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ONE-DIMENSIONAL DYNAMICAL SYSTEMS
AND BENFORD’S LAW

ARNO BERGER, LEONID A. BUNIMOVICH, AND THEODORE P. HILL

Abstract. Near a stable fixed point at 0 or ∞, many real-valued dynamical
systems follow Benford’s law: under iteration of a map T the proportion of
values in {x, T (x), T 2(x), . . . , Tn(x)} with mantissa (base b) less than t tends
to logb t for all t in [1, b) as n → ∞, for all integer bases b > 1. In particu-
lar, the orbits under most power, exponential, and rational functions (or any
successive combination thereof), follow Benford’s law for almost all sufficiently
large initial values. For linearly-dominated systems, convergence to Benford’s
distribution occurs for every x, but for essentially nonlinear systems, excep-
tional sets may exist. Extensions to nonautonomous dynamical systems are
given, and the results are applied to show that many differential equations
such as ẋ = F (x), where F is C2 with F (0) = 0 > F ′(0), also follow Benford’s
law. Besides generalizing many well-known results for sequences such as (n!)
or the Fibonacci numbers, these findings supplement recent observations in
physical experiments and numerical simulations of dynamical systems.

1. Introduction

Benford’s law is the probability distribution for the mantissa with respect to base
b ∈ N \ {1} given by P(mantissab ≤ t) = logb t for all t ∈ [1, b[; the most well-known
special case is that

P
(
first significant digit10 = d

)
= log10

(
1 + d−1

)
, d = 1, . . . , 9 .

Although first discovered by Newcomb [N], this logarithmic law for significant digits
gained popularity following the article by Benford [Ben], which contained extensive
empirical evidence of the distribution in diverse tables of data. Since Benford’s
article, numerous examples of empirical data sets following Benford’s law have been
found in real-life data (e.g., physical constants, stock market indices, tax returns
[H2, R]); in stochastic processes (e.g., sums and products of random variables [R,
S]); and in many deterministic sequences (e.g., (n!), (an), and Fibonacci numbers
[Ben, BD, D]). Very recently, data from certain physical experiments and numerical
simulations arising in dynamical systems have also been found to follow Benford’s

Received by the editors September 15, 2002 and, in revised form, July 10, 2003.
2000 Mathematics Subject Classification. Primary 11K06, 37A50, 60A10; Secondary 28D05,

60F05, 70K55.
Key words and phrases. Dynamical systems, Benford’s law, uniform distribution mod 1,

attractor.
The first author was supported by a MAX KADE Postdoctoral Fellowship (at Georgia Tech).
The second author was partially supported by NSF grant DMS-9970215.
The third author was partially supported by the Göttingen Academy of Sciences and NSF

Grant DMS-9971146.

c©2004 American Mathematical Society

197



198 A. BERGER, L. BUNIMOVICH, AND T. HILL

law [SCD, TBL]. Of course, many data sets do not follow Benford’s law—e.g.,
telephone numbers, uniform random variables, (log n)—and one of the objectives
of research has been to establish criteria for predicting when data will be Benford-
distributed.

Benford’s law has been characterized in [H1] as the only continuous mantissa
distribution which is base-invariant. It is natural to require that a general pattern
of mantissa distribution, if one exists at all, does not depend on the particular choice
of the base. Base-invariance, however, has significant implications: For a sequence
(xn) to follow Benford’s law for all (or at least an unbounded set of) bases, every
weak limit of 1

n

∑n
j=1 δxj on the extended real line R ∪ {±∞} must be a convex

combination of point-masses at 0 and ±∞, respectively. Under the additional
assumption of stability, the present article establishes a fairly complete theory of
Benford’s law for sequences generated by continuous one-dimensional dynamical
systems. Wide classes of dynamical systems having a subset of {0,±∞} as an
attractor are shown to produce Benford sequences in abundance. The approach to
Benford’s law via dynamical systems not only generalizes and unifies many earlier
special results obtained by number-theoretical and other methods (e.g. [BD, D]),
it also illustrates the simple yet universal mechanism underlying the generation of
most of the known Benford sequences. Even though stable fixed points at zero or
infinity constitute a highly specific (and simple) dynamical scenario, this setting
is quite natural and general: an efficient experimentalist, observing convergence of
numerical data, will record differences from the prospective limit, rather than the
nearly indistinguishable raw data themselves. Thus, the results of this work also
add to the explanation of the ubiquity of the Benford distribution in experimental
data.

The organization of this article is as follows. Section 2 provides definitions and
preliminary results, including the basic relationship between Benford sequences
and uniform distribution mod 1, and a shadowing lemma. Section 3 contains the
main results for linearly-dominated one-dimensional dynamical systems; for exam-
ple, the orbits under T : x 7→ xe + x2e−x follow Benford’s law for all sufficiently
large x. Section 4 contains the corresponding results for essentially nonlinear one-
dimensional systems; e.g., the orbits under T : x 7→ x2 +1 are Benford for Lebesgue
almost all x. Section 5 establishes analogous results for nonautonomous dynam-
ical systems including both linearly-dominated and essentially nonlinear systems;
e.g., applications of T1 : x 7→ x2 and T2 : x 7→ 3x in any successive combination
also yield Benford sequences. Finally, Section 6 demonstrates how the results for
discrete-time systems immediately carry over to differential equations.

2. Preliminaries

Throughout, b will always denote a natural number larger than one (called a
base). Every positive real number x can be written uniquely as x = Mb(x)bk with
Mb(x) ∈ [1, b[ and the appropriate integer k. The function Mb : R+ → [1, b[ is
called the (base b) mantissa function; for convenience set Mb(0) := 0 for all b.
For every real x, the numbers bxc and dxe denote the largest integer not larger,
and the smallest integer not smaller than x, respectively. The number bMb(x)c ∈
{1, . . . , b − 1} is called the first significant digit of x (with respect to base b). For
a given base b, logb will denote the logarithm with respect to b, where, for ease of
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notation, logb 0 := 0 for all b; if used without a subscript, the log symbol denotes
the natural logarithm.

Definition 2.1. A sequence (xn)n∈N0 of real numbers is a b-Benford sequence if

lim
n→∞

#{j ≤ n : Mb(|xj |) ≤ t}
n

= logb t for all t ∈ [1, b[ ,

and it is called a strict Benford sequence (or simply a Benford sequence) if it is a
b-Benford sequence for all b ∈ N \{1}.

The most basic tool in this paper is the following direct correspondence between
Benford sequences and uniform distribution modulo one, which allows application
of the powerful classical tools for uniform distribution of sequences (e.g. [DT, KN]).

Proposition 2.2 ([D]). A sequence (xn)n∈N0 of real numbers is a b-Benford se-
quence if and only if (logb |xn|)n∈N0 is uniformly distributed modulo one.

Henceforth, the term uniformly distributed modulo one will be abbreviated as
u.d. mod 1. An immediate consequence of Proposition 2.2 is

Proposition 2.3. Let (xn)n∈N0 be a (b- or strict) Benford sequence. Then for all
α ∈ R and k ∈ Z with αk 6= 0, the sequence (αxkn)n∈N0 is also a (b- or strict,
respectively) Benford sequence.

This paper primarily studies Benford properties of sequences generated recur-
sively by

(2.1) xn := Tn(xn−1) , n = 1, 2, . . . ,

where (Tn) is a sequence of maps of the real line (or a part thereof) into itself.
Relation (2.1) is interpreted as a nonautonomous dynamical system. For n ∈ N, T n

denotes the composition T n = Tn◦Tn−1◦. . .◦T2◦T1, and T 0 := id. Sections 3 and 4
deal with autonomous systems, i.e., Tn = T for all n, in which case T n stands for the
n-fold composition of T with itself. The symbol OT (x), called the orbit of x under T ,
will denote the sequence generated by (2.1) subject to the initial condition x0 = x;
in the above notation, OT (x) =

(
T n(x)

)
n∈N0

. Note that this interpretation of the
orbit as a sequence differs from the standard terminology in dynamical systems
theory (e.g., [KH]) where the orbit of x is the mere set {xn : n ∈ N0}.

The next lemma, recorded here for ease of reference, lists several basic results
concerning uniform distribution mod 1 of sequences, which via Proposition 2.2 will
be used to determine Benford properties of sequences. As no reference to (i) is
known to the authors, a proof is included; conclusion (ii) is Weyl’s classical result
[KN, Thm. 3.3]; and (iii) is Koksma’s metric theorem [KN, Thm. 4.3].

Lemma 2.4. (i) If (xn)n∈N is nondecreasing and u.d. mod 1, then the se-
quence (xn/ logn)n≥2 is unbounded.

(ii) If (xn)n∈N is a sequence of real numbers with ∆xn = xn+1 − xn → θ
irrational, then (xn)n∈N is u.d. mod 1.

(iii) Suppose fn ∈ C1[a, b], n ∈ N. If f ′m(x) − f ′n(x) is monotone in x, and
|f ′m(x) − f ′n(x)| ≥ C > 0 for all m 6= n, where C does not depend on x,
m, and n, then

(
fn(x)

)
n∈N is u.d. mod 1 for almost all x in [a, b].

Proof of (i). Let (xn) be nondecreasing and suppose that cn := xn/ logn were
bounded. For each α > 1 and ε > 0 the inequality cbαnc − cn ≤ ε/ logn then
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holds infinitely often; otherwise, there exist α0 > 1, ε0 > 0 and N ∈ N such
that cbα0nc − cn > ε0/ logn for all n ≥ N . But then, setting N1 := N and
Nj+1 := bα0Njc for all j ∈ N,

cNk − cN1 >

k−1∑
j=1

ε0

logNj
≥

k−1∑
j=1

ε0

j logα0 + logN
→ ∞ as k→∞

which contradicts the boundedness of (cn). Next fix α > 1 such that C logα < 1
4

where C is an upper bound on (cn), and consider a subsequence (nk) with cbαnkc−
cnk ≤ 1/(4 lognk) for all k. Then

xbαnkc − xnk = (cbαnkc − cnk) logbαnkc+ cnk log
bαnkc
nk

≤ logbαnkc
4 lognk

+ C logα <
1
2

for all sufficiently large k, which implies that (xn) cannot be u.d. mod 1. �

Another important tool in the proofs below are so-called shadowing arguments,
where the iterates of one family of (nonlinear) maps are replaced by iterates of
another (linear) family which are easier to analyze. More precisely, let (Sj)j∈N
denote a family of continuous maps of the real line into itself and assume that, for
some ξ > 0 and C > 0, the growth condition

sup
|x|≥ξ

∣∣∣∣Sj(x)
βj

− x
∣∣∣∣ ≤ C

holds for all j ∈ N with appropriate numbers βj ∈ R\{0}. For brevity, let B0 := 1
and Bn :=

∏n
j=1 βj for n ≥ 1. The following shadowing result identifies a general

condition which guarantees that for every sufficiently large x, there exists a point
x such that OS(x) is close to the sequence (Bnx)n∈N0 . Recall that Sj = Sj ◦Sj−1 ◦
. . . ◦ S1.

Theorem 2.5. Suppose the maps Sj : R→ R are continuous, and that

sup
|x|≥ξ

∣∣∣∣Sj(x)
βj

− x
∣∣∣∣ ≤ C <∞ for all j ∈ N,

where (βj), ξ, C are real numbers with βj 6= 0 and ξ > 0, C > 0. Then there exists
η ≥ ξ satisfying:

(i) If
∑∞

j=0 |Bj |−1 converges, then h(x) := limj→∞B−1
j Sj(x) exists for all

|x| ≥ η. Moreover, h is a continuous function, and sup|x|≥η |h(x) − x| ≤
C
∑∞

j=0 |Bj |−1 <∞.
(ii) If limj→∞|βj | > 1, then for each x with |x| ≥ η, there exists precisely one

point x such that
(
|Bnx−Sn(x)|

)
n∈N0

is bounded; in fact, x = h(x), where
h is the function in (i).

Proof. (i) Since
∑∞
j=0 |Bj |−1 <∞, the quantity

η := ( inf
j∈N0
|Bj |)−1ξ + C

∞∑
j=0

|Bj |−1
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is finite and larger than ξ. It is easy to check that |Sj(x)| ≥ ξ for all j ∈ N0

whenever |x| ≥ η. Thus

(2.2) g(x) := x+
∞∑
j=0

B−1
j+1

(
Sj+1(x)− βj+1S

j(x)
)

defines a continuous function for |x| ≥ η, which implies that

(2.3)
∣∣∣∣g(x)− Sn(x)

Bn

∣∣∣∣ ≤ C ∞∑
j=n

|Bj |−1

for all n ∈ N0, |x| ≥ η. Since the right-hand side of (2.3) tends to 0 as n→∞,

g(x) = lim
j→∞

B−1
j Sj(x) = h(x) ,

which establishes (i).
(ii) If β := limj→∞|βj | > 1, then |βj | ≥ 1+β

2 > 1 for all j ≥ j0. Multiplying (2.3)
by Bn implies that for all n ≥ j0

|Bnh(x)− Sn(x)| ≤ C
∞∑
j=n

∣∣∣∣BnBj
∣∣∣∣ ≤ C ∞∑

j=0

(
2

1 + β

)j
= C

β + 1
β − 1

<∞ .

Since |Bj | → ∞ as j → ∞, the point x := h(x) is the only point with the desired
property. �

The following corollary specializes Theorem 2.5 for the autonomous case, and
helps explain the terminology Shadowing Lemma. (See, for instance, [KH, Thm.
18.1.2] for a version of the classical Shadowing Lemma for hyperbolic systems.)

Corollary 2.6. Let β be a real number with |β| > 1, and assume that the continuous
map S : R → R satisfies sup|x|≥ξ |S(x) − βx| ≤ C < ∞ for some ξ > 0, C >

0. For each x with |x| sufficiently large, there exists precisely one point x such
that the sequence

(
|βnx − Sn(x)|

)
n∈N0

is bounded. The assignment h : x 7→ x

defines a continuous map with h◦S(x) = βh(x) for |x| sufficiently large; moreover,
lim|x|→∞|h(x)− x| ≤ C

|β|−1 .

Proof. With Sj = S and |βj | = |β| > 1 for all j ∈ N, the assertions follow from
Theorem 2.5, since h(x) = limj→∞ β−jSj(x) in the autonomous case. �

3. Linearly-dominated systems

Throughout this section, T will denote a C2 map of the real line (or at least some
neighborhood of the origin) into itself which has the origin as a stable attracting
fixed point, so T (0) = 0 and |α| ≤ 1, where α := T ′(0). The fixed point is called
weakly attracting, (regularly) attracting or super-attracting depending on whether
|α| = 1, 0 < |α| < 1 or α = 0, respectively. The present section considers the case
|α| > 0, where the linearization of T at the origin, i.e., the map x 7→ αx, dominates
the behavior (with respect to Benford’s law) for all points near the fixed point, in
a sense made precise below. Since T has the origin as a fixed point,

(3.1) T (x) = αx
(
1− f(x)

)
where f is C1, and f(0) = 0. First, consider the case 0 < |α| < 1.
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Theorem 3.1. Suppose T , as given by (3.1), is a C2 map with 0 as a (regularly)
attracting fixed point. Then the orbit OT (x) is a b-Benford sequence for all x 6= 0
sufficiently close to 0 if and only if logb |α| is irrational.

Proof. Step 1: Suppose that (sufficiently close to the origin) T is given by T (x) =
αx. Then, for x 6= 0, logb |T n(x)| = n logb |α| + logb |x|, which by Lemma 2.4(ii) is
u.d. mod 1 if and only if logb |α| is irrational.

Step 2: Suppose that T is a general C2 map as in (3.1). The function S with

S(x) := T
(
x−1

)−1
= α−1x+ g(x)

is well defined and C1 for sufficiently large |x|; here g denotes the continuous func-
tion defined by

g(x) =
xf(x−1)

α− αf(x−1)
.

Clearly, lim|x|→∞|g(x)| = |α|−1limx→0

∣∣x−1f(x)
∣∣ = |α|−1|f ′(0)| < ∞. Corollary

2.6 yields a continuous function h with lim|x|→∞|h(x) − x| < ∞ and h ◦ S(x) =
α−1h(x) for |x| sufficiently large. Close to the origin, define a continuous map
H via H(x) := h(x−1)−1, which satisfies limx→0

∣∣H(x)−1 − x−1
∣∣ < ∞, and also

H ◦ T n(x) = αnH(x) for all n ∈ N0. This implies

logb |T n(x)| − logb |αnH(x)| → 0 as n→∞ ,

and therefore OT (x) is a b-Benford sequence precisely if
(
αnH(x)

)
n∈N0

is. �

Corollary 3.2. If T is given by (3.1), then the orbit OT (x) is a strict Benford
sequence for all but countably many α ∈ ]− 1, 1[ , and all x 6= 0 sufficiently close to
0.

Remark 3.3. (i) Although it is not crucial for the above argument, Corollary 2.6
and (2.2) provide an explicit expression for the function H in the above proof,
namely

x

H(x)
= 1 + x

∞∑
j=0

αj

1− f ◦ T j(x)
· f ◦ T

j(x)
T j(x)

= 1 + x
∞∑
j=0

αj+1 f ◦ T j(x)
T j+1(x)

;

this formula displays a clear dynamical structure, and is valid for |x| sufficiently
small, in which case H ◦ T (x) = αH(x).

(ii) The second part in the proof of Theorem 3.1 also works for an analytic map
T having the origin of the complex plane as a stable attracting fixed point, i.e.,
T (0) = 0 and T ′(0) = λ ∈ C with 0 < |λ| < 1. In fact, via H , the application of
Corollary 2.6 here provides a local analytic conjugacy between T and its lineariza-
tion z 7→ λz at the origin. The existence of such a conjugacy is a well-known fact
in dynamics, usually attributed to Poincaré [KH, Thm. 2.8.2].

(iii) Theorem 3.1 also follows immediately from Lemma 2.4(ii), in fact, even
with the smoothness assumption on T reduced from C2 to C1. The approach via
Theorem 2.5 helps make the dynamical aspect of the assertion more transparent,
and emphasizes the analogies to the essentially nonlinear case dealt with in the
next section.

(iv) The hypothesis T ∈ C2 in Theorem 3.1 may clearly be replaced by the weaker
assumption that T ∈ C1 and sup

|x|≤1

|x−1f(x)| <∞, as is done in Theorem 5.1 below.
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Next consider the weakly attracting case |α| = 1. If α = −1, then T 2 has 0 as a
weakly attracting fixed point too, and (T 2)′(0) = 1. Since T is given by (3.1) with
|α| = 1, the orbit OT (x) is a (b-) Benford sequence for all x near the origin precisely
if the same is true for OT 2(x). Without loss of generality, therefore, restrict the
analysis to the positive semi-axis x > 0 and the case α = 1, so

(3.2) T (x) = x
(
1− f(x)

)
where f is continuous with 0 = f(0) < f(x) for all sufficiently small x > 0. One
might expect that because of the orbits’ slow convergence to zero, the map T will
produce no Benford sequences at all. This turns out to be true under even weaker
assumptions than adopted throughout this section (see, however, Example 3.5 be-
low).

Theorem 3.4. Let T be a C1+ε map for some ε > 0, i.e., T ∈ C1 and T ′ satisfies
a Hölder condition of order ε. Assume that T has 0 as a weakly attracting fixed
point. Then for every b ∈ N\{1} the orbit OT (x) is not a b-Benford sequence for
any x sufficiently close to 0.

Proof. Fix δ > 0 such that f(x) > 0 for all x ∈ ]0, δ]. Let Sb be the map

Sb(y) := − logb T (b−y) = y − logb
(
1− f(b−y)

)
,

which is well defined and continuous for sufficiently large y. For x ≤ δ, clearly
OT (x) is a b-Benford sequence precisely if

(
Snb (− logb x)

)
n∈N0

is u.d. mod 1. The
goal is to show that the latter sequence is not u.d. mod 1 for any x ≤ δ. The Hölder
assumption on T implies that f(x) ≤ fε(x) for some ε > 0 and all x sufficiently
close to 0, where

fε(x) := 1− (1 + xε)−ε
−1
.

Step 1: Assume first that f = fε. Then yn := Snb (y0) is monotonically increasing,
and an elementary calculation shows that for all n ∈ N0,

yn = ε−1 logb(n+ bεy0) .

By Lemma 2.4(i) the sequence (yn) is not u.d. mod 1.
Step 2: Consider now the general case, i.e., 0 < f(x) ≤ fε(x) for all x sufficiently

close to 0. Denote by S̃b the map

S̃b(y) := y − logb
(
1− fε(b−y)

)
and note that − logb

(
1 − fε(b−y)

)
decreases monotonically to 0 as y → ∞. Fur-

thermore, Sb(y) ≤ S̃b(y) for all sufficiently large y. Setting g(y) := Sb(y) − y,
h(h) := S̃b(y)− y, clearly 0 < g ≤ h. This implies

yn+1 − ỹn+1 = yn − ỹn + g(yn)− h(ỹn) ≤ yn − ỹn + h(yn)− h(ỹn) .

If yn > ỹn, then yn+1 − ỹn+1 < yn − ỹn, since h is decreasing. On the other hand,
if yn ≤ ỹn, then yn+1 − ỹn+1 ≤ h(yn) − h(ỹn), which is bounded since h(y) → 0
as y →∞. Therefore, the difference yn − ỹn is bounded from above, so by Step 1,
there is a constant D > 0 such that for all n,

yn ≤ D + ε−1 logb(n+ bεy0) ,

and again Lemma 2.4(i) shows that (yn) cannot be u.d. mod 1. For x close to the
origin, OT (x) is thus not a b-Benford sequence. �
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Example 3.5. The condition T ∈ C1+ε in the above theorem cannot be weakened
to T ∈ C1. For example, by means of a direct calculation of T n, and using the fact
that (β

√
n) is u.d. mod 1 whenever β 6= 0 [KN, Exp. 2.7], it can be seen that the

map T with

T (x) :=

{
e−
√

1+(log x)2 if x > 0 ,
0 if x = 0 ,

is a C1 map with 0 as a weakly attracting fixed point, and OT (x) is a strict Benford
sequence for all x sufficiently close to 0. On the other hand, using Lemma 2.4(i),
it is easily verified that a similar definition

T (x) :=

{
e−
√

1+(log τ(x))2 if 0 < x < e−1 ,

0 if x = 0 ,

with τ(x) := e
√

(log x)2−1+1 yields a C1 map which also has 0 as a weakly attracting
fixed point, but OT (x) is not a b-Benford sequence for any x ∈ ]0, e−1] and any base
b.

With regard to Benford’s law, linearly dominated one-dimensional dynamics, i.e.,
0 < |α| ≤ 1, may be summarized as follows. In the attracting case (0 < |α| < 1),
typically all orbits are Benford sequences whereas for the weakly attracting case
|α| = 1, there are no b-Benford sequences whatsoever. This all-or-nothing type
of statement should be compared to the metric (i.e., almost all or almost none)
assertions in the next section. Notice also that together, Theorems 3.1 and 3.4
provide a complete classification with respect to Benford’s law for C2 maps.

Proposition 3.6. Let T be a C2 map which has 0 as a stable attracting fixed point
with 0 < |T ′(0)| ≤ 1. Then OT (x) is a b-Benford sequence for all x 6= 0 sufficiently
close to 0 if and only if logb |T ′(0)| is irrational. If logb |T ′(0)| is rational, then
there are no b-Benford sequences at all near 0.

By Remark 3.3(ii), an analogous statement holds for (complex) analytic maps
[Ber2]. In view of Example 3.5 above, however, no such clear classification should
be expected for C1 maps.

4. Essentially nonlinear systems

Unlike the cases studied in Section 3, the dynamics near a super-attracting fixed
point, i.e., for α = 0, is essentially nonlinear. Rather than dealing with more
general classes of maps, assume that T ∈ C∞ throughout this section (see, however,
Remarks 4.2 and 4.6 below for maps with less smoothness). Again it proves useful
to distinguish two quite different situations. If T (p)(0) 6= 0 for some p ∈ N, p ≥ 2,
then the fixed point 0 is called super-attracting of finite order ; otherwise, 0 is
referred to as a flat super-attracting fixed point.

With respect to Benford’s law, the dynamics of T near a super-attracting fixed
point of finite order is governed by the first nonvanishing term in the Taylor expan-
sion of T .

Theorem 4.1. If T is a C∞ map with 0 as a super-attracting fixed point of finite
order, then OT (x) is a strict Benford sequence for almost all x sufficiently close to
0, but there also exist uncountably many exceptional points, i.e., points x for which
OT (x) is not a Benford sequence.
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Proof. Rewrite T as T (x) = γxp
(
1− f(x)

)
, where f ∈ C∞ and f(0) = 0. Without

loss of generality, γ > 0, because otherwise T could be replaced by −T (if p is even)
or T 2 (if p is odd). Since rescaling T as x 7→ α−1T (αx) with α = γ−(p−1)−1

> 0
does not affect any of the asserted properties, it is in fact sufficient to solely study
the case γ = 1. Again restrict attention to the half-axis x > 0.

Step 1: Suppose that (sufficiently close to the origin) T is given by T (x) = xp.
For x > 0 thus logb T n(x) = pn logb x for every b and all n ∈ N0. By the Birkhoff
Ergodic Theorem [KH, Thm. 4.1.2], applied to the ergodic map y 7→ py (mod 1),
the orbit OT (x) is a b-Benford sequence for Lebesgue almost every point x near 0.
Since the countable union of sets of measure zero has measure zero, OT (x) is in
fact a strict Benford sequence for almost every x.

Step 2: As in the proof of Theorem 3.1, reduce the case of a general map T given
by T (x) = xp

(
1− f(x)

)
to the case in Step 1. Fix a base b ∈ N \{1}. The map Sb

with
Sb(y) := − logb T (b−y) = py + gb(y)

is well defined and smooth for sufficiently large y; here gb is the C∞ function given
by

gb(y) = − logb
(
1− f(b−y)

)
with limy→∞ gb(y) = 0. By (a one-sided version of) Corollary 2.6, there exists a
continuous function hb with limy→∞ |hb(y)− y| = 0 such that hb ◦ Sb(y) = phb(y)
for all sufficiently large y. Using the chain rule and termwise differentiation of the
formula

hb(y) = y +
∞∑
j=0

p−(j+1)gb ◦ Sjb (y)

it can be seen that for large y the function hb is in fact C1 with positive derivative.
In particular, hb is a homeomorphism of some unbounded interval, and it maps sets
of measure zero onto sets of measure zero. Since limn→∞ |pnhb(y) − Snb (y)| = 0,
Step 1 implies that the sequence

(
Snb (y)

)
is u.d. mod 1 for almost all points y ≥ η,

where the threshold η can be chosen simultaneously for all b. For almost all x
sufficiently close to 0, the sequence

(
− logb T

n(x)
)

=
(
Snb (− logb x)

)
is thus u.d.

mod 1 for all b, so OT (x) is a Benford sequence.
To see that uncountably many exceptional points exist, let y ∈ ]0, 1[ denote a

number which is not p-normal. Fix a base b and take a sufficiently large integer m
such that y +m = hb(y) for some y. With the above notation therefore

lim
n→∞

|Snb (y)− pn(y +m)| = 0 .

Thus
(
Snb (y)

)
n∈N0

is not u.d. mod 1, andOT (b−y) is not a b-Benford sequence. Since
the set of real numbers which are not p-normal is uncountable [Ber1, Thm. 5.21]
the exceptional set is uncountable. �

Remark 4.2. (i) As a by-product, the above application of Corollary 2.6 yields a
continuous map H with H ◦T (x) = H(x)p sufficiently close to 0. From the explicit
formula for γ = 1,

(4.1) H(x) = x

∞∏
j=0

(
1− f ◦ T j(x)

)p−(j+1)

,

it is also evident that limx→0 x
−1H(x) = 1.
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(ii) As for the linearly dominated case, the argument in the proof of Theorem
4.1 may be readily adapted to an analytic map T having 0 as a super-attracting
fixed point, i.e., T (z) = λzp + . . . , with λ ∈ C \{0}. Formula (4.1) then yields a
local analytic conjugacy between T and the map z 7→ zp. The existence of such a
conjugacy is also well known (e.g. see [Bea, Thm. 6.10.1]).

(iii) Theorem 4.1 is in fact true for a wider class of maps. Let T be a C1 map
and assume that T (0) = 0 is a stable attracting fixed point. This point is called
power-like super-attracting if

T (x) = γx1+ε
(
1− f(x)

)
,

where f denotes a C1 function with f(0) = 0, and γ, ε are positive real numbers.
(Obviously, every super-attracting fixed point of finite order is power-like.) Analo-
gously to the above arguments, one can show that the conclusion of Theorem 4.1
holds for maps which have 0 as a power-like super-attracting fixed point; the de-
tails of the case ε 6∈ N are left to the interested reader (cf. [DT] and the references
therein for the relevant results from uniform distribution theory).

Example 4.3. For simplicity, all the results above were stated for fixed points
at the origin. They also hold, mutatis mutandis , for fixed points at infinity. In
particular, Theorem 4.1 may be used to show that for every rational map R with
lim|x|→∞

∣∣x−1R(x)
∣∣ → ∞, the orbit OR(x) is a strict Benford sequence for almost

all, but not all, x with |x| sufficiently large. Indeed, these maps have infinity as a
super-attracting fixed point of finite order in the sense that

R(∞) := lim
x→∞

R(x) =∞ , R′(∞) := lim
x→∞

x2R′(x)(
R(x)

)2 = 0

and R(j)(∞) = 0 for j = 1, 2, . . . , r − 1 but R(r)(∞) 6= 0, where r ≥ 2 is the
difference between the degrees of the numerator and denominator polynomial of R,
respectively. Consequently, Theorem 4.1 applies to the C∞ map T : x 7→ R(x−1)−1

near its super-attracting fixed point at 0.
As a specific example, consider the function Q : x 7→ x2 + 1: For almost all

x ∈ R the orbit OQ(x) is a Benford sequence, but there is also an uncountable
set of exceptional points, which are easily found by means of an explicit formula
analogous to (4.1). More precisely, for the continuous map H defined as

H(x) :=
√

1 + x2

∞∏
j=1

(
1 + (Qj(x))−2

)2−(j+1)

= lim
j→∞

(
Qj(x)

)2−j
,

it is readily verified thatH◦Q(x) = H(x)2 for all x ∈ R, and lim|x|→∞H(x)/|x| = 1.
Thus OQ(x) is a Benford sequence if and only if

(
H(x)2n

)
n∈N0

is. In this simple
example, an explicit formula for H−1 is available, namely

H−1(x) = lim
j→∞

√
. . .

√√
x2j − 1− 1 . . .− 1 ,

which is valid for x ≥ H(0) ≈ 1.2259. In particular, for any base b, the orbit of
ξb := H−1(b) is not a b-Benford sequence since the first significant digit of Qn(ξb)
eventually always equals b− 1, i.e.,

⌊
Mb

(
Qn(ξb)

)⌋
= b− 1 for all but finitely many

n. For example, in its decimal representation, the first significant digit of Qn(ξ10)
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with
ξ10 = H−1(10) = 9.94962308959395941218332124109326 . . .

equals 9 for all n ∈ N0.

Not surprisingly, the situation near a flat super-attracting fixed point can be
more complicated, and an additional regularity condition will be imposed on T (see
also Example 4.7 below). Again restrict to x > 0, and assume that T (x) > 0 for all
x ∈ ]0, δ] for some δ > 0. Given T , define the function

ΦT (x) :=
xT ′(x)
T (x)

(0 < x ≤ δ) .

Theorem 4.4. Suppose T has 0 as a super-attracting fixed point. If ΦT is non-
increasing on ]0, δ] and limx→0 ΦT (x) > 1, possibly infinite, then OT (x) is a strict
Benford sequence for almost all x ∈ ]0, δ].

Proof. Fix a base b, define fn(x) := logb T n(x), and view (fn) as a sequence of
real-valued C1 functions on ]0, δ]. For any two natural numbers m,n,

f ′m+n(x)− f ′n(x) =
(T n)′(x)
T n(x) log b

(
(Tm)′ ◦ T n(x)
Tm ◦ T n(x)

T n(x) − 1
)

=
ΦTn(x)
x log b

(ΦTm ◦ T n(x)− 1) .

Since T ′(x) > 0 for sufficiently small x 6= 0, the map T is monotone near 0, and so

ΦTn = ΦT ◦ T n−1 · ΦT ◦ T n−2 · . . . · ΦT ◦ T ·ΦT
is nonincreasing on ]0, δ], and limx→0 ΦTn > 1. Therefore, f ′m+n− f ′n is monotone,
and for some 0 < θ < δ,

f ′m+n(x) − f ′n(x) ≥ C > 0 for all m,n ∈ N and x ∈ [T (θ), θ],

where C depends neither on m,n nor on x. Lemma 2.4(iii) implies that
(
fn(x)

)
n∈N0

is u.d. mod 1 for almost all x. �

Example 4.5. Theorem 4.4 applies to the (families of) C∞ maps

T (x) =

{
e−x

−γ
if x > 0 ,

0 if x = 0 ,
and T (x) =

{
e−|logx|1+γ

if x > 0 ,
0 if x = 0 ,

with γ > 0, which both have 0 as a flat super-attracting fixed point.

Remark 4.6. (i) Clearly, flatness plays no role in the above proof, and the same
technique also works for several classes of maps already covered by Theorem 4.1,
e.g., for the map given by T (x) = xp − γxp+1 + xp+2f(x) with γ > 0, p ≥ 2 and
any C∞ function f .

(ii) Although the focus throughout this section is on smooth maps, note that the
proof of Theorem 4.4 requires T only to be C1 (cf. Remark 4.2). Therefore, this
theorem can also be used to show that for any γ > 0 and

T (x) = x1+γ or T (x) =

{
−x1+γ log x if x > 0 ,
0 if x = 0 ,

OT (x) is a strict Benford sequence for almost all x > 0 sufficiently close to 0.
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(iii) The conditions on ΦT in Theorem 4.4 are restrictive; they imply, for example,
that F (x) := − logT (e−x) defines a convex function, and limx→∞x

−1F (x) > 1 (cf.
Theorem 5.5 below).

Example 4.7. The conditions in Theorem 4.4 are certainly not sharp, but without
any additional assumption, the conclusion of that theorem will generally be false,
even if T is strictly increasing. In fact, given any base b and any map T which has
0 as a flat super-attracting fixed point, it is possible to find a nondecreasing C∞

map S with 0 < S(x) < T (x) for all x ∈ ]0, δ] such that for almost all x ≤ δ, the
orbit OS(x) is not a b-Benford sequence.

Given T and b, a sketch of the construction of such a map S is as follows.
Consider the map given by Rb(y) = − logb T (b−y), which is continuous and positive
for y ≥ j0 for some j0 ∈ N. Furthermore, limy→∞Rb(y) = ∞, and without loss
of generality, assume that Rb is nondecreasing. Define a sequence (rj)j≥j0−1 of
natural numbers by

rj0−1 := 1 and rj := j − j0 + rj−1 + d max
|y−j|≤1

Rb(y)e for j ≥ j0 .

Let (Jj) and (J∗j ) be the two sequences of mutually disjoint intervals

Jj :=
[
j − 3

8
, j +

3
8

]
and J∗j :=

[
j +

7
16
, j +

9
16

]
(j ≥ j0)

and let R̃b be a nondecreasing C∞ function with R̃b(y) = rj for all y ∈ Jj , which
increases linearly from rj + 1

16 to rj+1 − 1
16 on J∗j for all j ≥ j0. It is easily checked

that the orbit OR̃b(y) of almost every y ≥ j0 eventually consists of integers. Setting

S(x) :=

{
b−R̃b(− logb x) if x > 0 ,
0 if x = 0 ,

it follows that 0 < S(x) < T (x) for x sufficiently close to 0. By construction, S
is a nondecreasing C∞ map, and for almost all x near 0, the orbit OS(x) is not a
b-Benford sequence, since typically limn→∞ logb Sn(x) = 0 (mod 1). (By slightly
modifying R̃b on the flat pieces Jj , one could even make S strictly increasing.) So,
no matter how attracting 0 is for T , there is always a smooth map S such that 0 is
even more attracting for S, but typical S-orbits near 0 are nevertheless not Benford
sequences.

In summary, orbits near a super-attracting fixed point of finite order at 0 typi-
cally follow Benford’s law. In the flat case this statement is also true provided that
an additional, somewhat restrictive growth condition on the map is satisfied. The
following complete analysis of super-attracting fixed points for real-analytic maps
follows immediately from Theorem 4.1.

Proposition 4.8. Let T 6≡ 0 be a real-analytic map which has 0 as a super-
attracting fixed point. Then OT (x) is a Benford sequence for almost all x near
0, but there are also uncountably many exceptional points.

The conclusion of the above proposition carries over to (complex) analytic maps
[Ber2]. Obviously, Example 4.7 rules out such a simple over-all conclusion even for
C∞ maps.
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5. Nonautonomous systems

The purpose of this section is to establish general classes of nonautonomous
real-valued dynamical systems which follow Benford’s law. The main result, Theo-
rem 5.5, demonstrates the robustness of the Benford behavior; for example, apply-
ing the maps x2, 3x or xx successively in any order will yield a Benford sequence
for almost all sufficiently large initial points. As a complement to the previous
sections, and in the spirit of many known Benford sequences such as (n!), (en) and
the Fibonacci numbers (Fn), the focus in this section will be on orbits which go
to infinity. Of course, since (xn) is Benford if and only if (x−1

n ) is Benford (via
Proposition 2.3), these results easily translate into results for an attractor at zero.

Recall that T n is the n-fold composition T n(x) = Tn ◦Tn−1 ◦ . . . ◦T1(x) of maps
Tn : R → R, and that OT (x) is the orbit of x, i.e., the sequence (x, T1(x), T2 ◦
T1(x), . . . ) = (x, T 1(x), T 2(x), . . .); see (2.1). Unlike the cases in the previous sec-
tions, in the general nonautonomous setting, linear and nonlinear systems may
overlap in the sense that the same orbit may be generated by a family of lin-
ear as well as nonlinear maps. For example, if OT (x) is the orbit of the nonau-
tonomous system defined by Tn(x) = 22n−1

x, and OT̂ (x) is the orbit for T̂n(x) = x2,
then OT (2) = OT̂ (2), even though the maps defining T are linear, and those for
T̂ are quadratic. The measure-theoretic conclusions for linear versus nonlinear
nonautonomous systems are analogous to those for the autonomous systems above,
namely, orbits of linear systems are generally Benford for all initial points, but
orbits of nonlinear systems are Benford only for almost all initial points.

Analogously to Theorem 3.1, first consider nonautonomous systems dominated
by a linear term. Assuming that each Tj is C1 and has infinity as a fixed point
with T ′j(∞) = βj 6= 0, the family (Tj) may be rewritten as

(5.1) Tj(x) = βjx
(
1− fj(x)

)
, j = 1, 2, . . . ,

where the continuous functions fj satisfy lim|x|→∞ fj(x) = 0 for all j ∈ N. Recall
the abbreviations B0 = 1 and Bn :=

∏n
j=1 βj for n ∈ N.

Theorem 5.1. Let (Tj) be given by (5.1), and suppose that
∑∞
j=1 |Bj |−1 < ∞,

and sup|x|≥ξ |xfj(x)| ≤ C < ∞ for all j ∈ N, for some constants ξ > 0, C > 0.
Then for all |x| sufficiently large, the orbit OT (x) is a b-Benford sequence precisely
if
(
Bnx

)
n∈N0

is.

Proof. The assumptions imply that βj 6= 0 for all j ∈ N. Since

sup
|x|≥ξ

∣∣∣∣Tj(x)
βj

− x
∣∣∣∣ = sup

|x|≥ξ
|xfj(x)| ≤ C <∞ for all j ∈ N,

Theorem 2.5 yields the existence of a function h which is continuous for |x| suffi-
ciently large, and which satisfies

h(x) = lim
j→∞

T j(x)
Bj

,

as well as lim|x|→∞|h(x)−x| <∞. Since |Bj | → ∞, for n→∞ both |T n(x)| → ∞
and

logb |T n(x)| − logb |Bnh(x)| → 0 .
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For |x| sufficiently large, therefore, OT (x) is a b-Benford sequence precisely if(
Bnh(x)

)
is, and since h(x) 6= 0 for |x| sufficiently large, the sequence (Bnx) is

b-Benford, too. �

Corollary 5.2. Let (Tj) satisfy the hypotheses of Theorem 5.1. Then OT (x) is a
b-Benford sequence for all |x| sufficiently large if and only if (γn)n∈N0 is u.d. mod 1,
where

γn := logb |Bn| =
n∑
j=1

logb |βj | .

Theorem 5.1 and Corollary 5.2 can be rewritten in a form which makes the
analogy to Theorem 3.1 even more transparent. In fact, the latter theorem is a
special case of

Theorem 5.3. Let (Tj) be given by (5.1), and suppose that βj 6= 0 and
∑∞

j=1 |Bj | <
∞, and sup|x|≤1

∣∣x−1fj(x)
∣∣ ≤ C < ∞ for all j ∈ N. Then OT (x) is a b-Benford

sequence for all x 6= 0 sufficiently close to 0 if and only if (logb |Bn|)n∈N0 is u.d.
mod 1.

Proof. The existence of the uniform bound C on sup|x|≤1

∣∣x−1fj(x)
∣∣ implies that

Tj(x) 6= 0 for all j and 0 < |x| < 1
2 min(C−1, 1) =: ξ. Setting

η := ξ
(
max
j∈N0
|Bj |+ 2Cξ

∞∑
j=0

|Bj |
)−1

,

clearly 0 < η < ξ, and an argument analogous to that in Theorem 2.5 shows that
0 < |T n(x)| < ξ for all n and 0 < |x| < η. Proceed as in the proof of Theorem 3.1,
and define

Sj : x 7→ Tj
(
x−1

)−1
= β−1

j x
(
1− gj(x)

)
, j = 1, 2, . . . ,

where the functions gj are continuous for |x| sufficiently large, and

gj(x) = − fj(x−1)
1− fj(x−1)

.

For sufficiently large constants ζ and D, sup|x|≥ζ |xgj(x)| ≤ D < ∞ for all j, so
Theorem 5.1 applies to the family (Sj). On the other hand, for x sufficiently close
to 0, the orbit OT (x) is a b-Benford sequence precisely if OS

(
x−1

)
is. �

Example 5.4. Corollary 5.2 reduces the question whether (5.1) generates Benford
sequences to a problem of uniform distribution. Using standard techniques from
that theory (e.g. [KN]), it is straightforward to prove that for the classes of sequences
(βj) listed below, OT (x) is a strict Benford sequence for all initial points x close
to infinity or 0, respectively. The proof of (i) uses [KN, Thm. 3.3]; (ii) uses [KN,
Thm. 2.7] and Euler’s summation formula; (iii) is analogous to [D]; and (iv) uses
[KN, Thm. 3.2]. (Of course the respective uniform growth conditions on (fj) in
Theorems 5.1 and 5.3 also have to be met.)

(i) limj→∞ βj = β∞, where β∞ is not a rational power of any base, i.e.,

β∞ 6∈
{
bq : q ∈ Q, b ∈ N\{1}

}
.

In particular, setting β1 = 1 and βj := Fj/Fj−1 (j ≥ 2), where Fj denotes
the j-th Fibonacci number, leads to β∞ = 1+

√
5

2 . Since logb β∞ is irrational
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for every base b, Theorem 5.3 and Lemma 2.4(ii) imply that the sequence
of Fibonacci numbers is a strict Benford sequence (cf. [BD, KN]).

(ii) βj = r(j), where r denotes any rational function with real coefficients such
that βj is finite for all j, and such that limj→∞ |r(j)| ∈ {0,∞}. Notice
that this includes, as the special case βj = j, the well-known fact [D] that
the sequence (n!) is strictly Benford.

(iii) βj = jγ , where γ 6= 0 is any nonzero real number. (This also includes the
(n!) case.)

(iv) βj = e±p(j), where p(j) = jk + ak−1j
k−1 + . . . + a1j + a0 with k ∈ N

and a0, . . . , ak−1 ∈ R, i.e., p is a monic polynomial of degree k with real
coefficients.

Next, consider nonlinear nonautonomous dynamics. The following theorem is
the main result of this section.

Theorem 5.5. Suppose Tj : R+ → R+, j ∈ N, are such that
(i) logTj(ex) is convex in x, and
(ii) x−1 logTj(ex) is nondecreasing in x, and ≥ β > 1

for all x ≥ x0 and all j ∈ N. Then OT (x) is a strict Benford sequence for almost
all sufficiently large x.

The proof of Theorem 5.5 will use three lemmas, the first of which is a basic
fractional-parts inequality which will be used to establish asymptotic independence
and strong law convergence for random variables associated with OT (x). Let λ
denote Lebesgue measure, and for a convex function f : R→ R, let f ′+(x) denote
the right-hand derivative limh↘0

f(x+h)−f(x)
h of f at x (which exists everywhere,

since f is convex); similarly, f ′− is the left-hand derivative.

Lemma 5.6. Let f : [0, 1] → R be convex, nondecreasing and nonnegative. Then
for all c ∈ ]0, 1[,

(5.2) c− 1
f ′+(0)

≤ λ
(
{x ∈ [0, 1] : f(x)(mod 1) ≤ c}

)
≤ c+

2
f ′+(0)

.

Proof. Fix c ∈ ]0, 1[. If f ′+(0) < 1, the conclusion is trivial, so without loss of
generality, assume that f ′+(0) ≥ 1. Since all the terms in inequality (5.2) remain
unchanged if f(x) is replaced by f(x) − bf(0)c, further assume, without loss of
generality, that f(0) ∈ [0, 1[.

Set s0 = 0, set t0 = 0 if f(0) > c and = f−1(c) otherwise, and for k ∈ N, let
sk = min{x : f(x) = k} and tk = min{x : f(x) = k + c}, if such x’s exist, and
sk = 1, respectively tk = 1, otherwise. By the convexity of f , f ′+ is nondecreasing,
so by the definitions of (sk) and (tk), and the assumption that f(0) ∈ [0, 1[, it is
clear that

(5.3) tk − sk ≤
c

f ′+(0)
and sk+1 − tk ≤

1− c
f ′+(0)

for all k = 0, 1, 2, . . . .

Since f is convex and nondecreasing, and sk ≤ tk ≤ sk+1 for all k ∈ N, the
definitions of (sk) and (tk) imply that

(1− c)(tk+1 − sk+1) ≤ c(sk+1 − tk) ≤ (1 − c)(tk − sk) for all k ∈ N.
Setting a :=

∑∞
k=0(tk − sk) = λ

(
{x ∈ [0, 1] : f(x)(mod 1) ≤ c}

)
and analogously

b :=
∑∞

k=0(sk+1 − tk), this implies that

(1− c)
(
a− (t0 − s0)− (t1 − s1)

)
≤ c
(
b− (s1 − t0)

)
≤ (1− c)

(
a− (t0 − s0)

)
,
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so since s1 ≥ t0 ≥ s0,

(5.4)
(

1− c
c

)(
a− (t0 − s0)− (t1 − s1)

)
≤ b ≤

(
1− c
c

)
a+ (s1 − t0).

Since a+ b = 1, sk ≥ 0, tk ≥ 0 and c ∈ (0, 1), (5.3) and (5.4) imply that

c− 1
f ′+(0)

≤ a ≤ c+
2

f ′+(0)
.

�
Lemma 5.7. Let f, g : R+ → R+. If log f , log g are convex, nondecreasing and
nonnegative, then so are f , g and log(f ◦ g).

Proof. Taking h(x) = ex, f = h◦ log f is convex since an increasing convex function
of a convex function is convex; f is nondecreasing since h is increasing and log f
is nondecreasing, and f is nonnegative (in fact ≥ 1) since log f is nonnegative.
Similarly, g and log(f ◦ g) are convex, nondecreasing and nonnegative. �
Lemma 5.8 (Loéve [L, p. 154]). Let X1, X2, . . . be mean-zero random variables
such that, for some 0 < M <∞,

(i) |Xn| ≤M , and
(ii)

∑∞
N=1

1
N3

∑N
n=1

∑N
m=1E|XnXm| ≤M .

Then 1
n

∑n
i=1 Xi → 0 a.s.

Proof of Theorem 5.5. Fix β > 1. By Proposition 2.2, OT (x) is Benford if and
only if logb T n(x) is u.d. mod 1 for all b ∈ N \{1}. Since the set of such bases b is
countable, and logb(·) maps sets of measure zero into sets of measure zero, setting
Sn(x) = logb T

n(bx), it suffices to show that for each b ∈ N \{1}, and all sufficiently
large j ∈ N,

(5.5)
(
Sn(x)

)
is u.d. mod 1 for almost all x ∈ [j − 1, j].

To see (5.5), fix c ∈ ]0, 1[ and define the sequence of random variables (Yn) on the
probability space ([j− 1, j], B, λ) by letting Yn be the composition of the indicator
function of the set

⋃∞
k=0[k, k + c) with Sn, that is, Yn = 1 if Sn mod 1 ≤ c, and

= 0 otherwise. Since a random variable X is uniformly distributed on [j − 1, j] if
and only if P (X ≤ j − 1 + c) = c for all rational c ∈ ]0, 1[ , and since countable
unions of sets of measure zero have measure zero themselves, to establish (5.5), it
suffices to show

(5.6)
Y1 + · · ·+ Yn

n
→ c a.s. as n→∞.

(Note that in general the (Yn) are neither independent nor identically distributed.)
By (i) and Lemma 5.7, Sn is convex, nondecreasing and nonnegative for each

n ∈ N, and sufficiently large x. By (ii), S1(x) = logb T1(bx) ≥ β logb b
x = βx, so

since S1 is convex, without loss of generality (taking j large), S′+1 (j − 1) = m ≥
1+β

2 > 1. By (ii) and the definitions of T n and Sn,

Sn+1(x)
Sn(x)

=
logb T

n+1(bx)
logb T n(bx)

=
logTn+1

(
T n(bx)

)
logT n(bx)

≥ β,

so by (ii), for x ∈ ]j − 1, j[ and all n, k ∈ N,

(5.7)
Sn+k(x)
Sn(x)

is nondecreasing in x, and ≥ βk .
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Since Sn is nondecreasing and nonnegative, and S1(j − 1) > 0 and Sn(x) > 0
(without loss of generality, taking j large) S′+n+1 = [(Sn)(Sn+1/Sn)]′+ ≥ βS′+n , so
by the convexity of Sn+k,

(5.8) S′+n+k(x) ≥ βkS′+n (x) ≥ βn+k−1S′+1 (j − 1) ≥ mβn+k−1,

for all n, k ∈ N and x ∈ ]j − 1, j[. For each n ∈ N, let An = {x ∈ [j − 1, j] :
Sn(x) (mod 1) ≤ c}, so that Yn = 1An . By (5.8) and Lemma 5.6,

(5.9) |λ(An)− c| ≤ 2
mβn

for all n ∈ N.

Next it will be shown that

(5.10) |E(YnYn+k)− EYnEYn+k| ≤
8
cβk

for all n, k ∈ N.

By definition of Sn, An =
⋃∞
i=0[si, ti], where s0 = j − 1 and, for all i ≥ 0,

si+1 ≥ ti ≥ si and ti ≤ j. Since Sn is convex, ti − si ≥ ti+1 − si+1 for all i ∈ N,
and by the definition of An and convexity of Sn again,

S′+n (si+1) ≥ S′−n (ti) ≥
c

ti − si
for all i ∈ N.

Thus by (5.8), S′+n+k(si+1) ≥ cβk

ti−si for all i ∈ N, so by Lemma 5.6,

(5.11) |λ(An+k ∩ [si+1, ti+1])− c(ti+1 − si+1)| ≤ 2di
cβk

for all i ∈ N.

By (5.8) and the convexity of Sn+k again, Lemma 5.6 implies that λ(An+k∩[si, ti])−
c(ti − si) ≤ 2

mβn+k−1 for i = 0, 1. Thus, since m > c > 0,

(5.12) |λ(An+k ∩An)− cλ(An)| ≤
∞∑
i=1

2(ti − si)
cβk

+
4

mβn+k−1
≤ 6
cβk

.

By (5.9), |λ(An+k)− c| = |EYn+k − c| ≤ 2
mβn+k , so by (5.9) and (5.12),

|E(Yn+kYn)− EYn+kEYn| = |λ(An+k ∩An)− λ(An+k)λ(An)|
≤ |λ(An+k ∩An)− cλ(An)|+ |cλ(An)− λ(An)λ(An+k)|

≤ 6
cβk

+ λ(An)|c− λ(An+k)| ≤ 6
cβk

+
2

mβn+k
≤ 8
cβk

,

which proves (5.10), the key result for asymptotic independence of the (Yn).
For n ∈ N, let Xn = Yn − EYn. By (5.10),

N∑
n=1

N∑
m=1

|E(XnXm)| ≤
N∑
n=1

E|Xn|2 + 2N
N−1∑
k=1

8
cβk
≤ NM̂,

where M̂ = 1 + 16
c

∑∞
k=1

1
βk

<∞, since c > 0 and β > 1. Thus,

∞∑
N=1

1
N3

N∑
n=1

N∑
m=1

|E(XnXm)| ≤ M̂
∞∑
N=1

1
N2

<∞,

so letting M = max
(
2, M̂

∑∞
N=1

1
N2

)
, Lemma 5.8 implies that 1

n

∑n
i=1 Xi → 0 a.s.

Hence 1
n

∑n
j=1(Yj −EYj)→ 0 a.s., and since β > 1, (5.9) implies that EYn → c as

n→∞, which proves (5.6). �
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Example 5.9. The orbits of the following systems are Benford sequences for almost
all sufficiently large initial points:

(i) Tj(x) = xpj with infi∈N pi > 1 (this generalizes the results for the au-
tonomous system with T (x) = xp, p > 1 in Section 4);

(ii) Tj(x) =

{
x2 if j is even,
2x if j is odd;

(iii) Tj(x) = jx.
(For instance, to show (i), logTj(ex) = log epjx = pjx is convex, nondecreasing and
nonnegative for x > 0, and x−1 logTj(ex) = pj ≥ infi∈N pi =: β > 1, so Theorem 5.5
applies.) The conclusion of Theorem 5.5 may fail if even a single function does not
satisfy the hypotheses, as the next simple example shows.

Example 5.10. T1(x) = 2, and Tj(x) = 1
2x

2 for j > 1. Clearly, Tj satisfies the
hypotheses of Theorem 5.5 for all x and all j > 1, but OT (x) ≡ (x, 2, 2, 2, . . . ) is
not b-Benford for any b ∈ N \{1}.

Since autonomous systems are a special case of nonautonomous systems, general
nonlinear nonautonomous systems may also have exceptional sets, and the conclu-
sion of Theorem 5.5 may clearly fail if β = 1; the autonomous system T (x) = x
satisfies hypothesis (i) of the theorem, but not (ii) because x−1 logTj(ex) ≡ 1 (and
clearly OT (x) is not a Benford sequence for any x).

Note that the conclusion of Theorem 5.5 does not include all the nonlinear au-
tonomous systems in Section 4 above; e.g., for T (x) = x2 + 1 nondecreasing in
Theorem 5.5(ii) fails and for T (x) = x2 − 1 convexity in (i) fails. On the other
hand, that theorem does not require any of the differentiability assumptions of Sec-
tions 3 and 4, and applies, for example, to the autonomous system defined by the
convex map T with T (x) =

∑∞
i=0

xi+1

i! 1[i,i+1[(x) which is not differentiable at any
i ∈ N.

Remark 5.11. (i) Many real-valued recursive sequences of higher order such as
the Fibonacci sequence (cf. [BD] or Example 5.4(i) above) are Benford sequences
because they are multi-dimensional analogues of the results in this paper, and the
interested reader is referred to [Ber2] for an analysis of Benford’s law in multi-
dimensional dynamical systems.

(ii) Given the ubiquity of Benford behavior, it might be interesting to develop
tests for the statistical analysis of significant digits of numerical data, which could
be used to detect hidden periodicity, or help determine the nature of attracting
fixed points.

(iii) The authors do not know whether analogous general results hold without
stability assumptions; for example, they know of no example of an unstable system
whose orbits obey Benford’s law for more than a finite number of bases.

6. Differential equations and Benford’s law

This final section treats Benford properties of dynamical systems generated by
ordinary differential equations

(6.1) ẋ = F (x, t)

on the real line. Though analogous to the discrete-time case, the results are some-
what easier due to the dynamical simplicity of differential equations in one dimen-
sion, especially autonomous ones.
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First the Benford property for real-valued functions is defined. Recall that 1A
is the indicator function of A ⊆ R.

Definition 6.1. A measurable real-valued function f : [0,+∞[→ R is a b-Benford
function if

lim
T→∞

1
T

∫ T

0

1[1,t[ ◦Mb(|f(τ)|) dτ = logb t for all t ∈ [1, b[ ,

and it is called a strict Benford function (or simply a Benford function) if it is a
b-Benford function for all b ∈ N \{1}.

As in the discrete-time case, there is a direct correspondence between Benford
functions and continuous uniform distributions. (The term continuously uniformly
distributed modulo one will henceforth be abbreviated as c.u.d. mod 1.) Recall
that logb 0 := 0 for all bases b. The next result is the continuous analogue of
Proposition 2.2.

Proposition 6.2. A function f is a b-Benford function if and only if (logb |f(t)|)t≥0

is c.u.d. mod 1.

The symbol (ϕtx0)t≥0 will denote the solution of (6.1), subject to the initial
condition x(0) = x0; conditions must be imposed on F to assure that this solution
exists and is unique. Use of the notation (ϕtx0)t≥0 will, however, imply that this
solution is defined for all t ≥ 0. First, assume that the function F in (6.1) is C2,
and also that F (0, t) = 0 for all t, so

(6.2) F (x, t) = −α(t)x+ xf(x, t)

where α and f are C1, and f(0, t) ≡ 0. For brevity, the quantities A(t) :=
∫ t

0 α(τ) dτ
refer to α(·) in the initial value problem

(6.3) ẋ = −α(t)x+ xf(x, t) , x(0) = x0 .

The following theorem is a direct analogue of Theorem 5.3.

Theorem 6.3. Suppose that
∫∞

0
e−A(τ)dτ < ∞ and supτ≥0 e

−A(τ) < ∞ as well
as sup|x|≤1

∣∣x−1f(x, t)
∣∣ ≤ C < ∞ for all t ≥ 0. Then for all x0 sufficiently close

to 0 there is a unique solution (ϕtx0)t≥0 of (6.3), and this solution is a b-Benford
function if and only if (A(t)/ log b)t≥0 is c.u.d. mod 1.

Proof. By standard local existence and uniqueness results (e.g. [A, Sec. 7]), so-
lutions of (6.3) exist locally. The uniform bound C on sup|x|≤1

∣∣x−1f(x, t)
∣∣, and∫∞

0
e−A(τ)dτ <∞ together imply that locally the origin is the only equilibrium in

(6.3). Every nonconstant solution x to (6.3) yields, via x 7→ x−1, a local solution
to

(6.4) ẋ = −x2F (x−1, t) = α(t)x + g(x, t) , x(0) = x−1
0

with g(x, t) := −xf(x−1, t). Since g is uniformly bounded as |x| → ∞, the solution
of (6.4) exists globally, that is, for all t ≥ 0, provided |x0|−1 is sufficiently large [A,
Prop. 7.8]; denote this solution by (ψtx−1

0 )t≥0 and notice that it may be (implicitly)
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represented as

ψtx
−1
0 = eA(t)x−1

0 +
∫ t

0

eA(t)−A(τ)g(ψτx−1
0 , τ) dτ .

Clearly, ϕtx0 = (ψtx−1
0 )−1 for all t ≥ 0.

To apply a continuous-time shadowing argument, consider the map

h : y 7→ y +
∫ ∞

0

e−A(τ)g(ψτy, τ) dτ

which is well defined and continuous for |y| sufficiently large; furthermore, h satisfies
limy→∞|h(y)− y| <∞. From

eA(t)h(y)− ψty =
∫ ∞
t

eA(t)−A(τ)g(ψτy, τ) dτ

for all t ≥ 0, it follows that for sufficiently large y∣∣∣∣1− ψty

eA(t)h(y)

∣∣∣∣ ≤ C

|h(y)|

∫ ∞
t

e−A(τ) dτ,

where the right-hand side tends to zero as t → ∞. For |x0| sufficiently small,
the solution (ϕtx0)t≥0 of (6.3) is therefore a b-Benford function if and only if
(A(t)/ log b)t≥0 is c.u.d. mod 1. �

Remark 6.4. The condition
∫∞

0 e−A(τ)dτ < ∞ may be considered the continuous-
time analogue of

∑
j |Bj | < ∞ in Theorem 5.3. While the latter automatically

implies supj |Bj | <∞, the condition supτ≥0 e
−A(τ) <∞ has to be added here.

Corollary 6.5. Let F be a C2 function with F (0) = 0 and F ′(0) > 0. Then for
every x0 6= 0 sufficiently close to 0, the solution of the initial value problem

ẋ = −F (x) , x(0) = x0

is a Benford function.

Example 6.6. Clearly, Theorem 6.3 could be formulated in a “reciprocal” version
analogous to Theorem 5.1 with infinity (instead of 0) as an attractor; details are left
to the interested reader. As in Example 5.4, the extensive knowledge about contin-
uous uniform distribution ([KN, Sec. 1.9]) yields the following classes of functions
α to which Theorem 6.3 applies:

(i) α = α(t), with
∫∞

0
|α(τ) − α∞| dτ <∞ for some α∞ > 0;

(ii) α = p(t), where p is any real polynomial with limt→∞ p(t) = +∞;
(iii) α(t) = tγ−1 with γ > 0;
(iv) α(t) = ep(t), where p is any real polynomial with limt→∞ p(t) = +∞.

The rest of this section focuses on autonomous differential equations

(6.5) ẋ = −F (x)

where F denotes a C2 function with F (0) = 0 and xF (x) > 0 for all x 6= 0
sufficiently close to 0. If the origin is to be a stable equilibrium, α := F ′(0) must
be nonnegative. The case α > 0 has already been dealt with in Corollary 6.5. If
α = 0, then the solutions of (6.5) tend to 0 rather slowly, and they may fail to yield
Benford functions. Since solutions cannot cross the origin, the analysis may be
restricted to the positive half-axis x > 0. As in Theorem 3.4, no Benford functions
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appear as solutions of (6.5) under even slightly weaker smoothness assumptions on
F .

Theorem 6.7. Let F be C1+ε for some ε > 0, and assume that F (0) = 0, F ′(0) = 0
and F (x) > 0 for x ∈ ]0, δ] for some δ > 0. Then no solution (ϕtx0)t≥0 of (6.5)
with x(0) = x0 ≤ δ is a b-Benford function for any b ∈ N\{1}.

Proof. Solutions of (6.5), together with the initial condition x(0) = x0, exist locally.
Within finite time, these solutions can reach neither values larger than δ nor, by
the divergence of

∫ δ
0 F (x)−1dx, the origin, so they are in fact defined for all t ≥ 0

[A, Thm. 7.6]. The function y with y(t) := − logb(ϕtx0) solves the autonomous
ordinary differential equation

(6.6) ẏ =
F (b−y)by

log b
=: Gb(y) .

Obviously, Gb is a positive C2 function with limy→∞Gb(y) = 0. Thus the solution
(ψty0)t≥0 of (6.6), together with y(0) = y0 sufficiently large, exists for all t ≥ 0 and
is unique. It will now be shown that (ψty0)t≥0 is not c.u.d. mod 1.

The assumptions on F imply that Gb(y) ≤ Cb−εy/ log b for all sufficiently large
y, for some ε > 0. But then

t =
∫ ψty0

y0

dy

Gb(y)
≥ C−1

∫ ψty0

y0

bεy log b dy = (Cε)−1(bεψty0 − bεy0)

for all t ≥ 0, and thus

ψty0 ≤ ε−1 logb(Cεt+ bεy0).

If (ψty0)t≥0 were c.u.d. mod 1, then by [KN, Thm. 9.7] the sequence (ψny0)n∈N0

would be u.d. mod 1, which contradicts Lemma 2.4(i). �

Example 6.8. Analogously to Example 3.5, note that the assumption F ∈ C1+ε

in the above theorem cannot be weakened to F ∈ C1. Indeed, with the C1 function

F (x) :=

{
− x

2 log x if 0 < x < 1 ,
0 if x = 0 ,

the solution (ϕtx0)t≥0 of (6.5) with x(0) = x0 is a Benford function for all x0 ∈ ]0, 1[.

Finally, consider solutions of (6.5) for functions F with F (0) = 0 and F (x) > 0
for x > 0, but with limx→0 x

−1F (x) = ∞. Obviously, such functions are not
differentiable at the origin.

Theorem 6.9. Let F be continuous on [0, δ] and continuously differentiable on ]0, δ[
for some δ > 0. Suppose that F (0) = 0, that x 7→ x−1F (x) is nonincreasing with
limx→0 x

−1F (x) =∞, and that
∫ δ

0 F (x)−1dx diverges. Then for all x0 sufficiently
close to 0, there exists a unique solution of

ẋ = −F (x) , x(0) = x0 ,

and this solution is a Benford function.
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Proof. Unique solutions exist locally for x0 ∈ ]0, δ]; since
∫ δ

0 F (x)−1dx = ∞, they
are defined for all t ≥ 0, and limt→∞ ϕtx0 = 0 for all x0 sufficiently close to 0. Fix
a base b and define the C1 function gb on [0,+∞[ by

gb(t) := − logb(ϕet−1x0) .

Clearly, gb(t)→∞ monotonically as t→∞. Since

d

dt
gb(t) = (log b)−1bgb(t)F (b−gb(t))et > 0

and d
dtgb is increasing, the function gb is convex and increasing. Furthermore,

limt→∞ t
−1gb(t) =∞, which by [KN, Thm. 9.5] implies that(

g(log(t+ 1))
)
t≥0

=
(
− logb ϕtx0

)
t≥0

is c.u.d. mod 1. Thus (ϕtx0)t≥0 is a b-Benford function, and since b was arbitrary,
it is strictly Benford. �
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