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A generalized shadowing lemma is used to study the generation of Benford sequences
under non-autonomous iteration of power-like maps T : ¢ — a]xﬁf (1 - f (x)), with
ay,f; > 0and f; € ct, f;(0) = 0, near the fixed point at z = 0. Under mild regularity
conditions almost all orbits close to the fixed point asymptotically exhibit Benford’s log-
arithmic mantissa distribution with respect to all bases, provided that the family (77)
is contracting on average, i.e. limy, o, n~! > y=1logB; > 0. The technique presented
here also applies if the maps are chosen at random, in which case the contraction condi-
tion reads Elog 3 > 0. These results complement, unify and widely extend previous work.
Also, they supplement recent empirical observations in experiments with and simulations
of deterministic as well as stochastic dynamical systems.
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1. Introduction

Benford’s law (BL) is the probability distribution for the mantissa with respect to
the base b € N\ {1} given by

P(mantissa, < t) =log,t, Vte€[l,b[; (1.1)
the most well-known special case is that with respect to base b = 10
P(first significant digit = d) = logyo (1 +d~%), Vvd=1,...,9.

Examples of empirical data sets following (1.1) have been discussed extensively,
for instance in real-life data (e.g., physical constants, stock market indices, tax re-
turns [11,15,17,19,21]), in stochastic processes (e.g., sums and products of random
variables [10,19]), and in deterministic sequences (e.g., (n!) and Fibonacci numbers
[2,6,9]). It was only recently that a thorough mathematical analysis of BL for dy-
namical systems has been initiated [4,5,10,20,22]. Following physical experiments
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and numerical simulations, it has been shown that the asymptotic mantissa distrib-
ution of orbits of (autonomous and non-autonomous, one- and higher-dimensional)
dynamical systems equals Benford’s distribution (1.1) surprisingly often.

Dynamical systems, both deterministic and stochastic, are widely used as models
for real-world phenomena. If the latter exhibit, on an empirical level, a striking
statistical property like (1.1) — as often they do — then it is natural to ask for a
rigorous manifestation of this property in the underlying mathematical model. For
example, affine processes

Zj41 = @415 + bt (1.2)
are a standard tool in econometrics and financial mathematics (and in many other
disciplines), and there is abundant evidence of BL in econometric and financial data
[12,15,17]. A rigorous mathematical analysis of (1.2) under the perspective of BL was
carried out in [4,5,10]. These results show that under mild, reasonable assumptions
the logarithmic mantissa distribution is in fact inherent to the mathematical model.
Moreover, as emphasized in [10], the coefficients in the recursion (1.2) do not have
to be stochastic at all for (1.1) to emerge. Rather, BL turns out to be a phenomenon
ubiquitous both in deterministic and stochastic systems.

The astonishing ubiquity of BL. will become apparent also through the present
article. As mentioned earlier, a fairly comprehensive analysis with respect to BL of
linearly dominated dynamics has been given recently, showing that the emergence of
(1.1) is indeed typical in this case regardless of the initial data. For dynamics brought
about by truly non-linear maps, however, the situation may be more complicated,
as detailed in [4,5] for rather special classes of systems. It is natural to ask for a
similar analysis for more general, non-uniform systems. For example, maps of the
type

Ty(2) = e (1 - 2)", (13

have been studied extensively as models describing aspects of economic growth and
socio-spatial dynamics [8,16]. The main purpose of the present work is to provide a
rigorous analysis of systems like (1.3) with respect to BL. More generally, Benford
properties of orbits under iteration of maps 7; : Rt — R* will be studied which

are power-like near 0, i.e., T; can be written locally near 0 as
Tj(e) = ;2 (1= fi(2)), 2>0,
with o, 3; > 0 and f; € C' with f;(0) = 0. As for (1.3), the results in [5] do for

instance not allow to conclude that for
Ti(z) =2+ (=1)2*+2°, jeN, (1.4)
the non-autonomous orbit (z,)nen, generated by
zjy1 = Tip1(zj), Jj€No,

is a Benford sequence (i.e., the asymptotic mantissa distribution of this sequence

is given by (1.1) for every base b) for Lebesgue almost all zy sufficiently close to
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either the origin or infinity. (A set of numerical data obeys (1.1) if and only if the
set of reciprocals follows (1.1) as well; thus, with respect to BL, 0 and infinity are
equivalent and will be considered interchangeably.) Notice that both T5; and ;41
are in a sense close to @ : @ + x? + 2% near 0 and infinity. For the map @ the result
is known [5], and one may expect that an improved shadowing technique will work
also for (1.4); see Theorem 3.2 below.

By its very nature, [5, Thm.5.5] can only deal with maps which are sufficiently
contracting near 0 (or expanding near infinity). If for instance

V(1 +2?) ifjeld, 3
(ZE) = 3 3 L (10)
(14 2°) ifjgJ,
with some set J C N, then clearly 7} is expanding rather than contracting near the
fixed point at 0 whenever j € J, and there is no way of applying the aforementioned

result, even though T} has good Benford properties for j ¢ J. However, assuming
that .J has a density, that is,

#(JN{1,... N}
N

exists, it is plausible that contraction near 0 (and thus also the generation of Benford

p(J) = limy_yo0 (1.6)

sequences) will prevail on average, provided that (1/2)p(J)31_p(J) > 1 or, equiva-
lently,

pUﬂ%%+U—Mﬂﬁ%3>m (1.7)

which clearly imposes an upper bound on p(J). It turns out that condition (1.7),
together with a mild assumption on the rate of convergence in (1.6), does indeed
guarantee the generation of Benford sequences through (1.5) from almost all initial
points near 0; see Corollary 3.2 below.

The key tool developed in the next section is a shadowing lemma which signifi-
cantly improves the corresponding result in [5]. Combining this tool and standard
techniques from the theory of uniform distribution modulo 1 enables a straight-
forward analysis not only of systems like (1.4) and (1.5) but also of randomized
versions thereof. For example, if

Ty (@) =a¥e™, o>0;j€N,

where (£;) is an i.i.d. sequence of positive random variables such that log {; has finite
variance, then for almost all z close to 0, the stochastic orbit (7, o...0 T, (w))neN
is a Benford sequence with probability one, provided that

ElogEj > 0,

which is the natural analogue of (1.7) in the stochastic setting (see Theorem 3.3).
As will become clear shortly, it is the versatility of the shadowing technique which

allows to treat all these apparently different problems in a unifying manner.
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2. Preliminaries and basic shadowing result

The sets of natural, integer and real numbers are denoted by N, Z, and R, respec-
tively; N symbolizes the non-negative integers, and R* stands for the positive reals.
For every real , the number || denotes the largest integer not larger than . The
symbol X is used for Lebesgue measure on R (or subsets thereof).

Only the most basic definitions concerning BL in dynamical systems are restated
here for the reader’s convenience; for details on notation and terminology see [5].
Throughout, b denotes a natural number larger than one (referred to as a base).
Every positive real = can be written uniquely as z = M (z)b* with My(z) € [1,8]
and the appropriate integer k. The function My, : Rt — [1,b[ is called the (base b)
mantissa function; for convenience set My(0) = 0 for all b. The integer | My(z)] €
{1,...,b— 1} is referred to as the first significant b-digit of z. For a given base b,
log, stands for the logarithm with respect to b; if used without a subscript, the log
symbol denotes the natural logarithm. Furthermore, for n € N, 1og(n) z is meant to
signify the n-fold iterated (natural) logarithm of z > 0, i.e.

log(l):c =logz, log(n+1)m = log(log(n)x) ,
whenever this quantity is defined.

Definition 2.1. A sequence (z,),en, of real numbers is a b-Benford sequence if

#{i <n: My(Jay]) <t}

hmﬂ—>oo = logbt ) Vi € [17 b[a

it is a (strict) Benford sequence if it is a b-Benford sequence for every b € N\{1}.

Tt is well known [5,9] that the sequence (z,) is b-Benford if and only if (log, |2,|)
is uniformly distributed mod 1 (henceforth abbreviated as u.d. mod 1). A few tools
from uniform distribution theory will be used in the sequel; for an authoritative
reference to this field the reader is referred to [14].

The present article studies the Benford property of sequences generated recur-
sively by

zjpr = Tipi(x;), j€No, (2.1)

where the maps (7}) are assumed to be power-like near 0, i.e., for some d > 0,
Tj(z) = ayz?i (1 - fi(2)), Ve:0<z<34, (2.2)
with a;,8; > 0, and f; € C1[0,4] with f;(0) = 0 for all j € N. Relation (2.1)

may be interpreted as a non-autonomous dynamical system. For n € N, T™ denotes
the composition 7% = T, 0 Tp_1 0...0Ty o Ty, and T = id. The symbol Or(x),
called the orbit of  under (7}), will denote the sequence generated by (2.1) subject
to the initial condition 2y = x; with the above notation, Or(z) = (T”(m))neNo.
Note that this interpretation of the orbit as a sequence differs from the standard
terminology in dynamical systems theory (e.g., [13]) where the orbit of  is the mere
set {z, :n € Ng}.
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On a logarithmic scale, i.e. by setting 2; = 793, recursion (2.1) for the power-
like maps (2.2) becomes

Yit1 = —logy Tjt1(b™%) = —log, a1 + Bir1y; — logy (1 = fj41(b7%)) .

Thus y;41 = Sj41(y;) with (S;) denoting a family of perturbed affine maps of the
form

Si(y) = +Bjy+gi(y), JEN, (2.3)

where v; and 3; # 0 are real coefficients, and g; is a continuous function which
satisfies

lg;i(I <T(yl), VYyl|>¢&;5 €N,

with a non-increasing function I'. To study shadowing properties of the maps (23)
let B, = H; 1 B; and Bg = 1. Also, for each j € N define the affine map Sj :

Vi + [))JJ which may be thought of as a simplified version of S The inverse of S
is S ( ) = (y — v;)/P;; consequently, S o= (S”) 51 0...0 S L. Up to

relndexmg, the key shadowing result in [5] is a special case of

Theorem 2.1. Suppose the maps S; : R — R are continuous, and

15 (y) = (i + Biw) < T(lyl), VIy > &5 €N,

where (v;), (B;), € are real numbers with 3; #0, £ >0, and T' : [0, +oo[ 5> RT is a
non-increasing function. Let S;(y) = v; + B;y. Then, with an appropriate n > &:

(i) If the series Z;’;O |Bj+1|7'T'(¢|B;|) and Z;i1 |Bj|~t|v;| both converge for some
t >0, then h(y) = lim, 500 S5m0 S™(y) exists for all |y| > n. Moreover, h is a

continuous function, and sup|,|», [h(y) — y| < co.

(i) If, in addition,
i s 1Bl 327 1Byl TR ) < o0, (24)

then for each y with |y| > n there exists precisely one point § such that the
sequence (|S”(y) — S"(y)|)neND is bounded. In fact, y = h(y) with the function
h from ().

Proof. From (2.3) it follows that for all n € Ny,
STMoSMy) =y + Z B (S (y) — v — B+ 5 (v) - (2.5)

The assumption Z;Zo |Bj+1]7'T(|B;|) < oo implies that |B,,| = oo as n — oo.
Choose n; > t sufficiently large to ensure that

> 1B T By ) <y
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and also |Bn|m > € for all n € Ng. Setting n = 22]0.11 |Bj|7ty;] + 4n1, it is easily
checked that for all n € Ny,

S" (y)
Bn

S ()] > LBallyl+ m|Ba]  and \ —y‘<%77,

provided that |y| > 5. Thus

9(w) =+ B (ST W) — e = Bin S (v) (26)
defines a continuous function for |y| > n, for which (2.5) and (2.6) yield
57 087w ~a)] < X0 1Bisal TS W) < 27 1Byl POmIBi D(27)
for all n € Ny. The right-hand side of (2.7) tends to 0 as n — co. Therefore

g(y) = lim, 00 §_n oS" (y) = h(y) ) (2'8)

which concludes the proof of (i), because
(o]
lg(y) —yl < ijo |Bj1 | D(m|Bil) < mi, VIyl>n.

Assertion (ii) follows immediately from (2.4) and the identity

§"09(0) = S") = B 30 - B (S () — 41 = AiaST()
Since |Bp| — o0 as n — oo, the point ¥ = g(y) = h(y) is the only point with the
desired property. O

In the setting of Theorem 2.1 (ii), for each |y| > 5 there exists precisely one point,
namely h(y), whose non-autonomous orbit Oz (h(y)) resembles (“shadows”) Og(y).
This explains why this result is referred to as a (non-autonomous) shadowing lemma,
a terminology particularly appropriate if the lim sup in (2.4) actually vanishes. (See
for instance [13,18] for a detailed account on shadowing in dynamical systems.)
Clearly, one expects Og(y) to be more easily analyzed than Os(y).

3. Benford’s law: Results and examples

As indicated earlier, Theorem 2.1 is a key tool for revealing the Benford properties
of orbits under the non-autonomous power-like maps

Ty 2w a2 (1— fi(2)), jEN, (3.1)
near the fixed point at the origin. Without substantial loss of generality assume

a;, B; > 0. Also, recall the abbreviation B, = H;L:1 B

Theorem 3.1. Let (T};) be given by (3.1) with C' functions (f;) which satisfy
fi(0) =0 and |f}(z)| < C forall0 <z < ¢ and j € N with constants C' > 0, > 0.

Assume that

ijlBj‘l |logaj| < oo, (3.2)
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and also that for some k > 0,
. o0 -1 B; _
limy, 00 Bn E i B k77 =0. (3.3)

Then Or(z) is a b-Benford sequence for almost all x > 0 sufficiently close to 0 if
and only if the same is true for Oz(z) where Tj : x v a;zPfi.

Proof. Fix a base b € N\{1} and consider the maps

Sjo(y) = —log, T;(b7Y) = —log, aj + Bjy + g5,6(v) ,

with the functions g; 5 given by

gi(y) = —log, (1= f;(b7Y)) .
By the assumptions on (f;), there exist constants 71 > 0, D > 0 independent of b
and j such that the function g; 4 is C* on [n1/logb, +oo[, and

l95,6(¥)| < Db™Y/logh =: T's(y) .
From (3.3) it follows that

limy - 00 Bn Z B Tw(tB;) =0,

whenever ¢ > max(—log, &,0). By Theorem 2.1 there exists a continuous map hs
with supys,. /10g6 |h6(y) — y| < oo for some 9y > 71 not depending on b, and also

limy o0 [SE (Re(y)) — Sp(y)| =0, Yy >n2/logh; (3.4)

here §g‘ = ~n7b 0...0 §17b with §j7b(y) = —log, a; + By depends on b, as is
indicated by a subscript. Thus, for y > 73/logb the sequence Og,(y) is u.d. mod
1 if and only if Og, (hb(y)) is u.d. mod 1. Furthermore, using the chain rule and
termwise differentiation of the formula

y)=y+ ijo B i+ 05 (y),

it can be checked that for y > 13/ logb, with some n3 > 12 which does not depend on
b, the function hy is C* with positive derivative and thus maps sets of measure 7ero
onto sets of measure zero; also, 73 can be chosen such that |hy(y) —y|+|h; ' (y) —y| <
n3/ logb for all y > n3/logb. Since Sb( ) = —log, T”(b Y), the orbit Or(z) is b-
Benford for almost all 2 < =273 if and only if the same is true for Oz(z). O

Corollary 3.1. Under the hypotheses of Theorem 3.1 the non-autonomous orbit
Or(x) is a (strict) Benford sequence for almost all x close to 0 if and only if the
same is true for Oz (z).

Proof. For each b there exist sets N, ﬁb of measure zero such that Or(z) and
Oz () are b-Benford whenever z € [0,6]\ Ny and T € [0, 5]\]%,, respectively; accord-
ing to the proof of Theorem 3.1, § = e~2"7* does not depend on b. Since | J, N, and
U, Ny both have measure zero, the proof is complete. O
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Remark 3.1. (i) The results in [5], when applied to power-like maps, are much
weaker than Theorem 3.1. This can be seen for example from
- 1 ifj=1,
=l fi= {1+j—1(logj)—t ifj>2,
with ¢ € R, for which the hypotheses of [5,Thm.5.5] are not satisfied at all since
lim;_, o, B; = 1. However, Theorem 3.1 applies for t < 1. If £ < 1 then Op(z) is
a Benford sequence for almost all z (or even all z if 0 < ¢ < 1) close to 0. For
t = 1, no orbit is b-Benford for any b. Finally, (3.3) fails if ¢ > 1. This corresponds
nicely to the fact that, at least in the case f; = 0, there are no b-Benford sequences
whatsoever, because for each 2 > 0 the iterates 7" (z) tend to a non-zero limit. Note
also that, even if it were applicable, [5, Thm.5.5] would impose additional, restrictive
conditions on the functions (f;).

(i1) Theorem 3.1 and Corollary 3.1 assert that under certain conditions, the
Benford properties of orbits under (3.1) are determined by the respective dominant
terms i tT e aj:E'Bi. As the progf shows, deciding whether Oy (z) is typically b-
Benford reduces to verifying that (Sg (y)) is u.d. mod 1 for almost all y. The example
in (i) suggests that Theorem 3.1 is close to optimal: if (B,y) is increasing and u.d.
mod 1 for some y > 0 then (B,,/logn) is unbounded [5]; on the other hand, (3.3) is
satisfied whenever (B, /logn) is eventually bounded below by a positive number.
From a practical point of view, Theorem 3.1 will thus usually detect the generation
of Benford sequences under (7)) whenever typical orbits under (TJ) are Benford.

(iii) Tt is hardly surprising that some condition in the spirit of (3.2) has to be
imposed on the sequence (a;) lest it dominates the non-autonomous dynamics. For

a very simple example of the latter situation, consider the family of polynomials
Tj(z)=2""2+1, jeN,

which are power-like near infinity. Each map 7} has infinity as an attracting fixed
point, yet it is easily checked that lim,_o 77 (z) = 1 for every z € R, so that
Or(z) never is a Benford sequence; this is in accordance with (3.2) as the series
Z;‘;l Bj_l [log aj| = Z]oil log 2 diverges. (Notice, however, that (77 (z) — 1) may
be b-Benford for all z; this can be seen to be the case if and only if logy, 2 is 2-normal
[14].

(iv) In the autonomous case, i.e. for T; not depending on j, condition (3.3)
requires §; = # > 1, and rescaling & by a factor aP=17" allows to make aj=a>0
disappear from (3.1) without affecting the Benford properties of Oy (z). There is
thus no restriction at all on «, which is clearly reflected by the fact that condition

(3.2) is void in the autonomous case.

Despite its technical appearance, Theorem 3.1 has a number of interesting ap-
plications when combined with standard results from uniform distribution theory.
A few of these applications will be discussed below by means of examples. It should
be emphasized, however, that notwithstanding its versatility Theorem 3.1 does rely

heavily on the particular structure (3.1) of the maps under consideration. An even
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more comprehensive statement on BL in dynamical systems, including for instance
random fluctuations or more general maps, may require refined or even completely
different methods (see, however, Examples 4 and 5 below).

Ezample 1: Iterating polynomials
Consider a family (P;) of real polynomials of degree at least two,
Pj(#) = ajm;a™ + ajm;-12™ 7 4t ajie i, JEN, (3.5)

with m; € N\{1} and a;x € R, a;,,; # 0. Since (z,) is a Benford sequence if and
only if (z;1) is a Benford sequence, one can study the non-autonomous dynamics
under (3.5) near infinity by instead analyzing

_1ny -1 1
Ti(x) = (Pi(x™)) " = aj 2™ (1= f(2)) (3-6)
near the fixed point at 0; here

fi(z) =

m.
a5 m;—1% +... 4+ ajox "’

. . . m; "
ajm; + Qjm;—1Z + ...+ ajo02™

Obviously, f;(0) = 0 for all j; if |a; ,,,|~" + max, 2 |aj x| < C holds uniformly in
j then also |fi(z)| < 4(C' + 1)* for all j € N whenever |z[ < (C' + 2)~*. With
B, = mi ... my,, the remaining conditions in Theorem 3.1 are also met. The
natural numbers B,, are distinct, and therefore

(57) () = (55) (0)] = |Buy = Bua| > 1, VyeR,

provided that n; # ns. By Koksma’s Theorem [14,Thm.4.3] the sequence (§{} (y))
is u.d. mod 1 for almost all y. Theorem 3.1 thus leads to the following

Theorem 3.2. Let the maps P; be real polynomials,
Pj(z) = ajm;z™ + aj}mj_lmmf_l +...4+aj1z+a50,
with mj € N\{1} and a;x €R, ajm; # 0 forall j; 0 <k < my. If
SuijN(laJ’,mJ‘rl + makaéo |aj,k|) <00, (3.7)

then Op(x) is a Benford sequence for almost all x € R\[—K, K| with K sufficiently
large. However, R\[—K, K] also contains an uncountable dense set of exceptional
points, i.e. points whose orbits are not Benford sequences.

Proof. Only the assertion concerning the exceptional points remains to be proved.
Without loss of generality assume a;,,,, > 0 for all j. The family (7}) associated

with (3.6) is 7~} s @~ a;l 2™ and therefore §j7b(y) = logy, ajm; + myy as in

Jims ,
the proof of Theorem 3.1. Since B; > 27 for all j, condition (3.7) implies that
Z;‘;l BJ-_1 logy, a; m,; converges. If m; = 2 for all but finitely many j, let (k;) be any
sequence in {0, 1} which does not contain two consecutive digits 1, i.e. k;k; 41 = 0 for

all j € N. Otherwise let (kj) be any sequence of integers such that 0 < k; < Lmj/3J
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for all j € N. In both cases, there are uncountably many different points 7 defined
through

7= ijl B! (kj — log, aj,m,) -

By construction, (Bn Z;‘;l Bj_lkj) is not u.d. mod 1 because By, Z;‘;l Bj_lkj €
[0, %[—{—No for all n. Next, choose b sufficiently large to ensure that

S (y) — Bn Z;;Bj_lkj‘ <B. Y

j=n+1

-1
Bj |logb aj,mj|

is less than $. Then (§g (y)) is not u.d. mod 1 either, and O7(b~¥) is not b-Benford.

The foregoing argument remains unchanged if finitely many k; are replaced
by arbitrary integers. This allows making 3 sufficiently large for the shadowing
argument in Theorem 3.1 to apply; it also shows that exceptional points are actually
dense near 0. In terms of the original family (P;), this means that exceptional points
form an uncountable dense set in R\[— K, K] for some K sufficiently large. O

Note that, in particular, Theorem 3.2 applies if (P;) is a family of finitely many
different polynomials, which is only rudimentally covered by the results in [5]. It
can be formulated analogously for rational maps with degree (i.e. difference of the
degrees of the numerator and denominator polynomial, respectively) at least two.
Also, (P;) may contain some affine maps, i.e. polynomials with degree m; = 1, as

long as this does not happen too often; details are left to the interested reader.

Ezxample 2: The robustness of BL

The assertion of Theorem 3.2 is intuitively plausible since each individual map P;
is expanding near the attracting fixed point at infinity, and Op(z) is a Benford
sequence for almost all large z. But even if 7} is predominantly chosen to be a map
not generating any Benford sequence, O7(z) may still be strict Benford for almost
all 2, which can be seen as follows.

Fix the parameter A > 1, and set j, = [2n*]; the sequence (j,) is strictly

increasing. Let
Jyi={jn:neN}CN.

For each N there exists a unique index ny such that j,, < N and j, 41 > N;
the estimate ny = O(er) as N — oo is immediate. Clearly, J has density zero,
that is

#(AHN{L... N}
N

Let the maps T; be chosen according to

z’ if j € Jx,
z(14e) ifj g Jy.

) ny
= th—}oo e

=0.

p(Jy) = limy 500

Ty(e) =
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Although not important in the sequel, it is readily confirmed that for some 25 with
0 < z, < 1, the iterates 7™ () converge to 0 or infinity, depending on whether
|| < ax or |¢| > ax, respectively. It was proved in [5] that for & +— 2 (1 + e‘xz),
no orbit is a b-Benford sequence for any b. With a; = 1, and 3; equal to 2 or 1 for
Jj € Jx or j & Jy, respectively, the assumptions of Theorem 3.1 are satisfied, since
for all sufficiently large n

et <logy B, = #(J/xnN{l,...,n}) < con®”

with constants ¢ > ¢1 > 0. To see that (B,y) is u.d. mod 1 for almost all y, for
every N € N let

eN:#{(m,n_)Eszlgm,nSN,Bm:Bn},

i.e., ey is the number of ordered pairs (m,n) in {1,..., N}? with B,, = B,. Con-
sequently,

. nN_l . . .
en = (N —jux+ 1) + 21:1 (it = 30)* + (G = 1)%,
and, by virtue of a rough estimate,
eN:(’)(Nz_A_l) as N — oo.

Therefore "5 N3y converges, and (B,y) is u.d. mod 1 for almost all y by
[14,Exp.4.1]. Even though the individual maps 7; generate Benford sequences only
if j € J,, an event which has vanishing asymptotic relative frequency, Op(z) is
nevertheless Benford for almost all 2 € R. This is yet another manifestation of the
striking robustness of BL.

Ezample 3: Contraction on average ensures BL

In view of the previous example it is tempting to predominantly choose maps like
Tj(x) = v/ whose dynamics is even farther from the generation of Benford se-
quences in that the fixed points at 0 and infinity are not even attracting any more.
If this non-Benford behavior is compensated for on average, typical orbits may well
be Benford sequences.

Assume that the family (7}), as given by (3.1), only consists of a finite number
of different maps, hence

aj; =y, , ﬁj:ﬂ]l, Yi=1,...,d;j € J;,

with the sets J; forming a finite partition of N, i.e. /1 U...UJg=Nand J; NJg = 0§
whenever i # k. Suppose that the densities p(J;) exist for all 7 and that the relative
frequencies

ri(n) = #(/i04L, . ,n}) ,oi=1,....,d,

n
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converge to their respective limit p(J;) at a reasonable speed; more formally, in
terms of the error §(n) := Z?:1 |ri(n) — p(J;)| assume that

[ee]

anl n_lff(n) < 00. (3.8)

If the (finitely many) functions f; are C1, then Theorem 3.1 can be applied, once
(3.2) and (3.3) are satisfied, which in turn is the case if

(log ) = 3" _ () log s, > 0. (39

Thus, if (3.9) holds, then Or(z) is a b-Benford sequence for almost all z close to 0 if
and only if (Sg (y)) isu.d. mod 1 for almost all large y. From S; ,(y) = —log, a;+06;y
one readily obtains the explicit formula

S (y) = Baly - Z:zl By 'log, ),

where
log Bn = n Z n)log By, . (3.10)
For every integer h, define the quantity Ih = Ih(N) by
_ Ar-2 2mih (S (v) =57 (v))
=N Zmn 1/ v W) dy . (3.11)

According to [14,Thm.4.2], the sequence (Sg(y)) is u.d. mod 1 for almost all
y € [k, k + 1] provided that > N='I,(N) converges for all b # 0. As will be
explained now, a reasonably good bound for |I;(N)| can be found if (3.8) holds;
the abbreviation v = (log ) > 0 will be used throughout.

By means of the quantity A(n) = Zle(ri(n) — p(]i)) log 5, formula (3.10)
may be rewritten as B, = ¢?(0+A()); clearly, |A(n)| < Cé(n) with an appropriate
constant C' > 0. Defining sets

Er:={(m,n) : 1<m<n<N,n>m+2Cy 'md(m) +~v"log2},
Ey:={(m,n) : 1<m<n<N,m<n—2Cy 'nd(n) —y 'log2}, (3.12)
it is easily checked that for every pair (m,n) € E1 N Es,
Bn — By > (€M)

Thus for (m,n) € F1 N Ey the estimate

k+1
/ 2Th(Br=Br)y gyl < 9e=1m (3.13)
k

follows. On the other hand, the cardinality of the set
Ey :={(mn) : 1<m<n< N}\(FLUEy)
obviously is bounded by

N
#Ey <ACy™'Y  md(m)+ 2Ny log2, (3.14)
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which follows from (3.12). For (m,n) € E' the trivial estimate

k41
/ 2mh(Ba=Bm)y gyl < 1 (3.15)
k

holds. Combining estimates (3.13) and (3.15), and taking into account the symmetry
of the integral, it follws from (3.11) that

N2|Iy(N |<807‘1Z m) + 4Ny~ 1log2+4z ™™

m,n=1
N
<dy Zm:l md(m) + da N (3.16)

with positive constants d, ds. Since Y, N73 Zm<N md(m) converges if and only
if Y2 m~'§(m) converges, estimate (3.16) implies that S%_, N~'|I;(N)| < oo for
every integer h. Therefore (Sb (y )) is u.d. mod 1 for almost all y, and Theorem 3.1
yields the following

Corollary 3.2. Let the family of maps (Tj), as given by (3.1), be finite such that
for the finite partition (J;)¢_, of N

O[j:OZJi>0, ﬁj:ﬁJi>0; VZ:la)daje‘]Zﬂ
and f; € C', f;(0) = 0. Assume that the densities p(J;) exist for all i and that

oo #(L0A{L,...,n})
-1 ) .
> ZZ X - —p(Ji)| < 0. (3.17)
If (T}) is contracting on average, i.c., if
d
Y., pli)logBr, >0, (3.18)

then Or(z) s a strict Benford sequence for almost all x sufficiently close to 0.

Remark 3.2. (i) Condition (3.18) is equivalent to lim,_ . n~'log B, > 0 and
may be interpreted as (7}) having a positive Lyapunov exponent on the logarithmic
scale [10,13].

(i) Tt is not difficult to find examples for which the conclusion of Corollary
3.2 is true even though (3.17) does not hold. Consider for instance the sequence
Jn = Cnlogy)n, where C'is chosen so large that j,i11 — j, > 2 for all n > 3.
For the set J := {jn, : n € N, n > 3} clearly p(J) = 0, while > n~'d(n) diverges.
Choosing

Ve ifjeJ,
Ti() =93 4 .
z* ifj g J,
condition (3.18) is satisfied. Moreover, O (z) is a strict Benford sequence for almost
all > 0 since n — B, is one-to-one (see [14,Thm.4.1]).

Thus while condition (3.17) is needed in the above proof to ensure
STNT'IH(N)| < oo, a condition known to be best possible in general [7], one
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may wonder whether (3.17) may not be disposed of in the present context, i.e.,
whether Corollary 3.2 remains valid without the assumption that >~ n='8(n) < oo;
no proof or counter-example is yet known to the author.

(iii) If (3.18) is not satisfied, then Orp(z) may fail to be a b-Benford sequence
for any # > 0 and any base b. For a trivial example consider

zt if 3 divides j,
Ty(0) = { T
x otherwise,

for which equality holds in (3.18), and every orbit is periodic since Tj190Tj410T; =
idg+ for all j.

(iv) The map T'(x) = y/z has been mentioned above as an example of Or(z)
not being a b-Benford sequence for any b and z > 0. However, the reader may
have noticed that, in a different sense, T' also shows some Benford behaviour as
(T”(m) — 1) is a b-Benford sequence for all z > 0, z # 1 unless log, b is an integer.
Even though T is power-like near its fixed point, this effect lies beyond the scope
of the present article because §; = 1 in local coordinates. A different shadowing
argument is required for this linearly dominated system, see [4,5].

Ezample 4: Choosing maps at random

The ideas underlying the last example allow for an obvious stochastic interpretation:
among the (finite) family (77,)¢_, of possible maps, the map

TJi(:E) = O‘Jimﬁji (1 - le(l‘))

is chosen at random, with probability p(.J;). In this probabilistic terminology, con-
dition (3.18) simply reads

Elog 8 > 0. (3.20)

Accordingly, in this section the parameters a, 8 in T(z) = a2’ (1 — f(z)) will be
real-valued random variables (not necessarily attaining only finitely many values).
When combined with mild technical assumptions, condition (3.20) does in fact
guarantee almost sure generation of Benford sequences for such stochastic power-
like dynamical systems. For the statement of the following result, recall that a
measurable map T is non-singular if T~!(N) has measure zero for every set N of
measure zero.

Theorem 3.3. Let the family of maps (T, g)a p>0 be given by

To () = amﬁ(l — fayﬁ(a:)) ,

and assume that for all a, 3, the map T, g is non-singular on [0, 1], and the non-

negative function fo g 1s C' with f, 5(0) = 0 and |fo5(x)] < C forall0 <2< 1
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with some constant C > 0. Let (a;), (8;) be i.i.d. sequences of positive random
variables which satisfy

SUD, e (Z:zl Bj_1 log aj) < D < oo with probability one, (3.21)

for some constant D > 0, as well as E|log a;| < oo and E|log [)’j|2 < oo. If T, p;
1s contracting on average, i.e., if

Flog 3 = Flog 8; > 0, (3.22)

then, for almost all x sufficiently close to 0, the stochastic orbit (Torn,ﬁn 0...0
Talvﬁl(z))neN is a Benford sequence with probability one.

Proof. Denote the underlying (abstract) probability space for (a;,8;)jen by
(Q, A, P). By the law of the iterated logarithm,

‘n—l Z;:l log 3;(w) — [Elog ﬁ‘ = o(n—%(1og(2)n)%) asm — 00, (3.23)

for all w € Q1 C Q where P(Qq) = 1. Conditions (3.2) and (3.3) in Theorem
3.1 are thus satisfied on some set Qs C Q1 with P(Q5) = 1. This in turn implies
the existence of a threshold ¢;(w) > 0 such that Op(z) is a b-Benford sequence
for almost all z € [0, & (w)] precisely if (gg (y)) is u.d. mod 1 for almost all large
y. Since B, (w) = "O0F20) with A(n;w) = n_lzyzllogﬁj(w) — Elog 8 and
~ = Elog # > 0, the same argument as in Example 3 shows that for all w € Q3 and
an appropriate &2 (w) < £1(w), the stochastic orbit (Tozn(w),ﬁn(w)o~ . ~0Ta1(w),ﬁ1(w)($))
is a strict Benford sequence for all z € [0, £3(w)] except for a set N(w) of Lebesgue
measure zero. (Note that (3.23) implies that > n_%_E|A(n; w)| converges for every
¢ > 0; thus A(n;w) a.s. decays much faster than required by condition (3.8).) From
the assumptions on («;), for w € Q3 C Qs with P(Q3) =1,

n 1 By (w
T (z) < (62j=1 Bj(w) 108%‘@)93) («)

< (er)B"(w) — 0 asn— oo,
whenever z < e~ . This latter bound is independent of w. Therefore, the orbit of
any z € [0,e~P] is not a Benford sequence only if z € (J;—, 7~ "(N(w)); by the
(uniform) non-singularity of T, g the latter set has measure zero. Consequently, for
every w € Q3 there exists a set N(w) of measure zero such that Or () is Benford for
all € [0,e"P]\N(w). Let G denote the set of all pairs (z,w) in [0,e~"] x Q such
that Or(z) is a Benford sequence. For every z € [0,e¢™P] define G, == {w € Q :
(z,w) € G}; analogously, for every w € Q define G¥ := {z € [0,e~P] : (z,w) € G}.
For every z and w, G and G¥ are measurable subsets of Q and [0, e~ ], respectively.
With these notations, A(G¥) = e~ for every w € Q3, and P(Q3) = 1. By Fubini’s

theorem

-D _ w w) = = x
‘ _/Q/\(G ) dP(w) /[O’S_D]m 1 d(A x ) /[U’e_D]IP(Gx) dA(z),
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and P(G) = 1 for all z € [0, e~P] except for a set of Lebesgue measure zero. Thus,
for almost every z € [0, e~P] the stochastic orbit Or(z) is a Benford sequence with
probability one. O

For a very simple example consider the maps

Ty(e) = o2 (1 - f(x),

where (§;) is an 1.1.d. sequence with P(§; = 1) = p = 1 — P(§; = —1). Condition
(3.22) is then equivalent to p > % In the latter case, and for f; = f denoting
any non-negative C'! function with f(0) = 0 and 7} non-singular, all requirements
of Theorem 3.3 are met. Therefore, for almost all « € [0, 1] the stochastic orbit
Or(z) is a Benford sequence with probability one. In the special case f = 0, the
sufficient condition (3.22) is easily seen to be necessary also. Indeed, if Elog 2% =

(2p — 1)log2 < 0, then for all z > 0

limp, 00 77 (2) =1 with probability one.

s

On the other hand, if p = 1 then T"(z) = 2 ", where S, = Z?:lfj is the simple
symmetric random walk on 7. Thus, for any k € 7
#l<j<n:S <k} _

n

limsup,,_, 1 with probability one (3.24)

which shows that for any = > 0, almost surely 7" (z) is close to 1 sufficiently
often in order to prevent Or(z) from being a b-Benford sequence for any b. (A nice
justification of (3.24) in terms of dynamical systems can be derived from [1].)

Remark 3.3. (i) The conditions on (a;) in Theorem 3.3 are automatically satisfied
if E|log a| < oo and if a.s. either 0 < @ < 1, orif « < A and 8 > B > 1 with some
constants A, B.

(ii) The assumptions in Theorem 3.3, in particular the non-negativity of f, g,
condition (3.21), and the uniform non-singularity requirement on 7, g, seem ar-
tificial on first sight. However, in general it may not be possible to weaken these
assumptions in a straightforward manner, as the following simple examples show.

Fix ¢ with 0 < ¢ < 1 and define two monotone power-like maps 75 (= T5+1) and
Ti/2 (= Ty-1) on RF according to

+1
Ty (z) = 2*" (1= fe (),
where fi are C'*™ functions with

+1

fe(z)=0ife<1—2e, fe(z)=1-1e2™? em(1=0)77 ifz>1-1e,

such that Ty+1 is monotone and non-singular, and f1(z) < 0 for 1— ga <zr<l-— %5
as well as fi(z) > —e for all z. (Here and throughout, equations containing +
or F are to be read as two individual equations containing only upper or lower
signs, respectively.) As in the example above, let (3;) be an i.i.d. sequence with
PB;=2)=1-PpB;=1/2)=p. Ifp > %, then all assumptions of Theorem 3.3



February 11, 2005 17:28 benford power

Benford’s Law in power-like dynamical systems 17

are satisfied by (7j,) except for the seemingly harmless fact that fi(R) C [—¢,1]
rather than fi (R) C [0, 1]. Nevertheless, it is easy to see that for any 0 < 2 < 1,

P(Or(z) is not a Benford sequence ) > ]P’(limn_mo T () = 1) > ey (p) > 0;

here k(z) = |log, |logy(1— )| —log, [log, z||, and T, (p) = min((p/q)¥, 1) denotes
the probability that a simple random walk on 7 starting at the origin and moving
with probabilities p and ¢ = 1 — p one step to the right and left, respectively, ever
hits k € 7. Consequently, points escape with positive probability from any interval
[0,0], and an almost sure statement in the spirit of Theorem 3.3 cannot possibly be
made.
By virtually the same construction, it is possible to define two monotone, non-
singular power-like maps 7,41 = e° 22! (l —gi(r)) where g+ are C'™ non-negative
+1
and equal 1 — e 2727 (1 —

—9 .
ge— (1) ) on [e” 3%, +oo[. Contrary to the functions fi from above, however,

monotone functions which vanish on ] — co, e™3¢]

g+ (R) C [0, 1]. Now the only requirement in Theorem 3.3 not satisfied with a; = e®
and (f;) as above is that Z;‘;l Bj_1 loga; =¢ Z;‘;l Bj_1 be bounded by a constant
with probability one. (Although it is not bounded by a constant, the non-negative
random quantity ¢ := Z;i1 1'3;1 is finite almost surely, and E(™ < oo if and only
if p=P(B; =2) > (1+27™)1.) As before P(lim,, o, T"(2) = 1) > 0 for all 2 > 0,
and no almost sure statement can be made for even the tiniest neighborhood of the
origin.

Finally, to understand the importance of the uniform non-singularity require-
ment let p, = (44 2”"’3)_1 and

271

an ::(2”+pn)_1, Cn IZW, nelN,

and, by means of these quantities, define C! functions

0 if 2 < (1-2pn)an,
hn(z) := %p;la,:l(a:—(l—Qpn)an)Q if (1-2p,)a, <z <a,,
1—ecpz=2 " ifz>a,.

It is easily checked that h,(R) C [0,1], and sup,cg |k, (z)] = 1 for all n € IN;
obviously, h, (0) = 0. Define a family of power-like C' maps on the positive reals as

Ty-n(2) := 2" (1 —h,(2)), neN. (3.25)

Clearly, To-n(z) = 227" for x < (I = 2pp)a,, and To-n(z) = ¢, for 2 > a,.
Also let h_1 be a non-negative C' function such that h_i(z) = 0 for z < % and
h_i(z) =1 — (22)7% for = > %; with this define Ty(z) := ;132(1 — h_](a:)). Next,
assume that (4;) is an i.i.d. sequence with

P(@=2)=p, P(B=27")=(1-p)27" neN.

Condition (3.22) is equivalent to p > % In the latter case, all assumptions of
Theorem 3.3 are satisfied except for the fact that each map T5-» is nonsingular
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only on [0, ay], the length of which intervals shrinks to zero exponentially with n.
As in the two previous examples, this apparently minor deviation causes Theorem

3.3 to fail for (3.25). Indeed, for each ¢ > 0 the set

1= 10,0\ [(1 = 2pa)an, au]

has positive measure (in fact, A(l5)/d — 1 as  — 0), and for every « € I5 one has
T5-1(z) = ¢, provided that a; < z. Once  gets mapped to the interval [%, 1], its

orbit cannot be a Benford sequence. Thus for each = € I
P(Oz(z) is not a Benford sequence) > P(F€ {27" :n >1}) = (1 —p)27F! > 0.

In stark contrast to the assertion of Theorem 3.3 most orbits starting arbitrar-
ily close to zero therefore have a positive probability of not being Benford se-
quences. (The reader may have noticed that this pathology is due to the random
nature of (§;). If (f;);en were a given sequence in {2} U {277 : n € N} such that
n~! Z;:l log B; converges sufficiently fast to a positive limit, then (an appropri-
ately generalized version of) Corollary 3.2 would guarantee that almost every orbit
close to the origin is a strict Benford sequence.)

In the light of the above examples, it 1s natural to expect that Theorem 3.3 can
be strengthened considerably in the special case fo g = 0.

Corollary 3.3. Let the family (fa7ﬁ)a7ﬁ>0 be given by faﬁ(m) = az”, and let
(aj) and (B;) be an arbitrary and an i.i.d. sequence of positive random variables,
respectively. If Elog 3 > 0 and E(log 8)? < oo then for almost all x > 0, the
stochastic orbit (Tavuﬁn o.. -Ofal,ﬁl (1‘)) 1s a Benford sequence with probability one.

Proof. Again, invoking the law of the iterated logarithm, and by means of calcula-
tions analogous to those following (3.11), it is easy to see that (S,?(y)) is u.d. mod
1 for almost all y, regardless of the specific form of the sequence (a;). As before,

an application of Fubini’s theorem completes the proof. O

Remark 3.4. Although it simplifies the arguments, independence of the sequence
(B;) in not essential in the proof of Theorem 3.3 (and Corollary 3.3). Specifically, if
a; € [6,1] for some § > 0 and all j then all that is needed is that, with probability

one, the family (T} g) is contracting on average, i.e.

1 -1\ ,
(log B) = lim,, o ijl logB; >0,

and that, with probability one,

S

For example, (3;) could be any stationary stochastic process on R+ which satisfies
a law of the iterated logarithm for (log8;), and for which (log 8) > 0. (See [10] for

a related statement concerning affine dynamics.)

n=t Z;L:], log B; — (log )| < 0.
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Example 5: Shadowing under stronger contraction

Maps showing contraction properties near zero (or expansion properties near infin-
ity) that are stronger than power-like are not covered by the results in this article.

For example, the following family of maps is not power-like near infinity:
Tj(x) = e* Pj(z), jeN, (3.26)

where Pj(x) = ajm;x™ +...+aj12+ajo are real polynomials satisfying (3.7), and
m; > 1 for all j. However, it follows from (the obvious non-autonomous analogue
of) [5,Thm.4.4] that the orbit Op(z) is Benford for almost all sufficiently large |z]|.
Under the mild additional assumption that sup;cym; < oo it is illuminating to
derive this result in an entirely different manner, namely from an analysis of (3.26)
in the spirit of Theorem 3.1. As the argument resembles the proof of [5,Thm.4.1]
only a sketch of the ideas will be given.
For k,n € N define the function ¢y, ,, as

Crn(x) = \/logy/...\/logoTxyn-10Tkyn—20. o Tk(x);

—_————
n-fold 4/log (+)
clearly, ¢ , is smooth for > zo with z sufficiently large but independent of both
k and n. In analogy to (2.8) it is straightforward to see that

or () == limy, 00 0 n(2) (3.27)

exists and defines a continuous function g on [2g, +00[. In fact the convergence in
(3.27) is uniform in « and k£ € N, and ¢y, is continuously differentiable. Moreover,
it 1s easily verified that, uniformly in &,

los(z) — 2| =0, |ep(z)—1] =0 asz— oco. (3.28)

By construction, ePim = ©j+1n—1 0 T; and therefore also e = wj41 0 T; for all
J € N. Thus, from (3.28) it follows that, for all z > =z,

6“‘2@2“’?(”)
e —T"(x) :|g0n+1oT”(a@)—T”($)|—>0 as n — 00 .
N—_———

n-fold exponent

Consequently, Or (x) is a Benford sequence for almost all 2 > zq, precisely if Oz(z)

is Benford for almost all sufficiently large 2, with f(a}) = ¢ Theorem 4.4 in [5],
for instance, shows that the latter is indeed the case.

Remark 3.5. (i) With 7} according to (3.26) the maps T : x + Tj(2~")~! can
be written as Tj(z) = mmi_”_z(ng)_laj_’;j (1 — f;(z)). Formally, therefore, T} is
power-like near 0, but 3; = m; — 2~ ?(logz)~" depends on z. With the appropriate
uniformity requirements, Theorems 2.1 and 3.1 can be generalized so as to allow for
the quantities §; to depend on y and z, respectively. As a consequence, O7(z) is a

strict Benford sequence for almost all 2 near 0 if and only if the same is true for
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Oz (x) where ﬁ(r) = ajj;je_z_zxmi. Thus the simple shadowing idea discussed

in this article extends naturally to more general maps; the details of any such
generalization are left to the interested reader.

(ii) As in [4,5], uniform distribution theory plays a substantial role in the present
article. In this context, it is interesting to note that an increasing sequence (z,)

may be both u.d. mod 1 and Benford. In fact, among the sequences studied here,

this property is fairly widespread: take z,, = ;138"'1 as an example with almost every

xg > 1. However, if ¢ > 1 is an irrational Pisot number [14], then z, = @"t!
is Benford but not u.d. mod 1, whereas z, = (n 4+ 1)¢ is u.d. mod 1 yet fails to
be Benford. Trivially, z,, = log(n + 1) does not show either property. It may thus
be interesting to study whether the simultaneous Benford property of (z,) and
(log(k) xy), where k = 1,2, ..., implies further properties for the sequence ().
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