
Chapter Two

A Short Introduction to the Mathematical Theory
of Benford’s Law

Arno Berger and T. P. Hill1

This chapter is an abbreviated version of [BerH4], which can be consulted for
additional details. Many of the results presented here, notably those in Sections
2.5 and 2.6, can be strengthened considerably; the interested reader may want to
consult [BerH5] in this regard.

2.1 INTRODUCTION

Benford’s Law, or BL for short, is the observation that in many collections of
numbers, be they mathematical tables, real-life data, or combinations thereof, the
leading significant digits are not uniformly distributed, as might be expected, but
are heavily skewed toward the smaller digits. The reader may find many formula-
tions and applications of BL in the online database [BerH2].
More specifically, BL says that the significant digits in many data sets follow a

very particular logarithmic distribution. In its most common formulation, namely
the special case of first significant decimal (i.e., base-10) digits, BL is also known
as the First-Digit Phenomenon and reads

Prob (D1 = d1) = log10
(
1 + d−1

1

)
for all d1 = 1, 2, . . . , 9 ; (2.1)

here D1 denotes the first significant decimal digit [Ben, New]. For example, (2.1)
asserts that

Prob (D1 = 1) = log10 2 = 0.3010 . . . ,

Prob (D1 = 9) = log10
10

9
= 0.04575 . . . . (2.2)

In a formmore complete than (2.1), BL is a statement about the joint distribution
of all decimal digits: For every positive integerm,

Prob
(
(D1, D2, . . . , Dm) = (d1, d2, . . . , dm)

)

= log10



1 +




m∑

j=1

10m−jdj




−1



 (2.3)
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holds for all m-tuples (d1, d2, . . . , dm), where d1 is an integer in {1, 2, . . . , 9}
and for j ≥ 2, dj is an integer in {0, 1, . . . , 9}; here D2, D3, D4, etc. represent
the second, third, fourth, etc. significant decimal digit. Thus, for example, (2.3)
implies that

Prob
(
(D1, D2, D3) = (3, 1, 4)

)
= log10

315

314
= 0.001380 . . . .

Note. Throughout this overview of the basic theory of BL, attention will more or
less exclusively be restricted to significant decimal (i.e., base-10) digits. From now
on in this chapter, therefore, log x will always denote the logarithm base 10 of x,
while lnx is the natural logarithm of x. For convenience, the convention log 0 := 0
will be adopted.

2.2 SIGNIFICANT DIGITS AND THE SIGNIFICAND

Since Benford’s Law is a statement about the statistical distribution of significant
(decimal) digits, a natural starting point for any study of BL is the formal definition
of significant digits and the significand (function).

2.2.1 Significant Digits

Definition 2.2.1 (First significant decimal digit). For every non-zero real number
x, the first significant decimal digit of x, denoted by D1(x), is the unique integer
j ∈ {1, 2, . . . , 9} satisfying 10kj ≤ |x| < 10k(j+1) for some (necessarily unique)
k ∈ Z.
Similarly, for every m ≥ 2, m ∈ N, the mth significant decimal digit of x,

denoted by Dm(x), is defined inductively as the unique integer j ∈ {0, 1, . . . , 9}
such that

10k
(

m−1∑

i=1

Di(x)10
m−i + j

)
≤ |x| < 10k

(
m−1∑

i=1

Di(x)10
m−i + j + 1

)

for some (necessarily unique) k ∈ Z; for convenience,Dm(0) := 0 for allm ∈ N.

Note that, by definition, the first significant digit D1(x) of x $= 0 is never zero,
whereas the second, third, etc. significant digits may be any integers in {0, 1, . . . , 9}.

Example 2.2.2. Since
√
2 ≈ 1.414 and 1/π ≈ 0.3183,

D1(
√
2) = D1(−

√
2) = D1(10

√
2) = 1 , D2(

√
2) = 4 , D3(

√
2) = 1 ;

D1(π
−1) = D1(10π

−1) = 3 , D2(π
−1) = 1 , D3(π

−1) = 8 .

2.2.2 The Significand

The significand of a real number is its coefficient when it is expressed in floating
point (“scientific notation”) form, more precisely
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Definition 2.2.3. The (decimal) significand function S : R → [1, 10) is defined
as follows: If x $= 0 then S(x) = t, where t is the unique number in [1, 10) with
|x| = 10kt for some (necessarily unique) k ∈ Z; if x = 0 then, for convenience,
S(0) := 0.

Example 2.2.4.

S(
√
2) = S(10

√
2) =

√
2 = 1.414 . . . ,

S(π−1) = S(10π−1) = 10π−1 = 3.183 . . . .

The significand uniquely determines the significant digits, and vice versa. This
relationship is recorded in the next proposition which immediately follows from
Definitions 2.2.1 and 2.2.3. Here and throughout the floor function, )x*, denotes
the largest integer not larger than x.

Proposition 2.2.5. For every real number x,

1. S(x) =
∑

m∈N
101−mDm(x);

2. Dm(x) = )10m−1S(x)* − 10)10m−2S(x)* for everym ∈ N.

Since the significant digits determine the significand, and are in turn determined by
it, the informal version (2.3) of BL in the introduction has an immediate and very
concise counterpart in terms of the significand function, namely

Prob (S ≤ t) = log t for all 1 ≤ t < 10 . (2.4)

2.2.3 The Significand σ-Algebra

The informal statements (2.1), (2.3), and (2.4) of BL involve probabilities. The key
step in formulating BL precisely is identifying the appropriate probability space,
and hence in particular the correct σ-algebra. As it turns out, in the significant digit
framework there is only one natural candidate which is both intuitive and easy to
describe.

Definition 2.2.6. The significand σ-algebra S is the σ-algebra on R+ generated
by the significand function S, i.e., S = R+ ∩ σ(S).

The importance of the σ-algebra S comes from the fact that for every event A ∈ S
and every x > 0, knowing S(x) is enough to decide whether x ∈ A or x $∈
A. Worded slightly more formally, this observation reads as follows, where σ(f)
denotes the σ-algebra generated by f , i.e., the smallest σ-algebra containing all
sets of the form {x : a ≤ f(x) ≤ b}, and B(I) denotes the real Borel σ-algebra
restricted to an interval I . If I = R or I = R+ = {t ∈ R : t > 0} then, for
convenience, instead of B(I) simply write B and B+, respectively. Also, here and
throughout, for every set C ⊂ R and t ∈ R, let tC := {tc : c ∈ C}.

Lemma 2.2.7. For every function f : R+ → R the following statements are equiv-
alent:
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1. f can be described completely in terms of S, that is, f(x) = ϕ
(
S(x)

)
holds

for all x ∈ R+, with some function ϕ : [1, 10) → R satisfying σ(ϕ) ⊂
B[1, 10).

2. σ(f) ⊂ S.

Proof. Routine. !

Theorem 2.2.8 ([Hi4]). For every A ∈ S,

A =
⋃

k∈Z

10kS(A) (2.5)

where S(A) = {S(x) : x ∈ A} ⊂ [1, 10). Moreover,

S = R+ ∩ σ(D1, D2, D3, . . .) =

{
⋃

k∈Z

10kB : B ∈ B[1, 10)
}

. (2.6)

Proof. By definition,
S = R+∩σ(S) = R+∩{S−1(B) : B ∈ B} = R+∩{S−1(B) : B ∈ B[1, 10)} .
Thus, given any A ∈ S, there exists a set B ∈ B[1, 10)with A = R+ ∩ S−1(B) =⋃

k∈Z
10kB. Since S(A) = B, it follows that (2.5) holds for all A ∈ S.

To prove (2.6), first observe that by Proposition 2.2.5(1) the significand function
S is completely determined by the significant digits D1, D2, D3, . . . , so σ(S) ⊂
σ(D1, D2, D3, . . .) and hence S ⊂ R+ ∩ σ(D1, D2, D3, . . .). Conversely, accord-
ing to Proposition 2.2.5(2), every Dm is determined by S, thus σ(Dm) ⊂ σ(S)
for all m ∈ N, showing that σ(D1, D2, D3, . . .) ⊂ σ(S) as well. To verify the
remaining equality in (2.6), note that for every A ∈ S, S(A) ∈ B[1, 10) and hence
A =

⋃
k∈Z

10kB for B = S(A), by (2.5). Conversely, every set of the form⋃
k∈Z

10kB = R+ ∩ S−1(B) with B ∈ B[1, 10) obviously belongs to S. !

Note that for every A ∈ S there is a unique B ∈ B[1, 10), the Borel subsets of
[1, 10), such that A =

⋃
k∈Z

10kB, and (2.5) shows that in fact B = S(A).

Example 2.2.9. The set A4 of positive numbers with
A4 = {10k : k ∈ Z} = {. . . , 0.01, 0.1, 1, 10, 100, . . .}

belongs to S. This can be seen either by observing that A4 is the set of positive
reals with significand exactly equal to 1, i.e., A4 = R+ ∩ S−1({1}), or by noting
that A4 = {x > 0 : D1(x) = 1, Dm(x) = 0 for allm ≥ 2}, or by using (2.6) and
the fact that A4 =

⋃
k∈Z

10k{1} and {1} ∈ B[1, 10).

Example 2.2.10. The singleton set {1} and the interval [1, 2] do not belong to S,
since the number 1 cannot be distinguished from the number 10, for instance, using
only significant digits. Nor can the interval [1, 2] be distinguished from [10, 20].
Formally, neither of these sets is of the form

⋃
k∈Z

10kB for any B ∈ B[1, 10).

The next lemma establishes some basic closure properties of the significand σ-
algebra that will be essential later in studying characteristic aspects of BL such
as scale and base invariance. To concisely formulate these properties, for every
C ⊂ R+ and n ∈ N, let C1/n := {t > 0 : tn ∈ C}.
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Lemma 2.2.11. The following properties hold for the significand σ-algebra S:

1. S is self-similar with respect to multiplication by integer powers of 10, i.e.,

10kA = A for every A ∈ S and k ∈ Z .

2. S is closed under multiplication by a scalar, i.e.,

αA ∈ S for every A ∈ S and α > 0 .

3. S is closed under integral roots, i.e.,

A1/n ∈ S for every A ∈ S and n ∈ N .

Proof. (1) This is obvious from (2.5) since S(10kA) = S(A) for every k.
(2) Given A ∈ S, by (2.6) there exists B ∈ B[1, 10) such that A =

⋃
k∈Z

10kB.
In view of (1), assume without loss of generality that 1 < α < 10. Then

αA =
⋃

k∈Z

10kαB

=
⋃

k∈Z

10k
((

αB ∩ [α, 10)
)
∪
( α

10
B ∩ [1, α)

))

=
⋃

k∈Z

10kC,

with C =
(
αB ∩ [α, 10)

)
∪
(
α
10B ∩ [1, α)

)
∈ B[1, 10), showing that αA ∈ S.

(3) Since intervals of the form [1, t] generate B[1, 10), i.e., since B[1, 10) =
σ
(
{[1, t] : 1 < t < 10}

)
, it is enough to verify the claim for the special case

A =
⋃

k∈Z
10k[1, 10s] for every 0 < s < 1. In this case

A1/n =
⋃

k∈Z

10k/n[1, 10s/n]

=
⋃

k∈Z

10k
n−1⋃

j=0

[10j/n, 10(j+s)/n]

=
⋃

k∈Z

10kC,

with C =
⋃n−1

j=0 [10
j/n, 10(j+s)/n] ∈ B[1, 10). Hence A1/n ∈ S. !

Since, by Theorem 2.2.8, the significand σ-algebra S is the same as the significant
digit σ-algebra σ(D1, D2, D3, · · · ), the closure properties established in Lemma
2.2.11 carry over to sets determined by significant digits. The next example illus-
trates closure under multiplication by a scalar and integral roots, and that S is not
closed under taking integer powers.

Example 2.2.12. Let A5 be the set of positive real numbers with first significant
digit 1, i.e.,

A5 = {x > 0 : D1(x) = 1} = {x > 0 : 1 ≤ S(x) < 2} =
⋃

k∈Z

10k[1, 2) .
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Then

2A5 =
{
x > 0 : D1(x) ∈ {2, 3}

}
= {x > 0 : 2 ≤ S(x) < 3}

=
⋃

k∈Z

10k[2, 4) ∈ S,

(2.7)

and also

A1/2
5 =

{
x > 0 : S(x) ∈ [1,

√
2) ∪ [

√
10,

√
20)

}

=
⋃

k∈Z

10k
(
[1,

√
2) ∪ [

√
10, 2

√
5)
)
∈ S,

whereas on the other hand clearly

A2
5 =

⋃

k∈Z

102k[1, 4) $∈ S,

since e.g. [1, 4) ⊂ A2
5 but [10, 40) $⊂ A2

5.

The next lemma provides a very convenient framework for studying probabilities
on the significand σ-algebra by translating them into probability measures on the
classical space of Borel subsets of [0, 1), that is, on

(
[0, 1),B[0, 1)

)
.

Lemma 2.2.13. The function % : R+ → [0, 1) defined by %(x) = logS(x) es-
tablishes a one-to-one and onto correspondence (measure isomorphism) between
probability measures on (R+,S) and on

(
[0, 1),B[0, 1)

)
.

Proof. Routine. !

2.3 THE BENFORD PROPERTY

In order to translate the informal versions (2.1), (2.3), and (2.4) of BL into more
precise statements about various types of mathematical objects, it is necessary to
specify exactly what the Benford property means for any one of these objects. For
the purpose of the present section, the objects of interest fall into three categories:
sequences of real numbers; real-valued functions defined on [0,+∞); and proba-
bility distributions associated with random variables. Accordingly, denote by#M
the cardinality of a finite setM , and let λ symbolize Lebesgue measure on (R,B)
(or parts thereof).

2.3.1 Benford Sequences

Definition 2.3.1. A sequence (xn) of real numbers is a Benford sequence, or Ben-
ford for short, if

lim
N→∞

#{1 ≤ n ≤ N : S(xn) ≤ t}
N

= log t for all t ∈ [1, 10) ,
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or equivalently, if for allm ∈ N, all d1 ∈ {1, 2, · · · , 9} and all dj ∈ {0, 1, · · · , 9},
j ≥ 2,

lim
N→∞

#
{
1 ≤ n ≤ N : Dj(xn) = dj for j = 1, 2, . . .

}

N

= log



1+




m∑

j=1

10m−jdj




−1



 .

Two specific sequences of positive integers will be used repeatedly to illus-
trate key concepts concerning BL: the Fibonacci numbers and the prime num-
bers. Both sequences play prominent roles in many areas of mathematics. As
will be seen in Example 2.4.12, the sequence (Fn) = (1, 1, 2, 3, 5, 8, 13, . . .) of Fi-
bonacci numbers, where every entry is simply the sum of its two predecessors, and
F1 = F2 = 1, is Benford. In Example 2.4.11(v), it will be shown that the sequence
(pn) = (2, 3, 5, 7, 11, 13, 17, . . .) of prime numbers is not Benford.

2.3.2 Benford Functions

BL also appears frequently in real-valued functions such as those arising as solu-
tions of initial value problems for differential equations (see Section 2.5.3 below).
Thus, the starting point is to define what it means for a function to follow BL.

Definition 2.3.2. A (Borel measurable) function f : [0,+∞) → R is Benford if

lim
T→+∞

λ
({

τ ∈ [0, T ) : S
(
f(τ)

)
≤ t

})

T
= log t for all t ∈ [1, 10) ,

or equivalently, if for allm ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

lim
T→+∞

λ
({

τ ∈ [0, T ) : Dj

(
f(τ)

)
= dj for j = 1, 2, . . . ,m

})

T

= log



1+




m∑

j=1

10m−jdj




−1


 .

As will be seen below, the function f(t) = eαt is Benford whenever α $= 0, but
f(t) = t and f(t) = sin2 t, for instance, are not.

2.3.3 Benford Distributions and Random Variables

This section lays the foundations for analyzing the Benford property for probability
distributions and random variables.

Definition 2.3.3. A Borel probability measure P on R is Benford if

P
(
{x ∈ R : S(x) ≤ t}

)
= log t for all t ∈ [1, 10) .
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A random variableX on a probability space (Ω,A,P) is Benford if its distribution
PX on R is Benford, i.e., if

P
(
S(X) ≤ t

)
= PX

(
{x ∈ R : S(x) ≤ t}

)
= log t for all t ∈ [1, 10) ,

or equivalently, if for allm ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

P
(
Dj(X) = dj for j = 1, 2, . . . ,m

)
= log



1 +




m∑

j=1

10m−jdj




−1



 .

Example 2.3.4. IfX is a Benford random variable on a probability space (Ω,A,P),
then

P(D1(X) = 1) = P(1 ≤ S(X) < 2) = log 2 = 0.3010 . . . ,

P(D1(X) = 9) = log
10

9
= 0.04575 . . . ,

P
((
D1(X), D2(X), D3(X)

)
= (3, 1, 4)

)
= log

315

314
= 0.001380 . . . .

As the following example shows, there are many Benford probability measures
on the positive real numbers, and thus many positive random variables that are
Benford.

Example 2.3.5. For every integer k, the probability measurePk with density fk(x) =
1/(x ln 10) on [10k, 10k+1) is Benford, and so is 1

2 (Pk+Pk+1). In fact, every con-
vex combination of the (Pk)k∈Z, i.e., every probability measure

∑
k∈Z

qkPk with
0 ≤ qk ≤ 1 for all k and

∑
k∈Z

qk = 1, is Benford.

As will be seen in Example 2.6.4 below, if U is a random variable uniformly dis-
tributed on [0, 1), then the random variable X = 10U is Benford, but the random
variableX log 2 = 2U is not.

Definition 2.3.6 (Benford distribution). The Benford distribution B is the unique
probability measure on (R+,S) with

B(S ≤ t) = B

(
⋃

k∈Z

10k[1, t]

)
= log t for all t ∈ [1, 10) ,

or equivalently, for all m ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

B
(
Dj = dj for j = 1, 2, . . . ,m

)
= log



1 +




m∑

j=1

10m−jdj




−1



 .

The combination of Definitions 2.3.3 and 2.3.6 gives

Proposition 2.3.7. A Borel probability measure P on R+ is Benford if and only if
P (A) = B(A) for all A ∈ S .
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(For probability measures on all of R, an analogous result holds via Definition
2.3.3; cf. [BerH4].)

Example 2.3.8. (i) If X is distributed according to U(0, 1), the uniform distribu-
tion on [0, 1), then for every 1 ≤ t < 10,

P
(
S(X) ≤ t

)
=

∑

n∈N

10−n(t− 1) =
t− 1

9
$≡ log t ,

showing that S(X) is uniform on [1, 10), and hence is not Benford.

(ii) If X is distributed according to exp(1), the exponential distribution with
mean 1, whose distribution function is given by Fexp(1)(t) = P(exp(1) ≤ t) =
max(0, 1− e−t), then

P(D1(X) = 1) = P

(
X ∈

⋃

k∈Z

10k[1, 2)

)
=

∑

k∈Z

(
e−10k − e−2·10k

)

>
(
e−1/10 − e−2/10

)
+

(
e−1 − e−2

)
+

(
e−10 − e−20

)

= 0.3186 . . . > log 2 ,

and hence exp(1) is not Benford either. (See [EngLeu, MiNi2] for a detailed anal-
ysis of the exponential distribution’s relation to BL.)

2.4 CHARACTERIZATIONS OF BENFORD’S LAW

The purpose of this section is to establish and illustrate four useful characteriza-
tions of the Benford property in the context of sequences, functions, distributions,
and random variables, respectively. These characterizations will be instrumental
in demonstrating that certain data sets are, or are not, Benford, and helpful for
predicting which empirical data are likely to follow BL closely.

2.4.1 The Uniform Distribution Characterization

Here and throughout, denote by 〈t〉 the fractional part of any real number t, that is,
〈t〉 = t− )t*. For example, 〈π〉 = 〈3.1415 . . .〉 = 0.1415 . . . = π − 3. Recall that
λa,b, for any a < b, denotes (normalized) Lebesgue measure on

(
[a, b),B[a, b)

)
.

Definition 2.4.1. A sequence (xn) of real numbers is uniformly distributed modulo
one, abbreviated henceforth as u.d. mod1, if

lim
N→∞

#{1 ≤ n ≤ N : 〈xn〉 ≤ s}
N

= s for all s ∈ [0, 1) ;

a (Borel measurable) function f : [0,+∞) → R is u.d. mod1 if

lim
T→+∞

λ{τ ∈ [0, T ) : 〈f(τ)〉 ≤ s}
T

= s for all s ∈ [0, 1) ;

a random variableX on a probability space (Ω,A,P) is u.d. mod1 if
P(〈X〉 ≤ s) = s for all s ∈ [0, 1) ;
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and a probability measure P on (R,B) is u.d. mod1 if

P ({x : 〈x〉 ≤ s}) = P

(
⋃

k∈Z

[k, k + s]

)
= s for all s ∈ [0, 1) .

The next simple theorem (cf. [Dia, MiT-B]) is one of the main tools in the theory
of BL because it allows application of the powerful theory of uniform distribution
mod 1, as developed e.g. in [KuiNi]. (Recall the convention log 0 := 0.)

Theorem 2.4.2 (Uniform distribution characterization). A sequence of real num-
bers (a Borel measurable function, a random variable, a Borel probability measure)
is Benford if and only if the decimal logarithm of its absolute value is uniformly dis-
tributed modulo 1.

Proof. Let X be a random variable and, without loss of generality, assume that
P(X = 0) = 0. Then, for all s ∈ [0, 1),

P(〈log |X |〉 ≤ s) = P

(
log |X | ∈

⋃

k∈Z

[k, k + s]

)
= P

(
|X | ∈

⋃

k∈Z

[10k, 10k+s]

)

= P(S(X) ≤ 10s).

Hence, by Definitions 2.3.3 and 2.4.1, X is Benford if and only if P(S(X) ≤
10s) = log 10s = s for all s ∈ [0, 1), i.e., if and only if log |X | is u.d. mod 1.
The proofs for sequences, functions, and probability distributions are completely
analogous. !

Next, several tools from the basic theory of uniform distribution mod 1 will be
recorded that will be useful, via Theorem 2.4.2, in establishing the Benford prop-
erty for many sequences, functions, and random variables; for proofs, see [BerH4].

Lemma 2.4.3.

1. The sequence (xn) is u.d.mod 1 if and only if the sequence (kxn + b) is u.d.
mod 1 for every non-zero integer k and every b ∈ R. Also, (xn) is u.d. mod
1 if and only if (yn) is u.d. mod 1 whenever limn→∞ |yn − xn| = 0.

2. The function f is u.d. mod 1 if and only if t 2→ kf(t) + b is u.d. mod 1 for
every non-zero integer k and every b ∈ R.

3. The random variableX is u.d.mod 1 if and only if kX + b is u.d.mod 1 for
every non-zero integer k and every b ∈ R.

Example 2.4.4. (i) The sequence (nπ) = (π, 2π, 3π, . . .) is u.d.mod 1, by Weyl’s
Equidistribution Theorem; see Proposition 2.4.8(1) below. Similarly, the sequence
(xn) = (n

√
2) is u.d. mod 1, whereas (xn

√
2) = (2n) = (2, 4, 6, . . .) clearly is

not, as 〈2n〉 = 0 for all n. Thus the requirement in Lemma 2.4.3(i) that k be an
integer cannot be removed.
(ii) The sequence (logn) is not u.d.mod 1. A straightforward calculation shows

that, for every s ∈ [0, 1), the sequence
(
N−1#{1 ≤ n ≤ N : 〈logn〉 ≤ s}

)
N∈N

has
1

9
(10s − 1) and

10

9
(1− 10−s)
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as its limit inferior and limit superior, respectively.

Example 2.4.5. (i) The function f(t) = at + b with real a, b is u.d. mod 1 if and
only if a $= 0. As a consequence, although the function f(t) = αt is not Benford
for any α, the function f(t) = eαt is Benford whenever α $= 0, via Theorem 2.4.2,
since log f(t) = αt/ ln 10 is u.d.mod 1.
(ii) The function f(t) = log |at+ b| is not u.d.mod 1 for any a, b ∈ R. Similarly,

f(t) = − log(1+t2) is not u.d.mod 1, and hence f(t) = (1+t2)−1 is not Benford.

(iii) The function f(t) = et is u.d.mod 1. As a consequence, the superexponen-
tial function f(t) = ee

αt is also Benford if α $= 0.

Example 2.4.6. (i) If the random variableX is uniformly distributed on [0, 2) then
it is clearly u.d. mod 1. However, if X is uniform on, say [0, π), then X is not u.d.
mod 1.
(ii) No exponential random variable is u.d. mod 1 (cf. [BerH3, BerH4, LeScEv,

MiNi2]).

(iii) If X is a normal random variable then X is not u.d. mod 1, and neither
is |X | or max(0, X). While this is easily checked by a direct calculation, it is
illuminating to obtain more quantitative information. To this end, assume thatX is
a normal variable with mean 0 and variance σ2. By means of Fourier series [Pin],
it can be shown that

∆(σ) := max
0≤s<1

∣∣F〈X〉(s)− s
∣∣ ≤ 1

π

∞∑

n=1

n−1e−2σ2π2n2

,

where F〈X〉(s) = P(〈X〉 ≤ s). In particular∆(σ) = (e−2σ2π2
)/π +O(e−8σ2π2

)
as σ tends to infinity, showing that ∆(σ), the deviation of 〈X〉 from uniformity,
goes to zero very rapidly as σ → +∞. Already for σ = 1 one finds that ∆(1) <
8.516 · 10−10. Thus even though a standard normal random variableX is not u.d.
mod 1, the distribution of 〈X〉 is extremely close to uniform. Consequently, a log-
normal random variable with large variance is practically indistinguishable from
a Benford random variable.

Corollary 2.4.7.

1. A sequence (xn) is Benford if and only if, for all α ∈ R and k ∈ Z with
αk $= 0, the sequence (αxk

n) is also Benford.

2. A function f : [0,+∞) → R is Benford if and only if 1/f is Benford.

3. A random variableX is Benford if and only if 1/X is Benford.

The next two statements, recorded here for ease of reference, list several key
tools concerning uniform distribution mod 1, which via Theorem 2.4.2 will be used
to determine Benford properties of sequences, functions, and random variables.
Conclusion (1) in Proposition 2.4.8 is Weyl’s classical uniform distribution result
[KuiNi, Thm.3.3], conclusion (2) is an immediate consequence of Weyl’s criterion
[KuiNi, Thm.2.1], conclusion (3) is [Ber2, Lem.2.8], and conclusion (4) is [BerBH,
Lem.2.4.(i)].
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Proposition 2.4.8. Let (xn) be a sequence of real numbers.

1. If limn→∞(xn+1 − xn) = θ for some irrational θ, then (xn) is u.d. mod 1.

2. If (xn) is periodic, i.e., xn+p = xn for some p ∈ N and all n, then (nθ+xn)
is u.d.mod 1 if and only if θ is irrational.

3. The sequence (xn) is u.d. mod 1 if and only if (xn + α logn) is u.d. mod 1
for all α ∈ R.

4. If (xn) is u.d.mod 1 and non-decreasing, then (xn/ logn) is unbounded.

Another very useful result is Koksma’s metric theorem [KuiNi, Thm.4.3]. For
its formulation, recall that a property of real numbers is said to hold for almost
every (a.e.) x ∈ [a, b) if there exists a set N ∈ B[a, b) with λa,b(N) = 0 such
that the property holds for every x $∈ N . The probabilistic interpretation of a given
property of real numbers holding for a.e. x is that this property holds almost surely
(a.s.), which means that with probability one for every random variable that has a
density (i.e., is absolutely continuous).

Proposition 2.4.9. Let fn be continuously differentiable on [a, b] for all n ∈ N. If
f ′
m − f ′

n is monotone and |f ′
m(x) − f ′

n(x)| ≥ α > 0 for allm $= n, where α does
not depend on x,m, and n, then

(
fn(x)

)
is u.d.mod 1 for almost every x ∈ [a, b].

Theorem 2.4.10 ([BerHKR]). If a, b, α, β are real numbers with a $= 0 and |α| >
|β| then (αna+ βnb) is Benford if and only if log |α| is irrational.

Proof. Since a $= 0 and |α| > |β|, limn→∞
βnb

αna
= 0, and therefore

log |αna+ βnb| − log |αna| = log

∣∣∣∣1 +
βnb

αna

∣∣∣∣ → 0 ,

showing that (log |αna+βnb|) is u.d. mod 1 if and only if (log |αna|) = (log |a|+
n log |α|) is. According to Proposition 2.4.8(1), this is the case whenever log |α| is
irrational. On the other hand, if log |α| is rational then 〈log |a| + n log |α|〉 attains
only finitely many values and hence (log |a| + n log |α|) is not u.d. mod 1. An
application of Theorem 2.4.2 therefore completes the proof. !

Example 2.4.11. (i) By Theorem 2.4.10 the sequence (2n) is Benford since log 2
is irrational, but (10n) is not Benford since log 10 = 1 ∈ Q. Similarly, (0.2n),
(3n), (0.3n),

(
0.01 · 0.2n + 0.2 · 0.01n

)
are Benford, whereas (0.1n),

(√
10

n),(
0.1 · 0.02n + 0.02 · 0.1n

)
are not.

(ii) The sequence
(
0.2n + (−0.2)n

)
is not Benford, since all odd terms are zero,

but
(
0.2n + (−0.2)n + 0.03n

)
is Benford—although this does not follow directly

from Theorem 2.4.10.

(iii) By Proposition 2.4.9, the sequence (x, 2x, 3x, . . .) = (nx) is u.d. mod 1
for almost every real x, but clearly not for every x, as for example x = 1 shows.
Consequently, by Theorem 2.4.2, (10nx) is Benford for almost all real x, but not
e.g. for x = 1 or, more generally, whenever x is rational.
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(iv) By Proposition 2.4.8(4) or Example 2.4.4(ii), the sequence (logn) is not u.d.
mod 1, so the sequence (n) of positive integers is not Benford, and neither is (αn)
for any α ∈ R.

(v) Consider the sequence (pn) of prime numbers. By the Prime Number Theo-
rem, pn = O(n log n) as n → ∞. Hence it follows from Proposition 2.4.8(4) that
(pn) is not Benford.

Example 2.4.12. Consider the sequence (Fn) = (1, 1, 2, 3, 5, 8, 13, . . .) of Fi-
bonacci numbers, defined inductively as Fn+2 = Fn+1 + Fn for all n ∈ N, with
F1 = F2 = 1. It is well known (and easy to check) that

Fn =
1√
5

((
1 +

√
5

2

)n
−

(
1−

√
5

2

)n)
=

ϕn − (−ϕ−1)n√
5

for all n ∈ N ,

where ϕ = 1
2 (1 +

√
5) ≈ 1.618. Since ϕ > 1 and logϕ is irrational, (Fn)

is Benford, by Theorem 2.4.10. Sequences such as (Fn) which are generated by
linear recurrence relations will be studied in detail in Section 2.5.2.

Theorem 2.4.13. Let X,Y be random variables. Then

1. if X is u.d.mod 1 and Y is independent ofX , thenX + Y is u.d. mod 1;

2. if 〈X〉 and 〈X +α〉 have the same distribution for some irrational α thenX
is u.d.mod 1;

3. if (Xn) is an i.i.d. sequence of random variables andX1 is not purely atomic
(i.e., P(X1 ∈ C) < 1 for every countable set C ⊂ R), then

lim
n→∞

P




〈

n∑

j=1

Xj

〉
≤ s



 = s for every 0 ≤ s < 1 , (2.8)

that is,
〈∑n

j=1 Xj

〉
→ U(0, 1) in distribution as n → ∞.

Proof. Elementary Fourier analysis; see [BerH4, Thm.4.13]. !

None of the familiar classical probability distributions or random variables, such
as normal, uniform, exponential, beta, binomial, or gamma distributions are Ben-
ford. Specifically, no uniform distribution is even close to BL, no matter how large
its range or where it is centered. This statement can be quantified explicitly as
follows.

Proposition 2.4.14 ([BerH3]). For every uniformly distributed random variable
X ,

max
0≤s<1

∣∣F〈logX〉(s)− s
∣∣ ≥ −9 + ln 10 + 9 ln 9− 9 ln ln 10

18 ln 10
= 0.1334 . . . ,

and this bound is sharp.



A SHORT INTRODUCTION TO THE MATHEMATICAL THEORY OF BENFORD’S LAW 35

Similarly, all exponential and normal random variables are uniformly bounded
away from BL, as is explained in detail in [BerH3]. However, some distributions,
such as the exponential distribution with mean 1, and the standard normal distribu-
tion, do come fairly close to being Benford.
The next result says that every random variable X with a density is asymptoti-

cally uniformly distributed on lattices of intervals as the size of the intervals goes
to zero. Equivalently, 〈nX〉 is asymptotically uniform, as n → ∞. This result
has been the basis for several recent fallacious arguments claiming that if a random
variable X has a density with very large “spread” then logX must also have a
density with large spread and thus, by the theorem, must be close to u.d. mod 1,
implying in turn that X must be close to Benford. The error in those arguments is
that, regardless of which notion of “spread” is used, the variableX may have large
spread and at the same time the variable logX may have small spread; for details,
the reader is referred to [BerH3].

Theorem 2.4.15. If X has a density then

lim
n→∞

P(〈nX〉 ≤ s) = s for all 0 ≤ s < 1 , (2.9)

that is, 〈nX〉 → U(0, 1) in distribution as n → ∞.

Proof. Since 〈nX〉 =
〈
n〈X〉

〉
, it can be assumed thatX only takes values in [0, 1).

Let f be the density ofX , i.e., f : [0, 1] → R is a non-negativemeasurable function

with P(X ≤ s) =

∫ s

0
f(σ) dσ for all s ∈ [0, 1). From

P(〈nX〉 ≤ s) = P

(
X ∈

n−1⋃

l=0

[
l

n
,
l + s

n

])
=

n−1∑

l=0

∫ (l+s)/n

l/n
f(σ) dσ

=

∫ s

0

1

n

n−1∑

l=0

f

(
l + σ

n

)
dσ ,

it follows that the density of 〈nX〉 is given by

f〈nX〉(s) =
1

n

n−1∑

l=0

f

(
l + s

n

)
, 0 ≤ s < 1 .

Note that if f is continuous, or merely Riemann integrable, then, as n → ∞,

f〈nX〉(s) →
∫ 1

0
f(σ) dσ = 1 for all s ∈ [0, 1) .

In general, for any ε > 0 there exists a continuous density gε with
∫ 1

0
|f(σ)− gε(σ)| dσ
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< ε and hence
∫ 1

0
|f〈nX〉(σ)− 1| dσ ≤

∫ 1

0

∣∣∣∣∣
1

n

n−1∑

l=0

f

(
l + σ

n

)
− 1

n

n−1∑

l=0

gε

(
l + σ

n

)∣∣∣∣∣ dσ

+

∫ 1

0

∣∣∣∣∣
1

n

n−1∑

l=0

gε

(
l + σ

n

)
− 1

∣∣∣∣∣ dσ

≤
∫ 1

0
|f(σ)− gε(σ)|dσ

+

∫ 1

0

∣∣∣∣∣
1

n

n−1∑

l=0

gε

(
l + σ

n

)
−

∫ 1

0
g(τ) dτ

∣∣∣∣∣ dσ ,

which in turn shows that

lim sup
n→∞

∫ 1

0
|f〈nX〉(σ)− 1| dσ ≤ ε ,

and since ε > 0 was arbitrary,
∫ 1

0
|f〈nX〉(σ) − 1| dσ → 0 as n → ∞. From this,

the claim follows immediately because, for every 0 ≤ s < 1,

∣∣P(〈nX〉 ≤ s)− s
∣∣ =

∣∣∣∣
∫ s

0
(f〈nX〉(σ) − 1) dσ

∣∣∣∣ ≤
∫ 1

0
|f〈nX〉(σ)− 1| dσ → 0 .

!

2.4.2 The Scale-Invariance Characterization

One popular hypothesis often related to BL is that of scale invariance. Informally
put, scale invariance captures the intuitively attractive notion that any universal law
should be independent of units. For instance, if a sufficiently large aggregation of
data is converted from meters to feet, US dollars to euros, etc., then while the indi-
vidual numbers change, the statements about the overall distribution of significant
digits should not be affected by this change.
While a positive randomvariableX cannot be scale invariant, it may nevertheless

have scale-invariant significant digits. For this, however,X has to be Benford. In
fact, Theorem 2.4.18 below shows that being Benford is (not only necessary but)
also sufficient for X to have scale-invariant significant digits. The result will first
be stated in terms of probability distributions. For every function f : Ω → R
with A ⊃ σ(f) and every probability measure P on (Ω,A), let f∗P denote the
probability measure on (R,B) defined according to

f∗P(B) = P
(
f−1(B)

)
for all B ∈ B . (2.10)

Definition 2.4.16. Let A ⊃ S be a σ-algebra on R+. A probability measure P on
(R+,A) has scale-invariant significant digits if

P (αA) = P (A) for all α > 0 and A ∈ S ,
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or equivalently if for all m ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

P
({

x : Dj(αx) = dj for j = 1, 2, . . . ,m
})

= P
({

x : Dj(x) = dj for j = 1, 2, . . . ,m
})

(2.11)

holds for every α > 0.

Example 2.4.17. (i) The Benford probability measure B on (R+,S) has scale-
invariant significant digits. This follows from Theorem 2.4.18 below.

(ii) The Dirac probability measure δ1 concentrated at the constant 1 does not
have scale-invariant significant digits, since δ2 = 2∗δ1 yet δ1(D1 = 1) = 1 $= 0 =
δ2(D1 = 1).

(iii) The uniform distribution on [0, 1) does not have scale-invariant digits, since
if X is distributed according to λ0,1 then, for example

P(D1(X) = 1) =
1

9
<

11

27
= P

(
D1

(
3

2
X

)
= 1

)
.

As mentioned earlier, the Benford distribution is the only probability measure (on
the significand σ-algebra) having scale-invariant significant digits.

Theorem 2.4.18 (Scale-invariance characterization [Hi3]). A probability measure
P on (R+,A) with A ⊃ S has scale-invariant significant digits if and only if
P (A) = B(A) for every A ∈ S, i.e., if and only if P is Benford.

Proof. Fix any probability measure P on (R+,A), denote by P0 its restriction
to (R+,S), and let Q := %∗P0 with % given by Lemma 2.2.13. According to
Lemma 2.2.13, Q is a probability measure on

(
[0, 1),B[0, 1)

)
. Moreover, under

the correspondence established by %,

P0(αA) = P0(A) for all α > 0, A ∈ S (2.12)

is equivalent to

Q(〈t+B〉) = Q(B) for all t ∈ R, B ∈ B[0, 1) , (2.13)

where 〈t + B〉 = {〈t + x〉 : x ∈ B}. Pick a random variable X such that the
distribution of X is given by Q. With this, (2.13) simply means that, for every
t ∈ R, the distributions of 〈X〉 and 〈t + X〉 coincide. By Theorem 2.4.13(1) and
(2) this is the case if and only if X is u.d. mod 1, i.e., Q = λ0,1. (For the “if” part,
note that a constant random variable is independent from every random variable.)
Hence (2.12) is equivalent to P0 = (%−1)∗λ0,1 = B. !

The next example is an elegant and entertaining application of the ideas underly-
ing Theorem 2.4.18 to the mathematical theory of games. The game may be easily
understood by a schoolchild, yet it has proven a challenge for game theorists not
familiar with BL.

Example 2.4.19 ([Morr]). Consider a two-person game where Player A and Player
B each independently choose a (real) number greater than or equal to 1, and Player
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A wins if the product of their two numbers starts with a 1, 2, or 3; otherwise, Player
B wins. Using the tools presented in this section, it may easily be seen that there is
a strategy for Player A to choose her numbers so that she wins with probability at
least log 4 ∼= 60.2%, no matter what strategy Player B uses. Conversely, there is a
strategy for Player B so that Player A will win no more than log 4 of the time, no
matter what strategy Player A uses.
The idea is simple, using the scale-invariance property of BL discussed above. If

Player A chooses her numberX randomly according to BL, then since BL is scale
invariant, it follows from Theorem 2.4.13(1) and Example 2.4.17(i) that X · y is
still Benford no matter what number y Player B chooses, so Player A will win with
the probability that a Benford random variable has first significant digit less than
4, i.e., with probability exactly log 4. Conversely, if Player B chooses his number
Y according to BL then, using scale invariance again, x · Y is Benford, so Player
A will again win with the probability exactly log 4.

Theorem 2.4.18 showed that for a probability measure P on (R+,B+) to have
scale-invariant significant digits it is necessary (and sufficient) that P be Benford.
In fact, as noted in [Sm], this conclusion already follows from a much weaker
assumption: It is enough to require that the probability of a single significant digit
remain unchanged under scaling.

Theorem 2.4.20. For every random variableX with P(X = 0) = 0 the following
statements are equivalent:

1. X is Benford.

2. There exists a number d ∈ {1, 2, . . . , 9} such that

P(D1(αX) = d) = P(D1(X) = d) for all α > 0 .

In particular, (2) implies that P(D1(X) = d) = log(1 + d−1).

Example 2.4.21 (“Ones-scaling test” [Sm]). In view of the last theorem, to in-
formally test whether a sample of data comes from a Benford distribution, simply
compare the proportion of the sample that has first significant digit 1 with the pro-
portion after the data has been rescaled, i.e., multiplied by α, α2, α3, . . ., where
logα is irrational, e.g. α = 2.

2.4.3 The Base-Invariance Characterization

The idea behind base invariance of significant digits is simply this: A base-10
significand event A corresponds to the base-100 event A1/2, since the new base
b = 100 is the square of the original base b = 10. As a concrete example, denote
by A the set of positive reals with first significant digit 1, i.e.,

A = {x > 0 : D1(x) = 1} = {x > 0 : S(x) ∈ [1, 2)} .

It is easy to see that A1/2 is the set

A1/2 = {x > 0 : S(x) ∈ [1,
√
2) ∪ [

√
10,

√
20)} .
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Consider now the base-100 significand function S100, i.e., for any x $= 0, S100(x)
is the unique number in [1, 100) such that |x| = 100kS100(x) for some, necessarily
unique, k ∈ Z. (To emphasize that the usual significand function S is taken relative
to base 10, it will be denoted S10 throughout this section.) Clearly,

A = {x > 0 : S100(x) ∈ [1, 2) ∪ [10, 20)} .
Hence, letting a = log 2,

{
x > 0 : Sb(x) ∈ [1, ba/2) ∪ [b1/2, b(1+a)/2)

}
=

{
A1/2 if b = 10 ,

A if b = 100 .

Thus, if a distribution P on the significand σ-algebra S has base-invariant signif-
icant digits, then P (A) and P (A1/2) should be the same, and similarly for other
integral roots (corresponding to other integral powers of the original base b = 10).
Thus P (A) = P (A1/n) should hold for all n. (Recall from Lemma 2.2.11(3) that
A1/n ∈ S for all A ∈ S and n ∈ N, so those probabilities are well defined.) This
motivates the following definition.

Definition 2.4.22. Let A ⊃ S be a σ-algebra on R+. A probability measure P
on (R+,A) has base-invariant significant digits if P (A) = P (A1/n) holds for all
A ∈ S and n ∈ N.

Example 2.4.23. (i) Recall that δa denotes the Dirac measure concentrated at the
point a, that is, δa(A) = 1 if a ∈ A, and δa(A) = 0 if a $∈ A. The probability
measure δ1 clearly has base-invariant significant digits since 1 ∈ A if and only if
1 ∈ A1/n. Similarly, δ10k has base-invariant significant digits for every k ∈ Z.
On the other hand, δ2 does not have base-invariant significant digits since, with
A = {x > 0 : S10(x) ∈ [1, 3)}, δ2(A) = 1 yet δ2(A1/2) = 0.

(ii) It is easy to see that the Benford distribution B has base-invariant significant
digits. Indeed, for any 0 ≤ s < 1, let

A = {x > 0 : S10(x) ∈ [1, 10s)} =
⋃

k∈Z

10k[1, 10s) ∈ S .

Then, as seen in the proof of Lemma 2.2.11(3),

A1/n =
⋃

k∈Z

10k
n−1⋃

j = 0

[10j/n, 10(j+s)/n)

and therefore

B(A1/n) =
n−1∑

j=0

(
log 10(j+s)/n − log 10j/n

)
=

n−1∑

j=0

(
j + s

n
− j

n

)
= s = B(A) .

(iii) The uniform distribution λ0,1 on [0, 1) does not have base-invariant signifi-
cant digits. For instance, again taking A = {x > 0 : D1(x) = 1} leads to

λ0,1(A
1/2) =

∑

n∈N

10−n(
√
2− 1 +

√
20−

√
10) =

1

9
+

(
√
5− 1)(2−

√
2)

9

>
1

9
= λ0,1(A).
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The next theorem is the main result for base-invariant significant digits.

Theorem 2.4.24 (Base-invariance characterization [Hi3]). A probability mea-
sure P on (R+,A) with A ⊃ S has base-invariant significant digits if and only if,
for some q ∈ [0, 1],

P (A) = qδ1(A) + (1− q)B(A) for every A ∈ S . (2.14)

Corollary 2.4.25. A continuous probability measure P on R+ has base-invariant
significant digits if and only if P (A) = B(A) for all A ∈ S, i.e., if and only if P is
Benford.

Recall that λ0,1 denotes Lebesguemeasure on
(
[0, 1),B[0, 1)

)
. For every n ∈ N,

denote the map x 2→ 〈nx〉 of [0, 1) into itself by Tn. Generally, if T : [0, 1) → R
is measurable, and T

(
[0, 1)

)
⊂ [0, 1), a probability measure P on

(
[0, 1),B[0, 1)

)

is said to be T -invariant, or T is P -preserving, if T∗P = P . Which probability
measures are Tn-invariant for all n ∈ N? A complete answer to this question is
provided by

Lemma 2.4.26. A probability measure P on
(
[0, 1),B[0, 1)

)
is Tn-invariant for all

n ∈ N if and only if P = qδ0 + (1− q)λ0,1 for some q ∈ [0, 1].

Proof. Recall the definition of the Fourier coefficients of P ,

P̂ (k) =

∫ 1

0
e2πıksdP (s) , k ∈ Z ,

and observe that

T̂nP (k) = P̂ (nk) for all k ∈ Z, n ∈ N .

Assume first that P = qδ0 + (1 − q)λ0,1 for some q ∈ [0, 1]. From δ̂0(k) ≡ 1 and
λ̂0,1(k) = 0 for all k $= 0, it follows that

P̂ (k) =

{
1 if k = 0 ,
q if k $= 0 .

For every n ∈ N and k ∈ Z\{0}, therefore, T̂nP (k) = q, and clearly T̂nP (0) = 1.
Thus T̂nP = P̂ and since the Fourier coefficients determine P uniquely, Tn∗P =
P for all n ∈ N.
Conversely, assume that P is Tn-invariant for all n ∈ N. In this case, P̂ (n) =

T̂nP (1) = P̂ (1), and similarly P̂ (−n) = T̂nP (−1) = P̂ (−1). Since generally
P̂ (−k) = P̂ (k), there exists q ∈ C such that

P̂ (k) =






q if k > 0 ,

1 if k = 0 ,

q if k < 0 .

Also, observe that for every t ∈ R,

lim
n→∞

1

n

n∑

j=1

e2πıtj =

{
1 if t ∈ Z ,

0 if t $∈ Z .
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Using this and the Dominated Convergence Theorem, it follows from

P ({0}) =

∫ 1

0
lim
n→∞

1

n

n∑

j=1

e2πısjdP (s) = lim
n→∞

1

n

n∑

j=1

P̂ (j) = q ,

that q is real, and in fact q ∈ [0, 1]. Hence the Fourier coefficients of P are exactly
the same as those of qδ0 + (1− q)λ0,1. By uniqueness, therefore, P = qδ0 + (1−
q)λ0,1. !

Proof. As in the proof of Theorem 2.4.18, fix a probability measure P on (R+,A),
denote by P0 its restriction to (R+,S), and let Q = %∗P0. Observe that P0 has
base-invariant significant digits if and only if Q is Tn-invariant for all n ∈ N.
Indeed, with 0 ≤ s < 1 and A = {x > 0 : S10(x) < 10s},

Tn∗Q
(
[0, s)

)
= Q




n−1⋃

j=0

[
j

n
,
j + s

n

)



= P0




⋃

k∈Z

10k
n−1⋃

j=0

[10j/n, 10(j+s)/n)



 = P0(A
1/n) (2.15)

and hence Tn∗Q = Q for all n precisely if P0 has base-invariant significant digits.
In this case, by Lemma 2.4.26, Q = qδ0 + (1 − q)λ0,1 for some q ∈ [0, 1], which
in turn implies that P0(A) = qδ1(A) + (1 − q)B(A) for every A ∈ S. !

Corollary 2.4.27. If a probability measure on R+ has scale-invariant significant
digits then it also has base-invariant significant digits.

2.4.4 The Sum-Invariance Characterization

As first observed by M. Nigrini [Nig1], if a table of real data approximately follows
BL, then the sum of the significands of all entries in the table with first significant
digit 1 is very close to the sum of the significands of all entries with first significant
digit 2, and to the sum of the significands of entries with the other possible first
significant digits as well. This clearly implies that the table must contain more
entries starting with 1 than with 2, more entries starting with 2 than with 3, and so
forth. This motivates the following definition.

Definition 2.4.28. A sequence (xn) of real numbers has sum-invariant significant
digits if, for everym ∈ N, the limit

lim
N→∞

∑N
n=1 Sd1,...,dm(xn)

N
exists and is independent of d1, . . . , dm.

The definitions of sum invariance of significant digits for functions, distributions,
and random variables are similar, and it is in the context of distributions and random
variables that the sum-invariance characterization of BL will be stated.

Definition 2.4.29. A random variableX has sum-invariant significant digits if, for
everym ∈ N, the value of ESd1,...,dm(X) is independent of d1, . . . , dm.
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Example 2.4.30. (i) If X is uniformly distributed on [0, 1), then X does not have
sum-invariant significant digits. This follows from Theorem 2.4.31 below.

(ii) Similarly, if P(X = 1) = 1 then X does not have sum-invariant significant
digits, as

ESd(X) =

{
1 if d = 1 ,
0 if d ≥ 2 .

(iii) Assume X is Benford. For every m ∈ N, d1 ∈ {1, 2, . . . , 9} and dj ∈
{0, 1, . . . , 9}, j ≥ 2,

ESd1,...,dm(X) =

∫ d1+10−1d2+···+101−m(dm+1)

d1+10−1d2+···+101−mdm

t · 1

t ln 10
dt =

101−m

ln 10
.

ThusX has sum-invariant significant digits.

According to Example 2.4.30(iii) everyBenford random variable has sum-invariant
significant digits. As hinted at earlier, the converse is also true, i.e., sum-invariant
significant digits characterize BL.

Theorem 2.4.31 (Sum-invariance characterization [Al]). A random variable X
with P(X = 0) = 0 has sum-invariant significant digits if and only if it is Ben-
ford.

Proof. See [Al] or [BerH4, Thm.4.37]. !

2.5 BENFORD’S LAW FOR DETERMINISTIC PROCESSES

The goal of this section is to present the basic theory of BL in the context of de-
terministic processes, such as iterates of maps, powers of matrices, and solutions
of differential equations. Except for somewhat artificial examples, processes with
linear growth are not Benford, and among the others, there is a clear distinction
between those with exponential growth or decay, and those with superexponential
growth or decay. In the exponential case, processes typically are Benford for all
starting points in a region, but are not Benford with respect to other bases. In con-
trast, superexponential processes typically are Benford for all bases, but have small
sets (of measure zero) of exceptional points whose orbits or trajectories are not
Benford.

2.5.1 One-Dimensional Discrete-Time Processes

Let T : C → C be a (measurable) map that maps C ⊂ R into itself, and for every
n ∈ N denote by T n the n-fold iterate of T , i.e., T 1 := T and T n+1 := T n ◦ T ;
also let T 0 be the identity map idC on C, that is, T 0(x) = x for all x ∈ C. The
orbit of x0 ∈ C is the sequence

OT (x0) :=
(
T n−1(x0)

)
n∈N

=
(
x0, T (x0), T

2(x0), . . .
)
.
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Example 2.5.1. (i) If T (x) = 2x thenOT (x0) = (x0, 2x0, 22x0, . . .) = (2n−1x0)
for all x0. Hence limn→∞ |xn| = +∞ whenever x0 $= 0.

(ii) If T (x) = x2 then OT (x0) = (x0, x2
0, x

22
0 , . . .) =

(
x2n−1

0

)
for all x0. Here

xn approaches 0 or +∞ depending on whether |x0| < 1 or |x0| > 1. Moreover,
OT (±1) = (±1, 1, 1, . . .).

(iii) If T (x) = 1 + x2 then OT (x0) = (x0, 1 + x2
0, 2 + 2x2

0 + x4
0, . . .). Since

xn ≥ n for all x0 and n ∈ N, limn→∞ xn = +∞ for every x0.

Recall from Example 2.4.11(i) that (2n) is Benford, and in fact (2nx0) is Benford
for every x0 $= 0. In other words, Example 2.5.1(i) says that with T (x) = 2x, the
orbitOT (x0) is Benford whenever x0 $= 0. The goal of the present subsection is to
extend this observation to a much wider class of maps T . The main result (Theorem
2.5.5) rests upon three lemmas.

Lemma 2.5.2. Let T (x) = ax with a ∈ R. Then OT (x0) is Benford for every
x0 $= 0 or for no x0 at all, depending on whether log |a| is irrational or rational,
respectively.

Proof. By Theorem 2.4.10, OT (x0) = (an−1x0) is Benford for every x0 $= 0 or
none, depending on whether log |a| is irrational or not. !

Clearly, the simple proof of Lemma 2.5.2 works only for maps that are exactly
linear. The same argument would for instance not work for T (x) = 2x+ e−x even
though T (x) ≈ 2x for large x. To establish the Benford behavior of maps like this,
a simple version of shadowing will be used.

Lemma 2.5.3 (Shadowing Lemma). Let T : R → R be a map, and β a real
number with |β| > 1. If supx∈R |T (x) − βx| < +∞ then there exists, for every
x ∈ R, one and only one point x such that the sequence (T n(x)−βnx) is bounded.

Proof. See [BerBH]. !

The next lemma enables application of Lemma 2.5.3 to establish the Benford prop-
erty for orbits of a wide class of maps.

Lemma 2.5.4.

1. Assume that (an) and (bn) are sequences of real numbers with |an| → +∞
and supn∈N |an − bn| < +∞. Then (bn) is Benford if and only if (an) is
Benford.

2. Suppose that the measurable functions f, g : [0,+∞) → R are such that
|f(t)| → +∞ as t → +∞, and supt≥0 |f(t) − g(t)| < +∞. Then f is
Benford if and only if g is Benford.

Proof. To prove (1), let c := supn∈N |an − bn| + 1. By discarding finitely many
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terms if necessary, it can be assumed that |an|, |bn| ≥ 2c for all n. From

− log

(
1 +

c

|an| − c

)
≤ log

|bn|
|bn|+ c

≤ log
|bn|
|an|

≤ log
|an|+ c

|an|
≤ log

(
1 +

c

|an| − c

)
,

it follows that
∣∣ log |bn| − log |an|

∣∣ =

∣∣∣∣log
|bn|
|an|

∣∣∣∣ ≤ log

(
1 +

c

|an| − c

)
→ 0 as n → ∞ .

Lemma 2.4.3(1) now shows that (log |bn|) is u.d. mod 1 if and only (log |an|) is.
The proof of (2) is completely analogous. !

Lemmas 2.5.3 and 2.5.4 can now easily be combined to produce the desired gen-
eral result. The theorem is formulated for orbits converging to zero. As explained
in the subsequent Example 2.5.6, a reciprocal version holds for orbits converging
to ±∞.

Theorem 2.5.5 ([BerBH]). Let T : R → R be a C2-map with T (0) = 0. Assume
that 0 < |T ′(0)| < 1. Then OT (x0) is Benford for all x0 $= 0 sufficiently close to 0
if and only if log |T ′(0)| is irrational. If log |T ′(0)| is rational then OT (x0) is not
Benford for any x0 sufficiently close to 0.

Proof. Let α := T ′(0) and observe that there exists a continuous function f :
R → R such that T (x) = αx

(
1 − xf(x)

)
. In particular, T (x) $= 0 for all x $= 0

sufficiently close to 0. Define

T̃ (x) := T (x−1)−1 =
x2

α
(
x− f(x−1)

) ,

and note that

T̃ (x)− α−1x =
x

α
· f(x−1)

x− f(x−1)
=

f(x−1)

α
+

f(x−1)2

α
(
x− f(x−1)

) .

From this it is clear that sup|x|≥ξ |T̃ (x) − α−1x| is finite, provided that ξ is suf-
ficiently large. Hence Lemma 2.5.3 shows that for every x with |x| sufficiently
large,

(
|T̃ n(x) − α−nx|

)
is bounded with an appropriate x $= 0. Lemma 2.5.4

implies thatOT̃ (x0) is Benford if and only if (α1−nx0) is, which in turn is the case
precisely if log |α| is irrational. The result then follows from noting that, for all
x0 $= 0with |x0| sufficiently small, OT (x0) =

(
T̃ n−1(x−1

0 )−1
)
n∈N

, and Corollary
2.4.7(1) which shows that (x−1

n ) is Benford whenever (xn) is. !

Example 2.5.6. (i) For T (x) = 1
2x + 1

4x
2, the orbit OT (x0) is Benford for

every x0 $= 0 sufficiently close to 0. A simple graphical analysis shows that
limn→∞ T n(x) = 0 if and only if −4 < x < 2. Thus for every x0 ∈ (−4, 2)\{0},
OT (x0) is Benford. Clearly, OT (−4) = (−4, 2, 2, . . .) and OT (2) = (2, 2, 2, . . .)
are not Benford.
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(ii) To see that Theorem 2.5.5 applies to the map T (x) = 2x+ e−x, let

T̃ (x) := T (x−2)−1/2 =
x√

2 + x2e−1/x2
, x $= 0 .

With T̃ (0) := 0, the map T̃ : R → R is smooth, and T̃ ′(0) = 1√
2
. Moreover,

limn→∞ T̃ n(x) = 0 for every x ∈ R. By Theorem 2.5.5, OT̃ (x0) is Benford for
every x0 $= 0, and hence OT (x0) is Benford for every x0 $= 0 as well, because
T n(x) = T̃ n(|x|−1/2)−2 for all n.

Processes with Superexponential Growth or Decay

The following is an analog of Lemma 2.5.2 in the doubly exponential setting. Re-
call that a statement holds for almost every x if there is a set of Lebesgue measure
zero that contains all x for which the statement does not hold.

Lemma 2.5.7. Let T (x) = αxβ for some α > 0 and β > 1. Then OT (x0) is
Benford for almost every x0 > 0, but there also exist uncountablymany exceptional
points, i.e., x0 > 0 for which OT (x0) is not Benford.

Proof. Note first that letting T̃ (x) = cT (c−1x) for any c > 0 implies OT (x) =

c−1OT̃ (cx), and with c = α(β−1)−1 one finds T̃ (x) = xβ . Without loss of gener-
ality, it can therefore be assumed that α = 1, i.e., T (x) = xβ . Define R : R → R
as R(y) = logT (10y) = βy. Since x 2→ log x establishes a bijective correspon-
dence between both the points and the nullsets in R+ and R, respectively, all that
has to be shown is that OR(y) is u.d. mod 1 for a.e. y ∈ R, but also that OR(y)
fails to be u.d. mod 1 for at least uncountably many y. To see the former, let
fn(y) = Rn(y) = βny. Clearly, f ′

n(y) − f ′
m(y) = βn−m(βm − 1) is monotone,

and |f ′
n − f ′

m| ≥ β − 1 > 0 whenever m $= n. By Proposition 2.4.9, therefore,
OR(y) is u.d. mod 1 for a.e. y ∈ R.
The statement concerning exceptional points will be proved here only under the

additional assumption that β is an integer; see [Ber4] for the remaining cases.
Given an integer β ≥ 2, let (ηn) be any sequence of 0s and 1s such that ηnηn+1 = 0
for all n ∈ N, that is, (ηn) does not contain two consecutive 1s. With this, consider

y0 :=
∞∑

j=1

ηjβ
−j

and observe that, for every n ∈ N,

0 ≤ 〈βny0〉 =
∞∑

j=n+1

ηjβ
n−j ≤ 1

β
+

1

β2(β − 1)
< 1 ,

from which it is clear that (βny0) is not u.d. mod 1. The proof is completed by not-
ing that there are uncountably many different sequences (ηn), and each sequence
defines a different point y0. !

The following is an analog of Theorem 2.5.5 for the case when T is dominated
by power-like terms.
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Theorem 2.5.8 ([BerBH]). Let T be a smooth map with T (0) = 0, and assume
that T ′(0) = 0 but T (p)(0) $= 0 for some p ∈ N\{1}. Then OT (x0) is Benford
for almost every x0 sufficiently close to 0, but there are also uncountably many
exceptional points.

Proof. Without loss of generality, assume that p = min{j ∈ N : T (j)(0) $= 0}.
The map T can be written in the form T (x) = αxp

(
1 + f(x)

)
where f is a C∞-

function with f(0) = 0, and α $= 0. As in the proof of Lemma 2.5.7, it may be
assumed that α = 1. Let R(y) = − logT (10−y) = py − log

(
1 + f(10−y)

)
, so

that OT (x0) is Benford if and only if OR(− log x0) is u.d. mod 1. As the proof of
Lemma 2.5.7 has shown, (pny) is u.d. mod 1 for a.e. y ∈ R. Moreover, Lemma
2.5.3 applies to R, and it can be checked by term-by-term differentiation that the
shadowing map

h : y 2→ y = y −
∞∑

j=1

p−j log
(
1 + f

(
10−Rj(y)

))

is a C∞-diffeomorphism on [y0,+∞) for y0 sufficiently large. For a.e. sufficiently
large y, therefore, OR(y) is u.d. mod 1. As explained earlier, this means that
OT (x0) is Benford for a.e. x0 sufficiently close to 0. The existence of exceptional
points follows similarly as in the proof of Lemma 2.5.7. !

Example 2.5.9. (i) Consider the map T (x) = 1
2 (x

2 + x4) and note that limn→∞
T n(x) = 0 if and only if |x| < 1. Theorem 2.5.8 shows that OT (x0) is Benford
for a.e. x0 ∈ (−1, 1). If |x| > 1 then limn→∞ T n(x) = +∞, and Theorem 2.5.8
applies to the reciprocal version T̃ of T , namely

T̃ (x) := T (x−1)−1 =
2x4

1 + x2

near x = 0. Overall, therefore, OT (x0) is Benford for a.e. x0 ∈ R.

(ii) Let T (x) = 1 + x2. Again Theorem 2.5.8 applied to

T̃ (x) = T (x−1)−1 =
x2

1 + x2
,

shows that OT (x0) is Benford for a.e. x0 ∈ R.

An Application: Newton’s Method and Related Algorithms

In scientific calculations using digital computers and floating point arithmetic, round-
off errors are inevitable, thus, for the problem of finding numerically the root of a
function by means of Newton’s Method, it is important to study the distribution of
significant digits (or significands) of the approximations generated by the method.
Throughout this subsection, let f : I → R be a differentiable function defined

on some open interval I ⊂ R, and denote by Nf the map associated with f by
Newton’s Method, that is,

Nf (x) := x− f(x)

f ′(x)
for all x ∈ I with f ′(x) $= 0.
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For Nf to be defined wherever f is, set Nf (x) := x if f ′(x) = 0.
If f : I → R is real-analytic and x∗ ∈ I is a root of f , i.e., if f(x∗) = 0, then

f(x) = (x − x∗)mg(x) for some m ∈ N and some real-analytic g : I → R with
g(x∗) $= 0. The numberm is the multiplicity of the root x∗; if m = 1 then x∗ is
referred to as a simple root.

Theorem 2.5.10 ([BerH1]). Let f : I → R be real-analytic with f(x∗) = 0, and
assume that f is not linear. Then

1. if x∗ is a simple root, then (xn − x∗) and (xn+1 − xn) are both Benford for
(Lebesgue) almost every, but not every x0 in a neighborhood of x∗;

2. if x∗ is a root of multiplicity at least two, then (xn − x∗) and (xn+1 − xn)
are Benford for all x0 $= x∗ sufficiently close to x∗.

Here (xn) denotes the sequence of iterates of Nf starting at x0, that is, (xn) =
ONf (x0).

The full proof of Theorem 2.5.10 can be found in [BerH1]. It uses the following
lemma which may be of independent interest for studying BL in other numerical
approximation procedures. Part (1) is an analog of Lemma 2.5.4, and (2) and (3)
follow directly from Theorems 2.5.8 and 2.5.5, respectively.

Lemma 2.5.11. Let T : I → I be C∞ with T (y∗) = y∗ for some y∗ ∈ I .

1. If T ′(y∗) $= 1, then for all y0 such that limn→∞ T n(y0) = y∗, the sequence
(T n(y0)− y∗) is Benford precisely when

(
T n+1(y0)− T n(y0)

)
is Benford.

2. If T ′(y∗) = 0 but T (p)(y∗) $= 0 for some p ∈ N\{1}, then (T n(y0)− y∗) is
Benford for (Lebesgue) almost every, but not every y0 in a neighborhood of
y∗.

3. If 0 < |T ′(y∗)| < 1, then (T n(y0)−y∗) is Benford for all y0 $= y∗ sufficiently
close to y∗ precisely when log |T ′(y∗)| is irrational.

Example 2.5.12. (i) Let f(x) = x/(1 − x) for x < 1. Then f has a simple
root at x∗ = 0, and Nf (x) = x2. By Theorem 2.5.10(1), the sequences (xn)
and (xn+1 − xn) are both Benford sequences for (Lebesgue) almost every x0 in a
neighborhood of 0.

(ii) Let f(x) = x2. Then f has a double root at x∗ = 0 andNf (x) = x/2, so by
Theorem 2.5.10(2), the sequence of iterates (xn) ofNf as well as (xn+1 − xn) are
both Benford for all starting points x0 $= 0. (They are not, however, 2-Benford.)

Utilizing Lemma 2.5.11, an analog of Theorem 2.5.10 can be established for other
root-finding algorithms as well (see [BerH1]).

Time-Dependent Systems

So far, the sequences considered in this section have been generated by the itera-
tion of a single map T . Beyond this setting there has been, in the recent past, an
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increased interest in systems that are non-autonomous, i.e., explicitly time depen-
dent in one way or the other.
Throughout, let (Tn) be a sequence of maps that map R or parts thereof into

itself, and for everyn ∈ N denote by T n the n-fold compositionT n := Tn◦· · ·◦T1;
also let T 0 be the identity map on R. Given x0, it makes sense to consider the
sequence OT (x0) :=

(
T n−1(x0)

)
n∈N

=
(
x0, T1(x0), T2

(
T1(x0)

)
, . . .

)
.

The following is a non-autonomous variant of Theorem 2.5.5. A proof (of a
substantially more general version) can be found in [BerBH]. It relies heavily on a
non-autonomous version of the Shadowing Lemma, Lemma 2.5.3.

Theorem 2.5.13 ([BerBH]). Let Tj : R → R be C2-maps with Tj(0) = 0 and
T ′
j(0) $= 0 for all j ∈ N, and set αj := T ′

j(0). Assume that supj max|x|≤1 |T ′′
j (x)|

and
∑∞

n=1

∏n
j=1 |αj | are both finite. If limj→∞ log |αj | exists and is irrational,

then OT (x0) is Benford for all x0 $= 0 sufficiently close to 0.

Example 2.5.14. (i) Let Rj(x) = (2 + j−1)x for j = 1, 2, . . . . It is easy to see
that all assumptions of Theorem 2.5.13 are met for

Tj(x) = Rj(x
−1)−1 =

j

2j + 1
x,

with limj→∞ log |αj | = − log 2. Hence OR(x0) is Benford for all x0 $= 0.

(ii) Let Tj(x) = Fj+1/Fjx for all j ∈ N, where Fj denotes the jth Fibonacci
number. Since limj→∞ log(Fj+1/Fj) = log 1+

√
5

2 is irrational, and by taking
reciprocals as in (i), Theorem 2.5.13 shows that OT (x0) is Benford for all x0 $= 0.
In particular, OT (F1) = (Fn) is Benford, as was already seen in Example 2.4.12.
Note that the same argument would not work to show that (n!) is Benford.

In situations where most of the maps Tj are power-like or even more strongly
expanding, the following generalization of Lemma 2.5.7 may be useful. (In its
fully developed form, the result also extends Theorem 2.5.8; see [BerBH, Thm.5.5]
and [Ber3, Thm.3.7].) Again the reader is referred to [Ber4] for a proof.

Theorem 2.5.15 ([Ber4]). Assume the maps Tj : R+ → R+ satisfy, for some ξ > 0
and all j ∈ N, the following conditions:

1. x 2→ lnTj(ex) is convex on [ξ,+∞);

2. xT ′
j(x)/Tj(x) ≥ βj > 0 for all x ≥ ξ.

If lim infj→∞ βj > 1 then OT (x0) is Benford for almost every sufficiently large
x0, but there are also uncountably many exceptional points.

Example 2.5.16. (i) To see that Theorem 2.5.15 does indeed generalize Lemma
2.5.7, let Tj(x) = αxβ for all j ∈ N. Then x 2→ lnTj(ex) = βx + lnα clearly is
convex, and xT ′

j(x)/Tj(x) = β > 1 for all x > 0.

(ii) Theorem 2.5.15 also shows that OT (x0) with T (x) = ex is Benford for
almost every, but not every x0 ∈ R, as x 2→ lnT (ex) = ex is convex, and
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xT ′(x)/T (x) = x as well as T 3(x) > e holds for all x ∈ R. Similarly, the
theorem applies to T (x) = 1 + x2.

(iii) For a truly non-autonomous example consider

Tj(x) =

{
x2 if j is even ,
2x if j is odd , or Tj(x) = (j + 1)x .

In both cases, OT (x0) is Benford for almost every, but not every x0 ∈ R.

(iv) Finally, it is important to note that Theorem 2.5.15 may fail if one of its
hypotheses is violated even for a single j. For example,

Tj(x) =

{
10 if j = 1 ,
x2 if j ≥ 2 ,

satisfies (1) and (2) for all j > 1, but does not satisfy assumption (2) for j = 1.
Clearly, OT (x0) is not Benford for any x0 ∈ R, since D1

(
T n(x0)

)
≡ 1 for all

n ∈ N.

2.5.2 Multidimensional Discrete-Time Processes

The purpose of this subsection is to extend the basic results of the previous section
to multidimensional systems, notably to linear, as well as some non-linear recur-
rence relations. Recall from Example 2.4.12 that the Fibonacci sequence (Fn) is
Benford. Hence the linear recurrence relation xn+1 = xn +xn−1 generates a Ben-
ford sequence when started from x0 = x1 = 1. As will be seen shortly, many, but
not all linear recurrence relations generate Benford sequences.

Example 2.5.17. (i) Let the sequence (xn) be defined recursively as
xn+1 = xn − xn−1 , n = 1, 2, . . . , (2.16)

with given x0, x1 ∈ R. By using the matrix
[

0 1
−1 1

]
associated with (2.16), it

is straightforward to derive an explicit representation for (xn),

xn = x0 cos
(
1
3πn

)
+

2x1 − x0√
3

sin
(
1
3πn

)
, n = 0, 1, . . . .

From this it is clear that xn+6 = xn for all n, i.e., (xn) is 6-periodic. For no choice
of x0, x1, therefore, is (xn) Benford.

(ii) Consider the linear 3-step recursion
xn+1 = 2xn + 10xn−1 − 20xn−2 , n = 2, 3, . . . . (2.17)

Clearly, limn→∞ |xn| = +∞ unless x0 = x1 = x2 = 0, so unlike in (i) the
sequence (xn) is not bounded or oscillatory. However, if |c2| $= |c3| then

log |xn| =
n

2
+log

∣∣∣c110−n( 1
2−log 2) + c2 + (−1)nc3

∣∣∣ ≈
n

2
+log |c2+(−1)nc3| ,

showing that
(
S(xn)

)
is asymptotically 2-periodic and hence (xn) is not Benford.

Similarly, if |c2| = |c3| $= 0 then
(
S(xn)

)
is convergent along even (if c2 = c3) or

odd (if c2 = −c3) indices n, and again (xn) is not Benford. Only if c2 = c3 = 0
yet c1 $= 0, or equivalently if 1

4x2 = 1
2x1 = x0 $= 0, is (xn) Benford.
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The above recurrence relations (2.16) and (2.17) are linear and have constant co-
efficients. Hence they can be rewritten and analyzed using matrix–vector notation.
For instance, in Example 2.5.17(i)

[
xn

xn+1

]
=

[
0 1

−1 1

] [
xn−1

xn

]
,

so that, with A =

[
0 1

−1 1

]
∈ R2×2, the sequence (xn) is simply given by

xn =
[
1 0

]
An

[
x0

x1

]
, n = 0, 1, . . . .

It is natural, therefore, to study the Benford property of more general sequences
(x-Any) for any A ∈ Rd×d and x, y ∈ Rd. Linear recurrence relations like the
ones in Example 2.5.17 are then merely special cases.
Recall complex numbers z1, z2, . . . , zm are rationally independent if

∑m
j=1 qjzj

= 0 with rational q1, q2, . . . , qm implies that qj = 0 for all j = 1, 2, . . . ,m. Let
Z ⊂ C be any set such that all elements of Z have the same modulus ζ, i.e.,
Z is contained in the periphery of a circle with radius ζ centered at the origin
of the complex plain. Call the set Z resonant if either #(Z ∩ R) = 2 or the
numbers 1, log ζ, and the elements of 1

2π argZ are rationally dependent, where
1
2π argZ =

{
1
2π arg z : z ∈ Z

}
\{− 1

2 , 0}.

Definition 2.5.18. A matrix A ∈ Rd×d is Benford regular (base 10) if σ(A)+ (the
subset of the spectrum of A with non-negative imaginary components) contains no
resonant set.

Note that in the simplest case, i.e., for d = 1, the matrixA = [a] is Benford regular
if and only if log |a| is irrational. Hence Benford regularity may be considered a
generalization of this irrationality property. Also note that A is regular (invertible)
whenever it is Benford regular.

Example 2.5.19. None of the matrices associated with the recurrence relations

in Example 2.5.17 are Benford regular. Indeed, in (i), A =

[
0 1

−1 1

]
, hence

σ(A)+ = {eıπ/3}, and clearly log |eıπ/3| = 0 is rational. Similarly, in (ii),

A =




0 1 0
0 0 1

−10 10 2



, and σ(A)+ = {−
√
10, 2,

√
10} contains the resonant

set {−
√
10,

√
10}.

Example 2.5.20. Let A =

[
1 −1
1 1

]
∈ R2×2, with characteristic polynomial

pA(λ) = λ2−2λ+2, and hence σ(A)+ = {
√
2eıπ/4}. As 1, log

√
2, and 1

2π ·
π
4 = 1

8
are rationally dependent, the matrix A is not Benford regular.

Example 2.5.21. ConsiderA =

[
0 1
1 1

]
∈ R2×2. The characteristic polynomial

of A is pA(λ) = λ2 −λ− 1, and so, with ϕ = 1
2 (1+

√
5), the eigenvalues of A are
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ϕ and−ϕ−1. Since pA is irreducible and has two roots of different absolute value,
it follows that logϕ is irrational (in fact, even transcendental). Thus A is Benford
regular.

With the one-dimensional result (Lemma 2.5.2), as well as Example 2.5.17 and
Definition 2.5.18 in mind, it seems realistic to hope that iterating (i.e., taking pow-
ers of) any matrix A ∈ Rd×d produces many Benford sequences, provided that A
is Benford regular. This is indeed the case. To concisely formulate the pertinent
result, call a sequence (zn) of complex numbers terminating if zn = 0 for all
sufficiently large n.

Theorem 2.5.22 ([Ber2]). Assume that A ∈ Rd×d is Benford regular. Then, for
every x, y ∈ Rd, the sequence (x-Any) is either Benford or terminating. Also,
(‖Anx‖) is Benford for every x $= 0.

Proof. Apply Theorem 2.4.2 and the following proposition, a variant of [Ber2,
Lem.2.9]. !

Proposition 2.5.23. Assume that the real numbers 1, ρ0, ρ1, . . . , ρm are rationally
independent. Let (zn) be a convergent sequence in C, and at least one of the
numbers c1, c2, . . . , cm ∈ C non-zero. Then (xn) given by

xn = nρ0 + log
∣∣7

(
c1e

2πınρ1 + · · ·+ cme2πınρm + zn
)∣∣

is u.d.mod 1.

Example 2.5.24. According to Example 2.5.21, the matrix
[

0 1
1 1

]
is Benford

regular. By Theorem 2.5.22, every solution of the difference equation xn+1 =
xn + xn−1 is Benford, except for the trivial solution xn ≡ 0 resulting from x0 =
x1 = 0. In particular, therefore, the sequences of Fibonacci and Lucas numbers,
(Fn) = (1, 1, 2, 3, 5, . . .) and (Ln) = (−1, 2, 1, 3, 4, . . .), generated respectively
from the initial values

[
x0 x1

]
=

[
1 1

]
and

[
x0 x1

]
=

[
−1 2

]
, are

Benford. For the former sequence, this has already been seen in Example 2.4.12.
Note that (F 2

n), for instance, is Benford as well by Corollary 2.4.7(1).

Example 2.5.25. Recall from Example 2.5.20 that A =

[
1 −1
1 1

]
is not Ben-

ford regular. Hence Theorem 2.5.22 does not apply, and (x-Any) may, for some
x, y ∈ R2, be neither Benford nor terminating. Indeed, pick for example x = y =[
1 0

]- and note that for n = 0, 1, . . . ,

x-Any =
[
1 0

]
2n/2

[
cos(14πn) − sin(14πn)

sin(14πn) cos(14πn)

] [
1
0

]
= 2n/2 cos

(
1
4πn

)

is clearly not Benford as x-Any = 0 whenever n = 2 + 4l for some l ∈ N0.

The present section closes with an example of a non-linear system. The sole
purpose is to hint at possible extensions of the results presented earlier; for more
details the interested reader is referred to [Ber2].



52 CHAPTER 2

Example 2.5.26. Consider the non-linear map T : R2 → R2 given by

T :

[
x1

x2

]
2→

[
2 0
0 2

] [
x1

x2

]
+

[
f(x1)
f(x2)

]
,

with the bounded continuous function

f(t) =
3

2
|t+2|−3|t+1|+3|t−1|−3

2
|t−2| =






0 if |t| ≥ 2 ,
3t+ 6 if − 2 < t < −1 ,
−3t if − 1 ≤ t < 1 ,
3t− 6 if 1 ≤ t < 2 .

Sufficiently far away from the x1- and x2-axes, i.e., formin{|x1|, |x2|} sufficiently

large, the dynamics of T is governed by the matrix
[

2 0
0 2

]
, and since the latter

is Benford regular, one may reasonably expect that
(
x-T n(y)

)
should be Benford.

This is indeed the case.

2.5.3 Differential Equations

By presenting a few results on, and examples of, differential equations, i.e., deter-
ministic continuous-time processes, this section aims at convincing the reader that
the emergence of BL is not at all restricted to discrete-time dynamics. Rather, so-
lutions of ordinary or partial differential equations often turn out to be Benford as
well. Recall that a (Borel measurable) function f : [0,+∞) → R is Benford if and
only if log |f | is u.d. mod 1.
Consider the initial value problem (IVP)

ẋ = F (x) , x(0) = x0 , (2.18)

where F : R → R is continuously differentiable with F (0) = 0, and x0 ∈ R.
In the simplest case, F (x) ≡ αx with some α ∈ R. In this case, the unique
solution of (2.18) is x(t) = x0eαt. Unless αx0 = 0, therefore, every solution of
(2.18) is Benford. As in the discrete-time setting, this feature persists for arbitrary
C2-functions F with F ′(0) < 0. The direct analog of Theorem 2.5.5 is

Theorem 2.5.27 ([BerBH]). Let F : R → R be C2 with F (0) = 0. Assume that
F ′(0) < 0. Then, for every x0 $= 0 sufficiently close to 0, the unique solution of
(2.18) is Benford.

Proof. Pick δ > 0 so small that xF (x) < 0 for all 0 < |x| ≤ δ. As F is C2,
the IVP (2.18) has a unique local solution whenever |x0| ≤ δ; see [Walt]. Since
the interval [−δ, δ] is forward invariant, this solution exists for all t ≥ 0. Fix any
x0 with 0 < |x0| ≤ δ and denote the unique solution of (2.18) as x = x(t).
Clearly, limt→+∞ x(t) = 0. With y : [0,+∞) → R defined as y = x−1 therefore
y(0) = x−1

0 =: y0 and limt→+∞ |y(t)| = +∞. Let α := −F ′(0) > 0 and note
that there exists a continuous function g : R → R such that F (x) = −αx+x2g(x).
From

ẏ = − ẋ

x2
= αy − g(y−1) ,
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it follows via the variation of constants formula that, for all t ≥ 0,

y(t) = eαty0 −
∫ t

0
eα(t−τ)g

(
y(τ)−1

)
dτ .

As α > 0 and g is continuous, the number

y0 := y0 −
∫ +∞

0
e−ατg

(
y(τ)−1

)
dτ

is well defined. Moreover, for all t > 0,
∣∣y(t)− eαty0

∣∣ =

∣∣∣∣
∫ +∞

t
eα(t−τ)g

(
y(τ)−1

)
dτ

∣∣∣∣

≤
∫ +∞

0
e−ατ

∣∣g
(
y(t+ τ)−1

)∣∣ dτ ≤ ‖g‖∞
α

,

where ‖g‖∞ = max|x|≤δ |g(x)|, and Lemma 2.5.4(2) shows that y is Benford if
and only if t 2→ eαty0 is. An application of Corollary 2.4.7(2) therefore completes
the proof. !

Example 2.5.28. (i) The function F (x) = −x+ x4e−x2 satisfies the assumptions
of Theorem 2.5.27. Thus except for the trivial solution x = 0, every solution of
ẋ = −x+ x4e−x2 is Benford.

(ii) The function F (x) = −x3 + x4e−x2 is also smooth with xF (x) < 0 for
all x $= 0. Hence for every x0 ∈ R, the IVP (2.18) has a unique solution with
limt→+∞ x(t) = 0. However, F ′(0) = 0, and it is not hard to see that this causes
x to approach 0 rather slowly. In fact, limt→+∞ 2tx(t)2 = 1 whenever x0 $= 0,
and this prevents x from being Benford.

Similar results follow for the linear d-dimensional ordinary differential equations
ẋ = Ax, where A is a real d× d-matrix; see [Ber2].
Finally, it should be mentioned that at present little seems to be known about

the Benford property for solutions of partial differential equations or more gen-
eral functional equations such as e.g. delay or integro-differential equations. Quite
likely, it will be very hard to decide in any generality whether many, or even most,
solutions of such systems exhibit the Benford property in one form or another.

Example 2.5.29. A fundamental example of a partial differential equation is the
so-called one-dimensional heat (or diffusion) equation

∂u

∂t
=

∂2u

∂x2
, (2.19)

a linear second-order equation for u = u(t, x). Physically, (2.19) describes e.g.
the diffusion over time of heat in a homogeneous one-dimensional medium. Without
further conditions, (2.19) has many solutions of which for instance

u(t, x) = cx2 + 2ct ,

with any constant c $= 0, is neither Benford in t (“time”) nor in x (“space”),
whereas

u(t, x) = e−c2t sin(cx)
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is Benford (or identically zero) in t but not in x,

u(t, x) =
1√
t
e−x2/(4t) (t > 0)

is Benford in x but not in t, and

u(t, x) = ec
2t+cx

is Benford in both t and x.

2.6 BENFORD’S LAW FOR RANDOM PROCESSES

The purpose of this section is to show how BL arises naturally in a variety of
stochastic settings, including products of independent random variables, mixtures
of random samples from different distributions, and iterations of random maps.
Perhaps not surprisingly, BL arises in many other important fields of stochastics as
well, such as geometric Brownian motion, random matrices, Lévy processes, and
Bayesian models. The present section may also serve as a preparation for the spe-
cialized literature on these advanced topics [EngLeu, JaKKKM, LeScEv, MiNi1,
MiNi2, Schür2].

2.6.1 Independent Random Variables

Recall that a sequence (Xn) of random variables converges in distribution to a
random variable X , symbolically Xn

D→ X , if limn→∞ P(Xn ≤ t) = P(X ≤ t)
holds for every t ∈ R for which P(X = t) = 0. By a slight abuse of terminology,
say that (Xn) converges in distribution to BL if S(Xn)

D→ S(X), where X is a
Benford random variable, or equivalently if

lim
n→∞

P(S(Xn) ≤ t) = log t for all t ∈ [1, 10) .

An especially simple way of generating a sequence of random variables is this:
Fix a random variableX , and set Xn := Xn for every n ∈ N. While the sequence
(Xn) thus generated is clearly not i.i.d. unlessX = 0 a.s. orX = 1 a.s., Theorems
2.4.10 and 2.4.15 imply

Theorem 2.6.1. Assume that the random variableX has a density. Then

1. Xn converges in distribution to BL;

2. with probability one, (Xn) is Benford.

Proof. To prove (1), note that the random variable log |X | has a density as well.
Hence, by Theorem 2.4.15,
P(S(Xn) ≤ t) = P(〈log |Xn|〉 ≤ log t) = P(〈n log |X |〉 ≤ log t) → log t

as n → ∞ holds for all t ∈ [1, 10), i.e., (Xn) converges in distribution to BL.
To see (2), simply note that log |X | is irrational with probability one. By Theo-

rem 2.4.10, therefore, P
(
(Xn) is Benford

)
= 1. !
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Example 2.6.2. (i) Let X be uniformly distributed on [0, 1). For every n ∈ N,

FS(Xn)(t) =
t1/n − 1

101/n − 1
, 1 ≤ t < 10 ,

and a short calculation, together with the elementary estimate
et − 1− t

et − 1
<

t

2
for

all t > 0 shows that
∣∣FS(Xn)(t)− log t

∣∣ ≤
101/n − 1− ln 10

n

101/n − 1
<

ln 10

2n
→ 0 as n → ∞ ,

and hence (Xn) converges in distribution to BL. Since P( logX is rational ) = 0,
the sequence (Xn) is Benford with probability one.

(ii) Assume that X = 2 a.s. Thus PX = δ2, andX does not have a density. For
every n, S(Xn) = 10〈n log 2〉 with probability one, so (Xn) does not converge in
distribution to BL. On the other hand, (Xn) is Benford a.s.

The sequence of random variables considered in Theorem 2.6.1 is very special
in that Xn is the product of n quantities that are identical, and hence dependent
in extremis. Note that Xn is Benford for all n if and only if X is Benford. This
invariance property of BL persists if, unlike the case in Theorem 2.6.1, products of
independent factors are considered.

Theorem 2.6.3. Let X , Y be two independent random variables with P(XY =
0) = 0. Then

1. if X is Benford then so is XY ;

2. if S(X) and S(XY ) have the same distribution, then either logS(Y ) is
rational with probability one, orX is Benford.

Proof. As in the proof of Lemma 2.4.26, the argument becomes short and trans-
parent through the usage of Fourier coefficients. Note first that logS(XY ) =
〈log S(X) + logS(Y )〉 and, since the random variables X0 := logS(X) and
Y0 := logS(Y ) are independent,

̂Plog S(XY ) = ̂P〈X0+Y0〉 = P̂X0 · P̂Y0 . (2.20)

To prove (1), simply recall that X being Benford is equivalent to PX0 = λ0,1, and
hence P̂X0 (k) = 0 for every integer k $= 0. Consequently, ̂Plog S(XY )(k) = 0 as
well, i.e.,XY is Benford.
To see (2), assume that S(X) and S(XY ) have the same distribution. In this

case, (2.20) implies that

P̂X0(k)
(
1− P̂Y0(k)

)
= 0 for all k ∈ Z .

If P̂Y0(k) $= 1 for all non-zero k, then P̂X0 = λ̂0,1, i.e., X is Benford. Alterna-
tively, if P̂Y0(k0) = 1 for some k0 $= 0 then PY0(

1
|k0|Z) = 1, hence |k0|Y0 =

|k0| logS(Y ) is an integer with probability one. !
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Example 2.6.4. Let V , W be independent random variables distributed accord-
ing to U(0, 1). Then X := 10V and Y := W are independent and, by Theorem
2.6.3(1), XY is Benford even though Y is not. If, on the other hand, X := 10V

and Y := 101−V then X and Y are both Benford, yet XY is not. Hence the in-
dependence of X and Y is crucial in Theorem 2.6.3(1). It is essential in assertion
(2) as well, as can be seen by lettingX equal either 10

√
2−1 or 102−

√
2 with prob-

ability 1
2 each, and choosing Y := X−2. Then S(X) and S(XY ) = S(X−1)

have the same distribution, but neither X is Benford nor logS(Y ) is rational with
probability one.
Theorem 2.6.5. Let (Xn) be an i.i.d. sequence of random variables that are not
purely atomic, i.e., P(X1 ∈ C) < 1 for every countable set C ⊂ R. Then

1.
(∏n

j=1 Xj

)
converges in distribution to BL;

2. with probability one,
(∏n

j=1 Xj

)
is Benford.

Proof. Let Yn = log |Xn|. Then (Yn) is an i.i.d. sequence of random variables
that are not purely atomic. By Theorem 2.4.13(3), the sequence of

〈∑n
j=1 Yj

〉
=〈

log |
∏n

j=1 Xj|
〉
converges in distribution to U(0, 1). Thus

(∏n
j=1 Xj

)
converges

in distribution to BL.
To prove (2), let Y0 be u.d. mod 1 and independent of (Yn)n∈N, and define

Sj := 〈Y0 + Y1 + · · ·+ Yj〉 , j ∈ N0 .
Recall from Theorem 2.4.13(1) that Sj is u.d. mod 1 for every j ≥ 0. Also note
that, by definition, the random variables Yj+1, Yj+2, . . . are independent of Sj . The
following argument is most transparent when formulated in ergodic theory termi-
nology. To this end, endow T∞ := [0, 1)N0 = {(xj)j∈N0 : xj ∈ [0, 1) for all j }
with the σ-algebra

B∞ := σ
(
{B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · : j ∈ N0,

B0, B1, . . . , Bj ∈ B[0, 1)}
)

(2.21)

=
⊗

j∈N0

B[0, 1).

A probability measure P∞ is uniquely defined on (T∞,B∞) by setting
P∞(B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · )
= P(S0 ∈ B0, S1 ∈ B1, . . . , Sj ∈ Bj)

for all j ∈ N0 and B0, B1, . . . , Bj ∈ B[0, 1).
The map σ∞ : T∞ → T∞ with σ∞

(
(xj)

)
= (xj+1), often referred to as the

(one-sided) left shift on T∞, is clearly measurable, i.e., σ−1
∞ (A) ∈ B∞ for every

A ∈ B∞. As a consequence, (σ∞)∗P∞ is a well-defined probability measure on
(T∞,B∞). In fact, since S1 is u.d. mod 1 and (Yn) is an i.i.d. sequence,

(σ∞)∗P∞(B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · )
= P∞([0, 1)×B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · )
= P(S1 ∈ B0, S2 ∈ B1, . . . , Sj+1 ∈ Bj)

= P(S0 ∈ B0, S1 ∈ B1, . . . , Sj ∈ Bj)

= P∞(B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · ) ,
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showing that (σ∞)∗P∞ = P∞, i.e., σ∞ is P∞-preserving. (In probabilistic terms,
this is equivalent to saying that the random process (Sj)j∈N0 is stationary; see
[Shi, Def.V.1.1].) It will now be shown that σ∞ is even ergodicwith respect to P∞.
Recall that this simply means that every invariant set A ∈ B∞ has measure zero
or one, or, more formally, that P∞(σ−1

∞ (A)∆A) = 0 implies P∞(A) ∈ {0, 1};
here the symbol ∆ denotes the symmetric difference of two sets, i.e., A∆B =
A\B ∪ B\A. Assume, therefore, that P∞(σ−1

∞ (A)∆A) = 0 for some A ∈ B∞.
Given ε > 0, there exists a number N ∈ N and sets B0, B1, . . . , BN ∈ B[0, 1)
such that

P∞
(
A∆ (B0 ×B1 × · · · ×BN × [0, 1)× [0, 1)× · · · )

)
< ε .

For notational convenience, letAε := B0×B1×· · ·×BN × [0, 1)× [0, 1)×· · · ∈
B∞, and note that P∞

(
σ−j
∞ (A)∆σ−j

∞ (Aε)
)
< ε for all j ∈ N0. Recall now from

Theorem 2.4.13(3) that, given S0, S1, . . . , SN , the random variables Sn converge
in distribution to U(0, 1). Thus, for all sufficiently largeM ,

∣∣P∞
(
Ac
ε ∩ σ−M

∞ (Aε)
)
− P∞(Ac

ε)P∞
(
σ−M
∞ (Aε)

)∣∣

=
∣∣P∞

(
Ac
ε ∩ σ−M

∞ (Aε)
)
− P∞(Ac

ε)P∞(Aε)
∣∣ < ε,

and similarly
∣∣P∞

(
Aε ∩ σ−M

∞ (Ac
ε)
)
− P∞(Aε)P∞(Ac

ε)
∣∣ < ε. (Note that (2.22)

may not hold if X1, and hence also Y1, is purely atomic.) Overall, therefore,
2P∞(Aε)

(
1− P∞(Aε)

)
≤ 2ε+ P∞

(
Aε∆σ−M

∞ (Aε)
)

≤ 2ε+ P∞(Aε∆A) + P∞
(
A∆σ−M

∞ (A)
)

+ P∞
(
σ−M
∞ (A)∆σ−M

∞ (Aε)
)

(2.22)
< 4ε,

and consequently P∞(A)
(
1 − P∞(A)

)
< 4ε + ε2. Since ε > 0 was arbitrary,

P∞(A) ∈ {0, 1}, which in turn shows that σ∞ is ergodic. (Again, this is equivalent
to saying, in probabilistic parlance, that the random process (Sj)j∈N0 is ergodic;
see [Shi, Def.V.3.2].) By the Birkhoff Ergodic Theorem (e.g. [Ber1]), for every

(measurable) function f : [0, 1) → C with
∫ 1

0
|f(x)| dx < +∞,

1

n

n∑

j=0

f(xj) →
∫ 1

0
f(x) dx as n → ∞

holds for all (xj)j∈N0 ∈ T∞, with the possible exception of a set of P∞-measure
zero. In probabilistic terms, this means that

lim
n→∞

1

n

n∑

j=0

f(Sj) =

∫ 1

0
f(x) dx a.s. (2.23)

Assume from now on that f is actually continuous with limx↑1 f(x) = f(0), e.g.
f(x) = e2πıx. For any such f , as well as any t ∈ [0, 1) andm ∈ N, let
Ωf,t,m :=



ω ∈ Ω : lim sup
n→∞

∣∣∣∣∣∣
1

n

n∑

j=1

f
(
〈t+ Y1(ω) + · · ·+ Yj(ω)〉

)
−
∫ 1

0
f(x) dx

∣∣∣∣∣∣
<

1

m




 .
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According to (2.23), 1 =

∫ 1

0
P(Ωf,t,m) dt, and hence P(Ωf,t,m) = 1 for a.e.

t ∈ [0, 1). Since f is uniformly continuous, for everym ≥ 2 there exists tm > 0
such that P(Ωf,tm,m) = 1 and Ωf,tm,m ⊂ Ωf,0,/m/20. From

1 = P




⋂

m≥2

Ωf,tm,m



 ≤ P




⋂

m≥2

Ωf,0,/m/20



 ≤ 1 ,

it is clear that

lim
n→∞

1

n

n∑

j=1

f
(
〈Y1 + · · ·+ Yj〉

)
=

∫ 1

0
f(x) dx a.s. (2.24)

As the intersection of countably many sets of full measure has itself full measure,
choosing f(x) = e2πıkx, k ∈ Z in (2.24) shows that, with probability one,

lim
n→∞

1

n

n∑

j=1

e2πık(Y1+···+Yj) =

∫ 1

0
e2πıkxdx = 0 for all k ∈ Z, k $= 0 . (2.25)

By Weyl’s criterion [KuiNi, Thm.2.1], (2.25) is equivalent to

P








n∑

j=1

Yj



 is u.d. mod 1



 = 1 .

In other words, (
∏n

j=1 Xj) is Benford with probability one. !

Example 2.6.6. (i) Let (Xn) be an i.i.d. sequence withX1 distributed according to
U(0, a), the uniform distribution on [0, a) with a > 0. The kth Fourier coefficient
of P〈logX1〉 is

̂P〈logX1〉(k) = e2πık log a ln 10

ln 10 + 2πık
, k ∈ Z ,

so that, for every k $= 0,
∣∣∣ ̂P〈logX1〉(k)

∣∣∣ =
ln 10√

(ln 10)2 + 4π2k2
< 1 .

As seen in the proof of Theorem 2.4.13(3), this implies that
(∏n

j=1 Xj

)
converges

in distribution to BL, a fact apparently first recorded in [AdhSa]. Note also that
E logX1 = log a

e . Thus with probability one,
(∏n

j=1 Xj

)
converges to 0 or +∞,

depending on whether a < e or a > e. In fact, by the Strong Law of Large
Numbers [ChT],

n

√√√√
n∏

j=1

Xj
a.s.→ a

e

holds for every a > 0. If a = e then

P



lim inf
n→∞

n∏

j=1

Xj = 0 and lim sup
n→∞

n∏

j=1

Xj = +∞



 = 1 ,
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showing that in this case the product
∏n

j=1 Xj does not converge but rather attains,
with probability one, arbitrarily small as well as arbitrarily large positive values.
By Theorem 2.6.5(2), the sequence

(∏n
j=1 Xj

)
is a.s. Benford, regardless of the

value of a.

(ii) Consider an i.i.d. sequence (Xn) with X1 distributed according to a log-
normal distribution such that logX1 is standard normal. Denote by fn the density
of

〈
log

∏n
j=1 Xj

〉
. Since log

∏n
j=1 Xj =

∑n
j=1 logXj is normal with mean zero

and variance n,

fn(s) =
1√
2πn

∑

k∈Z

e−(k+s)2/(2n) , 0 ≤ s < 1 ,

from which it is straightforward to deduce that

lim
n→∞

fn(s) = 1 , uniformly in 0 ≤ s < 1 .

Consequently, for all t ∈ [1, 10),

P



S




n∏

j=1

Xj



 ≤ t



 = P




〈
log

n∏

j=1

Xj

〉
≤ log t





=

∫ log t

0
fn(s) ds →

∫ log t

0
1 ds = log t,

i.e.,
(∏n

j=1 Xj

)
converges in distribution to BL. By Theorem 2.6.5(2) also

P








n∏

j=1

Xj



 is Benford



 = 1 ,

even though E log
∏n

j=1 Xj =
∑n

j=1 E logXj = 0, and hence, as in the previous
example, the sequence

(∏n
j=1 Xj

)
a.s. oscillates forever between 0 and +∞.

Having seen Theorem 2.6.5, the reader may wonder whether there is an anal-
ogous result for sums of i.i.d. random variables. After all, the focus in classical
probability theory is on sums much more than on products. Unfortunately, the
statistical behavior of the significands is much more complex for sums than for
products. The main basic reason is that the significand of the sum of two or more
numbers depends not only on the significand of each number (as in the case of
products), but also on their exponents. For example, observe that

S
(
3 · 103 + 2 · 102

)
= 3.2 $= 5 = S

(
3 · 102 + 2 · 102

)
,

while clearly
S
(
3 · 103 × 2 · 102

)
= 6 = S

(
3 · 102 × 2 · 102

)
.

Practically, this difficulty is reflected in the fact that for positive real numbers u, v,
the value of log(u + v), relevant for conformance with BL via Theorem 2.4.2, is
not easily expressed in terms of log u and log v, whereas log(uv) = log u+ log v.
In view of these difficulties, it is perhaps not surprising that the analog of Theo-

rem 2.6.5 for sums arrives at a radically different conclusion.



60 CHAPTER 2

Theorem 2.6.7. Let (Xn) be an i.i.d. sequence of random variables with finite
variance, that is, EX2

1 < +∞. Then

1. not even a subsequence of
(∑n

j=1 Xj

)
converges in distribution to BL;

2. with probability one,
(∑n

j=1 Xj

)
is not Benford.

Proof. See [BerH4, Thm.6.8]. !

Example 2.6.8. Let (Xn) be an i.i.d. sequence with P(X1 = 0) = P(X1 = 1) =
1
2 . Then EX1 = EX2

1 = 1
2 , and by Theorem 2.6.7(1) neither

(∑n
j=1 Xj

)
nor any

of its subsequences converges in distribution to BL. Note that
∑n

j=1 Xj is binomial
with parameters n and 1

2 , i.e., for all n ∈ N,

P




n∑

j=1

Xj = l



 = 2−n

(
n
l

)
, l = 0, 1, . . . , n .

The law of the iterated logarithm [ChT] asserts that
n∑

j=1

Xj =
n

2
+ Yn

√
n ln lnn for all n ≥ 3 , (2.26)

where the sequence (Yn) of random variables is bounded; in fact |Yn| ≤ 1 a.s. for
all n. From (2.26) it is clear that, with probability one, the sequence

(∑n
j=1 Xj

)

is not Benford.

2.6.2 Mixtures of Distributions

The main goal of this section is to provide a statistical derivation of BL, in the form
of a Central-Limit-like theorem that says that if random samples are taken from
different distributions, and the results combined, then—provided the sampling is
“unbiased” as to scale or base—the resulting combined samples will converge to
the Benford distribution.
Denote byM the set of all probability measures on (R,B). Recall that a (real

Borel) random probability measure, abbreviated henceforth as r.p.m., is a func-
tion P : Ω → M, defined on some underlying probability space (Ω,A,P), such
that for every B ∈ B the function ω 2→ P (ω)(B) is a random variable. Thus, for
every ω ∈ Ω, P (ω) is a probability measure on (R,B), and, given any real numbers
a, b and any Borel set B,

{ω : a ≤ P (ω)(B) ≤ b} ∈ A ;

see e.g. [Ka] for an authoritative account on random probability measures.

Example 2.6.9. (i) Let P be an r.p.m. that is, U(0, 1) with probability 1
2 , and

otherwise is exp(1), i.e., exponential with mean 1, hence P(X > t) = min(1, e−t)
for all t ∈ R, see Example 2.3.8(i,ii). Thus, for every ω ∈ Ω, the probability
measure P (ω) is either U(0, 1) or exp(1), and P

(
P (ω) = U(0, 1)

)
= P

(
P (ω) =

exp(1)
)
= 1

2 . For a practical realization of P simply flip a fair coin—if it comes
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up heads, P(ω) is a U(0, 1)-distribution, and if it comes up tails, then P (ω) is an
exp(1)-distribution.

(ii) Let X be distributed according to exp(1), and let P be an r.p.m. where, for
each ω ∈ Ω, P (ω) is the normal distribution with mean X(ω) and variance 1. In
contrast to the example in (i), here P is continuous, i.e., P(P = Q) = 0 for each
probability measure Q ∈ M.

The following example of an r.p.m. is a variant of a classical construction due to
L. Dubins and D. Freedman which, as will be seen below, is an r.p.m. leading to
BL.

Example 2.6.10. Let P be the r.p.m. with support on [1, 10), i.e., P
(
[1, 10)

)
= 1

with probability one, defined by its (random) cumulative distribution function FP ,
i.e.,

FP (t) := FP (ω)(t) = P (ω)
(
[1, t]

)
, 1 ≤ t < 10 ,

as follows: Set FP (1) = 0 and FP (10) = 1. Next pick FP (101/2) according to
the uniform distribution on [0, 1). Then pick FP (101/4) and FP (103,4) indepen-
dently, uniformly on

[
0, FP (101/2)

)
and

[
FP (101/2), 1

)
, respectively, and con-

tinue in this manner. This construction is known to generate an r.p.m. a.s. [DuFr,
Lem.9.28], and as can easily be seen, is dense in the set of all probability measures
on

(
[1, 10),B[1, 10)

)
, i.e., it generates probability measures that are arbitrarily

close to any Borel probability measure on [1, 10).

The next definition formalizes the notion of combining data from different dis-
tributions. Essentially, it mimics what Benford did in combining baseball statistics
with square-root tables and numbers taken from newspapers etc. This definition
is key to everything that follows. It rests upon using an r.p.m. to generate a ran-
dom sequence of probability distributions, and then successively selecting random
samples from each of those distributions.

Definition 2.6.11. Let m be a positive integer and P an r.p.m. A sequence of P -
randomm-samples is a sequence (Xn) of random variables on (Ω,A,P) such that,
for all j ∈ N and some i.i.d. sequence (Pn) of r.p.m.s with P1 = P , the following
two properties hold:

Given that Pj = Q, the random variablesX(j−1)m+1, X(j−1)m+2, . . . , Xjm

are i.i.d. with distributionQ. (2.27)

The random variablesX(j−1)m+1, X(j−1)m+2, . . . , Xjm are independent of
Pi, X(i−1)m+1, X(i−1)m+2, . . . , Xim for every i $= j. (2.28)

Thus for any sequence (Xn) of P -random m-samples, for each ω ∈ Ω in the
underlying probability space, the first m random variables are a random sample
(i.e., i.i.d.) from P1(ω), a random probability distribution chosen according to the
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r.p.m. P ; the secondm-tuple of random variables is a random sample from P2(ω)
and so on. Note the two levels of randomness here: First a probability is selected
at random, and then a random sample is drawn from this distribution, and this two-
tiered process is continued.

Example 2.6.12. Let P be the r.p.m. in Example 2.6.9(i), and let m = 3. Then a
sequence ofP -random 3-samples is a sequence (Xn) of random variables such that
with probability 1

2 , X1, X2, X3 are i.i.d. and distributed according to U(0, 1), and
otherwise they are i.i.d. but distributed according to exp(1); the random variables
X4, X5, X6 are again equally likely to be i.i.d. U(0, 1) or exp(1), and they are
independent of X1, X2, X3, etc. Clearly the (Xn) are all identically distributed
as they are all generated by exactly the same process. Note, however, that for
instance X1 and X2 are dependent: Given that X1 > 1, for example, the random
variableX2 is exp(1)-distributed with probability one, whereas the unconditional
probability thatX2 is exp(1)-distributed is only 1

2 .

Although sequences of P -random m-samples have a fairly simple structure, they
do not fit into any of the familiar categories of sequences of random variables. For
example, they are not in general independent, exchangeable, Markov, martingale,
or stationary sequences. (See [Hi4]).
Recall that, given an r.p.m.P and any Borel setB, the quantityP (B) is a random

variable with values between 0 and 1. The following property of the expectation of
P (B), as a function of B, is easy to check.

Proposition 2.6.13. Let P be an r.p.m. Then EP , defined as

(EP )(B) := EP (B) =

∫

Ω
P (ω)(B) dP(ω) for all B ∈ B ,

is a probability measure on (R,B).

Example 2.6.14. Let P be the r.p.m. of Example 2.6.9(i). Then EP is the Borel
probability measure with density

fEP (t) =






0 if t < 0 ,
1
2 + 1

2e
−t if 0 ≤ t < 1 ,

1
2e

−t if t ≥ 1 ,





=

1

2
1[0,1)(t)+

1

2
e−t

1[0,+∞) , t ∈ R .

The next lemma shows that the limiting proportion of times that a sequence of
P -randomm-samples falls in a (Borel) set B is, with probability one, the average
P-value of the set B, i.e., the limiting proportion equals EP (B). Note that this is
not simply a direct corollary of the classical Strong Law of Large Numbers as the
random variables in the sequence are not in general independent.

Lemma 2.6.15. Let P be an r.p.m., and let (Xn) be a sequence of P -randomm-
samples for somem ∈ N. Then, for every B ∈ B,

#{1 ≤ n ≤ N : Xn ∈ B}
N

a.s.→ EP (B) as N → ∞ .
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Proof. Fix B ∈ B and j ∈ N, and let Yj = #{1 ≤ i ≤ m : X(j−1)m+i ∈ B}. It
is clear that

lim
N→∞

#{1 ≤ n ≤ N : Xn ∈ B}
N

=
1

m
lim
n→∞

1

n

n∑

j=1

Yj , (2.29)

whenever the limit on the right exists. By (2.27), given Pj , the random variable Yj

is binomially distributed with parametersm and E
(
Pj(B)

)
, hence a.s.

EYj = E
(
E(Yj |Pj)

)
= E

(
mPj(B)

)
= mEP (B) (2.30)

since Pj has the same distribution as P . By (2.28), the Yj are independent. They
are also uniformly bounded, as 0 ≤ Yj ≤ m for all j, and hence

∑∞
j=1 EY

2
j /j

2 <
+∞. Moreover, by (2.30) all Yj have the same mean value mEP (B). Thus by
[ChT, Cor.5.1]

1

n

n∑

j=1

Yj
a.s.→ mEP (B) as n → ∞ , (2.31)

and the conclusion follows by (2.29) and (2.31). !

The stage is now set to give a statistical limit law (Theorem 2.6.18 below) that
is, a Central-Limit-like theorem for significant digits mentioned above. Roughly
speaking, this law says that if probability distributions are selected at random, and
random samples are then taken from each of these distributions in such a way that
the overall process is scale or base neutral, then the significant digit frequencies of
the combined sample will converge to the logarithmic distribution. This theorem
may help explain and predict the appearance of BL in significant digits in mixtures
of tabulated data such as the combined data from Benford’s individual data sets,
and also his individual data set of numbers gleaned from newspapers.

Definition 2.6.16. An r.p.m. P has scale-unbiased (decimal) significant digits if,
for every significand event A, i.e., for every A ∈ S, the expected value of P (A) is
the same as the expected value P (αA) for every α > 0, that is, if

E
(
P (αA)

)
= E

(
P (A)

)
for all α > 0, A ∈ S .

Equivalently, the Borel probability measure EP has scale-invariant significant dig-
its.
Similarly, P has base-unbiased significant (decimal) digits if, for every A ∈ S

the expected value of P (A) is the same as the expected value of P (A1/n) for every
n ∈ N, that is, if

E
(
P (A1/n)

)
= E

(
P (A)

)
for all n ∈ N, A ∈ S ,

i.e., if EP has base-invariant significant digits.

An immediate consequence of Theorems 2.4.18 and 2.4.24 is

Proposition 2.6.17. Let P be an r.p.m. with EP ({0}) = 0. Then the following
statements are equivalent:

1. P has scale-unbiased significant digits.
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2. P ({±10k : k ∈ Z}) = 0, or equivalently S∗P ({1}) = 0, holds with proba-
bility one, and P has base-unbiased significant digits.

3. EP (A) = B(A) for all A ∈ S, i.e., EP is Benford.

As will be seen in the next theorem, scale- or base-unbiasedness of an r.p.m.
implies that a sequence of P -random samples are Benford a.s. A crucial point
in the definition of an r.p.m. P with scale- or base-unbiased significant digits is
that it does not require individual realizations of P to have scale- or base-invariant
significant digits. In fact, it is often the case (see Benford’s original data in [Ben]
and Example 2.6.20 below) that a.s. none of the random probabilities has either
of these properties, and it is only on average that the sampling process does not
favor one scale or base over another. Recall from the notation introduced above
that S∗P ({1}) = 0 is the event {ω ∈ Ω : P (ω)(S = 1) = 0}.

Theorem 2.6.18 ([Hi4]). Let P be an r.p.m. Assume that P either has scale-
unbiased significant digits, or else has base-unbiased significant digits andS∗P ({1})
= 0 with probability one. Then, for every m ∈ N, every sequence (Xn) of P -
randomm-samples is Benford with probability one, that is, for all t ∈ [1, 10),

#{1 ≤ n ≤ N : S(Xn) < t}
N

a.s.→ log t as N → ∞ .

Proof. Assume first thatP has scale-unbiased significant digits, i.e., the probability
measure EP has scale-invariant significant digits. According to Theorem 2.4.18,
EP is Benford. Consequently, Lemma 2.6.15 implies that for every sequence (Xn)
of P -randomm-samples and every t ∈ [1, 10),

#{1 ≤ n ≤ N : S(Xn) < t}
N

=
#

{
1 ≤ n ≤ N : Xn ∈

⋃
k∈Z

10k
(
(−t,−1] ∪ [1, t)

)}

N

a.s.→ EP

(
⋃

k∈Z

10k
(
(−t,−1] ∪ [1, t)

)
)

= log t

as N → ∞. Assume in turn that S∗P ({1}) = 0 with probability one, and that P
has base-unbiased significant digits. Then

S∗EP ({1}) = EP
(
S−1({1})

)
=

∫

Ω
S∗P (ω)({1}) dP(ω) = 0 .

Hence q = 0 holds in (2.14) with P replaced by EP , proving that EP is Benford,
and the remaining argument is the same as before. !

Corollary 2.6.19. If an r.p.m. P has scale-unbiased significant digits, then for
every m ∈ N, every sequence (Xn) of P -random m-samples, and every d ∈
{1, 2, . . . , 9},

#{1 ≤ n ≤ N : D1(Xn) = d}
N

a.s.→ log(1 + d−1) as N → ∞ .
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Justification of the hypothesis of scale- or base-unbiasedness of significant digits
in practice is akin to justification of the hypothesis of independence (and identical
distribution) when applying the Strong Law of Large Numbers or the Central Limit
Theorem to real-life processes: Neither hypothesis can be formally proved, yet in
many real-life sampling procedures, they appear to be reasonable assumptions.
Many of the standard constructions of r.p.m. automatically have scale- and base-

unbiased significant digits, and thus satisfy BL in the sense of Theorem 2.6.18.

Example 2.6.20. Recall the classical Dubins–Freedman construction of an r.p.m.
P described in Example 2.6.10. It follows from [DuFr, Lem.9.28] that EP is Ben-
ford. Hence P has scale- and base-unbiased significant digits. Note, however, that
with probability one P will not have scale- or base-invariant significant digits. It is
only on average that these properties hold but, as demonstrated by Theorem 2.6.18,
this is enough to guarantee that random sampling from P will generate Benford
sequences a.s.

2.6.3 RandomMaps

The purpose of this brief concluding section is to illustrate one basic theorem that
combines the deterministic aspects of BL studied in Section 2.5 with the stochas-
tic considerations of the present section. Specifically, it is shown how applying
randomly selected maps successively may generate Benford sequences with prob-
ability one. Random maps constitute a wide and intensely studied field, and for
stronger results than the one discussed here the interested reader is referred e.g. to
[Ber3].
For a simple example, first consider the map T : R → R with T (x) =

√
|x|.

Since T n(x) = |x|2−n → 1 as n → ∞ whenever x $= 0, the orbit OT (x0) is not
Benford for any x0. More generally, consider the randomized map

T (x) =

{ √
|x| with probability p ,
x3 with probability 1− p ,

(2.32)

and assume that, at each step, the iteration of T is independent of the entire past
process. If p = 1, this is simply the map studied before, and hence for every
x0 ∈ R, the orbitOT (x0) is not Benford. On the other hand, if p = 0 then Theorem
2.5.8 implies that, for almost every x0 ∈ R, OT (x0) is Benford. It is plausible to
expect that the latter situation persists for small p > 0. As the following theorem
shows, this is indeed that case even when the non-Benford map

√
|x| occurs more

than half of the time: If

p <
log 3

log 2 + log 3
= 0.6131 . . . , (2.33)

then, for a.e. x0 ∈ R, the (random) orbit OT (x0) is Benford with probability one.
To concisely formulate the result from which this follows, recall that for any (deter-
ministic or random) sequence (Tn) of maps mapping R or parts thereof into itself,
the orbitOT (x0) of x0 ∈ R simply denotes the sequence

(
Tn−1◦· · ·◦T1(x0)

)
n∈N

.
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Theorem 2.6.21 ([Ber3]). Let (βn) be an i.i.d. sequence of positive random vari-
ables, and assume that log β1 has finite variance, i.e., E(log β1)2 < +∞. For
the sequence (Tn) of random maps given by Tn : x 2→ xβn and a.e. x0 ∈ R,
the orbit OT (x0) is Benford with probability one or zero, depending on whether
E log β1 > 0 or E log β1 ≤ 0.

Proof. See [Ber3]. !

Statements in the spirit of Theorem 2.6.21 are true also for more general random
maps, not just monomials [Ber3].


