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ABSTRACT

A complete, elementary analysis is presented for second-order
difference equations xn = g(xn−1, xn−2)where g is strictly monotone
and convex in the first quadrant. It is shown that the dynamics of any
such equation partitions the phase space into two basins of attraction,
one of which is bounded and convex (possibly empty). In the case
of two non-empty basins, each point on their common boundary
corresponds to an asymptotically 2-periodic solution. The results and
examples presented complement previous studies of second-order
equations in the literature.
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1. Introduction

Non-linear second-order difference equations exhibit an enormous variety of different
dynamical behaviours for which no comprehensive theory appears to be forthcoming
[15,27,33]. This is quite unlike the case of second-order differential equations which are the
subject of a highly developed, classical theory [3,19]. It also contrasts the case of first-order
difference equations where powerful tools from dynamical systems theory (e.g. coding,
renormalization, and transfer operators) can often be applied rather directly [9,10,15]. In
the absence of a coherent theory, studies on second-order difference equations naturally
focus on specific classes of equations that are of intrinsic mathematical interest, motivated
by applications, or both. Although much progress has been achieved for some classes (e.g.
rational equations [6,27,32] and the Hénon family [5,10]), many basic questions remain
open. This state of affairs is well documented, not least through the monograph [27] and
the extensive combined bibliographies of [6,9,15,23,33].

The present article aims to complement the large existing literature (e.g. [1,8,16,17,22,
28,29,37] and references therein) by studying second-order equations

xn = g(xn−1, xn−2) , ∀n ≥ 3 , (1.1)

where the non-negative function g , defined in the (closed) first quadrant, belongs to a class
of functions that is sufficiently wide to include interesting examples, but at the same time
sufficiently narrow to allow strong conclusions to be drawn. Specifically, g will be assumed
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to be strictly monotone and convex. Monotone difference equations, and to some extent
convex or concave equations also, feature a rich theory, together with a well-established
range of applications, notably inmathematical biology and economics [21,26,30,34].While
the monotonicity and convexity assumptions individually impose certain restrictions on
the dynamics of (1.1), it will become clear herein that only when combined do they force
the dynamics to be very simple indeed. Thus the analysis presented here is in the spirit of,
and naturally complementary to, the global results of [8,17,18,22,28,29,32].

With all technical details deferred to subsequent sections, to illustrate the main result
of this article, fix a real parameter α $= −1, and consider the equation

xn = x1+αn−1 + x1+αn−2 , ∀n ≥ 3 , (1.2)

which may be thought of as a non-linear analogue of the perennial Fibonacci recursion
xn = xn−1 + xn−2. Variants of (1.2) with α < 0 have been studied extensively; e.g. see [11–
13,36] for examples with α < −1, and [24–26] for results applicable whenever−1 < α < 0.
Unlike for these variants (and for the Fibonacci recursion itself), however, xn ≡ 0 is
attracting for (1.2) whenever α > 0, and there exists another constant solution xn ≡ 2−1/α

which is easily seen to be of saddle-type. For α a positive integer, in particular, (1.2) plays a
prominent role in a variety of counting problems that have so far been considered mainly
from a number theory point of view [2,18,31]; see also A000283 and several related
entries on the database [38]. In dynamical terms, the presence of an attractor and a saddle
naturally raises the question what the global behaviour of (1.2) looks like. This question
is answered completely by Theorem 2.2 below which implies the existence of a (unique)
convex set A0 ⊃ [0, 2−1/α[2 with smooth boundary for which the trichotomy

limn→∞ xn =






0 if (x1, x2) ∈ A0,
2−1/α if (x1, x2) ∈ ∂A0,
+∞ if (x1, x2) $∈ A0,

holds for every solution (xn) of (1.2); see also Proposition 4.3. Thus A0 simply is the set of
attraction of xn ≡ 0, and ∂A0 represents the stable manifold of xn ≡ 2−1/α . As the proof of
Theorem 2.2 will show, this conclusion hinges on basic structural assumptions regarding
the right-hand side of (1.2), but does not depend on its specific form. For instance, an
analogous trichotomy holds for

xn = α cosh (x2n−1 + 1) cosh (x2n−2 + 1) , ∀n ≥ 3 ,

as well as many other difference equations (1.1); see Proposition 4.5 but cf. also [4].
This article is organized as follows. After introducing and motivating the key assump-

tions regarding (1.1), Section 2 states the main result and illustrates its assertions bymeans
of a simple example. Section 3 presents an (elementary though somewhat lengthy) proof
of the main result, divided into three steps for the reader’s convenience. Finally, Section 4
considers two classes of examples in detail, and also highlights several questions that arise
naturally from this work.
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2. Main theorem – statement and examples

Throughout, denote by I = R+ ∪ {0} the set of all non-negative real numbers, with the
usual topology. As indicated in the Introduction, the purpose of this article is to present a
complete analysis of the second-order difference equation

xn = g(xn−1, xn−2) , ∀n ≥ 3 , (1.1)

where (x1, x2) ∈ I2, and g : I2 → I belongs to a reasonably large family G of genuinely
non-linear functions. To motivate the specific form of G to be introduced shortly, first
consider the first-order analogue of (1.1),

xn = f (xn−1) , ∀n ≥ 2 , (2.1)

where x1 ∈ I, and the C1-map f : I → I is assumed to be strictly convex, with f ′ ≥ 0.
Henceforth, denote by F the family of all such maps, i.e. let

F =
{
f : I → I is C1, strictly convex, and f ′(x) ∈ I ∀x ∈ I

}
. (2.2)

Simple examples of f ∈ F include f (t) = t1+α with α > 0, and f (t) = cosh t. Clearly,
every f ∈ F is one-to-one, and a C1-diffeomorphism of R+. Note that if f1, f2 ∈ F then
α1f1 +α2f2 ∈ F and f1(α1 · ) ∈ F for all α1,α2 > 0, but also f1f2 ∈ F as well as f1 ◦ f2 ∈ F .
Thus for instance f = α cosh ( · 2 + 1) ∈ F for all α > 0.

To conveniently describe the asymptotic behaviour of (2.1) for arbitrary f : I → I,
denote by Aξ the set of attraction of any ξ ∈ I ∪ {+∞} under (2.1), that is,

Aξ =
{
x1 ∈ I : limn→∞ xn = ξ

}
.

The (possibly empty) set Aξ is f -invariant, i.e. f −1(Aξ ) = Aξ , and Aξ ∩Aη = ∅ whenever
ξ $= η. For ξ ∈ I, clearly f (ξ) = ξ implies that Aξ $= ∅, and the converse is also
true, provided that f is continuous at ξ . It is well known that, depending on the specific
properties of f , the sets Aξ may be complicated whenever non-empty, and so may be
I \ ⋃

ξ Aξ ; e.g. see [9,10,15]. It is easy to check, however, that none of this complexity can
occur whenever f ∈ F ; see also Figure 1.
Proposition 2.1: For each f ∈ F precisely one of the following alternatives applies:

(i) There exists a unique ξ ∈ I ∪ {+∞} such that Aξ = I;
(ii) There exists a unique ξ ∈ I such that Aξ is a non-empty bounded interval containing

0, and Aξ ∪ A+∞ = I. Moreover, if x1 ∈ ∂Aξ then f (x1) = x1.

Informally put, Proposition 2.1 asserts that for f ∈ F the entire phase space I is the
disjoint union of at most two sets (in fact, intervals) Aξ and A+∞, the former being a
bounded interval containing 0 that can only have a fixed point of f as its boundary. Note
that in order to reach this conclusion, the properties defining F in (2.2) are, in a sense,
minimal: On the one hand, a convex map f : I → I with f ′ ≥ 0 yet failing to be strictly
convex may have an interval of fixed points, in which case Aξ $= ∅ for uncountably many
ξ . On the other hand, it is well known that a strictly convex map f can generate much
more complicated behaviour of (2.1) when −f ′(0) > 0 is sufficiently large and f has two
repelling fixed points [9,10,15].
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Figure 1. Given f ∈ F , either Aξ = I for a unique ξ (left), or else Aξ ∪ A+∞ = I, and the bounded
interval Aξ may or may not contain the fixed point at its right end; see Proposition 2.1.

The main result of this article, Theorem 2.2 below, asserts that the clear-cut alternatives
appearing in Proposition 2.1 to a large extent persist for (1.1) and the phase space I2
— provided that g belongs to a two-dimensional analogue of (2.2). Concretely, it will
be assumed that the C1-function g : I2 → I is strictly convex, with gx1(0, x2) ≥ 0,
gx2(x1, 0) ≥ 0 for every x ∈ I2. Throughout, denote by G the family of all such functions,
that is,

G =
{
g : I2 → I is C1, strictly convex, and ∇g(x) ∈ I2 ∀x ∈ I2

}
. (2.3)

Note that if g ∈ G then g( · , x2), g(x1, · ) ∈ F for every x ∈ I2. The family G is reasonably
large. For instance, if f1, f2 ∈ F then f1 ⊕ f2 ∈ G, where f1 ⊕ f2(x) = f1(x1) + f2(x2) for all
x ∈ I2.

In analogy to the first-order case, given any g : I2 → I and ξ ∈ I ∪ {+∞}, consider
again the set of attraction of ξ under (1.1), i.e. let

Aξ =
{
(x1, x2) ∈ I2 : limn→∞ xn = ξ

}
.

Usage of the same symbol Aξ in connection with both (1.1) and (2.1) should not cause
confusion, since it will always be clear from the context whether Aξ ⊂ I2 or Aξ ⊂ I,
respectively. As in the one-dimensional setting, but perhaps more dramatically so, the
sets Aξ , as well as I2 \ ⋃

ξ Aξ may be very complicated, even for (convex) functions as
innocent-looking as g(x) = a1 + x21 + a2x2 with a1, a2 ∈ R; see e.g. [5,10]. However,
the following analogue of Proposition 2.1 completely rules out such complexity whenever
g ∈ G, and instead guarantees a neat partition of the phase space I2. (Here and throughout,
all topological terms are understood relative to the product topology of I2.) In some
sense, the result may be considered a counterpart of known results for concave systems, as
established e.g. in [26].
Theorem 2.2: For each g ∈ G precisely one of the following alternatives applies:

(i) There exists a unique ξ ∈ I∪ {+∞} such that Aξ = I2, i.e. limn→∞ xn = ξ for every
solution (xn) of (1.1);

(ii) There exists a unique ξ ∈ I such thatAξ is a non-empty bounded convex set containing
(0, 0), and Aξ ∪ A+∞ = I2. Moreover, if (x1, x2) ∈ ∂Aξ then (xn) is asymptotically
2-periodic, i.e. the sequences (x2n−1) and (x2n) generated by (1.1) both converge.

The following example illustrates the alternatives in Theorem 2.2; a more detailed analysis
is presented in Example 4.1.
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Figure 2. For g(x) = a+ 1
4 x

2
1 + x22 , alternative (ii) of Theorem 2.2 applies whenever 0 ≤ a ≤ 1

5 , but the
compact convex set Aξ , as well as the dynamics of (2.4) within it, vary with a; see Examples 2.3 and 4.1.

Example 2.3: For any a ≥ 0, consider the difference equation

xn = a + 1
4x

2
n−1 + x2n−2 , ∀n ≥ 3 , (2.4)

i.e. let g(x) = a + 1
4x

2
1 + x22. Plainly, g ∈ G, so Theorem 2.2 applies, and shows that the

dynamics of (2.4) always is very simple, with the details depending on the value of a as
follows; see also Figure 2.

(i) If a > 1
5 then A+∞ = I2.

(ii) If a = 1
5 then A2/5 ∪ A+∞ = I2 where A2/5 is a compact convex neighbourhood

of (0, 0) with C∞-boundary. Note that although it resembles a quarter-disc, the set
A2/5 is not symmetric w.r.t. the line x1 = x2.

(iii) If a < 1
5 then Aξ ∪ A+∞ = I2, where ξ = 2

5
(
1 − √

1 − 5a
)
, and Aξ is open and

convex, again resembling a quarter-disc. The precise nature of points (x1, x2) in ∂Aξ
depends on the value of a.
If a ≥ 1

9 then simply ∂Aξ = Aη, withη = 4
5−ξ > ξ . In otherwords, limn→∞ xn = η

whenever (x1, x2) ∈ ∂Aξ . For instance, for a = 3
16 one finds ξ = 3

10 , η = 1
2 , hence

A3/10 ∪ A+∞ = I2 and ∂A3/10 = A1/2.
If, however, a < 1

9 then every (x1, x2) ∈ ∂Aξ different from (η, η) yields an
asymptotically 2-periodic solution. For instance, for a = 0 one finds ξ = 0, η = 4

5 ,
and for every solution (xn) of (2.4) with (x1, x2) ∈ ∂A0 and x1 $= 4

5 ,

limn→∞ x2n−1 = 2
15

(
5 +

√
5
)

and limn→∞ x2n = 2
15

(
5 −

√
5
)
,

or vice versa, depending on whether x1 > 4
5 or x1 <

4
5 .

3. Main theorem – proof

This section provides a Proof of Theorem 2.2. For the reader’s convenience, the argument
is divided into three main steps; throughout, let g ∈ G be a given function.
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Step I: monotonemaps G and fg associatedwith (1.1)

Denote by 3 the standard partial order on R2, that is, x 3 y for x, y ∈ R2 if and only if
y − x ∈ I2. As usual, write x ≺ y whenever x 3 y yet x $= y, and write x ≺≺ y if both
x1 < y1 and x2 < y2. Denote (1, 1) ∈ I2 simply by 1, and observe that min{x1, x2} 1 3 x 3
max{x1, x2} 1 for every x ∈ I2.

For any g ∈ G, rewrite (1.1) in the form

(xn−1, xn) =
(
xn−1, g(xn−1, xn−2)

)
= G(xn−2, xn−1) , ∀n ≥ 3 ,

with the map G : I2 → I2 given by G(x) =
(
x2, g(x2, x1)

)
for all x ∈ I2. Note that G is a

homeomorphism of I2, and a diffeomorphism of (R+)2. If x 3 y then

G(y) − G(x) =
(
y2 − x2, g(y2, y1) − g(x2, x1)

)
5 0 1 ,

fromwhich it is clear thatG(x) ≺ G(y)whenever x ≺ y. ThusG is strictly order-preserving
[20, p. 9]. Moreover, if x ≺ y then, with G2 := G ◦ G,

G2(y) − G2(x) =
(
g(y2, y1) − g(x2, x1), g

(
g(y2, y1), y2

)
− g

(
g(x2, x1), x2

))
66 0 1 ,

and so, unlikeG, the homeomorphismG2 has the even stronger property of being strongly
order-preserving, that is,G2(x) ≺≺ G2(y)whenever x ≺ y. Though strict and strong order-
preservation are important properties, recall that they per se do not preclude non-trivial
long-time behaviour of difference equations, in stark contrast to their continuous-time
counterparts [20,21,34,35]

Next, associate with g ∈ G the map fg : I → I, where fg (t) = g(t, t) for all t ∈ I. Note
that fg ∈ F , and hence Proposition 2.1 applies. In particular, the set J := {t ≥ 0 : fg (t) ≤ t}
is a closed subinterval of I, and so, with the appropriate ξ , η ∈ I with ξ ≤ η,

J = ∅ , or J = [ξ ,+∞[ , or J = [ξ , η] . (3.1)

The first two cases in (3.1) are easily analyzed, via a standard argument (see e.g. [7,20,25])
that is recalled here briefly for the reader’s convenience. For instance, if J = [ξ ,+∞[
with ξ ∈ I then fg (t) > t for all t < ξ , and fg (t) < t for all t > ξ . Given x ∈ I2, let
ξ− = min{x1, x2, ξ} and ξ+ = max{x1, x2, ξ}, and observe that

f 7n/28
g (ξ−) 1 3 Gn(x) 3 f 7n/28

g (ξ+) 1 , ∀n ≥ 1 ; (3.2)

here, 7s8 denotes the largest integer not larger than s ∈ R. Since limn→∞ f ng (t) = ξ for
all t ≥ 0, it follows from (3.2) that limn→∞ xn = limn→∞ Gn−1(x1, x2)1 = ξ for every
solution (xn) of (1.1), i.e. Aξ = I2. The case of J = ∅ can be dealt with in a completely
analogous manner, yielding A+∞ = I2. Thus the first two cases in (3.1) both correspond
to alternative (i) of Theorem 2.2. In Steps II and III below it will be shown that the third
case corresponds to alternative (ii) of that theorem.
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Step II: existence of invariant graphs

Consider the remaining case J = [ξ , η] in (3.1), with 0 ≤ ξ ≤ η. If η = 0 then fg (t) > t for
all t > 0. In this case, for every x ∈ I2 \ {(0, 0)} clearly G2(x) 66 t 1 with the appropriate
t > 0, and consequently Gn+2(x) 66 f 7n/28

g (t) 1 for every n ≥ 0. This shows that A+∞ =
I2 \ {(0, 0)} and A0 = {(0, 0)}. Quite trivially, therefore, all assertions of Theorem 2.2(ii)
are correct whenever η = 0.

For the remainder of the proof, assume that J = [ξ , η] with η > 0, and define three
associated ‘rectangles’ in I2,

B = [0, η]2 , C% = [0, η]×]η,+∞[ , Cr = ]η,+∞[×[0, η] .

Note that B = {x ∈ I2 : x 3 η 1}. The rectangles B,Cr ,C% are disjoint and, together with
the ‘infinite square’

I2 \ (B ∪ C% ∪ Cr) = ]η,+∞[2= {x ∈ I2 : x 66 η 1} ,

they form a partition of I2; see also Figure 3. Recall that ξ and η are fixed by fg , and
hence ξ 1 and η 1 are fixed points of G. If x ∈ B then G(x) 3 G(η 1) = η 1, and so
G−1(B) ⊃ B. Similarly, G−1(B ∪ C% ∪ Cr) ⊂ B ∪ C% ∪ Cr . With B−

n := G−n(B) and
B+
n := G−n(B ∪ C% ∪ Cr) for every n ≥ 0, therefore, B = B−

0 ⊂ B−
1 ⊂ B−

2 ⊂ · · · and
B∪C%∪Cr = B+

0 ⊃ B+
1 ⊃ B+

2 ⊃ · · · , but also B−
m ⊂ B+

n for allm, n. Note that the set B+
2 is

bounded.Moreover, observe thatG(x) ∈ Cr requires x2 > η as well as g(x2, x1) ≤ η, hence
x1 < η, and so x ∈ C%. In other words, G−1(Cr) ⊂ C%, and analogously G−1(C%) ⊂ Cr .

Assume now that, for some n ≥ 0,

B−
n is convex, and if x ∈ B−

n then {y ∈ I2 : y 3 x} ⊂ B−
n . (3.3)

Given any x, x̃ ∈ B−
n+1 and 0 ≤ t ≤ 1, it follows from (3.3) and the convexity of g that

G
(
(1 − t)x + t̃x

)
3 (1 − t)G(x) + tG(̃x) ∈ B−

n , and so (1 − t)x + t̃x ∈ B−
n+1, i.e. B

−
n+1

is convex. Also, if y 3 x ∈ B−
n+1 then G(y) 3 G(x) ∈ B−

n , hence y ∈ B−
n+1, by (3.3). The

latter thus holds with n replaced by n + 1, and in fact for all n ≥ 0, since trivially it holds
for n = 0. In particular, for every n the set B−

n ⊃ B is bounded and convex, contains the
point η 1 but is disjoint from I2 \ (B∪C% ∪Cr). Clearly, the set B−

n ∩ (B∪C%) has all these
properties as well. In fact, since x $∈ B+

2 whenever x 6 η 1, except for the point η 1 the
set B−

n , and also B−
n ∩ (B ∪ C%), is contained in the interior of B ∪ C% ∪ Cr . It is possible,

therefore, to write B−
n ∩ (B ∪ C%) as

B−
n ∩ (B ∪ C%) =

{
x ∈ I2 : 0 ≤ x1 ≤ η, 0 ≤ x2 ≤ ϕ−

n (x1)
}
,

with a unique function ϕ−
n : [0, η] → R that is continuous, concave, non-increasing,

with ϕ−
n (η) = η. Since B−

n ⊂ B−
n+1, the sequence

(
ϕ−
n (s)

)
is non-decreasing for every

0 ≤ s ≤ η. Recall that B+
2 is bounded, and B−

n ⊂ B+
2 , so each function ϕn is bounded

above, independently of n. It follows that ϕ−(s) := limn→∞ ϕ−
n (s) defines a concave, non-

increasing function on [0, η], with ϕ−(η) = η. Clearly, ϕ− is continuous, and hence ϕ−
n →

ϕ− uniformly on [0, η], by Dini’s Theorem [14]. Picking any point x =
(
s,ϕ−

n+2(s)
)

∈
∂B−

n+2 ∩ (B ∪ C%), recall that, by construction,
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G2(x) =
(
g(ϕ−

n+2(s), s), g
(
g(ϕ−

n+2(s), s),ϕ
−
n+2(s)

))
,

and consequently, for all n ≥ 0,

ϕ−
n

(
g(ϕ−

n+2(s), s)
)

= g
(
g(ϕ−

n+2(s), s),ϕ
−
n+2(s)

)
, ∀s ∈ [0, η] . (3.4)

Letting n → ∞ in (3.4), it follows from the uniform convergence ϕ−
n → ϕ− that

ϕ−(
g(ϕ−(s), s)

)
= g

(
g(ϕ−(s), s),ϕ−(s)

)
, ∀s ∈ [0, η] ,

which simply says that graphϕ− :=
{(
s,ϕ−(s)

)
: s ∈ [0, η]

}
⊂ I2 is forward invariant

under G2. When restricted to graphϕ−, the map G2 induces the continuous map h− :
[0, η] → [0, η] given by h−(s) = g(ϕ−(s), s), that is,

G2(s,ϕ−(s)
)

=
(
h−(s),ϕ− ◦ h−(s)

)
, ∀s ∈ [0, η] .

Note that h−(η) = η, and since G2 is one-to-one, so is h−. Thus h− is increasing.
A completely analogous analysis confirms that, for every n ≥ 1,

B+
n ∩ (B ∪ C%) =

{
x ∈ I2 : 0 ≤ x1 ≤ η, 0 ≤ x2 ≤ ϕ+

n (x1)
}
,

with a unique continuous, concave andnon-increasing functionϕ+
n : [0, η] → R satisfying

ϕ+
n (η) = η. Since B+

n ⊃ B+
n+1, the sequence

(
ϕ+
n (s)

)
is non-increasing, and just as before,

ϕ+
n (s) → limn→∞ ϕ+

n (s) =: ϕ+(s) uniformly on [0, η]. From B−
m ⊂ B+

n it is clear that
ϕ−
m ≤ ϕ+

n for all m, n, and consequently ϕ− ≤ ϕ+. Again, graphϕ+ is forward invariant
under G2, and the latter induces an increasing continuous map h+ : [0, η] → [0, η] with
h+(η) = η; explicitly, h+ = g(ϕ+( · ), · ), and so h+ ≥ h−.

To relate the above considerations to the asymptotic behaviour of (1.1), note on the one
hand that if x ∈ B ∪ C% and x2 < ϕ−(x1) then G2N (x) ∈ B \ {η 1} for some integer N ≥ 1,
hence s− 1 3 G2N+2(x) 3 s+ 1 for some 0 < s− < s+ < η, and

f 7n/28
g (s−) 1 3 G2N+2+n(x) 3 f 7n/28

g (s+) 1 , ∀n ≥ 0 ,

fromwhich it is clear that limn→∞ xn = ξ , i.e. x ∈ Aξ . If, on the other hand, x ∈ B∪C% but
x2 > ϕ+(x1) thenG2N (x) ∈ I2\(B∪C%∪Cr) for someN ≥ 1, which implies limn→∞ xn =
+∞, i.e. x ∈ A+∞. A similar analysis applies to the sets G−1(graphϕ±) ⊂ Cr which can
be written as

G−1(graphϕ±) =
{
x ∈ I2 : 0 ≤ x2 ≤ η, 0 ≤ x1 ≤ ψ±(x2)

}

with continuous, concave and non-increasing functionsψ±. (Explicitly,ψ±(s) is given by
g(s, ·)−1 ◦ϕ±(s) for all 0 ≤ s ≤ η; here and below, expressions containing the symbol± or
∓ are to be read as two separate expressions containing only the upper and only the lower
signs, respectively.) If x ∈ B ∪ Cr and x1 < ψ−(x2) then x ∈ Aξ , whereas if x ∈ B ∪ Cr
and x1 > ψ+(x2) then x ∈ A+∞. From this, it is evident that the only points (x1, x2) ∈ I2
whose ultimate fate under (1.1) is as yet undecided are precisely the ones with

0 ≤ x1 < η,ϕ−(x1) ≤ x2 ≤ ϕ+(x2) or 0 ≤ x2 < η,ψ−(x2) ≤ x1 ≤ ψ+(x2) ; (3.5)
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Figure 3. Illustrating Step II in the proof of Theorem 2.2 (schematic); the white areas marked ??? indicate
the set of points specified by (3.5).

see also Figure 3. Step III below will demonstrate that the assumption g ∈ G entails
ϕ− = ϕ+ (and hence also ψ− = ψ+), which in turn implies that in fact the set of points
specified by (3.5) is but a single curve.

Step III: detailed dynamical analysis

With the functions ϕ± constructed in Step II, consider the set

U := {0 ≤ s ≤ η : ϕ−(s) < ϕ+(s)} ⊂ [0, η[ .

If s ∈ U then

ϕ+ ◦ h−(s) = ϕ+(
g(ϕ−(s), s)

)
≥ ϕ+(

g(ϕ+(s), s)
)

= g
(
h+(s),ϕ+(s)

)
> g

(
h−(s),ϕ−(s)

)
= ϕ− ◦ h−(s) ,

which in turn shows that h−(s) ∈ U , i.e. h−(U) ⊂ U . Conversely, if s $∈ U then h−(s) =
h+(s), and hence

(
h−(s),ϕ− ◦ h−(s)

)
= G2(s,ϕ±(s)

)
=

(
h−(s),ϕ+ ◦ h−(s)

)
,

showing that h−(s) $∈ U , i.e. (h−)−1(U) ⊂ U . In summary, the set U is invariant under
h−. Similarly, U is invariant under h+.

As all assertions in Theorem 2.2(ii) will follow easily afterwards, the main goal of this
step is to show that in fact U = ∅. For a preparatory consideration towards this goal,
assume h−(s) = s for some 0 ≤ s < η. Then x =

(
s,ϕ−(s)

)
∈ I2 is a fixed point of G2.

By the construction of ϕ−, every point y ≺ x is contained in Aξ , and hence the derivative
DG2|x cannot have two eigenvalues with modulus less than one. Observe that
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DG2|x =
[

gx2 ◦G(x) gx1 ◦G(x)
gx1(x)gx2◦G(x) gx1(x)gx1 ◦G(x) + gx2(x)

]
=:

[
α4 α3
α1α4 α1α3 + α2

]
(3.6)

is a positive matrix, with eigenvalues λ1 > λ2 > 0, and as stated above, λ1 ≥ 1. The
eigenspace corresponding to λ1 is spanned by some z = (z1, z2) with z1, z2 > 0. Next,
observe that, for every t > 0,

G2(x + tz) =
(
g(ϕ−(s) + tz2, s + tz1), g(g(ϕ−(s) + tz2, s + tz1),ϕ−(s) + tz2)

)

66
(
s + tα4z1 + tα3z2, g(s + tα4z1 + tα3z2,ϕ−(s) + tz2)

)

5 (s + tα4z1 + tα3z2,ϕ−(s) + tα1α4z1 + t(α1α3 + α2)z2) = x + tλ21z ,

where both inequalities are due to the strict convexity of g . Suppose now that ϕ−(s) <
ϕ+(s). Since t ;→ ϕ−(s) + tz2 is increasing while t ;→ ϕ+(s + tz1) is non-increasing
(and both functions are continuous), there exists 0 < t < (η − s)z−1

1 with ϕ−(s) + tz2 =
ϕ+(s + tz1). But then

(
h+(s + tz1),ϕ+ ◦ h+(s + tz1)

)
= G2(s + tz1,ϕ+(s + tz1)

)
= G2(x + tz)

66 x + tλ21z 5
(
s + tz1,ϕ+(s + tz1)

)
,

which is impossible since ϕ+ is non-increasing. In summary, if x =
(
s,ϕ−(s)

)
is a fixed

point of G2 then necessarily ϕ−(s) = ϕ+(s).
Using this preparatory step, it will now be shown that indeedU = ∅, as claimed earlier.

Suppose by way of contradiction that s ∈ U $= ∅. As seen above, the point x =
(
s,ϕ−(s)

)

cannot be fixed by G2, and hence either h−(s) > s or h−(s) < s.
Assume first that h−(s) > s, and let V = {s ≤ t ≤ η : h−(t) ≤ t}. Note that

V is compact, η ∈ V , and s < v := minV . By the monotonicity and continuity of
h−, limn→∞ (h−)n(s) = v and h−(v) = v. Thus y :=

(
v,ϕ−(v)

)
is fixed by G2, and

consequently ϕ−(v) = ϕ+(v) as well as h+(v) = v. Since
(
s,ϕ−(s)

)
≺

(
s,ϕ+(s)

)
,

(
(h−)n(s),ϕ− ◦ (h−)n(s)

)
= G2n(s,ϕ−(s)

)
≺≺ G2n(s,ϕ+(s)

)

=
(
(h+)n(s),ϕ+ ◦ (h+)n(s)

)
,

and so (h−)n(s) < (h+)n(s) ≤ (h+)n(v) = v, which shows that limn→∞ (h+)n(s) = v
also. Recall now that the fixed point y of the diffeomorphism G2 cannot be a sink (because
G2n(z) → ξ 1 for some points z arbitrarily close to y) but, as just seen, has at least one
(possibly only weakly) attracting direction. In terms of the two eigenvalues λ1,2 of DG2|z
this means that necessarily λ1 ≥ 1 and 0 < λ2 ≤ 1. (Note that α2 > 0 in (3.6), and so it
is impossible to have λ1 = λ2 = 1.) If λ2 < 1 then y has a unique one-dimensional local
stable manifold whereas if λ2 = 1 (and hence λ1 > 1) then y has a (not necessarily unique)
one-dimensional local centremanifold. In either case, by (a hyperbolic or a non-hyperbolic
version, respectively, of) the Hartman–Grobman Theorem [19], it is clear that, with the
appropriate ε > 0, ϕ−(t) = ϕ+(t) for all v − ε ≤ t ≤ v. But since v − ε < (h±)n(s) < v
for all sufficiently large n, clearly (h±)n(s) $∈ U , that is, s $∈ (h±)−n(U) = U , contradicting
the initial assumption s ∈ U . Thus, if s ∈ U then h−(s) > s is impossible.

Assume in turn that s ∈ U but h−(s) < s, and similarly to before, consider the set
W := {0 ≤ t ≤ s : h−(t) ≥ t}. Notice that W $= ∅, as 0 ∈ W , and the argument
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is now analogous to the case of h−(s) > s considered earlier: Let w = maxW . Then
limn→∞ (h−)n(s) = w and h−(w) = w. Since

(
w, h−(w)

)
is fixed byG2, ϕ−(w) = ϕ+(w),

and it is readily deduced fromthe strict order preservationofG2 that limn→∞ (h+)n(s) = w
as well. The fixed point

(
w, h−(w)

)
of G2 is not a sink, which, in complete analogy to

before, implies that ϕ−(t) = ϕ+(t) for all w ≤ t ≤ w + ε with the appropriate ε > 0.
Since w ≤ (h±)n(s) < w + ε for all sufficiently large n, it follows that (h±)n(s) $∈ U , hence
s $∈ (h±)−n(U) = U , again contradicting the initial assumption s ∈ U .

In summary, it has now been proved that if J = [ξ , η] with η > 0 then the functions ϕ−

and ϕ+ constructed in Step II coincide, and so do ψ− and ψ+. From this, the assertions
of Theorem 2.2(ii) are deduced easily: First recall from Step II that

⋃
n≥0 B−

n ⊂ Aξ ∪ {η1}
and I2 \ A+∞ ⊂ ⋂

n≥0 B+
n . Since ϕ− = ϕ+ and ψ− = ψ+, it follows that

⋃
n≥0 B

−
n =⋂

n≥0 B+
n = Aξ . Hence Aξ is a compact convex set, and ∂Aξ = ∂Aξ consists precisely of

the points x ∈ I2 specified by (3.5). In particular, Aξ is non-empty, bounded, and convex,
with (0, 0) ∈ Aξ . Moreover, if (x1, x2) ∈ ∂Aξ then, as also seen in Step II, the sequences
given by

x2n−1 = (G2)n−1(x1, x2)1 and x2n = (G2)n−1(x1, x2)2 , ∀n ≥ 1 ,

converge (to the first and second component, respectively, of a fixed point of G2), due to
the continuity and monotonicity of h− = h+. In other words, the solution (xn) of (1.1) is
asymptotically 2-periodic whenever (x1, x2) ∈ ∂Aξ .
Remark 3.1: Since the functions ϕ− = ϕ+ and ψ− = ψ+ are concave, the curve ∂Aξ =
graphϕ− ∪ graphψ− is Lipschitz continuous. From Step III above, it is evident that ∂Aξ
is a C1-submanifold of I2 which in fact may be as smooth as g .

4. Concluding examples and remarks

This final section illustrates Theorem 2.2 in the context of two specific families of recur-
sions. It also hints at possible follow-up questions for subsequent studies.
Example 4.1: Given real numbers a ≥ 0 and b1, b2 > 0, consider the recursion

xn = a + b1x2n−1 + b2x2n−2 , ∀n ≥ 3 , (4.1)

thus g(x) = a + b1x21 + b2x22. Clearly, g ∈ G, and (4.1) contains (2.4) as the special case
b1 = 1

4 , b2 = 1. For convenience, let a∗ = 1
4 (b1 +b2)−1, and a∗ = 1

4 (b2 −3b1)(b2 −b1)−2

whenever b2 ≥ 3b1. With fg (t) = a + (b1 + b2)t2, it is readily seen that fg has no fixed
point if a > a∗, whereas

ξ = 2a
1 + √

1 − a/a∗ , η = 2a∗(1 +
√
1 − a/a∗) ,

are fixed points of fg whenever a ≤ a∗. As a consequence of Theorem 2.2, A+∞ = I2
if a > a∗, and Aξ ∪ A+∞ = I2 if a ≤ a∗. These two cases are indicated in Figure 4 by
a white and a grey region, respectively. Note that if a = a∗ then ξ = η = 2a∗, and Aξ
is closed. On the other hand, if a < a∗ then Aξ is open (in I2), and (η, η) ∈ ∂Aξ . To
understand the dynamics of (4.1) for (x1, x2) ∈ ∂Aξ in this case, observe that the two
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Figure 4. Visualizing the parameter space of (4.1); if a > a∗ then A+∞ = I2 (white region), whereas if
a ≤ a∗ then Aξ ∪ A+∞ = I2 (grey regions). Parameter values for which (4.1) has a pair of non-constant
2-periodic solutions correspond to the dark-grey region, and a dashed line indicates the special case of
(2.4), for which a∗ = 1

9 and a
∗ = 1

5 .

equations g(x1, x2) = x2, g(x2, x1) = x1 have no solution at all for a > a∗, have only the
obvious solutions x1 = x2 = ξ and x1 = x2 = η for a∗ ≤ a ≤ a∗, but have two additional
solutions (η±, η∓) with

η± = 1
2 (b2 − b1)−1 ± 2

√
a∗√a∗ − a ,

whenever 0 ≤ a < a∗. Thus ∂Aξ = Aη for a∗ ≤ a ≤ a∗, whereas ∂Aξ $= Aη = {(η, η)}
whenever a < a∗. In the latter case, represented by a dark-grey region in Figure 4, for every
solution (xn) of (4.1) with (x1, x2) ∈ ∂Aξ and x1 $= η,

limn→∞ x2n−1 = η+ and limn→∞ x2n = η−

or vice versa, dependingonwhether x1 > η or x1 < η. In particular, (xn) = (η±, η∓, η±, η∓,
. . . ) are the only two non-constant periodic solutions of (4.1); though unstable, they are
conditionally attracting, i.e. attracting within ∂Aξ .

Example 4.2: As a generalization of (1.2), consider the difference equation

xn = b1x1+α1n−1 + b2x1+α2n−2 , ∀n ≥ 3 , (4.2)

where b1, b2,α1,α2 ∈ R+. Thus g(x) = b1x1+α11 + b2x1+α22 and g ∈ G, so Theorem 2.2
applies. The associatedmap fg(t) = b1t1+α1 +b2t1+α2 has the fixed points ξ = 0 and η > 0,
with η being uniquely determined by b1ηα1 + b2ηα2 = 1. It follows that A0 ∪ A+∞ = I2.
To study the dynamics of (4.2) on ∂A0, consider the two equations

g(x1, x2) = b1x1+α11 + b2x1+α22 = x2 , g(x2, x1) = b1x1+α12 + b2x1+α21 = x1 . (4.3)

Note that (4.3) is invariant under an interchange of x1 and x2, and x1x2 = 0 entails
x = (0, 0). To find all solutions x ∈ I2 of (4.3) with x1 $= x2, therefore, it suffices to
consider the case x2 = tx1 > 0 with t > 1. This yields

xα11 = t(tα2 − 1)
b1(t2+α1+α2 − 1)

, xα21 = t2+α1 − 1
b2(t2+α1+α2 − 1)

,
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and consequently

bα21 b−α1
2 = tα2(tα2 − 1)α2

(t2+α1 − 1)α1(t2+α1+α2 − 1)α2−α1
=: hα1,α2(t) . (4.4)

The auxiliary function hα1,α2 : ]1,+∞[ → R+ is C∞, with

hα1,α2(1+) = α
α2
2

(2 + α1)α1(2 + α1 + α2)α2−α1
, h′

α1,α2(1+) = 0 ,

and limt→+∞ hα1,α2(t) = 0. Thus, assuming that hα1,α2 is decreasing, either b
α2
1 b−α1

2 ≥
hα1,α2(1+), in which case ∂A0 = Aη, or else bα21 b−α1

2 < hα1,α2(1+), in which case ∂A0 $= Aη,
and each solution (xn) of (4.2) with (x1, x2) ∈ ∂A0 \ {(η, η)} is attracted to one of two
non-constant 2-periodic solutions. If hα1,α2 is decreasing, therefore, (4.2) exhibits exactly
the two dynamical scenarios observed previously for (4.1) with a < a∗.

While it may be tedious to identify all α1,α2 > 0 for which hα1,α2 is decreasing, some
special cases are easy to analyze. For instance, if α1 = α2 the function

hα1,α1(t)
1/α1 = t1+α1 − t

t2+α1 − 1

is readily seen to be decreasing on ]1,+∞[, with hα1,α1(1+)1/α1 = α1(2 + α1)
−1. In case

α1 = α2, therefore, each solution of (4.2) with (x1, x2) ∈ ∂A0 and x1 $= η either converges
to η, or else is attracted to a non-constant 2-periodic solution, depending on whether
b1b−1

2 ≥ α1(2 + α1)
−1 or not. Note that for α1 = α2 = 1 the condition b1b−1

2 ≥
α1(2 + α1)

−1 = 1
3 is equivalent to b2(b1 + b2)−1 ≤ 3

4 , which was encountered already in
Example 4.1 for a = 0; see also Figure 4.

It is important to notice, however, that the function hα1,α2 may not be decreasing for all
α1,α2. To see this, choose for example α1 = 10 and α2 = 4, and hence

h10,4(t) = t4(t4 + 1)6(t8 + 1)6

(t8 + t4 + 1)10
.

Note that h10,4(1) = 212 · 3−10, h′
10,4(1) = 0, and limt→+∞ t4h10,4(t) = 1. The function

h10,4 is not decreasing on [1,+∞[; in fact, with t∗ =
(
2 +

√
3
)1/4 > 1, it is increasing on

[1, t∗], decreasing on [t∗,+∞[, and h10,4(t∗) = 215 · 33 · 5−10 > h10,4(1). It follows that
for h10,4(1) < b41b

−10
2 < h10,4(t∗), the left equality in (4.4) holds with two different values

of t > 1. Correspondingly, the difference equation

xn = b1x11n−1 + b2x5n−2 , ∀n ≥ 3 , (4.5)

has four different non-constant 2-periodic solutions in this case. In total, (4.5) admits
the following possible dynamical scenarios for (x1, x2) ∈ ∂A0, depending on the value of
β := b41b

−10
2 > 0; see also Figure 5.

(i) If β > h10,4(t∗) then simply ∂A0 = Aη.
(ii) If β = h10,4(t∗) then (4.5) has two conditionally semi-attracting non-constant 2-

periodic solutions.
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Figure 5. Depending on the value of β = b41b
−10
2 > 0, the solutions of (4.5) exhibit four different

dynamical scenarios on ∂A0; see Example 4.2.

(iii) As seen above, if h10,4(1) < β < h10,4(t∗) then (4.5) has four non-constant 2-
periodic solutions of which two are conditionally attracting and two are repelling.
Also, the constant solution xn ≡ η of (4.5) is conditionally attracting in this case.

(iv) Finally, if β ≤ h10,4(1) then only two (conditionally attracting) 2-periodic solutions
exist, and the constant solution xn ≡ η is repelling.

In the above examples, note that if b1 = b2 (and α1 = α2 in Example 4.2) then the
recursions (4.1) and (4.2) do not have any non-constant 2-periodic solutions. These are
special instances of a more general observation that follows directly from the proof of
Theorem 2.2, together with the fact that f ⊕ f ∈ G for every f ∈ F .
Proposition 4.3: Let f ∈ F . Then for each solution (xn) of

xn = f (xn−1) + f (xn−2) , ∀n ≥ 3 ,

either xn → ξ ∈ I with 2f (ξ) = ξ , or else xn → +∞.
An inspection of the arguments in Section 3 shows that parts of the conclusion of

Theorem 2.2 remain intact if the C1-function g : I2 → I has the property that

g( · , x2), g(x1, · ) ∈ F , ∀x ∈ I2 . (4.6)

Clearly, every g ∈ G satisfies (4.6), but the converse is not true. For instance, if f1, f2 ∈ F
and f1(0), f2(0) > 0 then (4.6) holds for g = f1 = f2, defined as f1 = f2(x) = f1(x1)f2(x2)
for all x ∈ I2, and yet f1 = f2 may not belong to G. (Recall that, by contrast, f1 ⊕ f2 ∈ G
whenever f1, f2 ∈ F .)
Example 4.4: Let f (t) = a + t2, with a ≥ 0, and consider

g(x) = f = f (x) = (a + x21)(a + x22) , ∀x ∈ I2 .

Clearly, f ∈ F , yet g $∈ G, and hence Theorem 2.2 does not apply. Still, the asymptotic
behaviour of (1.1) is much aligned with that theorem. Specifically, it is straightforward to
identify a number 0 < a∗ < 3 · 2−8/3 such that for a ≥ a∗ all conclusions of Theorem 2.2
remain correct: If a > 3 · 2−8/3 then simply A+∞ = I2, whereas if a∗ ≤ a ≤ 3 · 2−8/3

then there exists a unique ξ > 0, depending on a, with Aξ ∪ A+∞ = I2, where Aξ is
a non-empty bounded convex neighbourhood of (0, 0). In fact, if a = 3 · 2−8/3 then
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ξ = 2−4/3 and Aξ = Aξ , whereas if a < 3 · 2−8/3 then ∂Aξ = Aη for a unique η > ξ . For
0 < a < a∗ this partition of I2 persists, however Aξ no longer is convex. Finally, if a = 0
then g( · , 0) = g(0, ·) = 0 $∈ F , and thus even (4.6) fails. Nonetheless A0 ∪ A+∞ = I2,
withA0 =

{
x ∈ I2 : x

√
3−1

1 x2 < 1
}
, and ∂A0 = A1. Though still a neighbourhood of (0, 0),

the set A0 is neither bounded nor convex.
Difference equations of ‘product-type’ have been studied e.g. in [4,17,28], though with

somewhat different objective. Note that, unlike in the previous example, g = f1 = f2 may
belong toG for some f1, f2 ∈ F , inwhich case Theorem2.2 does apply directly. For instance,
it is easily checked that f1= f2 ∈ G provided that the (almost everywhere defined) functions
(f ′
1/f1)

′ and (f ′
2/f2)

′ both are positive. For example, cosh ( · 2 + a1) = cosh ( · 2 + a2) ∈
G for all a1, a2 ≥ 0. The following analogue of Proposition 4.3, then, is an immediate
consequence of the proof of Theorem 2.2.
Proposition 4.5: Let f ∈ F , and assume that (f ′/f )′ > 0. Then for each solution (xn) of

xn = f (xn−1)f (xn−2) , ∀n ≥ 3 ,

either xn → ξ ∈ I with f (ξ)2 = ξ , or else xn → +∞.
Remark 4.6: If g ∈ G is real-analytic on (R+)2 then (1.1) can have at most finitely
many 2-periodic solutions. (All functions g considered as examples in this article are real-
analytic.) It seems plausible that the assumption g ∈ G does not in general restrict the
number of such solutions any further, i.e. in Theorem 2.2(ii) the curve ∂Aξ may contain
any (even) number of non-constant 2-periodic solutions of (1.1). At the time of writing,
the authors are not aware of a concrete example where this number is larger than four, the
latter having been observed in (4.5).

It is natural to askwhether an analogue of Theorem2.2 holds for higher-order difference
equations

xn = g(xn−1, xn−2, . . . , xn−d) , ∀n ≥ d + 1 , (4.7)

with an integer d ≥ 3. For instance, an ad-hoc analysis along the lines of Section 3 shows
that for every a > 0, the set A0 ⊂ I3 associated with the third-order equation

xn = x2n−1 + ax2n−2 + x2n−3 , ∀n ≥ 4 , (4.8)

is a bounded convex neighbourhood of (0, 0, 0), and A0 ∪ A+∞ = I3. For a ≤ 6, each
solution of (4.8) with (x1, x2, x3) ∈ ∂A0 converges to (a + 2)−1, whereas for a > 6, most
such solutions are attracted to one of two non-constant 2-periodic solutions; the latter are
(conditional) sinks for (4.8) within the surface ∂A0. In general, it is conceivable that the
dynamics of (4.7) may allow for more alternatives than Theorem 2.2, even when d = 3.

More generally still, one may consider difference equations

xn = g(xn−N1 , xn−N2 , . . . , xn−Nd ) , ∀n ≥ Nd + 1 , (4.9)

with fixed positive integers N1 < N2 < · · · < Nd (assumed w.l.o.g. to not have a common
factor), of which

xn = x2n−3 + x2n−7 , ∀n ≥ 8 ,
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would be a simple example. While the definition of the family G in (2.3) can be adapted to
(4.7) without difficulty, doing the same for (4.9) in a fruitful way seems less straightforward
if g is understood as a function on INd rather than on Id .
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