—which, as seen
above, implies that z/Zν(m, n) = 1. To show all this, it is helpful to consider the
possible values of ν separately.
Case I: ν = 0. Denote by N0 the set of pairs specified by (i); that is, let

N0 = {(p, q) ∈ N2 : gcd(p, q) = 1, p − q ∈ N \ 2N} .

Note that X0(p, q), Y0(p, q), and Z0(p, q) have no common factor for (p, q) ∈ N0.
Indeed, if 2pq and p2 − q2 were divisible by a prime number t , then t = 2 because
otherwise p and q would both be divisible by t , contradicting gcd(p, q) = 1. Yet if
t = 2, then p − q ∈ 2N, which is not the case.

Now, if (M, N ) ∈ N0, then simply take (m, n) = (M, N ). If, however, (M, N ) �∈
N0, that is, if M − N ∈ 2N, then

X0(M, N ) = 2X0(m, n) , Y0(M, N ) = 2Y0(m, n) , Z0(M, N ) = 2Z0(m, n) ,

where m = 1
2 (M + N ), n = 1

2 (M − N ), and, most importantly, (m, n) ∈ N0. There-
fore, with (M, N ) replaced by (m, n) ∈ N0, (6), in either case, holds for ν = 0,
z/Z0(m, n) = 1, and hence (m, n) has all the properties claimed in (i).

It remains to show that (m, n) ∈ N0 in fact is unique. Assume (X0, Y0, Z0) attains
the same value for (m̃, ñ) ∈ N0. Then m̃2 + ñ2 = m2 + n2, and either m̃2 − ñ2 = m2 −
n2 or m̃2 − ñ2 = 2mn. In the first case, (m̃2, ñ2) = (m2, n2), hence (m̃, ñ) = (m, n).
In the second case, 2m̃2 = (m + n)2, which is impossible because 2 is not a square in
Q. This completes the proof of (i).

Case II: ν = 1. Let N1 = {(p, q) ∈ N2 : gcd(p, q) = 1, p − q ∈ N \ 3N}, i.e., N1 is
the set of pairs specified by (ii). In analogy to Case I, X1(p, q), Y1(p, q), and Z1(p, q)

have no common factor for (p, q) ∈ N1, and so simply let (m, n) = (M, N ) whenever
(M, N ) ∈ N1. If, however, (M, N ) �∈ N1, that is, if M − N ∈ 3N, then

X1(M, N ) = 3X1(m, n) , Y1(M, N ) = 3Y1(m, n) , Z1(M, N ) = 3Z1(m, n) ,
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where m = 1
3 (M + 2N ), n = 1

3 (M − N ), and (m, n) ∈ N1. With (M, N ) replaced by
(m, n) ∈ N1, (6) holds for ν = 1 in either case; hence, z/Z1(m, n) = 1, and (m, n)

has all the properties stipulated in (ii).
To show that (m, n) ∈ N1 again is unique, assume that (X1, Y1, Z1) attains the same

value for (m̃, ñ) ∈ N1. Then m̃2 + m̃ñ + ñ2 = m2 + mn + n2, and the pair (2m̃ñ +
ñ2, m̃2 − ñ2) equals either (2mn + n2, m2 − n2) or (m2 − n2, 2mn + n2). In the first
case,

3m̃ñ = 2(2m̃ñ + ñ2) + (m̃2 − ñ2) − (m̃2 + m̃ñ + ñ2) = 3mn ,

so m̃2 + ñ2 = m2 + n2, and hence (m̃2, ñ2) = (m2, n2) and (m̃, ñ) = (m, n). In the
second case,

3m̃2 = −(2m̃ñ + ñ2) + (m̃2 − ñ2) + 2(m̃2 + m̃ñ + ñ2)

= −(m2 − n2) + (2mn + n2) + 2(m2 + mn + n2) = (m + 2n)2 ,

which is impossible because 3 is not a square in Q. This proves (ii).
Case III: ν = −1. Observe that (4) and 0 < ξ ≤ η imply ξ ≤ 1, η ≥ 1, and

(η + 1)2 − 4ξ 2 = 2 − 5ξ 2 + ξη + 2η ≥ 2 − 5ξ + ξ + 2ξ = 2(1 − ξ) ≥ 0 .

Hence, (η + 1)/ξ = M/N ≥ 2, and in fact M > 2N since otherwise (ξ, η) = (1, 1)

and (x, y, z) = (1, 1, 1). Consequently, X−1(M, N ) = 2M N − N 2 and Y−1(M, N ) =
M2 − N 2. Let N−1 = {(p, q) ∈ N2 : gcd(p, q) = 1, p − 2q ∈ N \ 3N} be the set
of pairs in (iii). Similarly to the previous cases, it is easily checked that X−1(p, q),
Y−1(p, q), and Z−1(p, q) have no common factor for (p, q) ∈ N−1 and so take
(m, n) = (M, N ) whenever (M, N ) ∈ N−1.

Next, define one more function X∗
−1 : N2 → Z by

X∗
−1(p, q) = |p2 − 2pq| = Y−1(p, q) − X−1(p, q) . (7)

Note that X∗
−1(p, q), Y−1(p, q), and Z−1(p, q) have a common factor if and only if

X−1(p, q), Y−1(p, q), and Z−1(p, q) do. Now, if (M, N ) �∈ N−1, that is, if M − 2N ∈
3N, then

X−1(M, N ) = 3X∗
−1(m, n) , Y−1(M, N ) = 3Y−1(m, n) ,

Z−1(M, N ) = 3Z−1(m, n) ,

where m = 1
3 (2M − N ), n = 1

3 (M − 2N ), and (m, n) ∈ N−1. Thus, with (M, N )

replaced by (m, n) ∈ N−1 and with X−1(M, N ) replaced by X∗
−1(m, n) if M − 2N ∈

3N, (6) holds for ν = −1 in either case, and (m, n) has all the properties claimed
in (iii).

Finally, to establish uniqueness of (m, n), assume (Y−1, Z−1) attains the same
value for (m̃, ñ) ∈ N−1. Thus, the values of Y−1, Z−1, and hence also Z 2

−1 − Y 2
−1 =

mn(3mn − 2Z−1) do not change when (m, n) is replaced by (m̃, ñ). Consequently,
m̃ñ(3m̃ñ − 2Z−1) = Z 2

−1 − Y 2
−1, and solving this quadratic equation for m̃ñ yields

3m̃ñ = Z−1 ±
√

4Z 2
−1 − 3Y 2

−1 = m2 − mn + n2 ± (m2 − 4mn + n2) .
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It follows that either 3m̃ñ = 2m2 − 5mn + 2n2 or m̃ñ = mn. In the first case,

3m̃2 = 3
2 (Y−1 + Z−1 + m̃ñ) = 1

2 (8m2 − 8mn + 2n2) = (2m − n)2 ,

which is impossible. In the second case, m̃2 + ñ2 = m2 + n2, and so again (m̃, ñ) =
(m, n). This establishes (iii).

As predicted earlier, the converse now follows easily. By virtue of a very short
calculation, all triples given by (i), (ii), and (iii), respectively, satisfy (3), hence
are ordered ν-Pythagorean. That they are primitive also is clear from the fact that
Xν(m, n), Yν(m, n), and Zν(m, n) have no common factor for (m, n) ∈ Nν .

The provision (x, y, z) �= (1, 1, 1) in Theorem 8 is relevant only for alternative
(iii) since (1, 1, 1) indeed is an ordered primitive (−1)-Pythagorean triple, formally
obtained by choosing the (forbidden) value (1, 0) for (m, n). Also, if (x, y, z) with
x ≥ 0 is an ordered primitive solution of (3) for ν = −1, then so is (y − x, y, z). This
motivates (7) and explains why in (iii) there are two possible values for x , unlike in (i)
and (ii). Figure 3 lists the five (lexicographically) smallest triples of each type.

Pythagorean

v = 0 v = 1 v = –1

(3, 4, 5) (3, 5, 7) (1, 1, 1)

(5, 12, 13) (5, 16, 19) (3, 8, 7)

(7, 24, 25) (7, 8, 13) (5, 8, 7)

(8, 15, 17) (7, 33, 37) (5, 21, 19)

(9, 40, 41) (9, 56, 61) (7, 15, 13)

pseudo-Pythagorean

Figure 3. The first five ordered primitive ν-Pythagorean triples; see Theorem 8.

5. WHICH SIMPLE TRIANGLES ARE RATIONAL? Recall that a triangle � =
〈δ1, δ2, δ3〉 is rational if each angle δ j is rational. The following well-known conse-
quence of Theorem 7 has already been mentioned in the Introduction: An elementary
triangle is rational (if and) only if it is equilateral. But for one trivial exception, there-
fore, being elementary and being rational are mutually exclusive triangle properties.
Not only from a geometry student’s perspective, it is natural to look for a slightly larger
class of simple triangles that contains more than just one rational triangle. This final
section briefly discusses two such classes.

Call a triangle almost elementary if at least two of the positive real numbers u j in
�1 : �2 : �3 = u1 : u2 : u3 are integers. Trivially, every elementary triangle is almost
elementary, but the converse is not true in general, e.g., take �4 = 〈45, 45, 90〉 with
�1 : �2 : �3 = 1 : 1 :

√
2. Note that �4 is both rational and isosceles. Every isosceles

triangle clearly is almost elementary. The class of almost elementary triangles there-
fore contains infinitely many rational triangles. As asserted by Claim 2, but for one
exception, no other rational almost elementary triangles exist. The following is a more
precise version of Claim 2.

Theorem 9. Let � = 〈δ1, δ2, δ3〉 be an almost elementary triangle. If � is rational,
then exactly one of the following alternatives applies:
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(i) There exists a unique δ ∈ Q with 0 < δ < 90 such that

� = 〈min{δ, 180 − 2δ}, δ, max{δ, 180 − 2δ}〉 ,

i.e., � is isosceles;

(ii) � = 〈30, 60, 90〉.

Proof. Let � = 〈δ1, δ2, δ3〉 be a rational almost elementary triangle. Hence, there exist
j �= k such that � j/�k ∈ Q. Recall that, by the law of sines, � j/�k = sin δ◦

j / sin δ◦
k .

Thus, cos(δ j − 90)◦/ cos(δk − 90)◦ is rational, and δ j , δk ∈ Q by assumption. With-
out loss of generality, assume δ j ≥ δk , and consequently, δk < 90. Suppose first that
δ j > 90. Then, by Corollary 5, δ j − 90 = 90 − δk , which is impossible. Next consider
the case δ j = 90. Then cos(90 − δk)

◦ ∈ Q, and 90 − δk = 60, by Corollary 4. Thus,
� = 〈30, 60, 90〉, and this indeed is an almost elementary triangle with �1 : �2 : �3

= 1 :
√

3 : 2. Finally, if δ j < 90, then Corollary 5 yields δ j = δk , and so, with the
appropriate δ ∈ Q either � = 〈δ, δ, 180 − 2δ〉 and 0 < δ ≤ 60, or else � = 〈180 −
2δ, δ, δ〉 and 60 < δ < 90.

15, 15, 150

30, 30, 120

36, 36, 108

36, 72, 72

45, 45, 90

60, 60, 60 1 : 1 : 1

1 : 1 : 2

5 – 1 : 2 : 2

5 + 1

3 – 1 2 :: 2

3

3 + 12 :2 :

1 : 1 :

2 : 2 :

3 – 1 :

3 – 1 : 2 :

3 – 1 :

3 – 1 : 3 + 1 : 2

3 + 1

3 + 1

2

3 + 16 :

2 : 2

2 : 2 :

3 : 21 :

2 : 6 :

6

30, 75, 75

15, 30, 135

15, 45, 120

15, 75, 90

30, 45, 105

30, 60, 90

45, 60, 75

15, 60, 105

Figure 4. There exist exactly 14 rational grade school triangles, of which seven are isosceles (left table), three
are right (gray boxes; see [3]), and five are neither; see [1, 14] for details. Note that, while eight triangles are
almost elementary, only the equilateral is elementary.

Another interesting enlargement of the class of elementary triangles, implicitly sug-
gested by [3], is as follows. Call a triangle a grade school triangle if each number
u j in �1 : �2 : �3 = u1 : u2 : u3 is an element of a real quadratic number field, i.e.,
u j ∈ Q

(√
d j

)
for some squarefree integer d j ≥ 2. (Recall that an integer is square-

free if it is not divisible by p2 for any prime number p.) By scaling (i.e., by choosing
an appropriate unit length), it can be assumed that u j = k j + l j

√
d j with k j , l j ∈ Z.

Again, it is clear that every elementary triangle is grade school, whereas the converse
is not true in general, as the examples of �4 and �5 = 〈30, 45, 105〉 show; for the lat-
ter �1 : �2 : �3 = √

2 : 2 :
√

3 + 1. As seen earlier, �4 is almost elementary, whereas
�5 clearly is not. On the other hand, �6 = 〈54, 54, 72〉 is a (rational) almost elemen-

tary triangle that is not grade school since �1 : �2 : �3 = √
2 :

√
2 :

√
5 − √

5. Thus,
the almost elementary and grade school properties in general are unrelated. Also note
that �4 and �5 both are rational, which shows that rational grade school triangles other
than the equilateral do exist. Unlike in the almost elementary case, however, there is no
infinite supply of rational grade school triangles. In fact, only very few such triangles
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exist. The following classification theorem of rational grade school triangles makes
this assertion precise. The result is stated here to give an impression of how scarce
rational grade school triangles are; for details, the interested reader is referred to [1],
which only uses the irreducibility of certain polynomials with integer coefficients, and
to [14], which gives an alternative account employing basic Galois theory.

Theorem 10. Let � = 〈δ1, δ2, δ3〉 be a grade school triangle. Then the following are
equivalent:

(i) � is rational;

(ii) Each number δ1, δ2, δ3 is an integer multiple of 15 or 36;

(iii) � equals exactly one of the 14 triangles listed in Figure 4.

Finally, it may be worthwhile to relate the observations in this article to another
classical concept in geometry, namely the constructibility by compass and straight-
edge [7, Nr. 35–37]. Thus, call a triangle constructible if it has a realization that is
constructible by compass and straightedge. Since

√
d is constructible for every d ∈ N,

every grade school triangle, and a fortiori every elementary triangle, is constructible.
By contrast, even a rational almost elementary triangle need not be constructible, as
the example of �7 = 〈40, 70, 70〉 shows. Figure 5 schematically depicts the relations

Theorem 7

Theorem 10 Theorem 9

constructible

grade school

elementary

almost elementary

rational

one angle algebraic
triangle

19 20

11

181716

14 151312

7 8654

1

1

2

1 :

3 : 2 : 5

3

4

1 : 2 : 2

2 : 54

2 : 21 +1 :

5 2 : 31 :

6 2 : 51 :

7 4 : 53 :

8

9

10

11

12

13

14

2 : 32 :

4

3

3

3 4

3

2 3

10
1:1:1

9

( Δ1 )

( Δ5 )

( Δ4 )

( Δ6 )

( Δ7 )

2 : 3 + 12 :

1 : 21 :

2 :

1 : 5 – 2

2 :

2 : 2

15 2 :

2 :

2 : 3

1 + 4

2 : 3 + 2

16

17

18

19

20

3

5 – 5

2 : 21 :

sin 18° : sin 36° : sin 126°

2 sin 20° : 2 sin 40° : 

2 sin 20° : 1 : 1

5 – 4 cos 20° : 21 :

1 :

1 :

Figure 5. Illustrating the relations between the properties of (similarity types of planar) triangles discussed in
this article; an example of �1 : �2 : �3 is given for each situation.
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between the concepts discussed in this article and illustrates each possible situation
through a concrete example.
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