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Abstract In scientific computations using floating point arithmetic, rescaling a data
set multiplicatively (e.g., corresponding to a conversion from dollars to euros)
changes the distribution of the mantissas, or fraction parts, of the data. A scale-
distortion factor for probability distributions is defined, based on the Kantorovich
distance between distributions. Sharp lower bounds are found for the scale-distortion
of n-point data sets, and the unique data set of size n with the least scale-distortion is
identified for each positive integer n. A sequence of real numbers is shown to follow
Benford’s Law (base b) if and only if the scale-distortion (base b) of the first n data
points tends zero as n goes to infinity. These results complement the known fact that
Benford’s Law is the unique scale-invariant probability distribution on mantissas.
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1 Introduction

In analyzing real-valued numerical data, it is important not only to study the distri-
bution of the raw data itself, but also to study the distribution of the mantissas of
the data. For example, as Knuth states in The Art of Computer Programming [12,
pp. 238], “In order to analyze the average behavior of floating-point arithmetic al-
gorithms (and in particular to determine their average running time), we need some
statistical information that allows us to determine how often various cases arise.” The
decision to terminate an algorithm is often based on the observed values of the man-
tissas of the output—for example, to stop if n values in a row are identical, or if the
difference between successive values is less than a given amount. Thus the running
time of the algorithm depends on the empirical distribution of the mantissas. As an-
other example, the analysis of mantissas via goodness-of-fit tests to Benford’s Law,
the well-known logarithmic probability distribution on mantissas, is now widely used
for fraud detection, for tests of homogeneity of data, and for diagnostic tests of math-
ematical models [11, 14].

In general, however, the distribution of both the raw data and the mantissas of the
data depends on the units used—converting from dollars to euros, or from meters to
feet, will almost always alter the distributions. It is an easy fact that no finite set of
mantissas is exactly invariant under arbitrary changes of scale, and it is one of the
goals of this article to establish sharp inequalities and bounds on how close to scale-
invariant a data set of size n can be, and to identify the data sets altered the least by
changes of scale.

Using the classical Kantorovich metric for the distance between probability distri-
butions on a bounded set (the mantissas), a natural scale-distortion factor for distribu-
tions of mantissas is defined. For each positive integer n, a sharp lower bound is found
for the scale-distortion of every n-point data set, and the unique most scale-invariant
(i.e, least scale-distorted) set of size n is identified (Theorem 3.22). These extremal
data sets are then compared with the n-point data sets (Corollary 2.10) that are closest
to the unique scale-invariant distribution, Benford’s logarithmic distribution. These
inequalities are used to show that the mantissas of a sequence of real numbers are
Benford-distributed if and only if the scale-distortion of the first n points goes to zero
as n goes to infinity (Theorem 3.19), from which it follows that the scale-distortion
of a sequence of i.i.d. random variables with mantissa distribution P approaches zero
almost surely as n goes to infinity, if P is Benford’s Law, and if not, then the lim sup
of the successive scale-distortions is almost surely strictly positive (Theorem 3.21).

2 Notation and Basic Tools

Throughout this article, b denotes a natural number greater than 1, referred to as the
base. For every t ∈ R+, 〈t〉b is the (base b) mantissa of t , i.e., 〈t〉b is the unique
number u ∈ [1, b) with t = ubk for some k ∈ Z.

Example 2.1 〈71〉10 = 〈7.1〉10 = 〈0.71〉10 = 7.1.
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Given a data set X = {x1, . . . , xn} of points in R+, i.e., X is an unordered n-tuple
of positive real numbers, possibly with repetitions, define the probability measures

PX = 1
n

n∑

i=1

δxi and 〈PX〉b = 1
n

n∑

i=1

δ〈xi 〉b ,

where δt denotes the probability measure concentrated at t ∈ R. Note that
〈PX〉b([1, b)) = 1.

The next definition recalls one of the best-known probability distributions on man-
tissas, namely Benford’s Law [2, 11, 13], which will play a special role in the scale-
distortion inequalities below, essentially since it is known to be the unique scale-
invariant probability distribution on mantissas [10]. (It is also known to be the unique
atomless base-invariant and the unique sum-invariant distribution [1, 10].)

Definition 2.2 A sequence (xn) of positive real numbers is b-Benford (or Benford
base b) if

lim
n→∞

#{i ≤ n : 〈xi〉b ≤ t}
n

= logb t for all t ∈ [1, b).

Inherent in Definition 2.2 is Benford’s Law, the Borel probability measure Bb

on R+ with

Bb([1, t]) = logb t for all t ∈ [1, b).

Obviously, Bb([1, b)) = 1. (Here and throughout, the symbol logb denotes the loga-
rithm base b; if used without a subscript, log means the natural logarithm.)

Recall that a sequence (Pn) of probability measures on R, with associated distrib-
ution functions (d.f.’s) FPn , converges weakly to P , with d.f. FP , if and only if (FPn)

converges pointwise to FP at every point of continuity of FP .

Proposition 2.3 The sequence (xn) of positive real numbers is b-Benford if and only
if 〈PXn〉b → Bb weakly as n→∞, where Xn = {x1, . . . , xn} for each n ∈N.

Proof Let Fn be the d.f. of 〈PXn〉b . Then

Fn(t) = #{i ≤ n : 〈xi〉b ≤ t}
n

,

and 〈PXn〉b → Bb weakly if and only if Fn(t)→ logb(t) for all t ∈ [1, b), that is, if
and only if (xn) is b-Benford. !

Let P(R) denote the family of all Borel probability measures on R. It is well-
known that, with the topology of weak convergence, P(R) can be given the structure
of a complete, separable metric space in different ways, that is, by means of different
metrics. For the practical purpose of quantifying scale-distortion an easily computed
metric is required. Since mantissas are bounded, it is enough to consider probability
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measures with finite expectation only, i.e., to restrict to the subset

P1(R) :=
{
P ∈P(R) :

∫

R
|t |dP (t) <∞

}

of P(R). For every P ∈P(R) denote by suppP its support, i.e., suppP is the small-
est closed set with P -measure 1. Clearly P ∈P1(R) whenever suppP is compact. If
FP is the d.f. of P ∈P(R) then, by Fubini’s theorem,

P ∈P1(R) if and only if
∫ 0

−∞
FP (t) dt +

∫ ∞

0
(1− FP (t)) dt <∞.

Let P1,P2 ∈ P1(R) with d.f.’s FP1 , FP2 . Recall that the Kantorovich (or Wasser-
stein) metric dK is defined by

dK(P1,P2) =
∫ ∞

−∞
|FP1(t)− FP2(t)|dt.

Given any d.f. F , let F−1: (0,1)→R denote its generalized upper inverse (or upper
quantile) function, that is, F−1(t) = sup{u : F(u) ≤ t}. Note that, again by Fubini’s
theorem,

∫ ∞

−∞
|FP1(t)− FP2(t)|dt =

∫ 1

0
|F−1

P1
(t)− F−1

P2
(t)|dt. (2.1)

There are at least three reasons for choosing the Kantorovich distance as a means to
quantify scale-distortion. First, it is easy to compute, unlike the Lévy and Prokhorov
metrics. Second, it is a bona fide metric and metrizes weak convergence on spaces
of bounded diameter (see Lemma 2.6 below). Third, it has a clear intuitive prob-
abilistic interpretation: By the celebrated Kantorovich-Rubinstein theorem [8, The-
orem 11.8.2], it is the minimal expected distance between two jointly distributed
random variables ξ1, ξ2 with marginals P1 and P2, respectively, that is,

dK(P1,P2) = inf{E|ξ1 − ξ2| : L(ξ1) = P1, L(ξ2) = P2, ξ1, ξ2 jointly distributed},
(2.2)

where L(ξ) denotes the law, or probability distribution, of the random variable ξ .

Example 2.4 Let P be uniform on [1, b). Then

dK(P,Bb) =
∫ b

1

(
logb t − t − 1

b− 1

)
dt = b + 1

2
− b− 1

logb
> 0.

Example 2.5 Let b = 10, X = {1,2}, Y = {2,3}, Z = {1,2,3}. Then

dK(〈PX〉b, 〈PY 〉b) = 1, dK(〈PX〉b, 〈PZ〉b) = 1/2,

dK(〈PY 〉b, 〈PZ〉b) = 1/2.
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That the Kantorovich metric is truly a metric and that it metrizes weak convergence
of probability measures on spaces of bounded diameter is known [8, 9]; a proof of
these facts for the special case of probability measures on mantissas is included for
completeness. Denote by P[1, b) the set of Borel probability measures on [1, b), that
is,

P[1, b) = {P ∈ P(R) : P([1, b)) = 1},
and recall that a metric d(·, ·) on a space of probability measures S metrizes weak
convergence on S if, for all P ∈ S and all sequences (Pn) in S , d(P,Pn)→ 0 if and
only if Pn → P weakly.

Lemma 2.6 For all b ∈N \ {1}:
(i) dK is a metric on P[1, b);

(ii) dK metrizes weak convergence on P[1, b).

Proof (i) Obviously, P[1, b)⊂ P1(R), hence dK(P1,P2) <∞ for any two P1,P2 ∈
P[1, b). The right-continuity of d.f.’s implies that two d.f.’s that agree almost every-
where are identical. Thus, the standard one-to-one correspondence between Borel
probability measures P ∈P[1, b) and d.f.’s F on [1, b) (i.e., F is non-decreasing and
right-continuous with F(1)≥ 0 and limt↑b F (t) = 1, see e.g. [6, Theorem 2.2.4]) im-
plies that P[1, b) may be identified via P +→ FP with a subset of L1[1, b), the space
of L1-functions on [1, b). Hence dK is simply the standard L1-metric on L1[1, b),
restricted to the set of d.f.’s.

(ii) Let dP denote the Prokhorov metric on P[1, b) (cf. [8]), that is,

dP (P1,P2) = inf{ε > 0 : P1(B)≤ P2(B
ε) + ε for all Borel subsets B of [1, b)},

where

Bε = {t ∈ [1, b) : inf
u∈B

|u− t | < ε}.

By [9, Theorem 2],

(dP )2 ≤ dK ≤ b dP ,

and since dP metrizes weak convergence on any separable metric space (e.g.,
[8, p. 81]), this implies that dK metrizes weak convergence on P[1, b). !

Recall that 〈PX〉b ,= Bb for every finite data set X. To quantify how small
dK(〈PX〉b,Bb) can be for a data set X of size n, it is helpful to address the fol-
lowing more general question: Given P ∈P1(R), what is the smallest possible value
of dK(P, 1

n

∑n
i=1 δxi ), where x1, . . . , xn ∈ R? This question will be answered com-

pletely in Theorem 2.8 below; for n = 1 the latter reduces to the well-known fact [4,
p. 54] that, for any integrable real-valued random variable ξ ,

E(|ξ − x1|) is minimal ⇐⇒ x1 is a median of ξ . (2.3)
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Generally, given P ∈ P(R) with corresponding d.f. FP and t ∈ (0,1), the t-quantile
set IP

t of P is defined as

IP
t =

[
inf{u : FP (u)≥ t}, sup{u : FP (u)≤ t}

]
.

The following lemma records several well-known useful facts about quantile sets;
proofs are included for the sake of completeness.

Lemma 2.7 Let P ∈ P(R) with d.f. FP . Then, for every t ∈ (0,1):

(i) IP
t is a non-empty, compact (possibly one-point) interval [α,β];

(ii) {α,β}⊂ suppP and (α,β)⊂R\suppP ;
(iii) FP ((α,β))⊂ {t}.
Furthermore, if t1 < t2 then u ≤ v for every u ∈ IP

t1
and every v ∈ IP

t2
, and IP

t1
∩ IP

t2
contains at most one point.

Proof Fix t ∈ (0,1) and let α = inf{u : FP (u)≥ t}, β = sup{u : FP (u)≤ t}.
(i) Since FP is non-decreasing with limu→−∞FP (u) = 0 and limu→∞FP (u) = 1,

both α and β are finite. Moreover, FP (u) < t whenever u < α and thus β ≥ u. Con-
sequently, β ≥ α, and IP

t = [α,β] is a non-empty, compact interval.
(ii) Suppose FP (α − ε) = FP (α) for some ε > 0. Then FP (α − ε) = FP (α)≥ t ,

an obvious contradiction to the definition of α. Therefore α ∈ suppP . Simi-
larly, if FP (β) = FP (β + ε) for some ε > 0 then P({β}) > 0 because otherwise
FP (β + ε)≤ t , which clearly contradicts the definition of β . Hence, {α,β}⊂ suppP .
For any u with α < u < β clearly FP (u) = t , implying that u ∈R\suppP .

(iii) This is obvious from part (ii).
To conclude the proof of the lemma, let t1 < t2 and pick any u ∈ IP

t1
, v ∈ IP

t2
. If u > v

then FP ( 1
2 (u + v)) ≥ FP (v) ≥ t2 and so limw↑u FP (w) ≥ t2, which is impossible.

Thus u ≤ v. If u ∈ IP
t1
∩ IP

t2
and v > u then limw↑v FP (w) ≥ FP (u) ≥ t2, and so

v /∈ IP
t1

. Analogously, if v < u then FP (v) ≤ limw↑u FP (w) ≤ t1, so v /∈ IP
t2

. Hence,
IP
t1
∩ IP

t2
= {u} and P({u})≥ t2 − t1 > 0. !

Given a random variable ξ with L(ξ) = P and a one-point data set X = {x1},
(2.2) implies that an equivalent form of (2.3) is

dK(P,PX) is minimal ⇐⇒ x1 ∈ IP
1/2. (2.4)

The following theorem, the main theorem of this section, generalizes (2.4) to arbitrary
finite data sets X. This result will be used in the next section to show that the n-point
data set having the least scale-distortion is not the same as—although a scaled version
of—the n-point data set closest (w.r.t. the Kantorovich metric) to the unique scale-
invariant distribution Bb .

Theorem 2.8 Let P ∈ P1(R) and n ∈N. For the data set X = {x1, . . . , xn}⊂R with
x1 ≤ · · · ≤ xn the distance dK(P,PX) is minimal if and only if xi ∈ IP

(2i−1)/(2n) for
all i = 1, . . . , n.
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Fig. 1 If FP (xi ) < 2i−1
2n or if limt↑xi

FP (t) > 2i−1
2n then dK(P,PX) is not minimal. The shaded areas

illustrate the net decrease in dK(P,PX) if some xj are moved slightly to the right or left, respectively

Proof Assume that X is a data set of size n such that dK(P,PX) is minimal. First,
suppose that there is some i ∈ {1,2, . . . , n} such that FP (xi) < 2i−1

2n and let

ki = min
{

1≤ k ≤ i : xk = xi, FP (xi) <
2k− 1

2n

}

and also

li = max{i ≤ l ≤ n : xl = xi},
so that in particular 1 ≤ ki ≤ i ≤ li ≤ n. Since FP is right-continuous, there exists
ε1 > 0 such that

2ki − 3
2n

≤ FP (t) <
2ki − 1

2n
for all t ∈ [xi, xi + ε1],

and hence
∣∣∣∣FP (t)− ki − 1

n

∣∣∣∣≤
1

2n
for all t ∈ [xi, xi + ε1]. (2.5)

If li = n let ε = ε1, otherwise let ε = min(ε1,
1
2 (xli+1−xi)), and consider the n-point

data set

X̃ = {x1, . . . , xki−1, xki + ε, . . . , xli + ε, xli+1, . . . , xn},
i.e., X̃ is created from X by moving xki , . . . , xli slightly to the right, see also Fig. 1.
Clearly, FPX̃

(t) = FPX(t) whenever t /∈ [xi, xi + ε]. Then

dK(P,PX)− dK(P,PX̃)

=
∫ ∞

−∞
|FP (t)− FPX(t)|dt −

∫ ∞

−∞
|FP (t)− FPX̃

(t)|dt
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=
∫ xi+ε

xi

(
|FP (t)− FPX(t)|− |FP (t)− FPX̃

(t)|
)
dt

=
∫ xi+ε

xi

(
li

n
− FP (t)−

∣∣∣∣FP (t)− ki − 1
n

∣∣∣∣

)
dt

≥
∫ xi+ε

xi

(
2li − 1

2n
− FP (t)

)
dt ≥

∫ xi+ε

xi

(
2ki − 1

2n
− FP (t)

)
dt > 0,

where the last two weak inequalities follow from (2.5) together with li ≥ ki . This
implies that dK(P,PX) > dK(P,PX̃), contradicting the minimality of dK(P,PX).
Hence FP (xi)≥ 2i−1

2n .
The argument for the case that limt↑xi FP (t) > 2i−1

2n is analogous but slightly dif-
ferent because of the right-continuity of distribution functions. In this case let

ki = min{1≤ k ≤ i : xk = xi},

and

li = max
{
i ≤ l ≤ n : lim

t↑xi

FP (t) >
2l − 1

2n

}
,

so that again 1≤ ki ≤ i ≤ li ≤ n. There now exists ε1 > 0 such that

2li − 1
2n

< FP (t)≤ 2li + 1
2n

for all t ∈ [xi − ε1, xi),

and thus
∣∣∣∣FP (t)− li

n

∣∣∣∣≤
1

2n
for all t ∈ [xi − ε1, xi).

If ki = 1 let ε = ε1, otherwise let ε = min(ε1,
1
2 (xi−xki−1)), and consider the n-point

data set

X̃ = {x1, . . . , xki−1, xki − ε, . . . , xli − ε, xli+1, . . . , xn},
i.e., X̃ is created from X by moving xki , . . . , xli slightly to the left (cf. Fig. 1). Clearly,
FPX̃

and FPX coincide outside [xi − ε, xi], and

dK(P,PX)− dK(P,PX̃)

=
∫ ∞

−∞
|FP (t)− FPX(t)|dt −

∫ ∞

−∞
|FP (t)− FPX̃

(t)|dt

=
∫ xi

xi−ε

(∣∣∣∣FP (t)− ki − 1
n

∣∣∣∣−
∣∣∣∣FP (t)− li

n

∣∣∣∣

)
dt

=
∫ xi

xi−ε

(
FP (t)− ki − 1

n
−

∣∣∣∣FP (t)− li

n

∣∣∣∣

)
dt

≥
∫ xi

xi−ε

(
FP (t)− 2ki − 1

2n

)
dt ≥

∫ xi

xi−ε

(
FP (t)− 2li − 1

2n

)
dt > 0,



J Theor Probab

so that dK(P,PX) > dK(P,PX̃), again contradicting the minimality of dK(P,PX).
Hence limt↑xi FP (t)≤ 2i−1

2n . Overall therefore

lim
t↑xi

FP (t)≤ 2i − 1
2n

≤ FP (xi) for all i = 1, . . . , n,

or, equivalently,

xi ∈ IP
(2i−1)/(2n) for all i = 1, . . . , n, (2.6)

whenever dK(P,PX) is minimal for X = {x1, . . . , xn}.
For the converse, assume that (2.6) holds, let &n = {x ∈ Rn : x1 ≤ · · ·≤ xn}, and

consider the non-negative function

ϕ :
{
&n → R,

x +→ dK(P,PX),
where X = {x1, . . . , xn}.

Endow &n with a metric induced by any norm on Rn (e.g. the (1-norm, see Propo-
sition 2.12 below). It is easy to check that ϕ is Lipschitz continuous, and ϕ(x)→∞
as x1 →−∞ or xn→∞. Hence ϕ attains a minimum, say at y = (y1, . . . , yn) ∈&n.
Fix i ∈ {1,2, . . . , n} and note that yi ∈ IP

(2i−1)/(2n). Let x1 ≤ · · · ≤ xn satisfy (2.6).

If xi ,= yi then IP
(2i−1)/(2n) is not a singleton, and so FP (t) = 2i−1

2n for every t in
the interior of IP

(2i−1)/(2n). Let IP
(2i−1)/(2n) = [α,β] and consider the data set X̃ =

{x1, . . . , xi−1, yi, xi+1, . . . , xn}. Clearly, FPX̃
and FPX coincide outside IP

(2i−1)/(2n).
From

dK(P,PX)− dK(P,PX̃)

=
∫

IP
(2i−1)/(2n)

|FP (t)− FPX(t)|dt −
∫

IP
(2i−1)/(2n)

|FP (t)− FPX̃
(t)|dt

=
∫

IP
(2i−1)/(2n)

∣∣∣∣
2i − 1

2n
− FPX(t)

∣∣∣∣dt −
∫

IP
(2i−1)/(2n)

∣∣∣∣
2i − 1

2n
− FPX̃

(t)

∣∣∣∣dt

=
∫ xi

α

∣∣∣∣
2i − 1

2n
− i − 1

n

∣∣∣∣dt +
∫ β

xi

∣∣∣∣
2i − 1

2n
− i

n

∣∣∣∣dt

−
∫ yi

α

∣∣∣∣
2i − 1

2n
− i − 1

n

∣∣∣∣dt −
∫ β

yi

∣∣∣∣
2i − 1

2n
− i

n

∣∣∣∣dt = 0,

it follows that ϕ(x1, . . . , xi−1, yi, xi+1, . . . , xn) = ϕ(x1, . . . , xi−1, xi, xi+1, . . . , xn).
Since i was arbitrary, it follows that ϕ(x) = ϕ(y). Thus ϕ(x) = dK(P,PX) is mini-
mal. !

Corollary 2.9 Let P ∈ P1(R), n ∈ N, and X = {x1, . . . , xn} ⊂ R with x1 ≤ x2 ≤
· · · ≤ xn. If P has no atoms (i.e., FP is continuous) then dK(P,PX) is minimal if
and only if FP (xi) = 2i−1

2n for all i = 1, . . . , n. If suppP = R then the data set X

minimizing dK(P,PX) is unique.
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Proof If FP is continuous at xi then xi ∈ IP
t if and only if FP (xi) = t . By

Lemma 2.7(i) and (ii), every quantile set is a singleton if suppP = R. In particu-
lar, X is unique in this case. !

The next corollary identifies the unique n-point mantissa data set in [1, b) that
is closest in the Kantorovich metric to the unique scale-invariant mantissa distribu-
tion Bb , and it identifies the minimal distance. As will be seen in the next section, this
unique set is not the same as the n-point data set having the least scale-distortion.

Corollary 2.10 Let X = {x1, . . . , xn}⊂R+ be a finite data set. Then

dK(〈PX〉b,Bb)≥
b− 1
logb

· b1/(2n) − 1
b1/(2n) + 1

= b− 1
logb

tanh
(

logb

4n

)
. (2.7)

Equality holds in (2.7) if and only if {〈x1〉b, . . . , 〈xn〉b} = {b(2i−1)/(2n) : i = 1, . . . , n}.

Proof Since FBb is continuous and strictly increasing, I
Bb
t is the singleton {bt }

for each t ∈ (0,1). Thus, equality is attained if and only if {〈x1〉b, . . . , 〈xn〉b} =
{b(2i−1)/(2n) : i = 1, . . . , n}. Consequently, a straightforward computation yields

dK

(
1
n

n∑

i=1

δb(2i−1)/(2n) ,Bb

)

=
∫ b1/(2n)

0
logb t dt +

n−1∑

i=1

∫ b(2i+1)/(2n)

b(2i−1)/(2n)

∣∣∣∣logb t − i

n

∣∣∣∣dt

+
∫ b

b(2n−1)/(2n)
(1− logb t) dt

=
∫ b1/(2n)

0
logb t dt +

∫ b1/(2n)

b−1/(2n)
| logb t |dt

n−1∑

i=1

bi/n

+
∫ b

b(2n−1)/(2n)
(1− logb t) dt

= b− 1
logb

· b1/(2n) − 1
b1/(2n) + 1

= b− 1
logb

tanh
(

logb

4n

)
. !

Remark 2.11 (i) Defining )(z) = (tanh z)/z and )(0) = 1, the minimal distance
given by the right-hand side in (2.7) is

b− 1
logb

tanh
(

logb

4n

)
= b− 1

4n
)

(
logb

4n

)
.
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The function ) is analytic, strictly decreasing on R+, and )(z) = 1− 1
3z2 +O(z4).

Hence, for every data set X of size n,

dK(〈PX〉b,Bb)≥
b− 1

4n

(
1− log2 b

48n2 +O
(

log4 b

n4

))
as n→∞,

so the distance between Bb and any n-point data set is at least O(1/n).
(ii) If, more generally, P ∈ P(R) is any probability measure with # suppP ≤ n

(i.e., P is purely atomic with at most n atoms), then dK(P,Bb) can be smaller than
the right-hand side in (2.7). However, the universal estimate, differing from (2.7) by
merely one symbol,

dK(P,Bb)≥
b− 1

4n
)

(
logb

4

)

holds, with equality for a unique P having exactly n atoms in (1, b); see [3] for
details.

Finally, to develop the concept of scale-distortion for finite data sets in the next
section, the following proposition records a useful relationship between the Kan-
torovich metric and the (1-norm ‖ · ‖1 on Rn,

‖x‖1 =
n∑

i=1

|xi |.

For the data set X = {x1, . . . , xn}, let x1,n ≤ x2,n ≤ · · · ≤ xn,n be the order statistics
of X; e.g., x1,n = min1≤i≤n xi and xn,n = max1≤i≤n xi .

Proposition 2.12 Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be real data sets. Then

dK(PX,PY ) = 1
n

∥∥(x1,n, . . . , xn,n)− (y1,n, . . . , yn,n)
∥∥

1.

Proof Without loss of generality, assume that x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · ·
≤ yn, so xi = xi,n and yi = yi,n for all i = 1, . . . , n. Let FPX and FPY be the d.f.’s of
PX and PY , respectively, so that

FPX(t) = PX

(
(−∞, t]

)
= 1

n
#{i ≤ n : xi ≤ t} for all t ∈R,

and similarly for FPY . Note that

F−1
PX

(t) = xi and F−1
PY

(t) = yi for all t ∈
[
i − 1

n
,

i

n

)
.

Consequently, by (2.1)

dK(PX,PY ) =
∫ 1

0
|F−1

PX
(t)− F−1

PY
(t)|dt =

n∑

i=1

(
i

n
− i − 1

n

)
|xi − yi |
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= 1
n

n∑

i=1

|xi − yi |

= 1
n

∥∥(x1, . . . , xn)− (y1, . . . , yn)
∥∥

1. !

Example 2.13 For b = 10, the unique 2-point and 3-point data sets closest to B10
in the Kantorovich metric are {101/4,103/4} and {101/6,101/2,105/6}, respectively.
Moreover, for example, every other 3-point data set is at a distance from B10 strictly
larger than

9
log 10

(
101/6 − 1
101/6 + 1

)
≈ 0.741.

Remark 2.14 Even when the data sets X and Y are of different size, say m and n,
respectively, Proposition 2.12 can be applied by creating new data sets X̂ and Ŷ with
PX̂ = PX and PŶ = PY . The points in X̂ are those in X repeated n/gcd(m,n) times,
and the points in Ŷ are those in Y repeated m/gcd(m,n) times.

3 Scale-Distortion

With the tools developed in the previous section, the scale-distortion of probabil-
ity measures and data sets will now be defined and analyzed. Recall that the base
b ∈N \ {1} is fixed.

Definition 3.1 For any Borel probability measure P on R+, let 〈P 〉b denote the
probability measure on [1, b) induced via the (base b) mantissa function x +→ 〈x〉b ,
i.e., the distribution function of 〈P 〉b is given by

F〈P 〉b (t) = P({u : 〈u〉b ≤ t}) for all t ∈ [1, b).

Note that this notation is consistent with the earlier use of 〈PX〉b .

Example 3.2 If P ∈ P[1, b), e.g., P = Bb or P uniform on [1, b), then 〈P 〉b = P .

Example 3.3 Let P be uniform on (0,1]. Then 〈P 〉b is the Borel probability measure
on [1, b) with d.f. given by

F〈P 〉b (t) = P({u : 〈u〉b ≤ t}) = P

( ∞⋃

n=1

[b−n, tb−n]
)

=
∞∑

n=1

(t − 1)b−n = t − 1
b− 1

.

Hence, 〈P 〉b is uniform on [1, b). This could be seen directly and without any compu-
tation by observing that the map T : x +→ (〈x〉b − 1)/(b− 1) on (0,1] has countably
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many full (that is, onto) linear branches and hence preserves Lebesgue measure on
(0,1], i.e., the uniform distribution P ; see [7].

Definition 3.4 For any Borel probability measure P on R+ and any real number
s > 0, the scaling (or dilation) of P by s, denoted by sP , is the probability measure
on R+ induced via the scaling x +→ sx, i.e.,

FsP (t) = (sP )((0, t]) = P((0, t/s]) = FP (t/s) for all t > 0.

Example 3.5 If P is uniform on (0,1] then sP is uniform on (0, s]. If X =
{x1, . . . , xn}, then scaling by s gives the scaled data set sX = {sx1, . . . , sxn} so that
sPX = PsX .

Definition 3.6 Given a probability measure P on R+ and s > 0, the (base b) scale-
distortion of P by s is defined by

DS(s;P) = dK(〈P 〉b, 〈sP 〉b).

The function DS(·;P) quantifies how much P changes under scaling. A few simple
properties of this function are contained in the following lemma.

Lemma 3.7 Let P be a Borel probability measure on R+, and b ∈N\{1}. Then, for
every s ∈R+:

(i) DS(sbk;P) = DS(s;P) for all k ∈ Z;
(ii) 0≤DS(s;P) < b− 1;

(iii) The function DS(· ;P) is right-continuous, limσ↑s DS(σ ;P) exists, and
∣∣∣DS(s;P)− lim

σ↑s
DS(σ ;P)

∣∣∣≤ (b− 1)P ({bk/s : k ∈ Z}).

In particular, D(· ;P) has at most countably many discontinuities all of which
are jumps, and is continuous at s whenever P({bk/s : k ∈ Z}) = 0.

Proof Note first that, for every s ∈R+,

F〈sP 〉b (t) =
∑

k∈Z
(FP (bkt/s)− FP (bk/s)) + P({bk/s : k ∈ Z}) for all t ∈ [1, b).

(3.1)
(i) Replacing s by sbk with any k ∈ Z leaves the right-hand side of (3.1) un-

changed. Hence 〈sbkP 〉b = 〈sP 〉b , and so DS(sbk;P) = DS(s;P).
(ii) Since 〈P 〉b and 〈sP 〉b are both elements of P[1, b),

0≤DS(s;P) =
∫ b

1
|F〈P 〉b (t)− F〈sP 〉b (t)|dt <

∫ b

1
1dt = b− 1,

unless |F〈P 〉b (t)− F〈sP 〉b (t)| = 1 for almost all t ∈ [1, b), and thus F〈P 〉b (t) ∈ {0,1}.
In the latter case, 〈P 〉b = δa for some a ∈ [1, b). A direct computation shows that

DS(s; δ1) = s − 1 < b− 1 for all s ∈ [1, b),
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and, for all a ,= 1,

DS(s; δa) =
{

a(s − 1) if 1≤ s < b
a ,

a − a
b s if b

a ≤ s < b,

so that DS(s; δa)≤max{b− a, a− 1} < b− 1. In either case, therefore, DS(s;P) <
b− 1, by virtue of (i).

(iii) It follows from the right-continuity of FP and (3.1) that

lim
σ↑s

F〈σP 〉b (t) =
∑

k∈Z
(FP (bkt/s)− FP (bk/s))

= F〈sP 〉b (t)− P({bk/s : k ∈ Z}) for all t ∈ [1, b), (3.2)

and also

lim
σ↓s

F〈σP 〉b (t) =
∑

k∈Z
(FP (bkt/s)− P({bkt/s})− FP (bk/s) + P({bk/s}))

= F〈sP 〉b (t)− P({bkt/s : k ∈ Z}) for all t ∈ [1, b).

Consequently,

lim
σ↓s

F〈σP 〉b (t) = F〈sP 〉b (t) for all but countably many t . (3.3)

Therefore
lim sup

σ↓s

∣∣DS(σ ;P)−DS(s;P)
∣∣

= lim sup
σ↓s

∣∣dK(〈P 〉b, 〈σP 〉b)− dK(〈P 〉b, 〈sP 〉b)
∣∣

≤ lim sup
σ↓s

dK(〈σP 〉b, 〈sP 〉b)

= lim sup
σ↓s

∫ b

1

∣∣F〈σP 〉b (t)− F〈sP 〉b (t)
∣∣dt = 0,

where the last equality follows from (3.3) and the Dominated Convergence Theorem.
Hence limσ↓s DS(σ ;P) = DS(s;P), i.e., the scale-distortion function is right-

continuous. By (3.2),

lim
σ↑s

dK(〈P 〉b, 〈σP 〉b) = lim
σ↑s

∫ b

1

∣∣F〈P 〉b (t)− F〈σP 〉b (t)
∣∣dt

=
∫ b

1

∣∣F〈P 〉b (t)− F〈sP 〉b (t) + P({bk/s : k ∈ Z})
∣∣dt,

and so limσ↑s DS(σ ;P) also exists. Moreover,

|DS(s;P)− lim
σ↑s

DS(σ ;P)| ≤
∫ b

1
|P({bk/s : k ∈ Z})|dt

= (b− 1)P ({bk/s : k ∈ Z}).
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Thus if P({bk/s : k ∈ Z}) = 0 then the two one-sided limits coincide, and DS(· ;P) is
continuous at s. Observing that P({bk/s : k ∈ Z}) ,= 0 for at most countably many s

completes the proof. !

Example 3.8 Let P be uniform on [1, b). Then 〈P 〉b = P , and a short computation
shows that

DS(s;P) = (s − 1)(b− s)

2s
for all s ∈ [1, b).

Since FP is continuous, so is the scale-distortion function DS(· ;P).

Example 3.9 The condition P({bk/s : k ∈ Z}) = 0 is not necessary for the continuity
of DS(· ;P) at s. If, for example, P = δ(b+1)/2, then

DS(s;P) = b + 1
4b

((b− 1)s − |(b + 1)s − 2b|) for all s ∈ [1, b),

so that DS(· ;P) is continuous everywhere, even though P({bk/s : k ∈ Z}) = 1 for
s = 2b/(1 + b). If, on the other hand, P = δ√b then P({bk/s : k ∈ Z}) = 1 for
s =

√
b, and DS(· ;P) has a jump there, because

DS(
√

b;P)− lim
s↑
√

b
DS(s;P) =−(

√
b− 1)2 < 0.

By Lemma 3.7(ii), DS(· ;P) is bounded by b − 1. However, a maximum may
not be attained, as can be seen in Example 3.9 where DS(s; δ√b) <

√
b(
√

b − 1)

for all s ∈ R+, and yet sups∈R+ DS(s; δ√b) =
√

b(
√

b − 1). Also, if P has atoms
then DS(· ;P) is in general neither upper nor lower semi-continuous. Nevertheless,
the supremum of DS(· ;P) provides a useful indicator of how far P is from being
scale-invariant.

Definition 3.10 The (base b) scale-distortion DS(P ) of a Borel probability mea-
sure P on R+ is

DS(P ) = sup
s∈R+

DS(s;P) = sup
s∈R+

dK(〈P 〉b, 〈sP 〉b). (3.4)

For a data set X = {x1, . . . , xn}⊂R+ the scale-distortion of X is DS(X) = DS(PX).

Example 3.11 Let P be uniform on [1, b). It immediately follows from Example 3.8
that DS(s;P) is maximal for s ∈ {bk+1/2 : k ∈ Z}, and DS(P ) = 1

2 (
√

b− 1)2.

Example 3.12 A simple computation shows that 〈sBb〉b = Bb for all s > 0, and
therefore DS(Bb) = 0. In fact, if P is any Borel probability measure on R+ then
DS(P ) = 0 if and only if 〈P 〉b = Bb , see Theorem 3.15(iii) below.

Example 3.13 If P = δ(b+1)/2 then Example 3.9 shows that DS(P ) = 1
2 (b − 1),

and also DS(δ√b) =
√

b(
√

b − 1). Note that DS(δ(b+1)/2) < DS(δ√b). In fact
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DS(δ(b+1)/2)≤DS(δa) for every a > 0, and equality holds exactly if a = 1
2bk(b + 1)

for some k ∈ Z; see Theorem 3.22 below.

Remark 3.14 Scaling defines a (continuous) action of the multiplicative group R+

on the space of probability measures on R+. Via projection onto the mantissa, i.e.,
via P +→ 〈P 〉b , scaling also defines a (discontinuous) action of R+ on the space of
probability measures on [1, b). Here, the multiplicative subgroup consisting of pow-
ers of b acts as the identity. Consequently, the action of R+ descends to an action
of the quotient group R+/{bk : k ∈ Z} which, as a topological group, is isomorphic
to the circle. Thus to compute the scale-distortion DS(P ) of P it suffices to take the
supremum in (3.4) over 1≤ s < b; the latter is also evident from Lemma 3.7(i).

The next theorem summarizes the basic properties of scale-distortion.

Theorem 3.15 Let P be a probability measure on R+, and b ∈N\{1}. Then:

(i) 0≤DS(P )≤ b− 1;
(ii) DS(〈P 〉b) = DS(P );

(iii) DS(P ) = 0 if and only if 〈P 〉b = Bb;
(iv) DS(P ) = b− 1 if and only if 〈P 〉b = δ1;
(v) If P has no atoms, and if (Pn) is a sequence of probability measures on R+ with

Pn→ P weakly, then DS(Pn)→DS(P ), i.e., DS is continuous at P .

Proof (i) This is an obvious consequence of Lemma 3.7(ii).
(ii) This follows immediately from the fact that 〈s〈t〉b〉b = 〈st〉b for all s, t ∈R+.
(iii) Consider the continuous map p : R+ → S1 defined as p(t) = e2π i logb t and

note that p(〈t〉b) = p(t) as well as p(st) = p(s)p(t) = Rlogb s ◦p(t) for all s, t ∈R+;
here Rϑ denotes the counter-clockwise rotation of S1 by an angle 2πϑ . Clearly,
DS(P ) = 0 if and only if 〈sP 〉b = 〈P 〉b for all s > 0. In this case, the probability
measure 〈P 〉b ◦ p−1 on S1 satisfies

〈P 〉b ◦ p−1 = 〈sP 〉b ◦ p−1 = (sP ) ◦ p−1 = Rlogb s(P ◦ p−1) = Rlogb s(〈P 〉b ◦ p−1),

i.e., 〈P 〉b ◦p−1 is invariant under all rotations of S1. Consequently, 〈P 〉b ◦p−1 equals
(normalized) Lebesgue measure on S1. This in turn implies that

F〈P 〉b (t) = 〈P 〉b([1, t]) = 〈P 〉b ◦ p−1({e2π iu : 0≤ u≤ logb t})
= logb t for all t ∈ [1, b).

Hence 〈P 〉b = Bb . The converse, i.e. DS(Bb) = 0, is now obvious.
(iv) The proof of Lemma 3.7(ii) has shown that DS(P ) < b − 1 for every

P ∈P[1, b) with P ,= δ1, and DS(δ1) = b− 1. Generally, therefore, DS(P ) = b− 1
if and only if 〈P 〉b = δ1.

(v) Since P has no atoms, F〈sPn〉b (t)→ F〈sP 〉b (t) for all t ∈ [1, b) holds uniformly
in s ∈ [1, b), as does

∣∣DS(s;Pn)−DS(s;P)
∣∣ =

∣∣dK(〈Pn〉b, 〈sPn〉b)− dK(〈P 〉b, 〈sP 〉b)
∣∣

≤ dK(〈Pn〉b, 〈P 〉b) + dK(〈sPn〉b, 〈sP 〉b)→ 0.
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Given ε > 0, there exists s ∈ [1, b) such that DS(s;P) ≥ DS(P )− 1
2ε, and, for all

sufficiently large n,

DS(Pn)≥DS(s;Pn)≥DS(s;P)− 1
2
ε ≥DS(P )− ε.

Since ε > 0 was arbitrary, lim infn→∞DS(Pn) ≥ DS(P ). On the other hand,
DS(s;Pn)≤DS(s;P) + ε ≤DS(P ) + ε for all sufficiently large n and all s, so that
DS(Pn) ≤ DS(P ) + ε. Hence lim supn→∞DS(Pn) ≤ DS(P ), and so
limn→∞DS(Pn) = DS(P ). !

Corollary 3.16 For every ρ ∈ [0, b− 1] there exists a Borel probability measure P

on R+ such that DS(P ) = ρ.

Proof Let P = ρ
b−1δ1 + (1 − ρ

b−1 )Bb . Obviously, P ∈ P(R) if and only if 0 ≤
ρ ≤ b − 1, and a short calculation confirms that DS(s;P) = ρ s−1

b−1 , and hence
DS(P ) = ρ. !

Remark 3.17 (i) A slight refinement of the argument proving Theorem 3.15(v) shows
that P({bk : k ∈ Z}) = 0 is enough to ensure that lim infn→∞DS(Pn) ≥ DS(P )

whenever Pn → P weakly, i.e., DS is lower semi-continuous at P . If, however,
P({bk : k ∈ Z}) > 0 then this is no longer true in general. For a simple example
consider Pn = 1

2 (δn/(n+1) + δ1) for which Pn → δ1 weakly, yet DS(Pn) < 1
2 (b − 1)

for all n. At the time of writing the authors do not know of any probability measure
P on R+ for which DS is not upper semi-continuous at P .

(ii) Convex combinations of δ1 and Bb , as used in the proof of Corollary 3.16, are
exactly the probability measures on [1, b) identified as base-invariant in [10].

Example 3.18 Consider the space of two-point (ordered) data sets in [1,10), i.e.
{(x1, x2) : 1 ≤ x1 ≤ x2 < 10}. Scaling moves a point (x1, x2) along the straight
line connecting it with the origin until either the first coordinate reaches 1 or the
second coordinate reaches 10. The boundary points (a,10) and (1, a) are identi-
fied. Therefore, it is easy to see that the trajectory under scaling of a two-point
set consists of at most two line segments. For X = {2,4} and b = 10 one segment
goes from (1,2) to (5,10) and the other segment goes from (1,5) to (2,10); see
Fig. 2. The point on the trajectory of (2,4) most distant from the latter (w.r.t. the
(1-metric on R2) clearly is (5,10), corresponding to s = 5

2 , and therefore DS(X) =
lims↑ 5

2
DS(s;PX) = 1

2‖(2,4) − (5,10)‖1 = 9
2 , by Proposition 2.12. Also indicated

in Fig. 2 by means of a dashed line is the trajectory corresponding to the scaling of
the data set X∗ =

{ 1+
√

10
2 ,

√
10+10

2

}
, which is the unique two-point set in [1,10) with

minimal (base 10) scale-distortion, see Theorem 3.22 below.

The next theorem provides a characterization of Benford sequences in terms of
limits of the scale-distortions of the first n points in the sequence. In principle, this
yields a test of whether data sets are Benford or not. Since conformance to the log-
arithmic Benford distribution is now widely used for fraud detection and as a diag-
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Fig. 2 The trajectory of
X = {2,4} under scaling
consists of two line segments
(solid line). The data set

X∗ =
{ 1+

√
10

2 ,
√

10+10
2

}
has

minimal (base 10)
scale-distortion and its scaling
trajectory consists of one
segment only (dashed line), see
Examples 3.18 and 3.23

nostic test for mathematical models, the scale-distortion characterization may prove
to be a useful alternative in practical applications.

Theorem 3.19 Let (xn) be a sequence in R+ and Xn = {x1, . . . , xn}. Then (xn) is
b-Benford if and only if DS(Xn)→ 0 as n→∞.

The next lemma will be used in the proof of this theorem.

Lemma 3.20 Let P be a probability measure on R+ with 〈P 〉b ,= Bb . Then there
exists s∗ ∈ [1, b) such that

(i) 〈s∗P 〉b ,= 〈P 〉b and
(ii) P({bk/s∗ : k ∈ Z}) = 0.

Proof of Lemma 3.20 The first statement is immediate from Lemma 3.15(iii), and in
case P has no atoms the overall statement is obvious. Assume, therefore, that P has
an atom. Then P({a}) = ε > 0 for some a ∈R+, and so 〈sP 〉b({〈sa〉b})≥ ε for all s.
This implies that 〈sP 〉b ,= 〈P 〉b for those s for which 〈P 〉b({〈sa〉b}) < ε, that is,

〈sP 〉b ,= 〈P 〉b for all but a finite number of s in [1, b) (3.5)

since P is a probability measure. Furthermore,

P({bk/s : k ∈ Z}) = 0 for all but a countable number of s in [1, b). (3.6)

By (3.5) and (3.6) properties (i) and (ii) hold simultaneously for all s from an appro-
priate set S ⊂ [1, b), where [1, b)\S is countable. !
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Proof of Theorem 3.19 Assume first that (xn) is b-Benford. By Proposition 2.3 this
means that 〈PXn〉b → Bb weakly. Since Bb does not have atoms,

DS(Xn) = DS(〈PXn〉b)→DS(Bb) = 0,

by Proposition 3.15(v) and Example 3.12.
Conversely, suppose that (xn) is not b-Benford. Since 〈PXn〉b ∈ P[1, b), the family

{〈PXn〉b : n ∈N} is tight and so contains a convergent subsequence [5, Theorem 29.3];
let Pn = 〈PXn〉b and assume without loss of generality that Pn → P for some prob-
ability measure P ,= Bb . By Lemma 3.20 there exists s∗ ∈ [1, b) and δ > 0 such that
dK(P, 〈s∗P 〉b ≥ δ and P({bk/s∗ : k ∈ Z}) = 0. It follows from (3.1) and the defi-
nition of weak convergence that F〈s∗Pn〉b (t)→ F〈s∗P 〉b (t) for almost all t ∈ [1, b),
hence dK(〈s∗Pn〉b, 〈s∗P 〉b)→ 0. Since dK metrizes weak convergence,

DS(Xn)≥ dK(Pn, 〈s∗Pn〉b)≥ dK(P, 〈s∗P 〉b)− dK(Pn,P )− dK(〈s∗Pn〉b, 〈s∗P 〉b)
→ dK(〈P 〉b, 〈s∗P 〉b) > 0.

Thus lim supn→∞DS(Xn)≥ dK(P, 〈s∗P 〉b) > 0. !

Theorem 3.19 has the following natural analogue in a statistical setting.

Theorem 3.21 Suppose X1,X2, . . . are independent, identically distributed random
variables on R+ with common distribution P . Then

(i) 〈P 〉b = Bb if and only if DS({X1, . . . ,Xn})→ 0 almost surely as n→∞;
(ii) 〈P 〉b ,= Bb if and only if lim supn→∞DS({X1, . . . ,Xn}) > 0 almost surely.

Proof For each n ∈ N let Fn denote the empirical distribution function for
X1, . . . ,Xn, i.e., Fn(t) = Pn((−∞, t]), where Pn = 1

n

∑n
i=1 δXi . By the Glivenko-

Cantelli Theorem [5, Theorem 20.6], Fn converges to FP uniformly almost surely,
so, almost surely, Pn → P weakly. Conclusions (i) and (ii) then follow directly from
Theorem 3.19. !

The next result is the main scale-distortion inequality in this article. It identifies,
for every positive integer n, the unique data set of n points that is least distorted by
change of scale, e.g., by change of monetary or physical units, and it identifies the
minimal scale-distortion attained by any n-point set.

Theorem 3.22 Let n ∈ N and let X = {x1, . . . , xn} ⊂ R+ be an n-point data set.
Then DS(X)≥ (b− 1)/(2n), and equality holds if and only if

{〈x1〉b, . . . , 〈xn〉b} =
{

1 + b1/n

2
b(i−1)/n : i = 1, . . . , n

}
. (3.7)

Proof Let yi = 〈xi〉b for i = 1, . . . , n, and assume without loss of generality that 1≤
y1 ≤ · · ·≤ yn < b. Hence {y1, . . . , yn} is an n-point ordered data set in [1, b). Identify
the space of all such data sets with the subset of Rn given by {y ∈Rn : 1≤ y1 ≤ · · ·≤
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yn < b}. The scaling trajectory of y, i.e. the set {〈sy〉b = (〈sy1〉b, . . . , 〈syn〉b) : s ∈
[1, b)}, is a union of at most n line segments. To see this, consider the scaling of y

by increasing s, beginning with s = 1. The resulting line will first reach the boundary
for s = b/yn, that is, when the nth coordinate reaches b. The value b is then replaced
by 1, which becomes the new first entry of the data set. The vector representation is

(
b

yn

)
(y1, y2, . . . , yn) =

(
1,

b

yn
y1, . . . ,

b

yn
yn−1

)
,

as the other components are shifted one place to the right. Then the scaling contin-
ues with increasing s until the rightmost component reaches b, etc. Each time the
rightmost coordinate reaches b, there is a break. The trajectory resumes with a first
coordinate equal to 1 and the others shifted to the right by one place. The breaks oc-
cur for values s = b/yi and so there are n breaks in the trajectory of y as s increases
from 1 to b. When s = b the trajectory closes at the starting point y.

The trajectory of y can also be characterized by the n-tuple of ratios (r1, r2, . . . , rn)

where ri = yi/yi−1for i = 2, . . . , n and r1 = by1/yn. Clearly, all the ratios ri are num-
bers in [1, b], and they satisfy

∏n
i=1 ri = b. Any (r1, r2, . . . , rn) with these properties

is associated to a scaling trajectory, and two n-tuples of ratios describe the same tra-
jectory when they are cyclic permutations of each other. Given y, assume without
loss of generality that r1 ≥ ri for all i = 1, . . . , n. The scaling trajectory of y contains
the two points

ηl = (1, r2, r2r3, . . . , r2r3 · · · rn) =
(

1,
y2

y1
,
y3

y1
, . . . ,

yn

y1

)

and

ηu = (r1, r1r2, r1r2r3, . . . , r1r2r3 · · · rn) =
(

b
y1

yn
, b

y2

yn
, b

y3

yn
, . . . , b

)

as endpoints of one of its segments. From

‖ηu − ηl‖1 = r1 − 1 + r1r2 − r2 + r1r2r3 − r2r3 + · · · + r1r2r3 · · · rn − r2r3 · · · rn
= b− 1 + r1 − r2 + r2(r1 − r3) + · · · + r2r3 · · · rn−1(r1 − rn)

≥ b− 1, (3.8)

it follows that the trajectory of y contains a segment of (1-length at least b− 1. Since
‖ηu− y‖1 + ‖ηl − y‖1 ≥ ‖ηu−ηl‖1 ≥ b− 1, one of the points ηu,ηl has (1-distance
no less than 1

2 (b− 1) from y so that, by Proposition 2.12,

DS(Y ) = sup
s∈[1,b)

dK(〈PY 〉b, 〈sPY 〉b) = 1
n

sup
s∈[1,b)

‖〈y〉b − 〈sy〉b‖1 ≥
b− 1

2n
.

Moreover, since r1 ≥ ri for i = 1, . . . , n, (3.8) implies that the latter inequality is strict
unless r1 = r2 = · · · = rn and hence ri = b1/n for all i. In this case, the trajectory of
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y consists of a single segment whose midpoint

y∗ = ηu + ηl

2
= 1 + b1/n

2
(1, b1/n, . . . , b(n−1)/n)

satisfies dK(〈PY ∗ 〉b, 〈sPY ∗ 〉b) ≤ (b − 1)/(2n) for all s > 0, so that DS(Y ∗) =
(b− 1)/(2n). !

Example 3.23 The n-point data set X∗ ⊂ [1, b) with minimal scale-distortion accord-
ing to (3.7) is not identical to the data set X ⊂ [1, b) that minimizes dK(PX,Bb),
as given by Corollary 2.10. However, both data sets are geometric progressions
with ratio b1/n, and X∗ is a scaled version of X, namely, X∗ = sX with s =
1
2 (b1/(2n) + b−1/(2n)) = cosh(

logb
2n ).

For b = 10, n = 2 the data set with minimal scale-distortion is X∗ =
{ 1+

√
10

2 ,
√

10+10
2 } ≈ {2.08,6.58}. Figure 2 shows that the scaling trajectory of X∗

is a single segment with midpoint (x∗1 , x∗2 ); this segment lies between the two seg-
ments of the trajectory of X = {2,4}. Recall from Example 2.13 that the 2-point data
set closest to B10 in the Kantorovich metric is {101/4,103/4}≈ {1.78,5.62}.
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