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Regular and chaotic motion of a kicked pendulum: A Markovian approach

Mechanical devices subject to impulsive excitation may exhibit very complicated dynamics. Though desirable, a
complete analysis of the statistical morphogenesis of (the maps induced by) such systems usually is highly demanding.
We therefore focus on a special class of maps nevertheless wide enough to comprise a number of interesting examples.
Furthermore, an approximation technique tailored to this specific class is shown to improve Markovian approximation
techniques discussed in the literature.

1. Statistical stability

Let (I,B,)) denote the unit interval together with the o-algebra of its Borel subsets and Lebesgue measure; futher-
more, assume that the measurable map 7 : I — I be non-singular, i.e. A(T~'(B)) = 0 whenever \(B) = 0. The
uniquely determined linear operator Pr on L' satisfying

/ fd)\:/Pde)\ for all B € B and f € L'
T-1(B) B

is called the Frobenius-Perron operator associated with T'. This positive, non-expansive operator constitutes a major
tool in the statistical analysis of dynamical systems ([1,4]). According to [4] the map T is termed statistically stable if
there exists a unique Pr-invariant density f* € L' and PR f — f* asn — oo for every density f. Conditions implying
statistical stability (as well as the weaker form of asymptotic periodicity) are extensively studied in the literature.
In view of the application below we state the following result which may be considered a slight modification of the
classical Lasota-Yorke theorem ([4]).

Theorem Assume that for a finite number of points 0 =ag < a1 < ...<ap_1 < apr=1themap T :1 -1
is C? on |a;—1,a;[ and has a C'-extension to [a;—1,a;] for all i = 1,...,r. Then T is statistically stable if only
lim, »q; T(x) =0 for alli=1,...,r and sup,c; T'(z) < —7 for some 7 > 1.

In order to deal with the mechanical application below we consider a special class of T(z)
maps on I. Let f : I — [0,00[ be a strictly decreasing C? function with f(1) = 1
and § > 1. The map T on [0, co[ defined as

T(z) = { flz) ifzel,

Bz ifxgl,
induces a measurable map T on [ according to T'(z) := T™®) () where n(z) := ‘ :
min{l € IN|T!(z) € I'}. A short calculation yields T'(z) = f(z)3~ 085 /(®)1; conse- doar az a3 ©

—1 . . .
quently T'(I) C [~+,1], and the analysis of T' may be restricted to the latter interval. Fig.1 A map satisfying the

assumptions of the modified

Corollary Let f and 8 be as above. If the induced map T is expanding, i.e. L Yorke th
inf, |T'(z)| > 1 on [B71,1], then it is statistically stable. asota-Yorke theorem

2. An example: The kicked pendulum

We shall statistically investigate the dynamics of a kicked long pendulum with linear friction (see figure 2). The
linearized equation of motion reads mi?¢ + k¢ + mgly = 0. In order to keep the pendulum in motion a kick is
exerted whenever the pendulum’s angular velocity does not exceed wy as the pendulum goes through the vertical
position from the right to the left, i.e. whenever 0 < —¢[,—0 < wo; specifically, we assume that at each kick the
angular velocity ¢~ is instantaneously enlarged to o™ = K(¢~) > ¢~. After introducing the non-dimensional

quantities  := ¢~ /wp as well as p := #\/Z and o := —2Z2_ we are more or less in the situation discussed above
m g9 ﬂ

with f(z) := K(woz)/wo and 8 = e?. (For simplicity the damping is assumed to be weak, i.e. 0 < p < 1.) Clearly,
any measurable map on the unit interval could be obtained in this way by appropriately specifying the kick-law K.
In the sequel we shall, however, exclusively deal with the affine rule f(z) := 1+ a(1 — ) where a > 0. Intuitively a



the parameter . Depending on the parameters o and « the dynamics of the
resulting map T(,, o) on I may differ quite considerably.

By introducing the boundary functions b, (£) = (e — €f)/(e® — 1) and
bl (&) :=e*¢ (s € IN), it is easy to see that T(s,q) has an attracting fixed point
z* whenever (o,a) € B, := {(&,n) € R4|b, (£) <n < b (&)} for some s € IN.
In the latter case X :={z € I'|T{; , (x) # 2"} turns out to be a Cantor set
if s > 3. Its Hausdorff dimension can be calculated as dimp (X;) = logs Z
where Z denotes the unique solutionin [1, 3] of z+22+.. .+ 251 = 1% @ (If
(0,a) € B then dimpg(X;) < 1; on the boundary by one finds dimg (X;) =1
while on b the relation dimg(X;) = 07* < 1 holds, with ¢} being uniquely
defined by b; (03) = b} (0}).) Furthermore, (X;,T(4,q)|x,) is easily seen to
be topologically conjugate to the full shift on s — 1 symbols (cf.[2]). The sets
B; (s > 3) thus provide “tongues” of transient chaos (see figure 3).
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Fig.2 The pendulum model (left)
and the non-dimensional kick law f

If (0,0) € Usen B, the map T(s,q) is piecewise expanding and therefore statistically stable by the above corollary.
In general the unique 7T{, o)-invariant density f* will be rather complicated. (Since T, o) is piecewise affine one
could write down an explicit formula for f* which in fact turns out to be hardly illuminating,[3].) Probably the most
convenient way of discussing f* and its morphogenesis under varying (o, ) consists in approximating T(, ) by a
Markov map. By definition, such a map sends each interval Ja;_1,a;[ to a union of such intervals. It is well known
that the analysis of Pr reduces to a matter of finite-dimensional linear algebra, if T' is an expanding, piecewise affine
Markov map. In particular, there always exists an invariant density which is piecewise constant. Moreover, a lot of
approximation techniques have been discussed in the literature (see [1] and the references cited therein). However,
the computational effort due to these methods usually grows exponentially with the number of approximation steps
that have to be performed. As far as the present problem is concerned, a much better approximation can be found.
Although T(, o) will not be Markovian in general, it might be so with respect to a refined partition: assume that
T{},’a) (0) € {ao,...,a,} for some n € IN. It is easy then to see that T(,,) is a Markov map with respect to

{ao, ..., a:}U{T(4,0)(0), ... ,T(Zjal) (0)}. Consequently, the unique solution of Pr,, , f* = f* can be found by solving
a linear equation in IR”t"~2. (Observe that the dimension of the latter problem grows linearly with n.) For the
system under consideration it is easily seen that the set made up by those parameters (o, ) which give rise to a
Markov map is in fact dense in ]Ri. It therefore should not come as a surprise that our Markovian analysis provides
a rather complete picture of

the system’s statistical mor-

phogenesis. A few results in histograms
this direction are summarized (107 iterates)
by figure 3. It is worth not-
ing that due to the discontinu-
ities in the family T(, o) there
can be observed more dra-
matic dynamical changes than
for other, more regular fami-
lies. For example, if o crosses
one of the lines b} from below,
an immediate transition from
transient to full chaos takes
place via a continuum of two-

log o

full chaos

transient chaos

oc=0.6
periodic points; following [2] a=4.4
we call this effect a chaotic ex-
plosion. Fig.3 Statistical analysis in the parameter plane; a few first and second order

Markovian situations are indicated by solid and broken lines respectively.
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