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Abstract

Mantissa distributions generated by dynamical processes continue to attract much inter-
est. In this article, it is demonstrated that one-dimensional projections of (at least) almost
all orbits of many multi-dimensional nonautonomous dynamical systems exhibit a mantissa
distribution that is a convex combination of a trivial point mass and Benford’s Law, i.e.,
the mantissa distribution of the non-trivial part of the orbit is asymptotically logarithmic,
typically for all bases. Both linear and power-like systems are considered, and Benford be-
haviour is found to be ubiquitous for either class. The results unify previously known facts
and extend them to the nonautonomous setting, with many of the conclusions being best
possible in general.
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1 Introduction

Studying the distribution of digits and mantissae of numerical data generated by some dynamical
process or other is an intriguing task that continues to attract interest from a wide spectrum
of disciplines, among which are for instance number theory [15], statistics [20], and accounting
[21]. One recurring theme in this context is the astonishing ubiquity of a logarithmic distribution
commonly referred to as Benford’s Law (BL). The latter denotes the probability distribution for
the mantissa with respect to the base b ∈ N \ {1} given by

P(mantissa b ≤ t) = logb t , ∀t ∈ [1, b[ ; (1)

the most well-known special case is that with respect to base b = 10

P(first significant digit = t) = log10

(
1 + t−1

)
, ∀t = 1, . . . , 9 .
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Examples of empirical data sets following (1) have been discussed extensively, for instance in
real-life data (e.g., physical constants, stock market indices, tax returns [12, 17, 21, 23, 25]), in
stochastic processes (e.g., sums and products of random variables [11, 23]), and in deterministic
sequences (e.g., (n!) and Fibonacci numbers [3, 8, 10]). Recently a thorough mathematical
analysis of BL for dynamical systems has been initiated [4, 5, 6, 11, 24, 26]. Following physical
experiments and numerical simulations, it has been shown that orbits of many dynamical systems
follow BL surprisingly often; for an application to Newton’s method and other root-finding
algorithms see [7].

Dynamical systems, be they deterministic or stochastic, autonomous or nonautonomous, are
widely used as models for real-world phenomena. If the latter exhibit, on an empirical level, a
striking statistical property like (1) — as often they do — then it is natural to ask for a rigorous
manifestation of this property in the underlying mathematical model. For autonomous systems
this task has to a certain extent been completed in [4, 6] where it was shown that BL will typically
emerge in a very strong sense, provided that the dynamics under consideration shows uniform
growth or decay of orbits. For nonautonomous dynamical systems, on the other hand, the
situation is less clear, and only the one-dimensional case (which of course is somewhat special)
has been analysed in some depth [5, 11]. With the overall appreciation for and understanding
of nonautonomous dynamics increasing, it seems timely to address the problem of mantissa
distributions for these systems as well.

The purpose of the present article is to initiate the study of mantissa and digit distributions
for nonautonomous dynamical systems. Given the vast variety of nonautonomous behaviour, this
can naturally be but a first step. Already, however, and not completely unexpectedly, it becomes
apparent that the task ahead may pose a considerable challenge, as the information provided by
standard tools (e.g. Sacker–Sell spectrum, Lyapunov exponents) may not be accurate enough
for this purpose. This article uses a version of shadowing, an important technique in both the
autonomous and the nonautonomous setting, to overcome this problem. In tribute to Bernd
Aulbach, the sole focus is on difference equations (see e.g. [1, 2] and references therein). For the
class of systems considered here, this is not a substantial restriction at all, as the results and
counterexample carry over to the continuous time case in a straightforward way.

From one of the main results of this article, Theorem 9, one can for instance deduce that,
unless x0 = 0, each component of the sequence (xn) in R2, defined iteratively as

xn =
(
an 1 + bn
1 + cn 2 + dn

)
xn−1 , n = 1, 2, . . . ,

exhibits the distribution (1), for every b ∈ N\{1} — provided that∑∞
n=1

(3 + 2
√

2)n max{|an|, |bn|, |cn|, |dn|} <∞ .

(While best possible in general, the latter condition can be weakened considerably in some special
cases, see Example 10 and Remark 11(ii).) Similarly, each component of Lebesgue almost every
(nonautonomous) orbit generated by any successive combination of the two bi-variate polynomial
maps

Ta :
(
u
v

)
�→
(

3u2v2 + 4
5u2v4 − 6v2 + 7

)
, Tb :

(
u
v

)
�→
(
v
2uv

)
,

exhibits (1), provided the orbit starts (and hence forever stays) sufficiently far away from the
two coordinate axes u = 0 and v = 0, see Theorem 16 and Example 19. Besides giving complete
proofs for these and other new results, this article, by demonstrating how the ad-hoc approach
chosen here may fail, also highlights some of the difficulties which a future, more systematic
treatment will have to address.
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2 Basic notations and definitions

The sets of natural, non-negative integer, integer, rational, positive real, real, and complex
numbers are symbolised by N, N0, Z, Q, R+, R, and C, respectively. The real part, imaginary
part, complex conjugate and absolute value (modulus) of z ∈ C is denoted by 	z, 
z, z and
|z|, respectively. For z �= 0, the argument arg z is the unique number in ] − π, π] which makes
z = |z|ei arg z hold; for ease of notation arg 0 := 0. The unit circle S1 is interpreted as S1 = {z ∈
C : |z| = 1}. If A is a complex d× d-matrix, then A� symbolises its transpose and σ(A) ⊆ C its
spectrum, i.e. the set of all eigenvalues of A. For any A ∈ Cd×d let AR be its realification, i.e.
the real matrix

AR =
( 	A −
A


A 	A
)

∈ R2d×2d .

Accordingly, the set σ+(A) = {λ ∈ σ(AR) : 
λ ≥ 0} is the “upper half” of the symmetrised
spectrum σ(AR) = σ(A) ∪ σ(A); obviously, σ(AR) = σ(A) whenever A is real. The standard
inner product on Cd is 〈x, y〉 =

∑d
j=1 x

(j)y(j); it induces the Euclidean norm ‖x‖ =
√〈x, x〉.

The symbols rσ(A) and ‖A‖ denote, respectively, the spectral radius and the matrix norm of
A as induced by ‖ · ‖, that is, rσ(A) = max{|λ| : λ ∈ σ+(A)} and ‖A‖ =

√|μ| where μ is the
largest eigenvalue of A�

A. The specific choice of a norm on Cd (and, correspondingly, of an
induced norm on Cd×d) is largely irrelevant for this article, and the Euclidean norm is chosen
for convenience only; see however Remark 11(i).

Throughout, b denotes a natural number larger than one (called a base). Every x ∈ R+ can
be written uniquely as x = Mb(x)bl with Mb(x) ∈ [1, b[ and the appropriate l ∈ Z. The function
Mb : R+ → [1, b[ is called the (base b ) mantissa function; for convenience let Mb(0) := 0 for all b.
For every x ∈ R, the numbers �x� and �x� denote the largest integer not larger, and the smallest
integer not smaller than x, respectively. The number �Mb(x)� ∈ {1, . . . , b− 1} is called the first
significant digit of x (with respect to base b). For a given base b, logb will denote the logarithm
with respect to b, where, to avoid cumbersome formulations, logb 0 := 0 for all b; if used without
a subscript, the log symbol denotes the natural logarithm. The cardinality of the finite set S is
#S, and λd symbolises the d-dimensional Lebesgue measure on Rd (or parts thereof).

Definition 1. A sequence (xn)n∈N0 of real numbers is called b-Benford if

limn→∞
#{l < n : Mb(|xl|) ≤ t}

n
= logb t , ∀t ∈ [1, b[ ,

and it is (strictly) Benford if it is b-Benford for every b ∈ N \{1}.
The Borel probability measure on [1, b] with distribution function logb t will be denoted by

Bb. Thus (xn)n∈N0 is b-Benford precisely if 1
n

∑n−1
l=0 δMb(|xl|) converges weakly to Bb; here δx is,

for any x ∈ R, the Dirac measure at x. Generally, given any (real or complex) sequence (xn)n∈N0

the (possibly finite or even empty) subsequence of its non-zero elements will be denoted by (xn)∗,
that is, (xn)∗ = (xnk

)k∈N0 where 0 ≤ n0 < n1 < . . . and {nk : k ∈ N0} = {n ∈ N0 : xn �= 0}.
The following correspondence between Benford sequences and uniform distribution modulo

one is well known [10]. The term uniformly distributed modulo one (in Rd) will henceforth be
abbreviated as u.d. mod 1 (in Rd).

Proposition 2 ([10]). A sequence (xn)n∈N0 of real numbers is b-Benford if and only if the
sequence (logb |xn|)n∈N0 is u.d. mod 1.

This article studies Benford properties of recursively defined sequences,

xn = Tn(xn−1) , n ∈ N , (2)
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where, for each n, Tn denotes a map from Rd (or Cd) or a part thereof into itself. For ease of
notation, no distinction will be made between row and column vectors, that is, x ∈ Cd should
be thought of as a column but will nevertheless be written as x =

(
x(1), . . . , x(d)

)
. For n ∈ N

the n-fold composition of maps, Tn ◦ Tn−1 ◦ . . . ◦ T1, is denoted by T n, and T 0 := id. The
sequence generated by (2) starting from the initial state x0 is thus

(
T n(x0)

)
n∈N0

; this sequence
is denoted by OT (x0) and referred to as the (nonautonomous) orbit of x0 under T . Note that this
interpretation of the orbit as a sequence differs from terminology in dynamical systems theory
(e.g. [14]) according to which the orbit of x0 is the mere set {xn : n ∈ N0}. For any function
ϕ defined on Cd, the symbol ϕ

(
OT (x0)

)
stands for the sequence

(
ϕ ◦ T n(x0)

)
n∈N0

; for example,
‖OT (x0)‖ denotes the sequence of Euclidean norms (‖xn‖)n∈N0 , and 〈c,OT (x0)〉 symbolises the
sequence of inner products

(〈c, xn〉
)
n∈N0

. As a special case of the latter, with c = ej representing

the j-th vector of the canonical basis, 〈ej , OT (x0)〉 = O
(j)
T (x0) = (x(j)

n )n∈N0 is the sequence of
j-th components of OT (x0).

3 Linear Systems

This section studies, under the perspective of BL, nonautonomous linear equations

xn = Anxn−1 , n ∈ N , (3)

where, for each n, An is a real d × d-matrix. Thus each map Tn in (2) is linear, Tn(x) = Anx.
To analyse the mantissa distribution of OT (x0) generated by (3) first recall the definition of
b-resonance from [4].

Definition 3. (i) A set Λ ⊂ C is b-resonant if there exists a finite non-empty subset Λ0 =
{λ1, . . . , λl} ⊂ Λ with |λ1| = . . . = |λl| such that either #(Λ0 ∩ R) = 2 or the numbers 1,
logb |λ1| as well as the elements of

{
1
2π arg λ1, . . . ,

1
2π arg λl

}\{0, 1
2

}
are Q-dependent.

(ii) A (real or complex) matrix A has b-resonant spectrum if the set σ+(A) is b-resonant.

For the autonomous case, that is for An in (3) not depending on n, [4, Thm.3.3] shows that, for
every c ∈ Rd, the sequence 〈c,OT (x0)〉∗ is either finite or b-Benford — provided that A ≡ An

does not have b-resonant spectrum. Thus, for every c, x0 ∈ Rd, and if A does not have b-
resonant spectrum, the asymptotic mantissa distribution base b of

(〈c,Anx0〉
)
n∈N0

is of the
form ρBb + (1 − ρ)δ0 with ρ ∈ {0, 1}. This result generalises easily to the case of a p-periodic
sequence (An), i.e., An+p = An for some p ≥ 1 and all n ∈ N.

Theorem 4. Let (An) in (3) be p-periodic for some p ≥ 1 and assume that the matrix Ap ·. . . ·A1

does not have b-resonant spectrum. Then, for every c, x0 ∈ Rd, the sequence 〈c,OT (x0)〉∗ is either
finite or b-Benford.

Proof. Let B = Ap · . . . ·A1, and observe that, for every l = 0, 1, . . . , p− 1, the sequence(
logb |〈c, xnp+l〉|

)∗ =
(
logb |〈c,Al · . . . · A1 ·Bnx0〉|

)∗ =
(
logb |〈A�

1 · . . . · A�
l c,B

nx0〉|
)∗

is either finite or u.d. mod 1, by [4, Thm.3.3]. With [16, Exc.2.12] the same is true for the entire
sequence

(
logb〈c, xn〉

)∗. �

Example 5. Let (An) be the 2-periodic sequence of matrices with

An =
(

0 1
1 3 + (−1)n

)
, n ∈ N .

The set σ+(A2A1) = {5 ± 2
√

6} is not b-resonant for any b. Also, for every non-zero c and x0,
〈c,OT (x0)〉∗ is infinite. Thus 〈c,OT (x0)〉∗ is Benford whenever c, x0 ∈ Rd\{0}.
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Corollary 6. Under the assumptions of Theorem 4 the asymptotic mantissa distribution base b
of 〈c,OT (x0)〉 is given by ρBb + (1 − ρ)δ0, with ρ ∈ {0, 1

p ,
2
p , . . . ,

p−1
p , 1

}
depending on c and x0.

Remarks 7. (i) The crucial non-resonance condition in Theorem 4 could be rephrased as (An)
not having b-resonant spectrum on average. For the latter to be the case, it is neither necessary
nor sufficient that each of the p matrices A1, . . . , Ap does not have b-resonant spectrum. This
can be seen from very simple examples already.

(ii) If A does not have b-resonant spectrum then neither does Al for any l ≥ 2. Since the
converse is not true in general, Theorem 4 constitutes a (slight) generalisation of [4, Thm.3.3]
even in the autonomous case.

Requiring that (An) in (3) be periodic clearly is restrictive. Beyond periodicity, however,
a non-resonance condition on average will typically not suffice to guarantee the generation of
Benford sequences, even if the nonautonomy of (An) is quite mild.

Example 8. Pick 0 < ε < 1, let

an = 2
1
2π + ε

(
sinn− sin(n − 1)

)
, n ∈ N ,

and consider (3) with d = 1 and An = (an). Obviously, n �→ An is almost periodic and, uniformly
in k,

1
n

∑k+n−1

l=k
logb al =

(
1
2π

+
ε

n
sin(k + n− 1) − ε

n
sin(k − 1)

)
logb 2 → 1

2π
logb 2 as n→ ∞ .

Thus, if b = 2m for some m ∈ N, then (An) does — in a rather strong average sense — not have
b-resonant spectrum, yet from

logb |xn| = logb |an · . . . · a1x0| =
n

2mπ
+

ε

m
sinn+ logb |x0| , n ∈ N ,

it is easy to deduce (see for instance [16, Exc.2.7]) that (logb |xn|) is not u.d. mod 1, and hence
(xn)∗ is neither finite nor b-Benford.

Without further assumptions, therefore, Theorem 4 does not even generalise to almost pe-
riodic sequences (An). Formulating appropriate assumptions is comparatively easy in the one-
dimensional case, and various results guaranteeing the generation of Benford sequences for (at
least) almost all x0 have been discussed in [6, 11]. In the higher-dimensional setting, i.e. for
d ≥ 2, the situation is more complicated as the information provided by standard tools like e.g.
exponential dichotomies and Lyapunov exponents will often be inconclusive as to whether (3)
generically generates Benford sequences, as by Theorem 4 it does in the periodic case. The fol-
lowing theorem utilises a shadowing technique to derive conditions under which one-dimensional
projections of sequences (xn) generated by (3) are b-Benford (cf. [5, 6, 22]).

Theorem 9. Assume that An = A + Bn holds in (3) for all n ∈ N, where A does not have
b-resonant spectrum and, with βA = ‖A‖max

{
1, ‖A−1‖},∑∞

n=1
βn

A‖Bn‖ <∞ . (4)

Then, for every c ∈ Rd, the sequence
(〈c, xn〉

)
is b-Benford provided that it is unbounded.

Proof. Note first that the matrix A, not having b-resonant spectrum, is invertible. Hence βA ≥ 1
is finite, and (4) implies limn→∞ ‖A‖n‖Bn‖ = 0. From

xn = (A+Bn) · . . . · (A+B1)x0 = An(I +A−nBnA
n−1) · . . . · (I +A−1B1)x0 , n ∈ N ,
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it follows that

‖xn‖ ≤ ‖A‖n
∏n

l=1

(
1 + ‖A−1‖l‖Bl‖‖A‖l−1

)‖x0‖ ≤ D1‖A‖n , n ∈ N ,

with an appropriate constant D1 > 0. Since there is nothing to prove otherwise, assume w.l.o.g.
‖A‖ > 1. Let P denote the (linear) projection onto the stable subspace Es = ⊕|λ|<1ker(A−λI)d
of A along the complementary unstable subspace. With δ = min

{|λ−z| : λ ∈ σ+(A), z ∈ S1
}
> 0

and any κ satisfying (1 + δ)−1 < κ < 1 there exists a constant K > 0 such that, for all n ∈ N0,

max
{‖AnP‖, ‖A−n(I − P )‖} ≤ Kκn .

Since ‖Bnxn−1‖ → 0 as n→ ∞, the point

ξ = x0 +
∑∞

l=1
A−l(I − P )Blxl−1

is well-defined. Moreover,

xn −Anξ = Anx0 +
∑n

l=1
An−lBlxl−1 −Anx0 −

∑∞
l=1

An−l(I − P )Blxl−1

=
∑n

l=1
An−lPBlxl−1 −

∑∞
l=1

A−l(I − P )Bl+nxl+n−1 ,

and therefore, for all 1 ≤ m ≤ n,

‖xn −Anξ‖ ≤
∑m

l=1
Kκn−l‖Blxl−1‖ +

∑n

l=m+1
Kκn−l‖Blxl−1‖ +

∑∞
l=1

Kκl‖Bl+nxl+n−1‖

≤ K
κn−m

1 − κ
supl∈N ‖Blxl−1‖ +K

1 + κ

1 − κ
supl≥m+1 ‖Blxl−1‖ ,

showing that ‖xn −Anξ‖ → 0 as n→ ∞.
Assume now that

(〈c, xn〉
)

is unbounded. Then
(〈c,Anξ〉) is unbounded as well and, since

A does not have b-resonant spectrum, even b-Benford [4, Thm.3.3]. As a consequence, with
D = 2‖c‖max

(
1

log b , supn∈N ‖xn − Anξ‖) the set ND = {n ∈ N0 : |〈c,Anξ〉| ≤ D} has density
zero, that is, limn→∞ 1

n#
(
ND ∩ {0, . . . , n − 1}) = 0. For all n �∈ ND the elementary estimate

| log(1 + x)| ≤ 2|x|, valid whenever |x| ≤ 1
2 , implies that∣∣ logb |〈c, xn〉| − logb |〈c,Anξ〉|∣∣ =

∣∣∣∣logb

∣∣∣1 +
〈c, xn〉 − 〈c,Anξ〉

〈c,Anξ〉
∣∣∣∣∣∣∣ ≤ 2

D log b
|〈c, xn〉 − 〈c,Anξ〉|

≤ ‖xn −Anξ‖ → 0 ,

and hence shows that
(〈c, xn〉

)
is also b-Benford. �.

Example 10. (i) Let (An) be given as

An =
(
ρn 1 + ρn

1 + ρn 2 + 3ρn

)
=
(

0 1
1 2

)
+ ρn

(
1 1
1 3

)
= A+ ρnB , n ∈ N . (5)

The matrix A does not have b-resonant spectrum for any b, and βA = 3 + 2
√

2. Consequently,
Theorem 9 guarantees that every unbounded sequence

(〈c, xn〉
)

with (xn) generated by (3) and
(5) is Benford provided that

∑∞
n=1 β

n
A|ρn| < ∞. This condition can be relaxed considerably.

Indeed, a straightforward calculation shows that, for all c, x0 ∈ R2,

〈c, xn〉 = D1

(
1 +

√
2
)n∏n

l=1

(
1 + ρl

√
2
)

+D2

(
1 −

√
2
)n∏n

l=1

(
1 − ρl

√
2
)
,

where the constants D1,D2 depend linearly on c, x0. The much weaker condition limn→∞ ρn = 0,
therefore, is sufficient to ensure that for every c, x0 ∈ R2 the sequence

(〈c, xn〉
)∗ is either finite

or Benford.
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(ii) Consider the sequence (An) defined according to

An =
(

0 2
2 2

)
+ ρn

(
2 1 −√

5
1 +

√
5 −2

)
= A+Bn , n ∈ N , (6)

so that βA =
√

5 + 1 ≈ 3.24. Again, Theorem 9 guarantees that every unbounded sequence(〈c, xn〉
)

is Benford whenever
∑∞

n=1 β
n
A|ρn| < ∞. As before, this condition is not optimal. An

explicit calculation shows that

〈c, xn〉 = D1

(
1 +

√
5
)n +D2

(
1 +

√
5
)n∑n

l=1

(√
5 − 3
2

)l

ρl +D3

(
1 −

√
5
)n
,

with the constants D1,D2,D3 being linear functionals of c and x0. With this it is easy to
check that for every unbounded sequence

(〈c, xn〉
)

to be Benford it is enough to require that∑∞
n=1 β

n|ρn| <∞ where β =
√

5 − 1 = βA − 2 ≈ 1.24.

Remarks 11. (i) Condition (4) depends on the chosen norm, but the generation of Benford
sequences via (3) is of course independent of the latter. To reformulate (4) without referring to
any norm, for every regular matrix A define β̂A = rσ(A)max{1, rσ(A−1)}. Obviously, β̂A ≤ βA

and, as in [14, Prop.1.2.2], it is easy to see that, given ε > 0, there exists a norm on Rd (or Cd)
for which β̂A ≤ βA ≤ β̂A + ε. Thus (4) can be replaced by∑∞

n=1
βn‖Bn‖ <∞ for some β > β̂A . (7)

In view of (7) it is natural to ask whether Theorem 9 remains true with βA in (4) replaced by
β̂A. While this is obviously the case for diagonalisable matrices A (and hence generically in
Cd×d), no overall answer to this question is yet known to the authors.

(ii) Conditions (4) and (7) which force (‖Bn‖) to decay exponentially∗ are obviously quite re-
strictive. Contrary to what the above examples may suggest, however, the assertion in Theorem
9 will not hold in general if for instance (4) is replaced by∑∞

n=1
βn‖Bn‖ <∞ (8)

for some 1 < β < βA. Without further assumptions, therefore, condition (4) is best possible.
For a concrete example consider

An =
(
ϕ ρn

0 ϕ

)
=
(
ϕ 0
0 ϕ

)
+ ρn

(
0 1
0 0

)
= A+Bn , n ∈ N ,

where ϕ is the golden mean (i.e. ϕ > 1 and ϕ2 = ϕ + 1). Clearly, βA = ϕ, and with ‖Bn‖ =
ρn = nϕ−n condition (8) holds for all |β| < ϕ. Nevertheless, it follows from

An · . . . · A1 =
(
ϕn ϕn−1

∑n
l=1 ρl

0 ϕn

)
, n ∈ N ,

that choosing c =
(

1
0

)
and x0 =

(∑∞
l=1 ρl

−ϕ
)

yields

〈c, xn〉 = ϕn
∑∞

l=n+1
ρl =

∑∞
l=1

(l + n)ϕ−l = ϕ3 + nϕ , n ∈ N .

∗When computed using the Euclidean norm, βA > 1 unless αA is unitary for some number α with |α| ≥ 1; the
latter case clearly is irrelevant here.
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Hence the sequence
(〈c, xn〉

)
is unbounded yet not b-Benford for any b.

(iii) The fact that condition (4) is in some sense best possible in general does of course not
rule out the possibility of substantial improvement in special cases. For instance, if ABn = BnA
for all n then βA in (4) can be replaced by max

{‖A‖, 1}, and the resulting condition is best
possible in the sense of (ii). (Note that ABn ≡ BnA holds only for the first of the two systems
in Example 10.) Similarly, the conditions limn→∞ ρn = 0 and

∑∞
n=1(

√
5 − 1)n|ρn| < ∞ in

Example 10(i) and (ii), respectively, are optimal in that for every ε > 0 the weaker conditions
limn→∞|ρn| < ε and

∑∞
n=1(

√
5− 1− ε)n|ρn| <∞ are in general not sufficient for Theorem 9 to

remain correct. Finally, if d = 1 then limn→∞ bn = 0, together with logb |a| �∈ Q, is enough to
guarantee that (xn)∗ is either finite or b-Benford.

(iv) If, in the setting of Theorem 9, the sequence
(〈c, xn〉

)∗ is bounded it may or may not be
b-Benford. In Example 10(ii) for instance, choosing ρn = (−2)−n as well as

c =
(√

5 − 1
2

)
, x0 =

(
6 − 2

√
5√

5 − 2

)
,

yields

〈c, xn〉 = 10(
√

5 − 2)

(√
5 − 1
2

)n

→ 0 ,

a bounded sequence which is strict Benford. On the other hand, choosing ρn = (−ρ)−n with
ρ >

√
5− 1 such that logb

√
5−1
ρ is rational will, for appropriate c, x0, yield a sequence

(〈c, xn〉
)∗

which is bounded yet not b-Benford.
(v) The systems (3) covered by Theorem 9 have the property that (An) converges rapidly

and therefore are asymptotically autonomous in a fairly strong sense (see [19] for details on
continuous-time asymptotically autonomous systems). It is straightforward to formulate and
prove an analogous result for asymptotically periodic systems (3) in the spirit of Theorem 4;
details are left to the reader. Such a result shows for instance that for

An =
(

0 1
1 3 + (−1)n

)
+Bn , n ∈ N ,

every unbounded sequence
(〈c, xn〉

)∗ is Benford provided that
∑∞

n=1 β
n
A‖Bn‖ < ∞, where A =

A2A1.
(vi) The results of this section can easily be extended to complex matrices An, so as to yield

an analogue of Theorem 9 which gives conditions ensuring that the sequences
(	〈c, xn〉

)∗ and(
〈c, xn〉
)∗ are Benford whenever unbounded. For the (elementary) details of this extension,

the reader may wish to consult [4, Rem.3.8].
(vii) The argument in the proof of Theorem 9 may be considered a variant of the basic

shadowing lemma [6, Thm.2.5] in that properties of (xn) are established by means of the corre-
sponding properties of (Anξ). It is well-known that for an invertible hyperbolic matrix A many
signatures of hyperbolicity, e.g. the shadowing property and the existence of an exponential di-
chotomy, carry over from xn = Axn−1 to (3) with An = A+Bn under much weaker assumptions
on (‖Bn‖); in many cases it is enough to assume that supn∈N ‖Bn‖ is sufficiently small, see [22]
for details. As evidenced by (ii), however, these weaker assumptions are generally not sufficient
to ensure the persistence of finer statistical properties such as BL.

4 Some non-linear examples

Two classes of non-linear nonautonomous systems on Rd will be discussed in this section. Both
classes are fairly specific, and the results presented should be considered mainly as an invitation
to further study the distribution of nonautonomous orbits.

8



First consider linearly dominated systems

xn = Anxn−1 + fn(xn) , n ∈ N , (9)

where the functions fn : Rd → Rd are uniformly bounded, that is, supx∈Rd ‖fn(x)‖ ≤ C for all
n ∈ N and some constant C ≥ 0. The following result extends Theorem 9; it also significantly
generalises [4, Thm.4.1].

Theorem 12. Assume that An = A + Bn holds in (9) for all n ∈ N, where A does not have
b-resonant spectrum, and (Bn) satisfies (4). Then, for every c ∈ Rd the sequence

(〈c, xn〉
)∗ is

b-Benford provided that it is unbounded.

Proof. Since discarding finitely many terms of
(〈c, xn〉

)
does not affect the statement, and since

(4) entails ‖Bn‖ → 0, it can be assumed that supn∈N ‖Bn‖ is so small that An = A + Bn is
invertible for all n, and also that (An) has an exponential dichotomy (see e.g. [22, Lem.2.8]).
Let (Pn), K > 0, and 0 < κ < 1 denote, respectively, the sequence of projections, constant, and
exponent associated with this exponential dichotomy. Thus with

Φ(l,m) =

⎧⎨⎩
Al−1 · . . . · Am if l > m ,
I if l = m,

A−1
l · . . . · A−1

m−1 if l < m ,

∀l,m ∈ N ,

the invariance condition Φ(l,m)Pm = PlΦ(l,m) holds for all l,m ∈ N, as do the estimates

‖Φ(l,m)Pm‖ ≤ Kκl−m and ‖Φ(l,m)(I − Pm)‖ ≤ Kκm−l (10)

whenever l ≥ m and l ≤ m, respectively. Given x0 ∈ Rd, consider its orbit (xn) as generated by
(9) and let

ξ = x0 +
∑∞

l=1
Φ(1, l + 1)(I − Pl+1)fl(xl−1) . (11)

It is obvious from (10) and the uniform boundedness of (fn) that the series in (11) converges
absolutely. Moreover,

Φ(n+ 1, 1)ξ = xn −
∑n

l=1
Φ(n+ 1, l + 1)Pl+1fl(xl−1) +

∑∞
l=n+1

Φ(n+ 1, l + 1)(I − Pl+1)fl(xl−1) ,

and consequently, for all n ∈ N,

‖Φ(n+ 1, 1)ξ − xn‖ ≤
∑∞

l=1
CKκ|n−l| ≤ CK

1 + κ

1 − κ
.

As detailed in the proof of Theorem 9 there exists a point ξ̃ such that ‖Anξ̃−Φ(n+ 1, 1)ξ‖ → 0
as n → ∞. Thus, if the sequence

(〈c, xn〉
)∗ is unbounded then so is

(〈c,Anξ̃〉). The latter is
actually b-Benford, and ND = {n ∈ N0 : |〈c,An ξ̃〉| ≤ D} has density zero for every D > 0.
Given 0 < ε < 1, choose

D ≥ 2‖c‖
(

1 +
1

ε log b

)(
CK

1 + κ

1 − κ
+ supn∈N ‖Anξ̃ − Φ(n+ 1, 1)ξ‖

)
.

For all n �∈ ND it follows that

∣∣ logb |〈c, xn〉| − logb |〈c,An ξ̃〉|∣∣ =

∣∣∣∣∣logb

∣∣∣1 +
〈c, xn〉 − 〈c,An ξ̃〉

〈c,Anξ̃〉
∣∣∣∣∣∣∣∣ ≤ ε ,

which, together with [4, Lem.2.3], shows that
(〈c, xn〉

)∗ is b-Benford as well. �
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Remarks 13. (i) Just as Theorem 9, the above result is best possible in general but can be
strengthened considerably in special cases. For instance, the sequence (An) given by (5) has an
exponential dichotomy whenever limn→∞|ρn| <

√
2− 1. For this particular (An) it follows from

Example 10(i) that the condition given there, that is, limn→∞ ρn = 0 is sufficient to guarantee
that for every orbit generated by (9) and every c ∈ Rd the sequence

(〈c, xn〉
)∗ is strict Benford

provided that it is unbounded. Similarly, in Example 10(ii) convergence of
∑∞

n=1(
√

5 − 1)n|ρn|
is enough for (An) as given by (6) to have an exponential dichotomy, and Theorem 12 can be
strengthened accordingly.

(ii) Under the conditions of Theorem 12, and similarly to Remark 11(iv), a bounded sequence(〈c, xn〉
)∗ may or may not be b-Benford, see [4, Rem.4.2] for simple examples.

The second class of non-linear nonautonomous systems (2) considered here consists of power-
like maps Tn : Rd → Rd, for which each component T (j)

n has a dominant monomial term and
can be written as

T (j)
n (x) = (x(1))(An)j1 . . . (x(d))(An)jd

(
1 + f (j)

n (x)
)
, ∀j = 1, . . . , d;n ∈ N ; (12)

here (An)jl ∈ N0 for all j, l ∈ {1, . . . , d}, and fn is a C1 function with ‖fn(x)‖ → 0 as ‖x‖ → ∞.
To ensure that Tn is actually power-like, it will be assumed throughout that, for every n ∈ N,∑d

l=1
(An)jl ≥ 1 , ∀j = 1, . . . d , (13)

that is, each row of An contains at least one non-zero entry. Maps of this type have been used
to model aspects of economic growth and socio-spatial dynamics (see [9, 18] and the references
therein). To analyse the distribution of orbits generated by (2) with maps Tn given by (12) the
following definition and lemma will be used.

Definition 14. (i) A sequence (Qn) of (linear) projections in Rd is Diophantine if for every
h ∈ Zd there exists a number γh > 0 such that for each n ∈ N either Qnh = 0 or else ‖Qnh‖ ≥ γh.

(ii) Let the sequence (An) of invertible matrices have an exponential dichotomy with as-
sociated projections (Pn). Then (An) is said to have a Diophantine exponential dichotomy if
(I − P�

n ) is Diophantine.

Trivially, (Qn) is Diophantine whenever {Qn : n ∈ N} is finite. Thus for d = 1 every
sequence of projections is Diophantine, as is every exponential dichotomy. If (Qn) is a sequence
of projections in R2 let N = {n ∈ N : rank Qn = 1} and, for each n ∈ N , let kerQn be spanned
by (cosϕn)e1 + (sinϕn)e2 with a uniquely defined 0 ≤ ϕn < π. Then (Qn) is Diophantine if
and only if cl{ϕn : n ∈ N}\{ϕn : n ∈ N} does neither contain π

2 nor any ϕ for which tanϕ is
rational.

Lemma 15. Let (An) be a sequence of invertible matrices all of whose entries are integers.
Assume that (An) has a Diophantine exponential dichotomy. Then, for (Lebesgue) almost all
y0 ∈ Rd, the sequence (An · . . . ·A1y0) is u.d. mod 1 in Rd.

Proof. Fix h ∈ Zd\{0} as well as a ∈ Rd and define, for every n ∈ N,

Ih(n) =
1
n2

∑n

l,m=1

∫
y∈Qd

j=1[a
(j),a(j)+1]

e2πi〈h, (Al · . . . · A1 −Am · . . . · A1)y〉dy

=
1
n

+
2
n2

#
{
1 ≤ l < m ≤ n : A�

l+1 · . . . · A�
mh = h

}
.

To find an upper bound on Ih(n), assume that m > l and A�
l+1 ·. . .·A�

mh = Φ(m+1, l+1)�h = h.
If P�

m+1h = h then, with the notation of the proof of Theorem 12,

‖h‖ = ‖Φ(m+ 1, l + 1)�P�
m+1h‖ = ‖(Φ(m+ 1, l + 1)Pl+1)�h‖ ≤ Kκm−l‖h‖ ,
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so that m − l ≤ D1 with an appropriate positive constant D1 not depending on l. If, on the
other hand, P�

m+1h �= h then, since (An) has a Diophantine exponential dichotomy,

0 < γh ≤ ‖h− P�
m+1h‖ = ‖(I − P�

m+1)Φ(l + 1,m+ 1)�Φ(m+ 1, l + 1)�h‖
=
∥∥(Φ(l + 1,m+ 1)(I − Pm+1)

)�Φ(m+ 1, l + 1)�h
∥∥ ≤ Kκm−l‖h‖ ,

so m − l ≤ D2 with another constant D2 > 0. Overall, nIh(n) ≤ 1 + 2max(D1,D2), implying
in turn that

∑∞
n=1 Ih(n)/n < ∞. By (the d-dimensional version of) [16, Thm.4.2] the sequence

(Φ(n + 1, 1)y0) is u.d. mod 1 in Rd for almost all y0 in the unit cube
∏d

j=1[a
(j), a(j) + 1]. Since

Rd is a countable union of unit cubes, the proof is complete. �

To apply Lemma 15 to nonautonomous orbits generated by (12) observe that (13) forces each
component of Tn to vanish on some coordinate hyperplane x(j) ≡ 0, and Benford sequences may
be generated only from initial points sufficiently far away from these hyperplanes. Therefore,
for every α > 0, define the cone Cα = {x ∈ Rd : mind

j=1 |x(j)| ≥ α}. Also, let Dxfn denote the

Jacobian of fn at x, that is (Dxfn)jk = ∂
∂x(k) f

(j)
n (x). The following is a natural generalisation

of [4, Thm.4.5].

Theorem 16. Let (An) be a sequence of invertible matrices all of whose entries are non-negative
integers satisfying (13). Assume that (An) has a Diophantine exponential dichotomy and that
( 1

n log ‖An‖) is bounded. Furthermore assume that the sequence of C1 functions (fn) satisfies
supx∈Cα

supn∈N ‖fn(x)‖ → 0 as α → ∞, as well as supx∈Cα
supn∈N ‖x‖1+ε‖Dxfn‖ < ∞ for

some ε > 0, α > 0. Then, for α sufficiently large and almost all x0 ∈ Cα, each component of
OT (x0) is Benford.

Proof. Let 1 ∈ Rd denote the vector all of whose components equal 1. Throughout the sub-
sequent argument, scalar functions and inequalities applied to elements of Rd are to be read
coordinate-wise, e.g., log |x| is understood to be (log |x(1)|, . . . , log |x(d)|) ∈ Rd, and x ≥ α1
means x(j) ≥ α for all j = 1, . . . , d. Also, the notation of the proofs of Theorem 12 and Lemma
15 will be used.

Observe first that under the stated assumptions on (An) there exists a number 0 < D ≤ 1
such that

An · . . . ·A11 ≥ Dκ−n1 , ∀n ∈ N0 .

Using this, it will now be shown that T n(Cβ2/D) ⊂ Cβ holds for all n ∈ N0, provided that β is
sufficiently large. To this end let yn = log |xn| so that

yn = Anyn−1 + log |1 + fn(xn−1)| , n ∈ N .

Let γ = D
2K

√
d

1−κ
1+κ and choose β > eD(D+1) so large that ‖fn(x)‖ ≤ min{1

2 , 1 − e−γ} holds for
all x ∈ Cβ and n ∈ N. Assume that x0 ∈ Cβ2/D as well as xl ∈ Cβ for all l = 1, . . . , n. Then∣∣ log(1 + fl(xl−1)

)∣∣ ≤ γ1 for all l = 1, . . . , n + 1, and consequently

yn+1 = Φ(n+ 2, 1)y0 +
∑n+1

l=1
Φ(n+ 2, l + 1) log |1 + fl(xl−1)|

≥ 2
D

(log β)Φ(n+ 2, 1)1 − γ
∑n+1

l=1
Φ(n+ 2, l + 1)1 .

Setting η0 = ( 2
D log β)1 and, inductively for l ∈ N, ηl = Alηl−1−γ1 therefore yields yn+1 ≥ ηn+1.

To find a lower bound for ηn+1, let

η̃ = η0 − γ
∑∞

l=1
Φ(1, l + 1)(I − Pl+1)1 ,
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and observe that

‖Φ(n + 2, 1)η̃ − ηn+1‖ = γ
∥∥∥∑n+1

l=1
Φ(n+ 2, l + 1)Pl+11−

∑∞
l=n+2

Φ(n+ 2, l + 1)(I − Pl+1)1
∥∥∥

≤ γK
√
d
∑∞

l=1
κ|n+1−l| ≤ γK

√
d
1 + κ

1 − κ
=
D

2
< D ,

which in turn implies that

yn+1 ≥ ηn+1 > Φ(n+ 2, 1)η̃ −D1 > Φ(n+ 2, 1)(η0 −D1) −D1 (14)

≥ κ−(n+1)(2 log β −D2)1−D1 ≥ (2 log β −D2 −D) > (log β)1 .

Hence |xn+1| > β1, that is, xn+1 ∈ Cβ. Thus, setting α = β2/D yields xn ∈ CαD/2 for all n ∈ N

whenever x0 ∈ Cα.
Fix now a base b and, for every β > 1, let C+

β = Cβ ∩ (R+)d. Obviously, Cβ has 2d connected
components, and the map ψb : x �→ logb |x| maps each component diffeomorphically onto C+

logb β.
Therefore, the inverse of ψb has 2d branches, and the symbol ψ−1

b will be used to denote any
one of them. With α sufficiently large define the map

Hb : z �→ z +
∑∞

l=1
Φ(1, l + 1)(I − Pl+1) logb

(
1 + fl ◦ T l−1 ◦ ψ−1

b (z)
)
, (15)

which is well-defined for all z ∈ C+
logb α. Given x0 ∈ Cα let zl = ψb(xl) for all l ∈ N0 and choose

the (unique) branch ψ−1
b satisfying x0 = ψ−1

b (z0). Note that (14) in particular implies

xn ∈ C
eκ−(n+1)(D log α−D2)−D , ∀n ∈ N0 ,

which, when combined with (15), yields

‖Φ(n+ 1, 1)Hb(z0) − zn‖ ≤ K
∑∞

l=1
κ|n−l|∥∥ logb

(
1 + fl(xl−1)

)∥∥ → 0 as n→ ∞ .

Therefore (zn) is u.d. mod 1 in Rd if and only if
(
Φ(n+1, 1)Hb(z0)

)
is. By Lemma 15, the latter

is the case whenever Hb(z0) ∈ Rd\Nb with Nb denoting an appropriate set of measure zero. A
straightforward albeit lengthy calculation, using termwise differentiation of (15) and the fact that
( 1

n log ‖An‖) is bounded, shows that Hb is a local diffeomorphism, and supz∈C+
β
‖Hb(z)− z‖ → 0

as β → ∞. Thus H−1
b

(
Nb ∩Hb(C+

logb α)
)

has measure zero as well, and as a consequence (zn) is
u.d. mod 1 in Rd for almost all z0 ∈ C+

logb α.
Overall, the above argument shows that, for every base b, there exists a setMb ⊂ Cα such that

each component of OT (x0) is b-Benford provided that x0 ∈ Cα\Mb. Setting M =
⋃

b≥2Mb ⊂ Cα

yields λd(M) = 0, and O(j)
T (x0) is Benford for all j = 1, . . . , d whenever x0 ∈ Cα\M . �

Corollary 17. Let the maps (Tn) according to (12) satisfy all assumptions of Theorem 16.
Then, for every sufficient large α, there exists an uncountable dense set E ⊂ Cα such that for
every x0 ∈ E no component of OT (x0) is Benford.

Proof. Let (kn)n∈N be a bounded sequence in Zd. With the notation used in the proof of
Theorem 16, pick a natural number N ≥ 8 so large that κN < (1 + 8Kmaxn∈N ‖kn‖)−1, and
consider the point

ζ =
∑∞

l=1
Φ(1, nlN

2 + 1)(I − PnlN2+1)kl , (16)

where (nl) is any strictly increasing sequence of natural numbers. For every n = m1 + m2N
2

with N ≤ m1 ≤ N2 −N and m2 ∈ N0 a simple calculation shows that

minh∈Zd ‖Φ(n+ 1, 1)ζ − h‖ ≤ 2Kmaxl∈N ‖kl‖ κN

1 − κN
<

1
4
,
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and consequently

limn→∞
#{l < n : minh∈Zd ‖Φ(l + 1, 1)ζ − h‖ < 1

4}
n

≥ N2 − 2N + 1
N2

> 1 − 2
N
>

3
4
.

Obviously this implies that no component of (Φ(n+1, 1)ζ) is u.d. mod 1. To produce uncountably
many different points ζ by means of (16) the sequences (nl) and (kn) are chosen inductively as
follows: Assume that numbers 1 = n1 < n2 < . . . < nL and vectors k̂1, . . . , k̂L ∈ {e1, . . . , ed}
have already been chosen such that

k̂i �∈ rangePniN2+1 , ∀i = 1, . . . , L .

(Such a choice is possible because rankPn ≤ d − 1 for all n.) Choose now nL+1 > nL so large
that

2K
κnL+1N2

1 − κN2 < ‖Φ(1, nLN
2 + 1)(I − PnLN2+1)k̂L‖ ;

also choose k̂L+1 ∈ {e1, . . . , ed}\rangePnL+1N2+1. Finally, for each n let kn be either k̂n or 0.
Any two among the uncountably many different sequences (kn) thus constructed give rise to
different points ζ in (16).

Fix now a base b and, for sufficiently large α, take h ∈ Zd∩C+
2+logb α. The above construction

provides uncountably many different points h + ζ ∈ C+
1+logb α for which no component of the

sequence
(
Φ(n + 1, 1)(h + ζ)

)
is u.d. mod 1. The latter is also true if h + ζ is replaced by

any element of Qd, a dense subset of Rd. Overall, there exists an uncountable dense subset
F ⊂ Hb(C+

logb α) such that no component of (Φ(n+1, 1)z) is u.d. mod 1 whenever z ∈ F . Setting

E = {x ∈ Cα : Hb(logb |x|) ∈ F ∩ C+
logb α}

therefore completes the proof. �

Remarks 18. (i) For concrete examples it may be desirable to multiply each component T (j)
n

in (12) by some non-zero number c(j)n . As long as the additional nonautonomy thus introduced
does not dominate the overall dynamics, Theorem 16 will still hold. More concretely, under the
assumption that (log |c(j)n |)n∈N is bounded for all j = 1, . . . , d, Theorem 16 remains unchanged
while its proof requires only one fairly obvious minor modification; details are left to the reader,
see also [5].

(ii) Even in the autonomous case, that is for Tn not depending on n, and even when slightly
generalised according to (i), Theorem 16 does not cover all d-variate polynomial maps unless
d = 1, see [4].

Example 19. Let A1, . . . , AL be a finite family of invertible hyperbolic matrices with non-
negative integer entries, that is, Al ∈ Nd×d

0 and σ+(Al) ∩ (S1 ∪ {0}) = ∅ for all l = 1, . . . , L.
Assume that AlAm = AmAl for all l,m and also that (Aωn) has a Diophantine exponential
dichotomy for every ω = (ωn) ∈ {1, . . . , L}N. (A simple condition guaranteeing the latter is that
the stable and unstable generalised eigenspaces associated with the matrix Al,

Es,l = ⊕|λ|<1ker (Al − λI)d , Eu,l = ⊕|λ|>1ker (Al − λI)d , l = 1, . . . , L ,

do actually not depend on l.) For each ω then (Aωn) satisfies the assumptions of Theorem 16.
For a concrete example, consider the two bi-variate polynomial maps

Ta :
(
u
v

)
�→
(

3u2v2 + 4
5u2v4 − 6v2 + 7

)
and Tb :

(
u
v

)
�→
(
v
2uv

)
,
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which are of the form (12) and whose associated matrices

Aa =
(

2 2
2 4

)
and Ab =

(
0 1
1 1

)
satisfy all the conditions mentioned above. Consequently, for every sequence ω = (ωn) on the
two symbols a, b, there exists α > 0 such that for almost all x ∈ Cα both components of the
nonautonomous orbit

(
Tωn ◦ . . . ◦ Tω1(x)

)
are Benford. There is, however, also an uncountable

dense set E ⊂ Cα such that for every x ∈ E no component of OT (x) is Benford.
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