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Abstract. A solution of a nonautonomous ordinary differential equation is
finite-time hyperbolic, i.e. hyperbolic on a compact interval of time, if the
linearisation along that solution exhibits a strong exponential dichotomy. As a
finite-time variant and strengthening of classical asymptotic facts, it is shown
that finite-time hyperbolicity guarantees the existence of stable and unstable
manifolds of the appropriate dimensions. Eigenvalues and -vectors are often
unsuitable for detecting hyperbolicity. A (dynamic) partition of the extended
phase space is used to circumvent this difficulty. It is proved that any solution
staying clear of the elliptic and degenerate parts of the partition is finite-time
hyperbolic. This extends and unifies earlier partial results.

1. Introduction. Ever since the emergence of dynamical systems theory, hyper-
bolicity has been recognised as a fundamental concept. Variations and generalisa-
tions of hyperbolicity as well as their ramifications continue to play a vital role in
modern dynamics [14]. Prominent examples from the more recent past include the
formation of the theories of nonuniformly and partially hyperbolic systems, nonuni-
form exponential dichotomies as well as finite-time dynamics. The development of
the latter field is to a considerable extent driven by applications in fluid dynam-
ics and oceanography, where a nonautonomous differential equation may describe
the instationary velocity field around an airfoil, within a tornado, or of a stretch of
ocean surface. The mathematical models used for these problems are often based on
sophisticated measurements or elaborate numerical simulations. Naturally, there-
fore, these models, as well as any conclusions drawn from them, are valid only over a
bounded interval of time. Many classical, that is, asymptotic concepts of dynamics
do not apply in such a situation and have to be modified or replaced altogether
with appropriate finite-time substitutes. The identification and systematic study
of these finite-time concepts, informally referred to as finite-time dynamics, has re-
cently experienced a surge in activity, see e.g. [1, 3, 16, 17] and the many references
therein. The present article contributes to this development a thorough finite-time
analysis of one of dynamics’ fundamental notions viz. hyperbolicity and is organised
as follows: Based upon a form of (finite-time) hyperbolicity that originates from [7],
the main result of Section 2 (Theorem 3) asserts that every hyperbolic solution of
a nonautonomous differential equation comes with stable and unstable manifolds.
While the statement of the theorem is exactly what could be expected by analogy
with classical results, its proof is different as a stronger conclusion (concerning the
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uniform monotone growth and decay of solutions) has to be derived from somewhat
weaker assumptions. One possible way of establishing hyperbolicity is to impose
conditions on the (typically time-dependent) eigenvalues and -vectors of the associ-
ated linearisation. As evidenced by examples, this approach has both its merits and
pitfalls. To avoid the latter, a partition of the extended phase space is exploited in
Section 3. Early versions of dynamic partitions have been utilised in [9, 10]. In [1],
the concept has been extended to arbitrary dimensions, norms, and time-varying
vector fields. In this general setting, the main results (Theorem 7 and Corollary 8)
show that dynamic partitions, although essentially a Eulerian concept, can be very
useful in identifying (Lagrangian) hyperbolic behaviour: Any solution that does not
intersect the elliptic and degenerate parts of the partition is, in fact, hyperbolic.
This extension of earlier results in [2, 10] turns out to be best possible in several
ways.

2. Finite-time hyperbolicity. Consider the nonautonomous ordinary differential
equation

ẋ = f(t, x) , (1)

where f : I ×U → R
d is C1 with continuous second derivatives Dtxf , Dxtf , Dxxf ,

and I ⊂ R and U ⊂ R
d are, respectively, a non-degenerate closed interval and a

non-empty open set. The linearisation along a solution µ : I → U of (1) is

ẏ = Dxf
(
t, µ(t)

)
y . (2)

In the classical asymptotic theory (i.e. for I = R) a solution µ of (1) is hyperbolic
if the associated linearisation (2) has an exponential dichotomy, see e.g. [5, 14, 15].
In this article, only the finite-time case will be studied in detail. Thus assume from
now on that I = [t−, t+] with −∞ < t− < t+ < +∞. For the finite-time case, the
notion of hyperbolicity must be modified as quantitative or transitive effects have
to be taken into account [3]. To allow for sufficient flexibility in quantifying e.g. the
growth and decay of solutions of (2), arbitrary norms on R

d induced by an inner

product will be considered, i.e., the family of norms ‖ · ‖Γ =
√
〈·,Γ·〉 will be used,

where Γ ∈ R
d×d is any symmetric positive definite matrix, i.e. Γ⊤ = Γ > 0; here,

as usual, 〈x, y〉 = ∑d
i=1 xiyi is the standard inner product on R

d, and the symbol

‖ ·‖Γ also denotes the norm induced on R
d×d. Quantities depending on Γ have their

dependence made explicit by a subscript which is suppressed only if Γ equals idd×d,
the d× d identity matrix.

To define finite-time hyperbolicity, instead of (2) consider more generally any
nonautonomous linear equation

ẏ = A(t)y , (3)

where A : I → R
d×d is C1. Let Φ : I × I → R

d×d denote the associated evolution
operator, i.e., y : t 7→ Φ(t, s)η is, for any η ∈ R

d, the unique solution of (3) satisfying
y(s) = η. A projection-valued function P : I → R

d×d is an invariant projector if
P (t)Φ(t, s) = Φ(t, s)P (s) for all t, s ∈ I. Note that t 7→ P (t) is continuous for any
invariant projector, and rkP (t) is a constant non-negative integer not larger than
d, denoted henceforth as rkP .

Definition 1. Let Γ⊤ = Γ > 0. Equation (3) is hyperbolic (on I w.r.t. ‖ · ‖Γ) if
there exists an invariant projector P , together with positive constants α, β, such
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that for all t, s ∈ I and y ∈ R
d,

∥∥Φ(t, s)P (s)y
∥∥
Γ
≤ e−α(t−s)

∥∥P (s)y
∥∥
Γ
, ∀t ≥ s , (4)

∥∥Φ(t, s)
(
idd×d − P (s)

)
y
∥∥
Γ
≤ eβ(t−s)

∥∥(idd×d − P (s)
)
y
∥∥
Γ
, ∀t ≤ s . (5)

A solution µ of (1) is hyperbolic (on I w.r.t. ‖ · ‖Γ) if the associated linearisation
(2) is hyperbolic.

Remark 2. (i) The estimates (4) and (5) incorporate a finite-time variant of the
classical notion of an exponential dichotomy [5, 15]. They are more restrictive than
the latter because an arbitrary multiplicative constant on the right-hand side of (4)
or (5) would render the concept meaningless.

(ii) In essence, hyperbolicity according to Definition 1 is equivalent to uniform
hyperbolicity as advocated in [7, Def.1]: With the notation used in that paper, one
can simply take E+

τ (h) = kerP (τ), E−
τ (h) = imP (τ) for all τ, h.

(iii) Recall that if (3) is autonomous (i.e., if A does not depend on t), then it
has a (classical) exponential dichotomy if and only if ℜλ 6= 0 for every eigenvalue
λ of A. In this case, there exists a norm ‖ · ‖Γ w.r.t. which (3) is hyperbolic on
every compact interval. To see this, let Es and Eu be the sum of the generalised
eigenspaces of A corresponding to eigenvalues with negative and positive real part,
respectively. Then R

d = Es ⊕ Eu, and with P0 denoting the projection onto Es

along Eu define Γ via

〈x,Γy〉 =
∫ +∞

0

e2ασ
[
eσAP0x, e

σAP0y
]
dσ (6)

+

∫ 0

−∞

e−2βσ
[
eσA(idd×d − P0)x, e

σA(idd×d − P0)y
]
dσ , ∀x, y ∈ R

d ,

where [ ·, · ] is any inner product on R
d, and α, β > 0 are any numbers with

α < min{−ℜλ : ℜλ < 0} , β < min{ℜλ : ℜλ > 0} .
It is readily confirmed that Γ⊤ = Γ > 0. Moreover, since Φ(t, s) = e(t−s)A,

‖Φ(t, s)P0y‖2Γ =

∫ +∞

0

e2ασ
[
eσAP0e

(t−s)AP0y, e
σAP0e

(t−s)AP0y
]
dσ

= e−2α(t−s)

∫ +∞

t−s

e2ασ
[
eσAP0y, e

σAP0y
]
dσ ≤ e−2α(t−s)‖P0y‖2Γ ,

for all t ≥ s and y ∈ R
d. Hence (4), and similarly (5), holds with P (s) ≡ P0, and

every solution of ẋ = Ax is hyperbolic on any I w.r.t. ‖ · ‖Γ. Note, however, that
the converse is not true in general, i.e., (3) may, for constant A, be hyperbolic on
every interval I and w.r.t. ‖ · ‖Γ for all Γ even though ℜλ = 0 for some eigenvalue
λ of A, see [3, Exp.24].

(iv) In Definition 1, rkP is uniquely determined whereas, unlike in the classical
case, the invariant projector P itself may not be unique, see [3, Exp.27].

In dynamical systems theory a most fundamental implication of hyperbolicity
is the existence of (local) stable and unstable manifolds [14, 15]. It will now be
shown that finite-time hyperbolicity entails the existence of similar objects, see also
Figure 1. To this end, denote by t 7→ ϕ(t; s, ξ) the (unique) solution of (1) with
x(s) = ξ ∈ U . If µ : I → U is a solution of (1) then ϕ(t; s, ξ) exists for all t ∈ I,
provided that ‖ξ − µ(s)‖Γ is sufficiently small.
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Theorem 3. Assume the solution µ : I → U of (1) is hyperbolic w.r.t. ‖ · ‖Γ, with
invariant projector P and constants α, β > 0, and let k = rkP . Then, for every
0 < ρ < 1 there exist C1-manifolds W s,Wu ⊂ I × U of dimensions k + 1 and
d− k + 1, respectively, with the following properties:

(i) W s and Wu are invariant, i.e., (s, ξ) ∈ W s if and only if
(
t, ϕ(t; s, ξ)

)
∈ W s

for all t ∈ I, and similarly for Wu;
(ii) For every t ∈ I the fibres

W s(t) = {x ∈ U : (t, x) ∈ W s} , Wu(t) = {x ∈ U : (t, x) ∈ Wu} ,
are C1-manifolds of dimensions k and d− k, respectively, with

Tµ(t)W
s(t) = imP (t) , Tµ(t)W

u(t) = kerP (t) ,

and
W s(t) ∩Wu(t) = {µ(t)} ; (7)

(iii) For every (s, ξ) ∈ W s,

‖ϕ(t; s, ξ)− µ(t)‖Γ ≤ e−αρ(t−s)‖ξ − µ(s)‖Γ , ∀t ≥ s ; (8)

similarly, for every (s, ξ) ∈ Wu,

‖ϕ(t; s, ξ)− µ(t)‖Γ ≤ eβρ(t−s)‖ξ − µ(s)‖Γ , ∀t ≤ s . (9)

W u

W s

R
d {t}

× R
d

t−

(

t+, ϕ(t+; t, ξ)
)

(t, ξ)

µ

(

t−, ϕ(t−; t, ξ)
)

t+

t

im
P
(t)

k
er

P
(t
)

W u(t)

W s(t)
(

t+, µ(t+)
)

(

t−, µ(t−)
)

Figure 1. Stable and unstable manifolds of a hyperbolic solution.

Proof. For the reader’s convenience the argument, essentially a simplified and gen-
eralised version of A.2–A.8 in [8], is divided into three steps. Firstly, (1) is extended
to R × R

d in a way that makes it more amenable to analysis. Then, using a con-
traction mapping argument, W s and Wu are identified as families of solutions to
an integral equation equivalent to (1) in its extended form; properties (i) and (ii)
follow directly from this. Finally, (iii) is established via a Gronwall-type estimate.
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Step 1. Note first that substituting x = µ+ z transforms (1) into

ż = A(t)z + g(t, z) , (10)

where A = Dxf(·, µ) : I → R
d×d and g are C1, and

g(t, 0) = 0 , Dzg(t, 0) = 0 , ∀t ∈ I . (11)

By assumption the linearisation ẏ = A(t)y is hyperbolic on I w.r.t. ‖ · ‖Γ, with
invariant projector P : I → R

d×d and constants α, β > 0. Given 0 < ε ≤ 1, let

Iε := [t− − ε, t+ + ε] and choose a C1-function Ã : Iε → R
d×d with Ã(t) = A(t) for

all t ∈ I. Also pick g̃ ∈ C1(R × R
d;Rd) such that g̃(t, z) = g(t, z) for all t ∈ I and

‖z‖Γ sufficiently small, and g̃(t, ·) = 0 for all t ∈ R\Iε. By (11), g̃ can in fact be
chosen such that, with the appropriate δε > 0,

‖g̃(t, z1)− g̃(t, z2)‖Γ ≤ ε‖z1 − z2‖Γ , ∀t ∈ R ,

provided that ‖z1‖Γ + ‖z2‖Γ < δε. Denote by Φ̃ the evolution operator associated

with ẏ = Ã(t)y on Iε; clearly Φ̃(t, s) = Φ(t, s) for all t, s ∈ I. Define

A− := −(α+ β)Φ̃(t− − ε, t−)P (t−)Φ̃(t− − ε, t−)
−1 + β idd×d ,

A+ := −(α+ β)Φ̃(t+ + ε, t+)P (t+)Φ̃(t+ + ε, t+)
−1 + β idd×d ,

and let Ã(t) equal A− and A+ whenever t < t− − ε and t > t+ + ε, respectively.

With this, the linear equation ẏ = Ã(t)y together with its associated evolution

operator, again denoted by Φ̃, is now defined on the entire real axis and has a
(classical) exponential dichotomy: With P (t) := P (t− − ε) for all t ≤ t− − ε and
P (t) := P (t+ + ε) for all t ≥ t+ + ε, and with some C1 ≥ 1 independent of ε, the
estimates

∥∥Φ̃(t, s)P (s)y
∥∥
Γ
≤ C1e

−α(t−s)
∥∥P (s)y

∥∥
Γ
, ∀t ≥ s , (12)

∥∥Φ̃(t, s)
(
idd×d − P (s)

)
y
∥∥
Γ
≤ C1e

β(t−s)
∥∥(idd×d − P (s)

)
y
∥∥
Γ
, ∀t ≤ s , (13)

hold for all y ∈ R
d, but also

supt∈R

(
‖Ã(t)‖Γ + ‖P (t)‖Γ

)
≤ C1 .

This follows immediately from the fact that P : R → R
d×d is continuous and

constant outside Iε. Note that Ã : R → R
d×d is C1 except for the two jump

discontinuities at t− − ε, t+ + ε. Also, with some constant C2 ≥ 1 that does

not depend on ε, the estimate ‖Φ̃(t, s)‖Γ ≤ C2 holds whenever t, s ∈ Iε. Let
C = 1+max(C1, C2). With these preparations, consider (10) with A and g replaced

by Ã and g̃, respectively, but for ease of notation suppress the tilde from now on.
For t 6∈ Iε the right-hand side of (10) is continuous and linear (in z). With the
appropriate δ0 > 0, therefore, the solution z = ϕ(·; s, ζ) of (10) with z(s) = ζ exists
for all t ∈ R, provided that ‖ζ‖Γ < δ0; assume w.l.o.g. that δε ≤ δ0.

Step 2. To identify W s and Wu a contraction mapping argument will be used.
To motivate this approach, for any solution z of (10) let

zs(t) := P (t)z(t) , zu(t) :=
(
idd×d − P (t)

)
z(t) ,
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so that z = zs + zu, and observe that (10) may, for any τ1, τ2 ∈ R, equivalently be
written as a pair of integral equations,

zs(t) = Φ(t, τ1)z
s(τ1) +

∫ t

τ1

Φ(t, σ)P (σ)g(σ, z) dσ , (14)

zu(t) = Φ(t, τ2)z
u(τ2) +

∫ t

τ2

Φ(t, σ)
(
idd×d − P (σ)

)
g(σ, z) dσ , (15)

for all t ∈ R. If ‖z(t)‖Γ is bounded as t → +∞ then by (13), for every t ≥ t−,

‖Φ(t, τ2)zu(τ2)‖Γ ≤ C1e
β(t−τ2)‖zu(τ2)‖Γ → 0 as τ2 → +∞ .

Thus, for every solution z of (10) that remains bounded in forward time (15) takes
the form

zu(t) = −
∫ +∞

t

Φ(t, σ)
(
idd×d − P (σ)

)
g(σ, z) dσ , ∀t ∈ R . (16)

In view of (14) and (16) let Ω+ be the linear space

Ω+ =
{
ω = (ω1, ω2) |ω1, ω2 : [t−,+∞[→ R

d bounded and continuous,

ω1(t) ∈ imP (t), ω2(t) ∈ kerP (t) ∀t ≥ t−
}
,

which is a Banach space when endowed with the norm

9ω9 := supt≥t
−

(
‖ω1(t)‖Γ + ‖ω2(t)‖Γ

)
,

and denote by Ω+
δ the closed δ-ball in Ω+ centred at (0, 0). For every τ ∈ I and

ζ ∈ imP (τ) define the map F (τ,ζ) : Ω+
δ → Ω+ according to

F (τ,ζ) : ω 7→
(
Φ(t, τ)ζ +

∫ t

τ

Φ(t, σ)P (σ)g(σ, ω1 + ω2) dσ ,

−
∫ +∞

t

Φ(t, σ)
(
idd×d − P (σ)

)
g(σ, ω1 + ω2) dσ

)
.

Note that F (τ,ζ)(0, 0) = (Φ(·, τ)ζ, 0) so that in particular F (τ,0)(0, 0) = (0, 0) for all
τ ∈ I. Also,

9 F (τ,ζ)(ω)−F (τ,ζ̂)(ω)9 = 9(Φ(·, τ)(ζ − ζ̂), 0)9 ≤ C‖ζ − ζ̂ ‖Γ (17)

for all τ ∈ I, ζ, ζ̂ ∈ imP (τ) and ω ∈ Ω+
δ . It will now be shown that F (τ,ζ) is in fact

a contraction of Ω+
δ into itself, provided that δ and ‖ζ‖Γ are sufficiently small. To

this end observe that 9ω9 ≤ δε implies

9F (τ,ζ)(ω)9 ≤ supt≥t
−

(
‖Φ(t, τ)ζ‖Γ +

∣∣∣∣
∫ t

τ

∥∥Φ(t, σ)P (σ)g(σ, ω1 + ω2)
∥∥
Γ
dσ

∣∣∣∣+

+

∫ +∞

t

∥∥Φ(t, σ)
(
idd×d − P (σ)

)
g(σ, ω1 + ω2)

∥∥
Γ
dσ

)

≤ C‖ζ‖Γ + C2εδε(α
−1 + t+ − t− + β−1) ;

here the estimates

∣∣∣∣
∫ t

τ

∥∥Φ(t, σ)P (σ)g(σ, ω1 + ω2)
∥∥
Γ
dσ

∣∣∣∣ ≤

∫ t

τ

Ce−α(t−σ)Cεδε dσ ≤ C2εδεα
−1 if t ≥ τ ,

∫ τ

t

C2εδε dσ ≤ C2εδε(t+ − t−) if t < τ ,
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as well as
∫ +∞

t

∥∥Φ(t, σ)
(
idd×d−P (σ)

)
g(σ, ω1+ω2)

∥∥
Γ
dσ ≤

∫ +∞

t

Ceβ(t−σ)Cεδε dσ = C2εδεβ
−1

have been used. Thus if

ε <
1

2C2
(α−1 + t+ − t− + β−1)−1 =: ε1 , ‖ζ‖Γ <

δε

2C
=: δ′ε , (18)

then F (τ,ζ)(Ω+
δε
) ⊂ Ω+

δε
. Moreover, with (18) for all ω, ω̂ ∈ Ω+

δε
,

9F (τ,ζ)(ω)−F (τ,ζ)(ω̂)9 ≤ εC2(α−1 + t+ − t− + β−1) 9 ω − ω̂ 9

≤ 1
2 9 ω − ω̂ 9 , (19)

showing that F (τ,ζ) is indeed a contraction whenever (18) holds, with a contraction
factor that does not depend on τ, ζ. It follows that for ε < ε1 and every τ ∈ I

and ζ ∈ imP (τ) there exists a unique fixed point ω(τ,ζ) = (ω
(τ,ζ)
1 , ω

(τ,ζ)
2 ) ∈ Ω+

δε
of

F (τ,ζ), provided that ‖ζ‖Γ < δ′ε; clearly ω(τ,0) = (0, 0) and ω
(τ,ζ)
1 (τ) = ζ for all τ .

For notational convenience, let ω∗ = ω(t
−
,ζ) and define

W s :=
{(

t, ω∗
1(t) + ω∗

2(t)
)
: t ∈ I, ζ ∈ imP (t−), ‖ζ‖Γ < δ′ε

}
⊂ I × U .

Since ω∗
1 + ω∗

2 : I → U is a solution of (10), the set W s thus defined is invariant.
Note also that (17) and (19) imply

9 ω(τ,ζ) − ω(τ,ζ̂)9 ≤ 2C‖ζ − ζ̂ ‖Γ , (20)

so that in particular ‖ω(τ,ζ)
2 (τ) − ω

(τ,ζ̂)
2 (τ)‖Γ ≤ 2C‖ζ − ζ̂ ‖Γ. For every t ∈ I,

therefore, W s(t) is the graph of a Lipschitz function: Every element in W s(t) can
be represented in the form ζ + w(t, ζ) where ζ ∈ imP (t), w(t, ζ) ∈ kerP (t), and
w(t, 0) = 0 as well as ‖w(t, ζ)‖Γ ≤ 2C‖ζ‖Γ. Since (τ, ζ, ω) 7→ F (τ,ζ)(ω) is C1, so are
W s and w, see for instance [12, Thm.C.7]. Furthermore, from (20) it follows that

‖ω(τ,ζ)
2 (t)− ω

(τ,ζ̂)
2 (t)‖Γ ≤

∫ ∞

t

∥∥Φ(t, σ)
(
idd×d − P (σ)

)(
g(σ, ω

(τ,ζ)
1 + ω

(τ,ζ)
2 )− g(σ, ω

(τ,ζ̂)
1 + ω

(τ,ζ̂)
2 )

)∥∥
Γ
dσ

≤ C2εβ−1 9 ω(τ,ζ) − ω(τ,ζ̂)9

≤ 2C3εβ−1‖ζ − ζ̂‖Γ ,

and hence in particular ‖w(t, ζ) − w(t, ζ̂)‖Γ ≤ 2C3εβ−1‖ζ − ζ̂ ‖Γ for all t ∈ I and

ζ, ζ̂ ∈ imP (t) with ‖ζ‖Γ + ‖ζ̂ ‖Γ ≤ δε. Under the assumption that

ε <
β

2C3
=: ε2 , (21)

the map (t, ζ) 7→
(
t, ζ + w(t, ζ)

)
is one-to-one on the set

{
(t, ζ) : t ∈ I, ζ ∈ imP (t), ‖ζ‖Γ ≤ δε

}
.

Consequently, W s ⊂ I×U is a (k+1)-dimensional C1-manifold, and dimW s(t) ≡ k.
SinceDzg(t, 0) ≡ 0 alsoDζw(t, 0) ≡ 0 and therefore T0W

s(t) = imP (t) for all t ∈ I.

(If f is Cr then (τ, ζ, ω) 7→ F (τ,ζ)(ω) is Cr as well, and [12, Thm.C.7] shows that
in this case W s is Cr also.)
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The manifold Wu is constructed in a similar manner: Taking the limit τ1 → −∞
in (14) leads to the definition of a contraction on a closed ball within the Banach
space

Ω− =
{
ω = (ω1, ω2) |ω1, ω2 : ]−∞, t+] → R

d bounded and continuous,

ω1(t) ∈ imP (t), ω2(t) ∈ kerP (t) ∀t ≤ t+
}
,

with the norm

9ω9 := supt≤t+

(
‖ω1(t)‖Γ + ‖ω2(t)‖Γ

)
,

and the remaining argument is completely analogous to the one above. Overall,
with the choice of ε < min(ε1, ε2) this completes the proof of (i) and (ii) except for
the intersection property (7); the latter will follow immediately once (8) and (9)
have been established.

Step 3. The argument for Wu again being completely analogous, to prove (iii) it
suffices to verify (8). Since ‖ω∗

2(t)‖Γ ≤ 2C‖ω∗
1(t)‖Γ for all t ∈ I,

‖ω∗
1(t)‖Γ ≤ ‖Φ(t, s)ω∗

1(s)‖Γ +

∫ t

s

∥∥Φ(t, σ)P (σ)g(σ, ω∗
1 + ω∗

2)
∥∥
Γ
dσ

≤ e−α(t−s)‖ω∗
1(s)‖Γ +

∫ t

s

e−α(t−σ)Cε‖ω∗
1(σ) + ω∗

2(σ)‖Γ dσ

≤ e−α(t−s)‖ω∗
1(s)‖Γ +

∫ t

s

e−α(t−σ)Cε(1 + 2C)‖ω∗
1(σ)‖Γ dσ

holds for all t ≥ s. By means of h(t) := eαt‖ω∗
1(t)‖Γ, the latter estimate can be

rewritten as

h(t) ≤ h(s) + εC(1 + 2C)

∫ t

s

h(σ) dσ ≤ h(s) + 3εC2

∫ t

s

h(σ) dσ ,

so by Gronwall’s Lemma h(t) ≤ h(s)e3εC
2(t−s). Thus t 7→ e(α−3εC2)t‖ω∗

1(t)‖Γ is
non-increasing, and

d

dt
‖ω∗

1(t)‖2Γ ≤ −2(α− 3εC2)‖ω∗
1(t)‖2Γ , ∀t ∈ I .

To prove (8) it is enough to confirm that

k : t 7→ e2αρt‖ω∗
1(t) + ω∗

2(t)‖2Γ (t ∈ I)

is non-increasing. To this end, observe that with (21),

e−2αρt d

dt
k = 2αρ‖ω∗

1 + ω∗
2‖2Γ +

d

dt
‖ω∗

1 + ω∗
2‖2Γ

≤ 2αρ(‖ω∗
1‖Γ + ‖ω∗

2‖Γ)2 +
d

dt
‖ω∗

1‖2Γ + 2
〈
ω̇∗
1 ,Γω

∗
2

〉
+ 2

〈
ω̇∗
2 ,Γ(ω

∗
1+ω∗

2)
〉

≤ 2αρ(1 + 2C3εβ−1)2‖ω∗
1‖2Γ − 2(α− 3εC2)‖ω∗

1‖2Γ+
+ 2

〈
Aω∗

1 + Pg(·, ω∗
1+ω∗

2),Γω
∗
2

〉
+ 2

〈
Aω∗

2 + Pg(·, ω∗
1+ω∗

2),Γ(ω
∗
1+ω∗

2)
〉

≤
(
2αρ(1 + 6C3εβ−1)− 2α+ 6εC2 + 60C5εβ−1

)
‖ω∗

1‖2Γ
= 2

(
−α(1 − ρ) + 3εC2(1 + 2Cαρβ−1 + 10C3β−1)

)
‖ω∗

1‖2Γ ,
from which it follows that indeed d

dt
k ≤ 0, provided that

ε <
α(1 − ρ)

3C2(1 + 2Cαρβ−1 + 10C3β−1)
=: ε3 .
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Thus choosing ε < min(ε1, ε2, ε3) completes the proof of (iii).
Finally, to verify the intersection property (7) let ξ ∈ W s(t) ∩ Wu(t) for some

t ∈ I; assume w.l.o.g. that t < t+. For all τ > 0 with t+ τ ≤ t+,

‖ξ − µ(t)‖Γ ≤ e−βρτ‖ϕ(t+ τ ; t, ξ)− µ(t+ τ)‖Γ ≤ e−(α+β)ρτ‖ξ − µ(t)‖Γ ,
and hence ξ = µ(t).

Remark 4. (i) The sets W s and Wu are, respectively, local stable and unstable
manifolds for the hyperbolic solution µ. Unlike their classical counterparts they
are not uniquely determined. (In the above proof of Theorem 3 they depend on

the choice of the extensions Ã and g̃. Moreover, recall that the invariant projec-
tor P upon which that proof relies heavily may not be unique either.) It can be
shown, however, that an appropriately defined distance between any two invari-
ant manifolds satisfying (7)–(9) is O(e−γ(t+−t

−
)) with some γ > 0, see [7]. Hence

for practical purposes W s and Wu may be considered unique for all sufficiently
long time intervals. In the terminology of [8, 10], W s(t) and Wu(t) correspond
to a k-dimensional repelling and a (d− k)-dimensional attracting material surface,
respectively.

(ii) In [6], an alternative concept of finite-time (un)stable manifolds is advocated,
leading to manifolds that are open subsets of I × U and contain, respectively, the
sets W s and Wu considered here.

(iii) The fact that ‖ · ‖Γ is induced by an inner product has been used only in
Step 3 of the proof. Hence Definition 1 and Theorem 3 remain virtually unchanged
for arbitrary norms on R

d; however, the bounds e−αρ(t−s) and eβρ(t−s) have to be
replaced by the slightly weaker ρ−1e−α(t−s) and ρ−1eβ(t−s), respectively.

(iv) Intuitively, it may seem desirable to have ρ = 1 in (8) and (9). That this
is impossible in general, and that consequently the bounds in Theorem 3 are best
possible, can be seen already from a simple autonomous example. Concretely, let
H : R → R be the C∞-function with

H(x) =

{
e−x−2

sin(x−2) if x 6= 0 ,
0 if x = 0 ,

define h(x) := H(x) + xH ′(x) so that h is C∞ with h(0) = h′(0) = 0, and consider
[
ẋ1

ẋ2

]
=

[
−x1

x2 − h(x1)

]
. (22)

It is readily confirmed that the equilibrium µ = 0 of (22) is hyperbolic on every
interval I and w.r.t. every norm ‖ · ‖Γ on R

2, with α = β = 1, its (classical) stable
manifold being {[

x1

H(x1)

]
: x1 ∈ R

}
.

More generally, the solution of (22) with x(0) =

[
x10

x20

]
is

[
x1(t)
x2(t)

]
=

[
x10e

−t

(
x20 −H(x10)

)
et +H(x10e

−t)

]
.

With this it is easy to check that for instance with the Euclidean norm the derivative
d
dt
(e2t‖x(t)‖2) is actually positive arbitrarily close to the origin. Thus no matter how
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W s is chosen, (8) cannot possibly hold with ρ = 1 in even the tiniest neighborhood
of µ. Note, however, that in accordance with Theorem 3(iii), for every ε > 0,

‖x(t)‖ ≤ ‖x(s)‖e−(1−ε)(t−s) , ∀t ≥ s ,

holds for all solutions in W s sufficiently close to the origin.
(v) It is well-known and -documented that, except for the autonomous case, the

(generally t-dependent) eigenvalues of A are largely irrelevant e.g. for the stability
of (3), see for instance [18, Ch.6]. On the other hand, if the variation of eigenvalues
and -vectors is small enough in an appropriate sense then some insight concerning
finite-time behaviour may still be gained from them. In this spirit and for d = 2 and
Γ = id2×2, [7, Thm.1] and [11, Thm.1] present conditions on the eigenvalues and
-vectors of A that ensure finite-time hyperbolicity. Practicable as these conditions
may be e.g. in a fluid dynamics context, it must be remembered that hyperbolicity
according to Definition 1 denominates a very uniform, monotone growth and decay
of (some) solutions of (2), and the eigenvalue information may be inconclusive in
this regard, even in the autonomous case. For a concrete example consider

ẋ = A0x with A0 =

[
−1 6
0 −7

]
. (23)

While obviously λ < 0 for every eigenvalue λ of A0, it follows from [3, Exp.14] or
an elementary calculation that (23) is not hyperbolic on I w.r.t. ‖ · ‖ whenever

t+ − t− ≥ 1
3 log(1 + 2

√
2)− 1

6 log 7 ≈ 0.1232 ,

i.e., unless I is fairly short. Remark 2(iii) implies that an appropriately chosen Γ
will make (23) hyperbolic: With α = 1

2 , P0 = id2×2 and [ ·, · ] = 〈·, ·〉, one obtains
from (6) that

Γ = 1
91

[
91 78

78 79

]
,

and (23) is hyperbolic on every I w.r.t. ‖·‖Γ. Alternatively, Theorem 7 below shows
that Γ could also be chosen as

Γ =

[
1 1
1 2

]
,

since in this case

SΓ = 1
2 (ΓA0 +A⊤

0 Γ) =

[
−1 −1
−1 −8

]

is negative definite.
It is in view of examples like (23) that the present article does not attempt to

establish finite-time hyperbolicity by imposing conditions on the spectral data of A.
Rather, an altogether different approach will be presented in the following section.

(vi) Hyperbolicity w.r.t. ‖ · ‖Γ is invariant under appropriate changes of coordi-
nates. Concretely, call the matrix C ∈ R

d×d Γ-orthogonal if it preserves ‖ · ‖Γ, that
is, if C⊤ΓC = Γ. As detailed in [10], specific applications may require changes of
coordinates as general as

x = Q(t)ξ + b(t) , (24)

where Q : I → R
d×d, b : I → R

d are C1, and Q(t) is Γ-orthogonal for every t ∈ I. It
is readily confirmed that a solution of (1) transformed to ξ-coordinates is hyperbolic
w.r.t. ‖ · ‖Γ if and only if the corresponding solution of the original equation is,
with invariant projector QPQ−1 and the same constants α, β. With regard to (v)
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note also that the eigenvalues of the linearisation may change drastically under the
transformation (24).

3. Dynamic partition and hyperbolicity of linear systems. Finite-time hy-
perbolic solutions may be difficult to detect on the sole basis of Definition 1. The
main result of this section, Theorem 7 and Corollary 8 below, provides a simple
condition guaranteeing finite-time hyperbolicity. This result exploits the instanta-
neous behaviour of (1) as it is encoded in its associated dynamic partition. To recall
the latter concept, let µ : I → U be a solution of (1) and y : I → R

d any solution
of the linearisation (2). Then

d

dt
‖y(t)‖2Γ = 2

〈
y(t), SΓ

(
t, µ(t)

)
y(t)

〉
, ∀t ∈ I ,

where SΓ, the so-called Γ-strain tensor of (1), is given by

SΓ(t, x) =
1

2

(
ΓDxf + (Dxf)

⊤Γ
)
;

moreover,
d2

dt2
‖y(t)‖2Γ = 2

〈
y(t),MΓ

(
t, µ(t)

)
y(t)

〉
, ∀t ∈ I ,

with the Γ-strain acceleration tensor of (1) defined as

MΓ(t, x) = DtSΓ + (DxSΓ)f + SΓ(Dxf) + (Dxf)
⊤SΓ .

If SΓ

(
t, µ(t)

)
is negative or positive definite then neighboring solutions are instan-

taneously attracted or repelled by µ. If SΓ

(
t, µ(t)

)
is indefinite then the behaviour

of solutions near µ is determined by the sign of 〈·,MΓ·〉 on the Γ-zero-strain set
ZΓ := {y ∈ R

d : 〈y, SΓy〉 = 0}. For ease of notation, denote the restriction of
the quadratic form y 7→ 〈y,MΓy〉 to ZΓ by MZΓ

and call this function indefinite,
positive definite, and negative definite if it attains, respectively, positive as well as
negative values, only positive values, and only negative values on ZΓ\{0}.
Definition 5. Let Γ = Γ⊤ > 0 and consider the differential equation (1). A point
(t, x) ∈ I × U is called

⊲ attracting if SΓ(t, x) is negative definite;
⊲ repelling if SΓ(t, x) is positive definite;
⊲ elliptic if SΓ(t, x) is regular but indefinite, and MZΓ

is indefinite;
⊲ hyperbolic if SΓ(t, x) is regular but indefinite, and MZΓ

is positive definite;
⊲ quasi-hyperbolic if SΓ(t, x) is regular but indefinite, and MZΓ

is negative defi-
nite.

The sets of all attracting, repelling, elliptic, hyperbolic, and quasi-hyperbolic points
are denoted by AΓ, RΓ, EΓ, HΓ, QΓ, respectively. Points in

DΓ := I × U\(AΓ ∪RΓ ∪ EΓ ∪HΓ ∪ QΓ)

are called degenerate.

Remark 6. (i) The open sets AΓ, . . . ,QΓ together with the closed set DΓ evidently
form a partition of I×U , the dynamic partition associated with (1). Thus for every
t ∈ I and T ∈ {A, . . . ,Q,D} the t-fibres TΓ(t) := {x ∈ U : (t, x) ∈ TΓ} form a
partition of U .

(ii) Definition 5 is a slight extension of the EPH partition introduced in [9, 10]
for d ∈ {2, 3} and Γ = idd×d. Some basic properties of the dynamic partition are
discussed in [1, 3, 6]. Figure 2 shows typical velocity fields for different parts of the
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partition. It is most important to keep in mind that the indicated integral curves
(dashed lines) do generally not correspond to solutions of (1).

(iii) If (1) describes the Lagrangian motion of a particle within an incompressible
fluid flow then traceS = traceDxf = div f = 0 and hence A = R = ∅. Further-
more, with S = [sij ],

traceM = trace

(
d

dt
S
(
t, µ(t)

))
+ trace

(
SDxf + (Dxf)

⊤S
)
= 2

∑d

i,j=1
s2ij ≥ 0 ,

which in turn implies that 〈y,My〉 ≥ 0 for some non-zero y ∈ Z, and thus Q = ∅
as well. Under the assumption of incompressibility and for Γ = idd×d, therefore, in
[9, 10] only the elliptic, hyperbolic, and degenerate parts of the dynamic partition
play a role. Any point (t, x) ∈ I × U for which S(t, x) is regular but indefinite
and MZ is merely positive semi-definite is labelled parabolic in [9]; according to
Definition 5, any such point is degenerate.

(iv) An important aspect of the dynamic partition is its invariance under changes
of coordinates (24). For (1) transformed to ξ-coordinates, an argument similar to
[1, Lem.2.5] shows that the type of each point (t, ξ) is identical with the type of
the corresponding point (t, x). Thus for any fixed Γ the properties introduced in
Definition 5, as well as all statements derived from them, are invariant under any
change of coordinates (24); they are Γ-objective, cf. [10].

(v) If (1) is linear in x, i.e., if f(t, x) = A(t)x with a C1-function A : I → R
d×d,

then the type of (t, x) is independent of x, or equivalently TΓ(t) ∈ {∅,Rd} for every
t ∈ I and T ∈ {A, . . . ,D}. In this case, it is legitimate to call (1) attracting,
repelling, etc. at t if the fibre AΓ(t), RΓ(t), etc. equals R

d.

SΓ < 0

(t, x) ∈ AΓ

SΓ > 0

(t, x) ∈ RΓ

MZΓ
> 0

(t, x) ∈ HΓ

MZΓ
< 0

(t, x) ∈ QΓ

MZΓ
indef.

(t, x) ∈ EΓ

ZΓZΓZΓ

Figure 2. Snapshots of velocity fields corresponding to different
parts of the dynamic partition: If SΓ is definite then (t, x) is at-
tracting or repelling (top row); if SΓ is regular but indefinite then
(t, x) is elliptic, hyperbolic or quasi-hyperbolic.

As indicated earlier, the main goal of this section is to provide a simple condi-
tion which allows finite-time hyperbolicity to be inferred from the instantaneous
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information encoded in the dynamic partition. The linear version of this condition
which greatly generalises [2, Thm.2.1] is

Theorem 7. Let Γ = Γ⊤ > 0 and assume that A : I → R
d×d is C1. If

EΓ(t) ∪ DΓ(t) = ∅ , ∀t ∈ I , (25)

then (3) is hyperbolic on I w.r.t. ‖ · ‖Γ.
Before turning to the proof of Theorem 7, note that an immediate consequence

of the latter is the following generalisation of [10, Thm.1].

Corollary 8. Let Γ⊤ = Γ > 0. Assume the solution µ : I → U of (1) satisfies

µ(t) 6∈ EΓ(t) ∪ DΓ(t) , ∀t ∈ I ,

that is, µ does not intersect the elliptic or degenerate parts of the dynamic partition.
Then µ is hyperbolic on I w.r.t. ‖·‖Γ. In particular, therefore, with k = rkP for one
(and hence every) invariant projector for (2) according to Definition 1, the solution
µ has a (k+1)-dimensional stable and a (d− k+1)-dimensional unstable manifold
as described in Theorem 3.

The proof of Theorem 7 relies on a combination of classical perturbation and
approximation results with a simple topological observation concerning certain sub-
sets of the (real) Grassmannian Gk,d. Since no reference is known to the author
a proof of this observation is included. To this end, recall that Gk,d is, for each
k ∈ {0, . . . , d}, defined as the set of all k-dimensional subspaces of Rd. Elements
of Gk,d will henceforth be labelled X,Y, . . .. Let πX be the orthogonal projection
onto X ∈ Gk,d and define the distance between any two elements X,Y of Gk,d as
‖πX − πY ‖. With this, Gk,d becomes a compact metric space, and in fact a smooth
manifold of dimension k(d − k), see e.g. [4]. Denote by ∆k the diagonal matrix
whose first k entries equal 1, and whose remaining d− k entries equal −1, i.e.

∆k = diag[ 1, . . . , 1︸ ︷︷ ︸
k times

,−1, . . . ,−1︸ ︷︷ ︸
d−k times

] ∈ R
d×d .

For every |δ| < 1 define

Pδ
k :=

{
X ∈ Gk,d : 〈∆kx, x〉 > δ〈x, x〉 ∀x ∈ X\{0}

}
⊂ Gk,d .

Clearly, Pδ
k is open and non-empty, and Pδ1

k ⊃ Pδ2
k whenever δ1 ≤ δ2, see also

Figure 3 for the cases d = 2, 3.

Lemma 9. For every 0 < k < d and |δ| < 1, the sets Pδ
k and ∂Pδ

k are homeomorphic

to, respectively, the open unit ball and the unit sphere in R
k(d−k).

Proof. Let e1, . . . , ed represent the standard basis in R
d. Given X ∈ Gk,d, choose a

basis b1, . . . , bk of X such that

bj = ej +
∑d−k

i=1
βijei+k , ∀j = 1, . . . , k , (26)

with the appropriate matrix B = [βij ] ∈ R
(d−k)×k. Such a choice is possible because

〈∆kx, x〉 = −〈x, x〉 < δ〈x, x〉 whenever x ∈ span{ek+1, . . . , ed}\{0}, and in fact the
basis b1, . . . , bk is determined uniquely by (26). Thus the map

p :

{ Pδ
k → R

(d−k)×k

X 7→ [βij ]
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is well defined and one-to-one; clearly, it is also continuous. Moreover, for every
x ∈ X\{0}, say

x =
∑

j
xjbj =

∑
j
xjej +

∑
i,j

βijxjei+k ,

the estimate
∑

j
x2
j −

∑
j,r
(B⊤B)jrxjxr = 〈∆kx, x〉 > δ〈x, x〉 = δ

(∑
j
x2
j +

∑
j,r
(B⊤B)jrxjxr

)

implies that ‖B‖ <
√

1−δ
1+δ

, hence p(Pδ
k) is contained in an open ball of radius

√
1−δ
1+δ

in R
(d−k)×k. Conversely, given any C = [γij ] ∈ R

(d−k)×k with ‖C‖ <
√

1−δ
1+δ

, define

X := span

{
ej +

∑d−k

i=1
γijei+k : j = 1, . . . , k

}
∈ Gk,d ,

and observe that, for every x =
∑

j xjej +
∑

i,j γijxjei+k ∈ X\{0},

〈x, x〉 =
∑

j
x2
j +

∑
j,r

(C⊤C)jrxjxr <
∑

j
x2
j +

1− δ

1 + δ

∑
j
x2
j =

2

1 + δ

∑
j
x2
j ,

but also

〈∆kx, x〉 =
∑

j
x2
j −

∑
j,r
(C⊤C)jrxjxr >

∑
j
x2
j −

1− δ

1 + δ

∑
j
x2
j =

2δ

1 + δ

∑
j
x2
j

> δ〈x, x〉 ,
showing that X ∈ Pδ

k and p(X) = C. As C 7→ span {ej +
∑

i γijei+k : j = 1, . . . , k}
is continuous, p maps Pδ

k homeomorphically onto an open
√

1−δ
1+δ

-ball in R
(d−k)×k.

This ball clearly is homeomorphic to the open unit ball (w.r.t. the Euclidean norm)
in R

k(d−k).
To prove the statement about ∂Pδ

k simply note that

∂Pδ
k =

{
X ∈ Gk,d : 〈∆kx, x〉 ≥ δ〈x, x〉 ∀x ∈ X

but 〈∆kx0, x0〉 = δ〈x0, x0〉 for some x0 ∈ X\{0}
}
.

span{e1} span{e1}span{e2} span{e2}
span{e2}

span{e3}

e⊥1
e⊥2

e⊥3

P0
1 P0

1
Pδ

1

Pδ
1 P0

2

P0
2

Pδ
2

G1,2

G1,3 G2,3

d = 2, k = 1

d = 3, k = 1 d = 3, k = 2

Figure 3. Visualising Lemma 9 for d = 2 (left) and d = 3 with
−1 < δ < 0; the Grassmannian G1,2 is represented as an interval
whose endpoints are identified, whereas G1,3 and G2,3 are discs
with any two diametral points on the periphery identified.
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Essentially the same argument as before shows that ∂Pδ
k is homeomorphic to a

sphere of radius
√

1−δ
1+δ

in R
(d−k)×k, and hence to the (Euclidean) unit sphere in

R
k(d−k).

Corollary 10. For every 0 < k < d and |δ| < 1, the set ∂Pδ
k is not a retract of Pδ

k ,

that is, there does not exist a continuous map r : Pδ
k → ∂Pδ

k with r(X) = X for all
X ∈ ∂Pδ

k .

Proof of Theorem 7. Note first that by (25) the type of (3) is constant: By the
symmetry and continuity of SΓ and MΓ, (3) is either attracting, repelling, hyper-
bolic, or quasi-hyperbolic for all t ∈ I. For the former two cases the claim is easily
established. Indeed, if for instance AΓ(t) ≡ R

d then, for some α > 0,

d

dt
‖y(t)‖2Γ = 2

〈
y(t), SΓy(t)

〉
≤ −2α‖y(t)‖2Γ , ∀t ∈ I , (27)

and (3) is hyperbolic on I w.r.t. ‖ · ‖Γ with P (t) ≡ idd×d. Similarly, if RΓ(t) ≡ R
d

then (3) is hyperbolic on I w.r.t. ‖ · ‖Γ with P (t) ≡ 0. It remains to verify the
statement for the hyperbolic and quasi-hyperbolic cases. Since the argument is
completely analogous for either case, assume from now on that HΓ(t) ≡ R

d. Let
k denote the number of negative eigenvalues (counted with multiplicity) of SΓ; by
assumption, k is a constant integer with 0 < k < d. For the reader’s convenience,
the proof is divided into two steps. Note beforehand that the evolution operator Φ
associated with (3) naturally induces a family of continuous maps on Gk,d, denoted
by the same symbol, that is Φ(t, s) : X 7→ Φ(t, s)X := {Φ(t, s)x : x ∈ X}.

Step 1. Assume for the time being that A is polynomial in t. (This assumption
will be dropped in Step 2 below.) In this case, there exist C1 (in fact, real-analytic)
functions Q : I → R

d×d and λ1, . . . , λd : I → R
+ (some of which may coincide)

such that Q(t) is orthogonal for every t ∈ I, and

Q(t)⊤SΓ(t)Q(t) = diag
[
−λ1(t), . . . ,−λk(t), λk+1(t), . . . , λd(t)

]
, ∀t ∈ I .

(The analyticity of A is essential here, see [13, Thm.II.6.1 and Exp.II.5.3] for details
as well as a C∞ counter-example.) For every t ∈ I, define the invertible matrix

M(t) := diag
[√

λ1(t), . . . ,
√
λd(t)

]
Q(t)⊤Φ(t, t−) ,

and note that, for any y ∈ R
d,

d

dt
‖Φ(t, t−)y‖2Γ = −2

〈
∆kM(t)y,M(t)y

〉
.

Suppose X ∈ Gk,d and α > 0 could be found such that

d

dt
‖Φ(t, t−)ξ‖2Γ ≤ −2α‖Φ(t, t−)ξ‖2Γ , ∀t ∈ I, ξ ∈ X . (28)

Clearly, with P (s) denoting any projection onto Φ(s, t−)X , this would imply that,
for every y ∈ R

d,

‖Φ(t, s)P (s)y‖Γ ≤ e−α(t−s)‖P (s)y‖Γ , ∀t ≥ s ,

and hence identify (Φ(t, t−)X)t∈I as a possible family of stable subspaces, as re-
quired for hyperbolicity on I w.r.t. ‖ · ‖Γ. It will now be shown that X and α

satisfying (28) do indeed exist.
Assume to the contrary that for every X ∈ Gk,d there exists t ∈ I such that

d
dt
‖Φ(t, t−)ξ‖2Γ = 0 for some ξ ∈ X\{0}. In particular, therefore, for every X ∈ P0

k
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one can find t ∈ I with M(t)M(t−)
−1X ∈ ∂P0

k . Define the forward hitting time τ+

of ∂P0
k as

τ+ :

{
P0
k → I ,

X 7→ inf
{
t ≥ t− : M(t)M(t−)

−1X ∈ ∂P0
k

}
.

Clearly, τ+(X) = t− for every X ∈ ∂P0
k , and being the hitting time of a closed set,

the function τ+ is l.s.c.; also, M
(
τ+(X)

)
M(t−)

−1X ∈ ∂P0
k . Given X ∈ P0

k , let
ξ ∈ X\{0} such that

d

dt
‖Φ(t, t−)M(t−)

−1ξ‖2Γ
∣∣
t=τ+(X)

= 0 .

Hyperbolicity implies that d2

dt2
‖Φ(t, t−)M(t−)

−1ξ‖2Γ
∣∣
t=τ+(X)

> 0, and hence

〈∆kM(t)M(t−)
−1ξ,M(t)M(t−)

−1ξ〉 < 0

whenever t− τ+(X) > 0 is sufficiently small. For every ε > 0, therefore,

τ+(Y ) < τ+(X) + ε ,

provided that Y is sufficiently close to X , i.e., the function τ+ is u.s.c. as well.
Consequently, the map

T+ :

{
P0
k → ∂P0

K ,

X 7→ M
(
τ+(X)

)
M(t−)

−1X ,

is continuous, and T+(X) = X for all X ∈ ∂P0
K . This contradicts Corollary 10 and

shows in turn that there exists δ > 0 and Y ∈ Pδ
k such that M(t)M(t−)

−1Y ∈ Pδ
k

holds for all t ∈ I. For every ξ ∈ M(t−)
−1Y and t ∈ I,

d

dt
‖Φ(t, t−)ξ‖2Γ = −2〈∆kM(t)ξ,M(t)ξ〉 ≤ −2δ‖M(t)ξ‖2 ≤ −2δλmin‖Φ(t, t−)ξ‖2

≤ −2δλminγ
−1
max‖Φ(t, t−)ξ‖2Γ ,

where λmin := mint∈I mini λi(t) > 0, and γmax > 0 is the largest eigenvalue of Γ.
Thus (28) holds for X = M(t−)

−1Y and α = δλminγ
−1
max > 0.

A completely analogous argument yields the existence of Y ∈ Gd−k,d and β > 0
such that

d

dt
‖Φ(t, t+)η‖2Γ ≥ 2β‖Φ(t, t+)η‖2Γ , ∀t ∈ I, η ∈ Y ,

and therefore also
∥∥Φ(t, s)

(
idd×d − P̃ (s)

)∥∥
Γ
≤ eβ(t−s)‖idd×d − P̃ (s)‖Γ , ∀t ≤ s ,

with P̃ (s) denoting any projection along Φ(s, t+)Y . Overall, therefore, if P (t) is
chosen as the projection onto Φ(t, t−)X along Φ(t, t+)Y , then (3) is hyperbolic on
I w.r.t. ‖ · ‖Γ.

Step 2. To complete the proof, drop the assumption that A be polynomial in t;
hence A : I → R

d×d is merely assumed to be C1 from now on. Given ε > 0, choose
Aε : I → R

d×d such that Aε is polynomial in t and

‖Φε(t, t−)− Φ(t, t−)‖Γ + ‖S(ε)
Γ (t)− SΓ(t)‖Γ + ‖M (ε)

Γ (t)−MΓ(t)‖Γ < ε , ∀t ∈ I ;

here Φε, S
(ε)
Γ , and M

(ε)
Γ denote, respectively, the evolution operator, the Γ-strain

tensor, and the Γ-strain acceleration tensor associated with ẋ = Aε(t)x. As shown
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in Step 1, for all sufficiently small ε > 0, there exists αε > 0 and Xε ∈ Gk,d such
that

d

dt
‖Φε(t, t−)x‖2Γ ≤ −2αε‖Φε(t, t−)x‖2Γ , ∀t ∈ I, x ∈ Xε . (29)

Since Gk,d is compact, it is possible to choose (εn) with εn → 0 such that Xεn → X0

for some X0 ∈ Gk,d. Clearly d
dt
‖Φ(t, t−)x‖2Γ ≤ 0 for all t ∈ I, x ∈ X0. Suppose

d
dt
‖Φ(t, t−)x0‖2Γ

∣∣
t=t0

= 0 for some t0 ∈ I, x0 ∈ X0\{0}. Since (3) is hyperbolic at

t0, for all t− t0 > 0 sufficiently small,

d

dt
‖Φ(t, t−)x0‖2Γ > 0 .

Obviously, this contradicts (29) for small ε. (Strictly speaking, for this argument
to work in the case t0 = t+ also, (3) has to be extended slightly to the right.)
Consequently, d

dt
‖Φ(t, t−)x‖2Γ < 0 for all t ∈ I, x ∈ X0\{0}, and hence

d

dt
‖Φ(t, t−)x‖2Γ ≤ −2α0‖Φ(t, t−)x‖2Γ , ∀t ∈ I, x ∈ X0 ,

with some α0 > 0. Since a completely analogous argument again yields the existence
of a (d− k)-dimensional unstable space, the proof is complete.

Example 11. To compare Theorem 7 with [7, Thm.1] and [11, Thm.1] which are
based on estimates on the time-dependent eigenstructure of Dxf , consider

ẋ =

[
a 2
0 −a

]
x , (30)

where a : R → R is C1; thus

S(t) =

[
a 1
1 −a

]
, M(t) =

[
ȧ+ 2a2 2a

2a −ȧ+ 4 + 2a2

]
,

and A(t) ≡ R(t) ≡ ∅ because detS(t) = −(a2 + 1) < 0. The quantities required to
apply [7, Thm.1] and [11, Thm.1] are, with the notation used in these papers,

λmin = λ1min = λ2min = mint∈I |a(t)| , α =
λmin√
1 + λ2

min

, β = maxt∈I

|ȧ(t)|
1 + a2(t)

.

(i) For a(t) = et it is checked easily that the matrix M is positive definite for all
t ∈ R, and hence H(t) ≡ R

2. By Theorem 7, (30) is hyperbolic w.r.t. ‖ · ‖ on every
interval I ⊂ R; in particular, every solution is hyperbolic and comes with stable and
unstable manifolds according to Theorem 3. By contrast, [7, Thm.1(i)] guarantees
the existence of (un)stable manifolds for (30) only for

2
√
2β <

e2t−√
1 + e2t−

, (31)

and finite-time hyperbolicity of (30) on I whenever (31) holds with 2
√
2 replaced

by 2 +
√
2. With

2β =





(cosh t+)
−1 if t+ < 0 ,

1 if 0 ∈ I ,

(cosh t−)
−1 if t− > 0 ,

this gives the restrictions

t− >
1

2
log

√
33− 1

2
≈ 0.4319 and t− >

1

2
log

√
25 + 16

√
2− 1

2
≈ 0.5410
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for, respectively, the existence of (un)stable manifolds and finite-time hyperbolicity
of (30). Note that the cited results are inconclusive whenever I ⊂ R

−.
(ii) Choose a(t) = tanh(2t). In this case, [7, Thm.1] and [11, Thm.1] do not apply

at all if 0 ∈ I. (As in (i), it is possible to give explicit expressions for the numbers
tii > ti > 0 such that [7, Thm.1(∗)] applies for ∗ = i, ii precisely if [−t∗, t∗] ∩ I = ∅;
numerically, ti ≈ 0.7331 and tii ≈ 0.7741.) On the other hand, it follows from the
positive definiteness of

M(t) =

[
2 2a(t)

2a(t) 2 + 2a2(t)

]

for all t ∈ R that H(t) ≡ R
2, and again (30) is hyperbolic w.r.t. ‖ ·‖ on every I ⊂ R.

(iii) Let a(t) = 6t. With Γ = id2×2, a straightforward calculation shows that (30)
is elliptic at t whenever |t| < t0, and hyperbolic for |t| > t0, where t0 = 1

6

√
ρ with ρ

denoting the real root of ρ3 +2ρ2 +7ρ− 3 = 0; numerically, t0 ≈ 0.1027. Therefore
Theorem 7 applies only if [−t0, t0] ∩ I = ∅. Similarly, [7, Thm.1(∗)] applies for
∗ = i, ii whenever [−t∗, t∗] ∩ I = ∅, where ti ≈ 0.4267 and tii ≈ 0.4338. Thus in this
example the time intervals excluded by [7, Thm.1] are significantly larger than the
one excluded on the basis of Theorem 7. Choosing Γ appropriately may make the
latter disappear altogether. Indeed, with Γ = diag[3, 1],

SΓ = 3

[
6t 1
1 −2t

]
, MΓ = 6

[
3 + 36t2 6t

6t 1 + 12t2

]
,

and detSΓ = −9(12t2 +1) < 0 together with MΓ > 0 shows that (30) is hyperbolic
w.r.t. ‖ · ‖Γ on every interval I ⊂ R.

Remark 12. (i) Theorem 7 has a partial converse in the attracting or repelling
case, as follows immediately from (27): If (3) is hyperbolic on I w.r.t. ‖ · ‖Γ with
rkP = d (or rkP = 0) then AΓ(t) ≡ R

d (or RΓ(t) ≡ R
d). A similar converse does

not hold in general for 0 < d < k. As a simple example consider the autonomous
equation

ẋ = Ax with A =

[
−α −2
0 −2− α

]
, (32)

where α > 0, and let Γ = id2×2. An elementary calculation confirms that E(t) ≡ R
2

whenever α <
√
2 − 1. On the other hand, it follows from [3, Exp.14] that (32) is

hyperbolic on I w.r.t. ‖ · ‖, provided that

t+ − t− < Tα with 2Tα = log
1 + (1 + α)

√
1− 2α− α2

2α+ α2
> 0 ,

that is, on sufficiently short time intervals. (Note that Tα = − 1
2 logα + O(α) as

α ց 0.) Put differently, for one (and hence every) solution of (32) to be hyperbolic,
the total time spent in the elliptic domain E must not exceed Tα. Assuming incom-
pressibility and d = 2, a similar observation yields a characterisation of Lagrangian
elliptic behaviour, see [9, Thm.2]. Even though the latter result does not apply to
(32), it seems plausible that quite generally a (Lagrangian) hyperbolic solution can
spend only a limited amount of time in the elliptic or degenerate regions.

(ii) Theorem 7 may fail even if (25) is violated only for a single t ∈ I, as can be
seen from the simple example A(t) = diag[t,−t] for which HΓ(t) = R

2 for all t 6= 0,
yet (3) is not hyperbolic w.r.t. ‖ · ‖Γ on any interval containing 0.

(iii) In view of Example 11 it may be conjectured that µ(t) ∈ H(t) for all t ∈ I

holds automatically whenever µ meets the conditions of [7, Thm.1(ii)]. At the time
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of writing the author does not know of any proof of, or counter-example to, this
conjecture.
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