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Abstract

A solution of a nonautonomous ordinary differential equation is finite-
time hyperbolic, i.e. hyperbolic on a compact interval of time, if the
linearisation along that solution exhibits a strong exponential dichotomy.
In analogy to classical asymptotic facts, it is shown that finite-time
hyperbolicity is robust, that is, it persists under small perturbations.
Eigenvalues and -vectors may be misleading with regards to hyperbolicity.
This is demonstrated by means of simple examples.
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Hyperbolicity is widely recognised as a fundamental notion of dynamical systems
theory. While extensions and refinements of the classical, that is, asymptotic
concept continue to play a vital role in modern dynamics, much attention has
recently been drawn to the systematic study of suitable finite-time analogues.
This note contributes to finite-time dynamics a brief discussion of two practical
aspects of the hyperbolicity concept developed and utilised e.g. in [1, 3, 4, 6, 8].

1 Hyperbolicity is robust

Consider the nonautonomous ordinary differential equation

ẋ = f(t, x) , (1)

where f : I × U → Rd is C1, I = [t−, t+] with −∞ < t− < t+ < +∞, and
U ⊂ Rd is a non-empty open set. The linearisation of (1) along any solution
µ : I → U is

ẏ = Dxf
(
t, µ(t)

)
y . (2)
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To quantify growth and decay of solutions of (2), arbitrary inner product norms
‖ · ‖Γ =

√
〈·,Γ·〉 are considered, where Γ ∈ Rd×d is any symmetric positive

definite matrix, i.e. Γ> = Γ > 0, and 〈·, ·〉 is the standard inner product on Rd;
the symbol ‖ ·‖Γ also denotes the induced norm on Rd×d. Quantities depending
on Γ have their dependence made explicit by a subscript which is suppressed
only if Γ equals idd×d, the d× d identity matrix.

To define finite-time hyperbolicity, instead of (2) consider more generally
any nonautonomous linear equation

ẏ = A(t)y , (3)

where A : I → Rd×d is continuous. Let Φ : I × I → Rd×d denote the associated
evolution operator, i.e., y : t 7→ Φ(t, s)η is, for any η ∈ Rd, the unique solution
of (3) satisfying y(s) = η. A projection-valued function P : I → Rd×d is an
invariant projector for (3) if P (t)Φ(t, s) = Φ(t, s)P (s) for all t, s ∈ I. Note that
t 7→ P (t) is continuous, and rkP (t) is constant, for any invariant projector.

Definition 1 Let Γ> = Γ > 0. Equation (3) is hyperbolic (on I w.r.t. ‖ · ‖Γ) if
there exists an invariant projector P for (3), together with constants α, β > 0,
such that for every y ∈ Rd,∥∥Φ(t, s)P (s)y

∥∥
Γ
≤ e−α(t−s)

∥∥P (s)y
∥∥

Γ
, ∀t ≥ s , (4)∥∥Φ(t, s)

(
idd×d − P (s)

)
y
∥∥

Γ
≤ eβ(t−s)

∥∥(
idd×d − P (s)

)
y
∥∥

Γ
, ∀t ≤ s . (5)

A solution µ of (1) is hyperbolic if the associated linearisation (2) is hyperbolic.

The estimates in Definition 1 incorporate a finite-time variant of the classical
notion of an exponential dichotomy that is more restrictive than the latter
because an arbitrary multiplicative constant on the right-hand side of (4) or
(5) would render the concept meaningless. Consequently, to establish the
robustness of finite-time hyperbolicity, classical arguments using Gronwall-type
estimates (see e.g. [10]) do not apply directly. Instead, the alternative argument
presented in Lemma 3 below makes use of [3, Lem.9], restated here as

Proposition 2 Equation (3) is hyperbolic on I w.r.t. ‖ · ‖Γ, with invariant
projector P and constants α, β > 0, if and only if, for all t ∈ I and y ∈ Rd,

d

dt
‖Φ(t, t−)P (t−)y‖Γ ≤ −α‖Φ(t, t−)P (t−)y‖Γ , (6)

as well as
d

dt

∥∥Φ(t, t−)
(
idd×d − P (t−)

)
y
∥∥

Γ
≥ β

∥∥Φ(t, t−)
(
idd×d − P (t−)

)
y
∥∥

Γ
. (7)

Lemma 3 Let A, Ã : I → Rd×d be continuous, and assume (3) is hyperbolic,
with constants α, β > 0. Then, given 0 < α̃ < α, 0 < β̃ < β, there exists δ > 0
such that

ẏ = Ã(t)y (8)

is hyperbolic as well, with constants α̃, β̃, whenever maxt∈I ‖Ã(t)−A(t)‖Γ < δ.
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Proof . For every continuous B : I → Rd×d, let ‖B‖∞ := maxt∈I ‖B(t)‖Γ,
and denote by Φ and Φ̃ the evolution operators associated with (3) and (8),
respectively. Also, recall the trivial estimate

e−|t−s|‖A‖∞‖y‖Γ ≤ ‖Φ(t, s)y‖Γ ≤ e|t−s|‖A‖∞‖y‖Γ , ∀t, s ∈ I , (9)

and note that P̃ : t 7→ Φ̃(t, t−)P (t−)Φ̃(t, t−)−1 is an invariant projector for (8).
For the latter equation, the variation of constants formula yields

Φ̃(t, t−)− Φ(t, t−) =
∫ t

t−

Φ(t, τ)
(
Ã(τ)−A(τ)

)
Φ̃(τ, t−) dτ ,

which together with (9) implies that, for all t ∈ I,

∥∥Φ̃(t, t−)− Φ(t, t−)
∥∥

Γ
≤

∫ t

t−

e(t−τ)‖A‖∞‖Ã−A‖∞e(τ−t−)‖ eA‖∞dτ

≤ e(t−t−)‖A‖∞‖Ã−A‖∞
∫ t

t−

e(τ−t−)‖ eA−A‖∞dτ

≤ e(t−t−)‖A‖∞
(
e(t−t−)‖ eA−A‖∞ − 1

)
≤ 2(t− t−)e(t−t−)‖A‖∞‖Ã−A‖∞ ,

provided that ‖Ã − A‖∞ < δ1 := (t+ − t−)−1. Given y ∈ Rd, define the two
C1-functions φ, φ̃ : I → R as

φ : t 7→ 1
2‖Φ(t, t−)P (t−)y‖2

Γ , φ̃ : t 7→ 1
2‖Φ̃(t, t−)P (t−)y‖2

Γ .

For notational convenience, let η = P (t−)y. It follows from the estimate∣∣ ˙̃φ− φ̇
∣∣ =

∣∣〈ΓÃΦ̃η, Φ̃η〉 − 〈ΓAΦη, Φη〉
∣∣

≤
∣∣〈Γ(Ã−A)φ̃η, φ̃η〉

∣∣ +
∣∣〈ΓAΦ̃η, Φ̃η〉 − 〈ΓAΦη, Φη〉

∣∣
≤ 2‖Ã−A‖∞φ̃ + ‖A‖∞‖(Φ̃− Φ)η‖Γ(‖Φ̃η‖Γ + ‖Φη‖Γ)

≤ 2‖Ã−A‖∞φ̃ + ‖A‖∞(t+ − t−)e(t+−t−)‖A‖∞‖Ã−A‖∞‖η‖Γ(
√

8φ̃ +
√

8φ)

≤ 2‖Ã−A‖∞
(
φ̃ + 2‖A‖∞(t+ − t−)e(t+−t−)(2‖A‖∞+‖ eA−A‖∞)(φ̃ + φ)

)
,

which is valid whenever ‖Ã−A‖∞ < δ1, that∣∣ ˙̃φ(t)− φ̇(t)
∣∣ ≤ C‖Ã−A‖∞

(
φ̃(t) + φ(t)

)
, ∀t ∈ I ,

where C depends only on t+ − t− + ‖A‖∞. With Proposition 2, therefore,

˙̃
φ ≤ φ̇ + C‖Ã−A‖∞(φ̃ + φ) ≤ −2αφ + C‖Ã−A‖∞(φ̃ + φ)

≤ −2(α− C‖Ã−A‖∞)φ̃ + (2α + C‖Ã−A‖∞)
∣∣φ̃− φ

∣∣ , (10)
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whenever ‖Ã−A‖∞ < δ1. Under the latter condition, observe that also∣∣φ̃− φ
∣∣ ≤ 1

2‖(φ̃− φ)η‖Γ(‖φ̃η‖Γ + ‖φη‖Γ)

≤ (t+ − t−)e(t+−t−)‖A‖∞‖Ã−A‖∞‖η‖Γ

(√
2φ̃ +

√
2φ

)
≤ 2(t+ − t−)e(t+−t−)‖A‖∞‖Ã−A‖∞

(
e(t+−t−)‖ eA‖∞ φ̃ + e(t+−t−)‖A‖∞φ

)
≤ 2(t+ − t−)e1+2(t+−t−)‖A‖∞‖Ã−A‖∞(φ̃ + φ)

≤ 2C‖Ã−A‖∞φ̃ + C‖Ã−A‖∞
∣∣φ̃− φ

∣∣ ,

which in turn implies that∣∣φ̃(t)− φ(t)
∣∣ ≤ 4C‖Ã−A‖∞φ̃(t) , ∀t ∈ I , (11)

provided that ‖Ã−A‖∞ < δ2 := (2C)−1 < δ1. Combining (10) and (11) yields

˙̃
φ(t) ≤ −2

(
α− 2C(1 + 2α)‖Ã−A‖∞

)
φ̃(t) , ∀t ∈ I ,

whenever ‖Ã−A‖∞ < δ2. With δ :=
min(1, α− α̃)
2C(1 + 2α)

> 0 therefore ‖Ã−A‖∞ < δ

implies that ˙̃
φ(t) ≤ −2α̃φ̃(t) for all t ∈ I. This establishes (6̃). A completely

analogous argument proves (7̃). Overall, ‖Ã − A‖∞ < δ ensures that (8) is
hyperbolic on I w.r.t. ‖ · ‖Γ, with invariant projector P̃ and constants α̃, β̃. �

Remark 4 (i) Note that δ in Lemma 3 depends only on α − α̃, β − β̃, and
t+ − t− + ‖A‖∞. Usually, it is not possible to choose α̃ = α or β̃ = β, not even
if (3) and (8) are autonomous.

(ii) It was shown in [3, Exp.24] that, perhaps somewhat surprisingly,

ẏ =
[

0 1
0 0

]
y

is hyperbolic for every I and Γ. Thus, by Lemma 3,

ẏ =
[

a1 1
a2 a3

]
y (12)

is hyperbolic as well, provided that maxt∈I

∑3
i=1 |ai(t)| is sufficiently small for

the continuous functions a1, a2, a3 : I → R. If so, even though the (possibly
time-dependent) eigenvalues of (12) may be both positive or negative, the rank
of any invariant projector according to Definition 1 equals one.

The desired robustness result is an immediate consequence of Lemma 3. It
asserts that hyperbolicity according to Definition 1 is robust under variations
of the initial data and C1-small perturbations of the right-hand side in (1).
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Theorem 5 Assume the solution µ of (1) is hyperbolic on I w.r.t. ‖ · ‖Γ. Then
there exists δ > 0 such that for every C1-function f̃ : I × U → Rd with

supt∈I

(∥∥f̃
(
t, µ(t)

)
−f

(
t, µ(t)

)∥∥
Γ

+
∥∥Dxf̃

(
t, µ(t)

)
−Dxf

(
t, µ(t)

)∥∥
Γ

)
< δ , (13)

every solution µ̃ : I → U of
ẋ = f̃(t, x) (14)

is hyperbolic as well, provided that ‖µ̃(t0)− µ(t0)‖Γ < δ for some t0 ∈ I.

Proof . Given ε > 0, choose δ1 > 0 so small that

Tδ1 :=
{
(t, x) : t ∈ I, ‖x− µ(t)‖Γ ≤ δ1

}
⊂ I × U

and ‖Dxf̃(t, x)−Dxf̃(t, y)‖Γ < 1
2ε whenever x, y ∈ Tδ1 and ‖x−y‖Γ < δ1. Also,

pick δ2 > 0 small enough to ensure that maxt∈I ‖f̃
(
t, µ(t)

)
− f

(
t, µ(t)

)
‖Γ < δ2

and ‖x0 − µ(t0)‖ < δ2 for some t0 ∈ I imply that the solution of (14) with
x(t0) = x0 exists for all t ∈ I and satisfies maxt∈I ‖x(t) − µ(t)‖Γ < δ1. With
δ := min( 1

2ε, δ1, δ2), it follows from (13) that∥∥Dxf̃
(
t, µ̃(t)

)
−Dxf

(
t, µ(t)

)∥∥
Γ

≤
∥∥Dxf̃

(
t, µ̃(t)

)
−Dxf̃

(
t, µ(t)

)∥∥
Γ

+
∥∥Dxf̃

(
t, µ(t)

)
−Dxf

(
t, µ(t)

)∥∥
Γ

≤ 1
2ε + δ < ε ,

if only ‖µ̃(t0)− µ(t0)‖Γ < δ for some t0 ∈ I. Since ε > 0 was arbitrary, Lemma
3 applies with A(t) = Dxf

(
t, µ(t)

)
and Ã(t) = Dxf̃

(
t, µ̃(t)

)
. �

2 How (not) to detect hyperbolicity

If the system (3) is autonomous, then it has a (classical) exponential dichotomy if
and only if no eigenvalue of A lies on the imaginary axis. It thus seems natural to
use eigenvalues as a tool to detect hyperbolicity: If the eigenvalues and -vectors
vary sufficiently little over time then, hopefully, some insight concerning finite-
time behaviour can be gained from them. In this spirit and for d = 2 and
Γ = id2×2, [6, Thm.1] and [9, Thm.1] present conditions on the spectral data of
A that ensure finite-time hyperbolicity.

Relying on spectral data in a finite-time context does have its pitfalls,
though. This fact, already hinted at by Remark 4(ii), is elucidated further
through the following simple example which is phrased in the terminology of
[7] so as to make it directly accessible to readers of that paper. Specifically, a
family L = {Lt : t ∈ I} of C1-curves Lt : R → Rd is referred to as a material
line of (1) if it is invariant in the sense that, for any s, t ∈ I,

x0 ∈ Ls(R) if and only if x(t; s, x0) ∈ Lt(R) ;

here x(·; s, x0) denotes the unique solution of (1) with x(s) = x0. The obvious
fluid dynamical interpretation is that, at each time t, the set Lt(R) represents a
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smooth curve of fluid particles advected by the velocity field f . A material line L
is attracting if for every solution µ of (1) with µ(t) ∈ Lt(R) for some (and hence
every) t ∈ I, there exists α > 0 and a smooth family X of (d− 1)-dimensional
subspaces, invariant under the linearisation (2) along µ, i.e. Φ(t, s)X(s) = X(t)
for all s, t ∈ I, such that X(t) is, for every t ∈ I, transversal to Tµ(t)Lt(R), and

‖Φ(t, s)x‖ ≤ e−α(t−s)‖x‖ , ∀t ≥ s, x ∈ X(s) . (15)

For any κ > 0, consider now the autonomous linear equation

ẋ =

 −1 6 0
0 −7 0
0 0 κ

x . (16)

Since the (x1, x2)-plane and the x3-axis are both invariant under the flow
generated by (16), corresponding respectively to two negative and one positive
eigenvalue, it seems plausible that e.g. the x3-axis is an attracting material line.
In fact, Case 1 of [7, Thm.1], asserts that every solution of (16) is contained in
an attracting material line, and hence (16) allows for many attracting material
lines. Plausible though this may be, it is actually not true:

Claim 6 No material line of (16) is attracting.

To verify this claim, suppose L was an attracting material line of (16) and µ
a solution in L. Denote by G2,3 the set of all two-dimensional subspaces of
R3. It follows from (15) that d

dt
1
2‖Φ(t, s)x‖2

∣∣
t=s

≤ −α‖x‖2 for all x ∈ X(s),
where X(s) ∈ G2,3 is transversal to Tµ(s)Ls(R). Note that d

dt
1
2‖Φ(t, s)x‖2

∣∣
t=s

=
〈Cx, x〉 with the symmetric matrix

C =

 −1 3 0
3 −7 0
0 0 κ

 .

Thus Claim 6 will follow immediately once it is demonstrated that

maxx∈X,‖x‖=1〈Cx, x〉 ≥ 0 , ∀X ∈ G2,3. (17)

To prove (17), first recall the following elementary fact from linear algebra.

Proposition 7 Let X 6= {0} be a subspace of Rd, and C,D ∈ Rd×d symmetric
matrices with D > 0. Then

{
〈Cx, x〉 : x ∈ X, 〈Dx, x〉 = 1

}
= [ρ−, ρ+],

where ρ+ and ρ− denote, respectively, the largest and smallest eigenvalue of
[〈Cbi, bj〉][〈Dbi, bj〉]−1 ∈ Rl×l, and {b1, . . . , bl} is any basis of X.

Denote by Xϑ,ϕ ⊂ R3 the two-dimensional space

Xϑ,ϕ =

 cos ϑ cos ϕ
cos ϑ sinϕ

sinϑ

⊥, 0 ≤ ϑ ≤ 1
2π, 0 ≤ ϕ ≤ 2π ;
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every X ∈ G2,3 equals Xϑ,ϕ for the appropriate ϑ, ϕ. To apply Proposition
7 with D = id3×3 and X = Xϑ,ϕ, deduce from a straightforward computation
that [〈Cbi, bj〉][〈Dbi, bj〉]−1 is similar to κ id2×2 + E1E2, where

E1 = −κ id2×2+
[
−1 3

3 −7

]
, E2 =

[
1− cos2 ϑ cos2 ϕ − cos2 ϑ cos ϕ sinϕ
− cos2 ϑ cos ϕ sinϕ 1− cos2 ϑ sin2 ϕ

]
.

It follows that the maximum of
{
〈Cx, x〉 : x ∈ Xϑ,ϕ, ‖x‖ = 1

}
is κ + τ , with τ

denoting the largest zero of the quadratic function

pϑ,ϕ : t 7→ t2+
(
2(κ+4)−cos2 ϑ

(
κ+4−3

√
2 sin(2ϕ+ 1

4π)
))

t+(κ2+8κ−2) sin2 ϑ .

If 0 < κ ≤ 3
√

2− 4 then pϑ,ϕ(0) ≤ 0 and hence τ ≥ 0. On the other hand,

pϑ,ϕ(3
√

2− 4− κ) = 3
√

2(3
√

2− 4− κ) cos2 ϑ
(
1 + sin(2ϕ + 1

4π)
)
≤ 0

whenever κ > 3
√

2− 4, so that κ + τ ≥ 3
√

2− 4 in this case. Overall therefore

maxx∈X,‖x‖=1〈Cx, x〉 ≥ min(κ, 3
√

2− 4) > 0 , ∀X ∈ G2,3 .

Clearly, this strengthened form of (17) proves Claim 6.

Remark 8 (i) A straightforward computation confirms that (16) is hyperbolic
w.r.t. ‖ · ‖ if and only if t+ − t− < 1

6 log 9+4
√

2
7 ≈ 0.1232. In this case, the rank

of any invariant projector for (16) according to Definition 1 equals one, and not
two as might be expected.

(ii) If A is constant and has no eigenvalue on the imaginary axis, then there
always exist uncountably many Γ = Γ> > 0 such that (3) is hyperbolic w.r.t.
‖·‖Γ on every compact interval I, see [1, Rem.2] and [2, Thm.2.9]. For example,
(16) is hyperbolic on every I w.r.t. ‖ · ‖Γ, where

Γ =

 1 1 0
1 2 0
0 0 1

 .

Moreover, if the definition of attractivity is adapted in that ‖ · ‖ in (15) is
replaced by ‖ · ‖Γ, then every trajectory of (16) is indeed contained in an
attracting material line. Not restricting oneself to the Euclidean norm may
thus be beneficial even in the most elementary of circumstances.

(ii) The reader may wonder exactly which part of the alleged proof of [7,
Thm.1] is problematic. The answer is simple: As the above example shows,
linear changes of coordinates do generally not preserve finite-time hyperbolicity,
not even if they are time-independent. Concretely, x = My with the appropriate
non-singular matrix M transforms (16) into ẏ = diag [−1,−7, κ], for which e.g.
every trajectory not contained in the (y1, y2)-plane, and hence in particular the
y3-axis is an attracting material line.

(iv) The usage of time-dependent spectral data to detect finite-time
hyperbolicity can be avoided altogether. Based on a dynamic partition of
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the extended phase space, [1, Cor.9] presents a neat condition guaranteeing
that a solution µ of (1) is hyperbolic. The dynamic partition does not involve
eigenvalues or -vectors but rather utilises a classification of the points in I × U
according to their qualitative instantaneous behaviour. The interested reader
may want to consult [1, 2, 5, 6, 8] where aspects of this useful concept are
developed in detail.
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