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Abstract. One-dimensional projections of (at least) almost all orbits of many multi-
dimensional dynamical systems are shown to follow Benford’s law, i.e. their (base
b) mantissa distribution is asymptotically logarithmic, typically for all bases b. As
a generalization and unification of known results it is proved that under a (generic)
non-resonance condition on A ∈ Cd×d, for every z ∈ Cd real and imaginary part of
each non-trivial component of (Anz)n∈N0 and (eAtz)t≥0 follow Benford’s law. Also,
Benford behavior is found to be ubiquitous for several classes of non-linear maps
and differential equations. In particular, emergence of the logarithmic mantissa
distribution turns out to be generic for complex analytic maps T with T (0) = 0,
|T ′(0)| < 1. The results significantly extend known facts obtained by other, e.g.
number-theoretical methods, and also generalize recent findings for one-dimensional
systems.

1. Introduction. Benford’s law is the probability distribution for the mantissa
with respect to base b ∈ N \ {1} given by P(mantissab ≤ t) = logb t for all t ∈ [1, b[;
the most well-known special case is that

P
(
first significant digit10 = d

)
= log10

(
1 + d−1

)
, d = 1, . . . , 9 .

Although first discovered by Newcomb [16], this logarithmic law for significant digits
gained popularity following an article by Benford [4] which contained extensive
empirical evidence of the distribution in diverse tables of data. Since Benford’s
article, numerous examples of data sets following Benford’s law have been found in
real-life data [11, 17], in stochastic processes [17, 21], in many classical sequences
of numbers such as (2n), (n!) and the Fibonacci numbers [2, 4, 7, 8], and in data
from physical experiments and numerical simulations related to dynamical systems
[20, 23].

Recently, a fairly complete analysis of Benford’s law for (autonomous as well
as non-autonomous) dynamical systems on the real line having 0 and ±∞ as an
attractor was presented in [6], where the emergence of the logarithmic mantissa
distribution was shown to be a common phenomenon for such systems. Since con-
vergence to any finite limit may be translated to convergence to the origin, focusing
on orbits that converge to 0 or ±∞ is not as restrictive as it may appear. Moreover,
it is completely natural in view of [10], where Benford’s law has been characterized
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as the only continuous mantissa distribution which is base-invariant. It is natural
to require that a general pattern of mantissa distribution, if one exists at all, does
not depend on the particular choice of the base. Base-invariance, however, implies
that for a sequence (xn) to follow Benford’s law for all bases, every weak limit of
1
n

∑n
l=1 δxl

on the extended real line R ∪ {±∞} necessarily is a convex combina-
tion of point-masses at 0 and ±∞. Thus only at these points can stable dynamics
generate Benford’s distribution with respect to all bases, as often they do.

The present article extends the main results in [6] to multi-dimensional sys-
tems, where some important new aspects arise. For example, unlike in the one-
dimensional case, zero and infinity can no longer justifiably be assumed attractors
in higher dimensions: while some components of the sequence (xn) in Rd with d ≥ 2
may converge to 0, others may converge to ±∞, and still Benford’s law may hold for
each component (x(j)

n ) and for every base. Also, the problem of resonances, which
does not exist in the one-dimensional setting, is crucial in the multi-dimensional
framework. Nevertheless, as in [6], the emergence of Benford’s logarithmic distri-
bution turns out to be typical for all the important families of dynamical systems
considered below. These results thus complement other explanations of the ubiquity
of Benford’s law in numerical data.

The organization of this article is as follows. Section 2 contains definitions,
the basic relationship between Benford sequences and uniform distribution mod 1,
and preliminary results about uniform distribution of one-dimensional sequences
constructed from higher-dimensional ones. Section 3 introduces the notion of an
(exponentially) resonant spectrum and presents a fairly complete analysis of linear
autonomous difference and differential equations: if the matrix A does not have
a resonant and exponentially resonant spectrum (a property that is generic), then
each component of (Anx)n∈N0 and (eAtx)t≥0 either follows Benford’s law or else
is trivial. In Section 4, three different classes of non-linear systems are studied:
maps with a dominant linear or a dominant polynomial part; and complex analytic
maps, interpreted as two-dimensional real maps. In all three cases, the dominant
part (the first non-vanishing term in the Taylor expansion in case of a complex
analytic map) is shown to typically generate Benford sequences, and a shadowing
argument shows that the same is true for the full non-linear system.

2. Preliminaries. Throughout, b will always denote a natural number larger than
one (called a base). Every positive real number x can be written uniquely as
x = Mb(x)bl with Mb(x) ∈ [1, b[ and the appropriate integer l. The function
Mb : R+ → [1, b[ is called the (base b ) mantissa function; for convenience Mb(0) := 0
for all b. For every real x, the numbers bxc and dxe denote the largest integer not
larger, and the smallest integer not smaller than x, respectively. The number
bMb(x)c ∈ {1, . . . , b − 1} is called the first significant digit of x (with respect to
base b). For a given base b, logb will denote the logarithm with respect to b, where,
to avoid cumbersome formulations, logb 0 := 0 for all b; if used without a subscript,
the log symbol denotes the natural logarithm. The cardinality of the finite set A is
#A, and 1B stands for the indicator function of any set B ⊆ R.

Definition 2.1. (i) A sequence (xn)n∈N0 of real numbers is a b-Benford sequence
if

lim
n→∞

#{l ≤ n : Mb(|xl|) ≤ t}
n

= logb t for all t ∈ [1, b[ ,
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and it is called a strict Benford sequence (or simply a Benford sequence) if it is a
b-Benford sequence for every b ∈ N \{1}.

(ii) A measurable real-valued function f : [0, +∞[→ R is a b-Benford function if

lim
T→∞

1
T

∫ T

0

1[1,t[ ◦Mb(|f(τ)|) dτ = logb t for all t ∈ [1, b[ ,

and it is called a strict Benford function (or simply a Benford function) if it is a
b-Benford function for every b ∈ N \{1}.

The following correspondence between Benford sequences and uniform distribu-
tion modulo one is a standard tool in the context of Benford’s law [6, 8] since it
allows the powerful classical tools of uniform distribution theory to be applied. The
term (continuously) uniformly distributed modulo one will henceforth be abbrevi-
ated as (c.) u.d. mod 1.

Proposition 2.2 ([8]). (i) A sequence (xn)n∈N0 of real numbers is a b-Benford
sequence if and only if (logb |xn|)n∈N0 is u.d. mod 1.

(ii) A measurable function f : [0, +∞[→ R is a b-Benford function if and only
if (logb |f(t)|)t≥0 is c.u.d. mod 1.

This article studies Benford properties of recursively defined sequences,

xn := T (xn−1) , n = 1, 2, . . . , (2.1)

where T denotes a map from Rd or a part thereof into itself. For ease of notation,
no distinction will be made between row and column vectors, e.g. x ∈ Rd should
be thought of as a column but nevertheless will be written as x =

(
x(1), . . . , x(d)

)
.

In addition to (2.1), the solution of the linear initial value problem

ẋ = Ax , x(0) = x0 ∈ Rd

with A ∈ Rd×d will also be analyzed with respect to Benford’s law. The corre-
sponding one-dimensional systems (d = 1) have been studied in [6], and the results
presented below provide natural generalizations of that work. For n ∈ N the n-
fold composition of T with itself is denoted by Tn, and T 0 := id. The sequence
generated by (2.1) subject to the initial condition x0 = x is thus

(
Tn(x)

)
n∈N0

;
this sequence will be denoted by OT (x) and referred to as the orbit of x under T .
Note that this interpretation of the orbit as a sequence differs from the standard
terminology in dynamical systems theory (e.g. [13]) where the orbit of x is the mere
set {xn : n ∈ N0}. For any function ϕ defined on Rd, the symbol ϕ

(
OT (x)

)
stands

for the sequence
(
ϕ ◦ Tn(x)

)
n∈N0

; for example, ‖OT (x)‖ denotes the sequence of

d-dimensional Euclidean norms (‖xn‖)n∈N0 , and O
(j)
T (x) =

(
x

(j)
n

)
n∈N0

denotes the
sequence of j-th components of OT (x).

In light of Proposition 2.2, a study of Benford’s law for dynamical systems will
make use of results from uniform distribution theory (cf. [9, 14]). The following
auxiliary results will be used later; proofs are included for completeness.

Lemma 2.3. Let the sequence (yn)n∈N0 of real numbers be u.d. mod 1, and assume
that (xn)n∈N0 has the following property: for every ε > 0, there exists Jε ⊆ N such
that

limn→∞
#(Jε ∩ {1, . . . , n})

n
> 1− ε and |xn − yn| < ε for all n ∈ Jε .

Then (xn)n∈N0 is also u.d. mod 1.
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Proof. Fix any non-empty interval [a, b] ⊆ ]0, 1[. For each sufficiently small ε,

#{l ≤ n : xl ∈ [a, b]+Z} ≤ #({l ≤ n : yl ∈ [a−ε, b+ε]+Z}∩Jε)+#(Jc
ε∩{1 . . . , n}) .

Therefore limn→∞ 1
n#{l ≤ n : xl ∈ [a, b] + Z} ≤ b − a + 3ε, and analogously

limn→∞
1
n#{l ≤ n : xl ∈ [a, b] +Z} ≥ b− a− 3ε. Since ε was arbitrary, (xn) is u.d.

mod 1.

The following lemma, a straightforward generalization of a result in [22], guar-
antees uniform distribution of certain sequences constructed from real-valued func-
tions on the d-dimensional torus Td := Rd/Zd. The (normalized) Haar measure of
this compact Abelian group will be denoted by λTd .

Lemma 2.4. Let f : Td → R be continuous λTd-almost everywhere, and assume
that (ζn)n∈N0 is uniformly distributed on Td+1. Then (xn)n∈N0 defined by

xn := ζ(0)
n + f

(
ζ(1)
n , . . . , ζ(d)

n

)

is u.d. mod 1.

Proof. Fix an integer h 6= 0, and define a function Fh : Td+1 → C by

Fh

(
x(0), . . . , x(d)

)
:= e2πih

(
x(0)+f(x(1),...,x(d))

)
.

Since it is bounded and continuous almost everywhere, Fh is Riemann-integrable,
and

1
N

N∑

l=1

e2πihxl =
1
N

N∑

l=1

Fh(ζl) →
∫

Td+1
Fh dλTd+1 =

∫

T1
e2πihx(0)

dx(0)

∫

Td

e2πifdλTd = 0

as N →∞, which shows that (xn) is u.d. mod 1 (see [14]).

Remark 2.5. (i) It was noted already in [22] that Lemma 2.4 remains valid if
(ζn) is asymptotically distributed according to λT1 ⊗ µ, where µ is any probability
measure on Td, and f is continuous µ-almost everywhere.

(ii) Lemma 2.4 reflects the fact that λT1 ∗ ν (mod 1) = λT1 for every Borel
probability measure ν on R; here ∗ symbolizes the convolution of finite measures
on T1. An interesting probabilistic interpretation of this fact is the following. Let
the random variable ξ be uniformly distributed on [0, 1], and let η be any(!) real-
valued random variable. If ξ and η are independent , then ξ + η (mod 1) is again
uniform on [0, 1]. (Clearly, the assumption of independence is crucial and cannot
be dropped.)

For the following corollary, recall that the real numbers ρ1, . . . , ρk are ratio-
nally independent (or Q-independent, for short) if

∑k
l=1 qlρl = 0 implies that

(q1, . . . , qk) = (0, . . . , 0), where ql ∈ Q for all l; otherwise ρ1, . . . , ρk are said to
be Q-dependent.

Corollary 2.6. Let f : Td → R be continuous on a set of full λTd-measure, and as-
sume that the d+2 real numbers 1, ρ0, ρ1, . . . , ρd are Q-independent. Then (xn)n∈N0

defined by
xn := nρ0 + f(nρ1, . . . , nρd)

is u.d. mod 1.

Proof. By Weyl’s criterion [12, 14] the sequence (ζn) with ζn := (nρ0, nρ1, . . . , nρd)
is uniformly distributed on Td+1, and thus the conclusion follows from Lemma
2.4.
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Corollary 2.7. Let f : Td → R be continuous on a set of full λTd-measure, and let
p ∈ N\{1}. For λTd+1-almost every (ξ0, ξ1, . . . , ξd) ∈ Td+1, the sequence (xn)n∈N0

defined by
xn := pnξ0 + f(pnξ1, . . . , p

nξd)
is u.d. mod 1.

Proof. The homomorphism x 7→ px of Td+1 is ergodic with respect to λTd+1 , see
[13]. For almost every point ξ = (ξ0, ξ1, . . . , ξd) ∈ Td+1, the sequence (ζn) with
ζn := (pnξ0, p

nξ1, . . . , p
nξd) is thus uniformly distributed on Td+1, and again the

conclusion follows from Lemma 2.4.

The next lemma is a special case of an important permanence principle in the
theory of uniform distribution [18, 19].

Lemma 2.8. Let (xn)n∈N0 be u.d. mod 1. Then, for every α ∈ R and b ∈ N\{1},
the sequence (xn + α logb n)n∈N0 is also u.d. mod 1.

Proof. Set f(x) := α logb x. Then f ∈ C1(R+), and limx→∞ xf ′(x) = α
log b is finite,

and the conclusion follows from [19].

The real part, imaginary part, complex conjugate and absolute value (modulus)
of a number z ∈ C is denoted by <z, =z, z and |z|, respectively. For z 6= 0, the
argument arg z is the unique number in ]−π, π] which satisfies z = |z|ei arg z; for ease
of notation arg 0 := 0. The unit circle S1 is interpreted as S1 = {z ∈ C : |z| = 1}. If
A is a real or complex matrix, then σ(A) ⊆ C symbolizes the spectrum of A, i.e. the
set of eigenvalues of A. The symbol ‖A‖ denotes the matrix norm of A as induced
by the Euclidean norm on Cd, that is, ‖A‖ =

√
|µ| where µ is the eigenvalue of

A
T
A with maximal modulus. In the context of the linear-algebraic considerations

in the next section, Corollary 2.6 and Lemma 2.8 will be used mainly via

Lemma 2.9. Assume that 1, ρ0, ρ1, . . . , ρd are Q-independent, and let (zn)n∈N0 be
a convergent sequence in C; also let b ∈ N\{1}, α ∈ R and c1, . . . , c2d ∈ C such
that c2l−1 + c2l 6= 0 for at least one l ∈ {1, . . . , d}. Then (xn)n∈N0 defined by

xn := nρ0 + α logb n +

+ logb

∣∣<(c1e
2πinρ1 + c2e

−2πinρ1 + . . . + c2d−1e
2πinρd + c2de

−2πinρd + zn)
∣∣

is u.d. mod 1.

Proof. Set z∞ := limn→∞ zn, and define h : Td → R by

h
(
x(1), . . . , x(d)

)
:= <(

c1e
2πix(1)

+c2e
−2πix(1)

+ . . .+c2d−1e
2πix(d)

+c2de
−2πix(d)

+z∞
)
;

by the assumption on the numbers cl, the smooth function h is not constant. Corol-
lary 2.6 applies to f := logb |h| and, by Lemma 2.8,

yn := nρ0 + α logb n + logb |h(nρ1, . . . , nρd)|
is u.d. mod 1. Given ε > 0, choose 0 < δ < 1

2 min
(
ε, (log b)−1

)
so small that

λTd

({x : |h(x)| > δ}) > 1− ε. For

Jε :=
{
n ∈ N : |h(nρ1, . . . , nρd)| > δ , |zn − z∞| < δ2 log b

} ⊆ N ,

limn→∞
1
n#(Jε ∩ {1, . . . , n}) > 1− ε. Furthermore, for every n ∈ Jε

|xn − yn| =
∣∣∣∣logb

|h(nρ1, . . . , nρd) + <(zn − z∞)|
|h(nρ1, . . . , nρd)|

∣∣∣∣ <
∣∣logb(1− δ log b)

∣∣ < ε ,
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since |log(1 − x)| < 2x for all 0 < x < 1
2 . The claim thus follows from Lemma

2.3.

3. Linear systems. This section studies, under the perspective of Benford’s law,
linear difference and differential equations, xn+1 = Axn and ẋ = Ax, respectively.
Throughout, A ∈ Rd×d denotes a constant real matrix. Since the continuous-time
case will be easily grasped once the discrete-time case is analyzed, first consider the
discrete initial value problem

xn+1 = Axn (n ∈ N0) , x0 = x , (3.2)

the solution of which is xn = Anx, so every component of xn is a weighted sum of
entries of An. Let σ(A)+ = {λ1, . . . , λs} ⊆ C be the “upper half” of the spectrum
of A, i.e. σ(A)+ = {λ ∈ σ(A) : =λ ≥ 0}. (The usage of σ(A)+ refers to the
fact that non-real eigenvalues of real matrices always occur in conjugate pairs.)
Without loss of generality, assume that the eigenvalues in σ(A)+ are labeled such
that |λ1| ≥ . . . ≥ |λs|. A universal expression for the j-th component (j = 1, . . . , d)
of xn is

x(j)
n = <(

p
(j)
1 (n)λn

1 + . . . + p(j)
s (n)λn

s

)
, n ≥ d . (3.3)

In (3.3), the p
(j)
l denote polynomials with complex coefficients and degrees k

(j)
l < d.

Fix j ∈ {1, . . . , d} for the following considerations. If x
(j)
n does not vanish for all

but finitely many n, let sj ∈ {1, . . . , s} be the minimal index l such that p
(j)
l 6≡ 0.

To analyze (3.3) as n →∞ it is useful to distinguish two cases.

Case 1: |λsj | > |λsj+1|.
In this case a dominant eigenvalue occurs, and (3.3) may be written in the form

x(j)
n = |λn

sj
|nk(j)

sj <(
c(j)
sj

(
λsj

|λsj |
)n

+ zj(n)
)
, (3.4)

where c
(j)
sj := limn→∞ n

−k(j)
sj p

(j)
sj (n) 6= 0, and zj(n) → 0 as n →∞. Therefore

logb

∣∣x(j)
n

∣∣ = n logb |λsj |+ k(j)
sj

logb n + logb

∣∣∣<
(
c(j)
sj

ein arg λsj + zj(n)
)∣∣∣ (3.5)

provided that x
(j)
n 6= 0, and Lemma 2.9 implies that

(
x

(j)
n

)
n∈N0

is a b-Benford
sequence if either λsj is a real number and logb |λsj | is irrational, or if λsj ∈ C\R,
and 1, logb |λsj |, 1

2π arg λsj are Q-independent.

Case 2: |λsj | = |λsj+1| = . . . = |λtj | > 0 for some tj > sj .

Here several different eigenvalues with the same modulus occur. Assume without
loss of generality that 0 ≤ arg λsj < arg λsj+1 < . . . < arg λtj ≤ π, and let k(j) be
the maximal degree of the polynomials p

(j)
sj , . . . , p

(j)
tj

. From (3.3) it follows that

x(j)
n = |λn

sj
|nk(j)<(

c(j)
sj

(
λsj

|λsj |
)n

+ . . . + c
(j)
tj

(
λtj

|λtj |
)n

+ zj(n)
)
; (3.6)
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again c
(j)
l := limn→∞ n−k(j)

p
(j)
l (n) ∈ C for l = sj , . . . , tj , where c

(j)
l 6= 0 for at least

one l, and zj(n) → 0 as n →∞. Consequently, if x
(j)
n 6= 0 then

logb

∣∣x(j)
n

∣∣ = n logb |λsj |+ k(j) logb n+

+ logb

∣∣∣∣<
(
c(j)
sj

(
λsj

|λsj
|
)n

+ . . . + c
(j)
tj

(
λtj

|λtj
|
)n

+ zj(n)
)∣∣∣∣ , (3.7)

and Lemma 2.9 yields the uniform distribution of
(
logb

∣∣x(j)
n

∣∣)
n∈N0

if the tj − sj + 3
numbers 1, logb |λsj

|, 1
2π arg λsj , . . . ,

1
2π arg λtj are Q-independent. If λsj is positive

then clearly 0 = 1
2π arg λsj

has to be removed from this list; the same is true for
negative λtj unless λsj > 0.

The above considerations show that each component
(
x

(j)
n

)
either vanishes even-

tually, or else is a b-Benford sequence provided that the base b and the potential
dominant eigenvalues satisfy a non-resonance condition. In order to conveniently
summarize this observation, it is useful to introduce the notion of an (exponentially)
b-resonant spectrum.

Definition 3.1. (i) A set Γ ⊆ C is called b-resonant if there exists a finite non-
empty subset Γ0 = {γ1, . . . , γr} ⊆ Γ with |γ1| = . . . = |γr| =: |Γ0| such that 1,
logb |Γ0| and the elements of 1

2π arg Γ0 are Q-dependent, where

1
2π

arg Γ0 :=

{ {
1
2π arg γ1, . . . ,

1
2π arg γr

} \ {0, 1
2} if #(Γ0 ∩ R) ≤ 1 ,

{
1
2π arg γ1, . . . ,

1
2π arg γr

} \ {0} if #(Γ0 ∩ R) = 2 .

(ii) Let A ∈ Rd×d be a real matrix with spectrum σ(A) ⊆ C. The matrix A has
b-resonant spectrum if the set σ(A)+ is b-resonant.

(iii) The matrix A ∈ Rd×d is said to have exponentially b-resonant spectrum if
eAt has b-resonant spectrum for all t ∈ [0, δ] for some δ > 0.

Remark 3.2. (i) If #Γ0 = 1, then 1
2π arg Γ0 is empty if γ1 ∈ R, and other-

wise 1
2π arg Γ0 =

{
1
2π arg γ1

}
. The definition of the set 1

2π arg Γ0 therefore reflects
the cases distinguished above: while one real eigenvalue of maximal modulus, i.e.
1
2π arg λsj ∈ {0, 1

2}, is perfectly acceptable in (3.5) and (3.7), the presence of two
real eigenvalues of maximal modulus, necessarily of opposite sign, 1

2π arg λsj = 0,
1
2π arg λtj = 1

2 , may invalidate (3.7) and has to be excluded.
(ii) It is easily checked that A has exponentially b-resonant spectrum if and only

if there exists a non-empty set {λj1 , . . . , λjr} ⊆ σ(A)+ with <λj1 = . . . = <λjr such
that <λj1/ log b and the elements of

{
1
2π=λj1 , . . . ,

1
2π=λjr

} \ {0} are Q-dependent.
(iii) Non-zero eigenvalues of different absolute value are not b-resonant unless one

of their moduli is a rational power of b. An eigenvalue zero, as well as eigenvalues on
the unit circle, are resonant, and eigenvalues on the imaginary axis are exponentially
resonant. Also, real eigenvalues of opposite sign are resonant. Different real non-
zero eigenvalues, however, are not exponentially resonant. Clearly, the (trivial)
one-dimensional case is included in Definition 3.1: the real 1 × 1 matrix A = (a)
has b-resonant spectrum if and only if logb |a| is irrational, and it has exponentially
resonant spectrum precisely if a = 0 (cf. [6]).

(iv) Let Mb denote the set of all d × d-matrices having b-resonant spectrum.
It is not difficult to see that Mb, considered as a subset of Rd×d, is a set of first
category, and so is

⋃
bMb. A typical matrix will thus not have b-resonant spectrum

for any b. A similar statement holds for exponential resonance.
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The observations preceding Definition 3.1, in particular equations (3.5) and (3.7),
are the basis for the proof of the following theorem, which generalizes and unifies
results for recursive sequences in [7, 15, 22].

Theorem 3.3. Assume that A ∈ Rd×d does not have b-resonant spectrum. Then,
for every x ∈ Rd, each component of (Anx)n∈N0 either equals zero for all but finitely
many n, or else is a b-Benford sequence; the same is true for (‖Anx‖)n∈N0 .

Proof. The assertion about individual components of xn = Anx merely summarizes
the arguments in Case 1 and 2 considered above. As for the Euclidean norm,
logb ‖xn‖ = 1

2 logb

∑d
j=1

(
x

(j)
n

)2, it is clear from the explicit formula (3.6) that
without loss of generality |λsj | = |λs0 | and k(j) = k0 for all j. Therefore

x(j)
n = |λn

s0
|nk0

(
fj

(
n

arg λs∗

2π
, . . . , n

arg λt∗

2π

)
+<zj(n)

)
(3.8)

with s∗ := mind
j=1 sj and t∗ := maxd

j=1 tj , and the functions fj : Tt∗−s∗+1 → R
defined by

fj(xs∗ , . . . , xt∗) := <(c(j)
sj

e2πixsj + . . . + c
(j)
tj

e2πixtj ) .

From (3.8) it follows that

logb ‖xn‖ = n logb |λs0 |+ k0 logb n +
1
2

logb

∣∣∣
d∑

j=1

f2
j

(
n

arg λs∗

2π
, . . . , n

arg λt∗

2π

)
+ z̃n

∣∣∣

with limn→∞ z̃n = 0. Using Corollary 2.6 and Lemma 2.8, an argument analogous
to the proof of Lemma 2.9 shows that (logb ‖xn‖) is u.d. mod 1 if {λs∗ , . . . , λt∗} is
not b-resonant. Therefore, if A does not have b-resonant spectrum, then (‖xn‖)n∈N0

is either a b-Benford sequence or else vanishes for all but finitely many n.

Remark 3.4. (i) The arguments leading to Theorem 3.3 did not exploit the specific
structure of the matrix A, as reflected for instance through the polynomials p

(j)
l in

(3.3). A refined analysis of (3.3), which takes into account the specific form of A
as well as the initial value x0, will naturally lead to a refined version of Theorem
3.3. Consider as an example the matrix

A =
1
2

(
1 + e 1− e
1− e 1 + e

)
with σ(A) = {1, e} .

Even though A has b-resonant spectrum for every base b,
(
(Anx)(j)

)
n∈N0

for j =
1, 2, and also (‖Anx‖)n∈N0 , are strict Benford sequences for every x = (x(1), x(2))
with x(1) 6= x(2), i.e., for x not an element of the eigenspace corresponding to the
resonant eigenvalue 1. Requiring Q-independence of 1, logb |λ|, 1

2π arg λ for indi-
vidual eigenvalues, and considering the position of the corresponding eigenspaces
relative to each other as well as relative to the coordinate axes, may thus enable a
detailed refinement of Theorem 3.3; the details are left to the reader.

(ii) By Remark 3.2(iv), the emergence of (strict) Benford sequences in (3.2) is a
generic phenomenon.

Example 3.5. (i) As a classical example consider the matrix

A =
(

0 1
1 1

)

whose characteristic polynomial is χA(λ) = λ2 − λ − 1, with roots κ,−κ−1 where
κ = 1+

√
5

2 . Since χA is irreducible over Q and has two roots of different absolute



MULTI-DIMENSIONAL DYNAMICAL SYSTEMS AND BENFORD’S LAW 227

value, it follows that logb κ is irrational for every base b. Hence
(
(Anx)(j)

)
n∈N0

for
j = 1, 2, and (‖Anx‖)n∈N0 are strict Benford sequences for all x 6= 0. From

(An+2x)(2) = (An+1x)(1) + (An+1x)(2) = (Anx)(2) + (An+1x)(2)

it is immediate to deduce the well-known fact [7] that the sequences (Fn)n∈N and
(Ln)n∈N of Fibonacci and Lucas numbers are strict Benford sequences, since Fn

and Ln equal (Anx)(2), with x = (1, 0) and x = (−1, 2), respectively.
(ii) As indicated in Remark 3.4(i), the sufficient condition in Theorem 3.3 is

not necessary. For instance, if 1
2π arg λl = pl

2q with pl, q ∈ N and pl ≤ q for all

l = sj , . . . , tj , then logb

∣∣x(j)
n

∣∣ is u.d. mod 1 provided that logb |λsj | is irrational and

<(
c(j)
sj

eπiq−1kpsj + . . . + c
(j)
tj

eπiq−1kptj
) 6= 0 for all k = 0, 1, . . . , 2q − 1 . (3.9)

As a simple example, consider the matrix

A =
(

0 e
−e 0

)
with σ(A) = {±ie} ,

which has b-resonant spectrum for every base b; with the notation of (3.4) one has
c
(1)
1 = x(1) − ix(2), c

(2)
1 = ic

(1)
1 , z1,2 = 0 and k

(1,2)
1 = 0. Therefore (3.9) holds for

x(1)x(2) 6= 0, and
(
(Anx)(j)

)
n∈N0

is a strict Benford sequence for j = 1, 2 and all x

with x(1)x(2) 6= 0.
(iii) On the other hand, for a matrix A with b-resonant spectrum, (Anx) may

certainly fail to have components which are b-Benford sequences. This may happen
even if A is a 2 × 2 matrix with non-real eigenvalues λ, λ, and any two numbers
among 1, logb |λ|, 1

2π arg λ are rationally independent. For example, again let κ =
1+
√

5
2 and take

A = bκ2
(

cos 2πκ sin 2πκ
− sin 2πκ cos 2πκ

)
with σ(A) =

{
bκ2

e±2πiκ
}

.

It is readily checked that
(
(Anx)(j)

)
is not a b-Benford sequence for any x ∈ R2,

whereas (‖Anx‖) is obviously b-Benford whenever x 6= 0.

As a continuous-time analogue of (3.2), consider the initial value problem

ẋ = Ax , x(0) = x0 , (3.10)

the solution of which is x : t 7→ eAtx0. The following lemma relates the continuous-
time to the discrete-time case.

Lemma 3.6. If A ∈ Rd×d does not have exponentially b-resonant spectrum, then
eAt has b-resonant spectrum for at most countably many t > 0.

Proof. Let σ(A)+ = {λ1, . . . , λs} ⊆ C. If A does not have exponentially b-resonant
spectrum, then for some sequence (tn) with tn > 0, limn→∞ tn = 0, the matrices
eAtn do not have b-resonant spectrum. This implies that

<λj1/ log b and the elements of
{ 1

2π
=λj1 , . . . ,

1
2π
=λjr

} \ {0} (3.11)

are Q-independent whenever {λj1 , . . . , λjr} ⊆ σ(A)+ with <λj1 = . . . = <λjr .
Assume that eAt has b-resonant spectrum for a given t > 0. Then for some r ∈ N
and appropriate integers q−1, q0, . . . , qr not all of which are zero,

q−1 + q0 logb

∣∣eλj1 t
∣∣ +

q1

2π
arg eλj1 t + . . . +

qr

2π
arg eλjr t = 0 (3.12)
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and |eλj1 t| = . . . = |eλjr t|. The Q-independence of the numbers (3.11) implies that
(3.12) has at most countably many solutions t > 0.

As in the discrete-time case, there is a simple sufficient condition for the solution
of (3.10) to have Benford functions as its components. Again, the emergence of
Benford functions from (3.10) turns out to be a generic phenomenon, cf. Remark
3.2(iv).

Theorem 3.7. Assume that A ∈ Rd×d does not have exponentially b-resonant
spectrum. Then, for every x ∈ Rd, each component of (eAtx)t≥0 either equals zero
identically, or else is a b-Benford function; the same is true for (‖eAtx‖)t≥0.

Proof. The argument follows easily from Theorem 3.3, Lemma 3.6 and the well-
known fact (see [14]) that f : [0, +∞[→ R is c.u.d. mod 1 if

(
f(nh)

)
n∈N0

is u.d.
mod 1 for almost all h ∈ [0, δ] for some δ > 0. By Lemma 3.6, choose δ > 0
such that the spectrum of B = eAh lacks b-resonance for all but countably many
h ∈ [0, δ]. For almost all h and every x ∈ Rd, the quantities

logb

∣∣(eAtx)(j)
∣∣
t = nh

= logb

∣∣(Bnx)(j)
∣∣ and log ‖eAtx‖t = nh = logb ‖Bnx‖

therefore either vanish eventually or else yield u.d. mod 1 sequences. The compo-
nents of eAtx are analytic in t, and so

(
(eAtx)(j)

)
t≥0

and (‖eAtx‖)t≥0 either vanish
identically, or else are b-Benford functions.

Remark 3.8. For simplicity, and also because Benford’s law by its very nature
is a statement about real sequences, only real matrices were considered in this
section. It is, however, straightforward to formulate Theorems 3.3 and 3.7 for
complex matrices and for real and imaginary parts of the solutions of (3.2) and
(3.10), respectively. Indeed, given A ∈ Cd×d, denote by AR its realification, i.e. the
real matrix

AR :=
( <A −=A
=A <A

)
∈ R2d×2d .

It is easily seen that σ(AR) = σ(A) ∪ σ(A). Also, since (An)R = (AR)n for all
n ∈ N0, ϕ(A)R = ϕ(AR) whenever ϕ is an entire function with ϕ(R) ⊆ R; in
particular eAR = (eA)R. For complex matrices, eigenvalues do not necessarily occur
in conjugate pairs, and representation (3.3) for zn = Anz takes the form

z(j)
n = p

(j)
1 (n)λn

1 + . . . + p(j)
s (n)λn

s , (3.13)

where {λ1, . . . , λs} represents the full spectrum of A. If =λl < 0 then λn
l in (3.13)

can be replaced by λ
n

l e2in arg λl . Lemma 2.9 thus implies that only the “upper half”
of the symmetrisized full spectrum σ(A) ∪ σ(A) has to be considered in (3.13).
Therefore, say that A ∈ Cd×d has (exponentially) b-resonant spectrum if and only
if the realification AR has the corresponding property. Using this this tailor-made
definition, it is clear that Theorem 3.3 correspondingly holds for A ∈ Cd×d and
<(Anz)n∈N0 and =(Anz)n∈N0 with z ∈ Cd; similarly, Theorem 3.7 remains valid for
<(eAtz)t≥0 and =(eAtz)t≥0.

4. Some non-linear examples. The analysis of linear systems in the previous
section has been fairly complete. This level of completeness should certainly not
be expected for the vast class of non-linear maps on Rd. As the subsequent results
show, there are nevertheless several important families of maps for which a general
statement about the emergence of Benford sequences can be made. If the map
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under consideration has a dominant term of linear or polynomial growth, then this
dominant part is responsible for the generation of Benford sequences in a sense
made precise below. As a final class of examples, analytic maps of the complex
plane are studied. Contrary to the usual approach in dynamics [3, 13], these maps
have to be considered as two-dimensional real systems here. As is the case for linear
systems, the emergence of Benford’s logarithmic mantissa distribution turns out to
be generic for a reasonably chosen, fairly general class of complex analytic maps.

4.1. Linearly dominated systems. Let the map T on Rd be given by

T : x 7→ Ax + f(x) , (4.14)

where A ∈ Rd×d, and f denotes a bounded continuous function. In order to have
infinity as an attractor for (4.14), assume that all eigenvalues of A have absolute
value larger than one. In this case it depends on the linearization x 7→ Ax of (4.14)
whether T generates Benford sequences or not.

Theorem 4.1. Let T be given by (4.14), and assume that |λ| > 1 for every λ ∈
σ(A). If A does not have b-resonant spectrum, then for sufficiently large ‖x‖, every
unbounded component of OT (x) is a b-Benford sequence, and so is ‖OT (x)‖.
Proof. As in [6, Thm. 3.1] the following shadowing argument is crucial. Define a
continuous map h by setting

h(x) := x +
∞∑

l=0

A−(l+1)f ◦ T l(x) = lim
l→∞

A−lT l(x) ,

and observe that h ◦ T (x) = A ◦ h(x) for all x; also supx∈Rd ‖h(x)− x‖ < ∞. Thus
if ‖x‖ is sufficiently large, limn→∞‖Anh(x) − Tn(x)‖ < ∞ and ‖Tn(x)‖ → ∞ as
n → ∞, in which case

(
Anh(x)(j) − Tn(x)(j)

)
remains bounded as n → ∞ for all

j = 1, . . . , d. Therefore if O
(j)
T (x) is unbounded, then so is

(
Anh(x)(j)

)
, and by

Theorem 3.3 the latter is a b-Benford sequence. Since |λ| > 1 for all λ ∈ σ(A), it
follows from the representations (3.4) and (3.6) that for any ε > 0, there exists a set
Jε ⊆ N with lower density at least 1 − ε such that limn∈Jε,n→∞ |Anh(x)(j)| = ∞.
Therefore

∣∣logb |Tn(x)(j)| − logb |Anh(x)(j)|
∣∣ =

∣∣∣∣logb

∣∣∣T
n(x)(j) −Anh(x)(j)

Anh(x)(j)
+ 1

∣∣∣
∣∣∣∣ < ε

for all sufficiently large n ∈ Jε, and thus O
(j)
T (x) is also a b-Benford sequence by

Lemma 2.3. By virtue of ‖Tn(x)‖ → ∞ and the elementary estimate
∣∣‖Anh(x)‖ −

‖Tn(x)‖∣∣ ≤ ‖Anh(x) − Tn(x)‖, the assertion about ‖OT (x)‖ follows immediately
from Theorem 3.3.

Remark 4.2. (i) Bounded components of OT (x) need not be Benford sequences, as
the simple two-dimensional example T : x 7→ ex + (1− e, 0) shows; for x = (1, x(2))
one finds Tnx =

(
1, enx(2)

)
, and the first component is constant, no matter how

large ‖x‖ is.
(ii) Boundedness, on the other hand, does not necessarily rule out Benford be-

havior. Indeed, for the slightly modified map T : x 7→ ex+f(x) with f
(
x(1), x(2)

)
:=(

(e − e−1)min(|x(1)|, 1), 0
)
, it is readily checked that both components of OT (x),

and also ‖OT (x)‖, are strict Benford sequences provided that x(1) 6∈ {−1− e−1, 0}
and x(2) 6= 0. Notice, however, that O

(1)
T (x) is bounded if x(1) ∈ ]− 1− e−1, 0[ .
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Theorem 4.1 has a direct continuous-time counterpart. Consider the initial value
problem

ẋ = Ax + f(x) , x(0) = x0 , (4.15)
with A ∈ Rd×d and f a bounded function which is assumed to be C1 in order to
guarantee (local) existence and uniqueness of the solution of (4.15); this solution
will be denoted as (ϕtx0)t≥0. Again, for (ϕtx0)t≥0 to go off to infinity for all
sufficiently large ‖x0‖, assume that <λ > 0 for all λ ∈ σ(A).

Theorem 4.3. Assume that all eigenvalues of A ∈ Rd×d have positive real part,
and that f ∈ C1 is bounded. If A does not have exponentially b-resonant spectrum,
then the solution (ϕtx0)t≥0 of (4.15) exists for all t ≥ 0 and, for all sufficiently
large ‖x0‖, every unbounded component of (ϕtx0)t≥0 as well as (‖ϕtx0‖)t≥0 is a
b-Benford function.

Proof. The argument reduces the continuous-time case to the discrete-time case
studied in Theorem 4.1. Since the estimate ‖Ax+ f(x)‖ ≤ ‖A‖ ‖x‖+ C holds with
C := supx∈Rd ‖f(x)‖, the solution of (4.15) is uniquely defined for all t ≥ 0, see [1].
Implicitly, ϕtx0 may be represented via the integral equation

ϕtx0 = eAtx0 +
∫ t

0

eA(t−τ)f(ϕτx0) dτ

for all t ≥ 0, x0 ∈ Rd. Therefore, for any positive h and all n ∈ N0 and x0 ∈ Rd,
ϕnhx0 = Tn

h (x0) with the time-h-map Th defined by

Th(x) := eAhx +
∫ h

0

eA(h−τ)f(ϕτx) dτ =: eAhx + g(x) .

Since g is continuous and supx∈Rd ‖g(x)‖ ≤ C
∫ h

0
‖eA(h−τ)‖ dτ < ∞, the map Th is

of the form (4.14). By Lemma 3.6, for almost all h > 0 the matrix eAh does not
have b-resonant spectrum, and clearly |λ| > 1 for all λ ∈ σ(eAh). The claim thus
follows from Theorem 4.1 together with [14, Thm. 9.6].

Remark 4.4. (i) As in the discrete-time case, under the conditions of Theorem
4.3, bounded components of the solution (ϕtx0)t≥0 of (4.15) may or may not be
Benford functions.

(ii) Theorems 4.1 and 4.3 are extensions of one-dimensional results in [6].

4.2. Maps with polynomial growth. In this section, each component of T is
assumed to have precisely one dominating polynomial term. Under mild assump-
tions, this particular structure of T ensures the generation of Benford sequences for
almost all sufficiently large initial points. Specifically, assume that for j = 1, . . . , d
the j-th component of T : Rd → Rd is given by

T (x)(j) = γj

(
x(1)

)aj,1 · . . . · (x(d)
)aj,d

(
1 + fj(x)

)
, (4.16)

where γj ∈ R \ {0}, aj,k ∈ N0, and the fj denote C1 functions with |fj(x)| → 0 as
‖x‖ → ∞, for all j. To avoid trivialities, it is natural to require

∑
k aj,k ≥ 1 for

all j in (4.16). Thus each component of T vanishes on some coordinate hyperplane
x(k) ≡ 0, and Benford sequences may be generated from initial points which are
sufficiently far away from any of these hyperplanes. Therefore, for α > 0 define the
cone Cα :=

{
x ∈ Rd : mind

j=1 |x(j)| ≥ α
}
, and let Dxf denote the Jacobian of f at

the point x, that is (Dxf)jk = ∂fj

∂x(k)(x). The following theorem provides a natural
generalization of Theorem 4.1 in [6].
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Theorem 4.5. Let T be given by (4.16), and assume that the matrix A = (aj,k)d
j,k=1

is hyperbolic and invertible, i.e. σ(A) ∩ (S1 ∪ {0}) = ∅. Also assume that the
C1 functions fj satisfy supx∈Cα

|fj(x)| → 0 as α → ∞ for all j, as well as
supx∈Cαo

‖x‖1+ε‖Dxf‖ < ∞ for some ε > 0, αo > 0. Then for α ≥ αo suffi-
ciently large, each component of OT (x) is a strict Benford sequence for almost all
x ∈ Cα.

Proof. First observe that without loss of generality |γj | = 1 for all j: otherwise by
rescaling x(j) as αj x̃

(j) and by requiring that

|γj |αaj,1
1 · . . . · αaj,j−1

j−1 α
aj,j−1
j α

aj,j+1
j+1 · . . . · αaj,d

d = 1 for all j , (4.17)

(4.16) may be transformed to that special form. Since A does not have 1 as an
eigenvalue, (4.17) has precisely one solution (α1, . . . , αd) with αj > 0 for all j.

Although iteration of T may make points jump between different components
of Cα, since there are only finitely many components, the sequence of components
containing Tn(x) is eventually periodic. The considerations below will make it
evident that the analysis may thus be restricted to C+

α := Cα ∩ (R+)d and to the
case γj = 1 for all j.

It will now be shown that TN (C+
α ) ⊆ C+

α for some N ∈ N and α sufficiently large.
(Notice that the latter statement does not hold in general if A lacks hyperbolicity.)
To this end, fix a base b and introduce new coordinates

(
y(1), . . . , y(d)

)
on C+

α by
setting y(j) := logb x(j), j = 1, . . . , d. In these new coordinates, T induces the map
Sb with

Sb(y)(j) = logb T (j)
(
by(1)

, . . . , by(d))
= aj,1y

(1) + . . . + aj,dy
(d) + g

(j)
b (y) ,

where g
(j)
b (y) := logb

(
1 + fj(by(1)

, . . . , by(d)
)
)
. Clearly supy∈C+

β
‖gb(y)‖ → 0 as

β →∞, and gb is C1 on C+
β for β sufficiently large. The matrix A is non-negative,

so AC+
β ⊆ C+

β for all β > 0, and A has a dominant real eigenvalue which by
hyperbolicity is larger than one. Consequently, there exists N ∈ N such that
AN (1, . . . , 1) ∈ C+

2 . Now take β > 1 so large that supy∈C+
β
‖gb(y)‖ ≤ N−1‖A‖−N

∞ ,

where ‖A‖∞ := maxj

∑
k |aj,k| ≥ 1. For each y ∈ C+

2β therefore Sl
b(y) ∈ C+

β for all
l = 0, . . . , N . But

SN
b (y) = ANy +AN−1gb(y)+AN−2gb ◦Sb(y)+ . . .+Agb ◦SN−2

b (y)+ gb ◦SN−1
b (y) ,

and so, for all j and y ∈ C+
2β ,

SN
b (y)(j) ≥ (ANy)(j) −N−1(1 + ‖A‖−1

∞ + . . . + ‖A‖−N+1
∞ ) ≥ 4β − 1 > 3β ,

that is, SN
b (C+

2β) ⊆ C+
3β , which shows that TN (C+

α ) ⊆ C+
α with α = b2β .

By the hyperbolicity of A, there exists an invariant splitting of Rd into a stable
and an unstable part, i.e. Rd = Es ⊕ Eu with AEs ⊆ Es, AEu ⊆ Eu such that
the restriction of A to Es and Eu has only eigenvalues of absolute value smaller
and larger than one, respectively. (Notice that Es may be trivial, but Eu is not.)
Denote by πs, πu the projections induced by the direct sum Rd = Es ⊕ Eu. Now
fix a sufficiently large β and consider the map

hb : y 7→ y +
∞∑

l=0

A−(l+1)πu ◦ gb ◦ Sl
b(y) , (4.18)
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which is well-defined and continuous on C+
β since

∑∞
l=0 ‖A−(l+1)πu‖ < ∞. An

explicit calculation yields

hb ◦ Sn
b (y)−Anhb(y) =

n−1∑

l=0

An−1−lπs ◦ gb ◦ Sl
b(y) ∈ Es (4.19)

for all n ∈ N. It is easily deduced from (4.19) and the preceding calculations that
‖hb ◦ Sn(y)− Anhb(y)‖ → 0 as n →∞. Furthermore, definition (4.18) shows that
supy∈C+

β
‖hb(y) − y‖ → 0 as β → ∞. On the other hand, for every y ∈ C+

β the

properties of A imply that Any(j) → ∞ for all j = 1, . . . , d, so Sn
b (y)(j) → ∞ for

all j and y ∈ C+
β .

The map ζ 7→ Aζ (mod 1) on the torus Td is ergodic with respect to λTd , see
[13]. For almost all y ∈ (R+)d, therefore, each component of (Any)y∈N0 is u.d. mod
1. From the readily checked fact that

∞∑

l=0

‖A−1‖l‖A‖l‖DSl
b(y)gb‖ < ∞

and by means of termwise differentiation of (4.18), it is straightforward to show
that for sufficiently large β the map hb is in fact a local diffeomorphism on C+

β ; in
particular, hb maps sets of measure zero to sets of measure zero. For almost all
y ∈ C+

β with β sufficiently large O
(j)
Sb

(y) therefore is u.d. mod 1 for all j = 1, . . . , d,

and O
(j)
T (x) is a b-Benford sequence for almost all x ∈ C+

α with α = bβ . Since
Tn(x)(j) → ∞ for all j and x ∈ C+

α , there exists, for each base b, a set Bb ⊂ C+
α

such that λd(C+
α \Bb) = 0, and O

(j)
T (x) is a b-Benford sequence for all j and x ∈ Bb.

Setting B :=
⋂

b≥2 Bb yields λd(C+
α \ B) = 0, and so O

(j)
T (x) is a strict Benford

sequence for all j and all x ∈ Bb.

Unlike for the linear and the linearly dominated case, with T given by (4.16)
there may exist points x for which all components of OT (x) are unbounded and
nevertheless lack the Benford property.

Corollary 4.6. Let T be as in (4.16), and assume that T satisfies the assumptions
of Theorem 4.5. Then for α ≥ αo sufficiently large, there exists a dense set E ⊆ Cα

such that no component of OT (x) is a Benford sequence for any x ∈ E.

Proof. Again assume without loss of generality that γj = 1 for all j, and restrict to
C+

α . Observing that the map ζ 7→ Aζ (mod 1) on the torus Td has a dense set P of
periodic points [13], the claim follows immediately as in the proof of Theorem 4.5.
Indeed, with the notation of that proof it suffices to fix a base b and define

E :=
{(

by(1)
, . . . , by(d))

: hb(y) ∈ C+
logb α−1 ∩ (P + Zd)

} ∩ C+
α ,

where α is sufficiently large so that the above arguments (ensuring in particular
the existence and properties of the map hb as stated there) remain valid, and also
supy∈C+

logb α
‖hb(y)− y‖ < 1.

Example 4.7. For the sake of lucidity, the components of x ∈ R2 will be denoted
by u, v rather than x(1), x(2) throughout this example.
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(i) For the map

T :
(

u

v

)
7→

(
2v − ve−u2v2

3uv + uv
u2 + v2 + 1

)

all the hypotheses of Theorem 4.5 are satisfied with A =
(

0 1
1 1

)
. Notice that

this theorem does not require all eigenvalues of A to lie outside the unit circle.
(ii) Unlike for the one-dimensional case, a multi-variate polynomial map T gen-

erally does not have a dominant term of polynomial growth such that it may be
written in the form (4.16). Even if T can be written in that form, the quantity
‖x‖1+ε‖Dxf‖ need not be bounded on Cαo

for any ε > 0, αo > 0, as can be seen
from the simple example

T :
(

u

v

)
7→

(
uv + 1

uv3 − v2

)
.

However, if the leading term of T dominates more significantly in the sense that

lim
x∈Cα,‖x‖→∞

x(1) · . . . · x(d)fj(x) = 0 for all j ,

then the condition supx∈Cαo
‖x‖1+ε‖Dxf‖ < ∞ holds with ε = 1. In this case an

application of Theorem 4.5 only requires the hyperbolicity and invertibility of A to
be checked. An illustrating example is provided by the map

T :
(

u

v

)
7→

(
u2v2 + 2

−3u4v3 + 4u2v − 5v2

)
,

for which A =
(

2 2
4 3

)
satisfies all the assumptions of Theorem 4.5.

4.3. Complex analytic maps. As explained earlier, with regards to Benford’s
law, the analysis of the dynamics of complex analytic maps naturally focuses on
systems which have 0 or ∞ (or both) as an attractor. (For a comprehensive view on
complex analytic dynamics see e.g. [3].) Since an analytic map T : C → C having
∞ as an attractor necessarily is a rational function, without loss of generality the
attractor may be assumed to be at the origin. In this section, therefore, the follow-
ing situation will be analyzed: the analytic map T has 0 as a stable attracting fixed
point, i.e. T (0) = 0 and |γ| < 1, where γ := T ′(0). As Benford’s law is a state-
ment about real sequences, this map will be dealt with as a two-dimensional real
map. Similarly, all metric statements below refer to the two-dimensional Lebesgue
measure λ2. It proves helpful to distinguish the two cases |γ| > 0 and γ = 0,
respectively. The linearly dominated case 0 < |γ| < 1 can be analyzed by means of
the results for linear maps in Section 3, together with another shadowing argument.

Theorem 4.8. Let T be analytic at 0, and assume T (0) = 0 and 0 < |γ| < 1 with
γ := T ′(0). If 1, logb |γ|, 1

2π arg γ are Q-independent, then for all z sufficiently close
to 0, the sequences <OT (z), =OT (z) are both b-Benford sequences. Furthermore,
|OT (z)| is a b-Benford sequence if and only if logb |γ| is irrational.

Proof. The argument is similar to the one in [6, Sect. 3]. Rewrite T as T (z) =
γz

(
1− f(z)

)
, where f is analytic, and f(0) = 0. It is readily checked that the map
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H with
H(z) :=

z

1 + z
∞∑

l=0

γl

1− f ◦ T l(z)
· f ◦ T l(z)

T l(z)
is analytic at 0, and H ◦T = γH holds sufficiently close to the origin; furthermore,
limz→0 z−1H(z) = 1, so

lim
n→∞

γnH(z)
Tn(z)

= 1 ,

and the assertion about the b-Benford property of |OT (z)| follows immediately since

n logb |γ|+ logb |H(z)| − logb |Tn(z)| → 0 as n →∞ .

Clearly, H(z) 6= 0 for all z 6= 0 sufficiently close to the origin. Since 1
2π arg γ

is irrational, the sequences <(
γnH(z)

)
and =(

γnH(z)
)

do not vanish eventually.
Splitting z 7→ γz into real and imaginary part yields the realified system

x 7→ (γ)Rx =
( <γ −=γ
=γ <γ

)
x ,

to which Theorem 3.3 applies. Thus the two sequences
(<(γnH(z))

)
n∈N0

and(=(γnH(z))
)
n∈N0

are b-Benford for all z 6= 0 sufficiently close to the origin. To
prove that the same is true for <OT (z), write

γnH(z) = |γnH(z)|ei
(
n arg γ+arg H(z)

)
and Tn(z) = |Tn(z)|ei(n arg γ+arg H(z)+ψn)

with limn→∞ ψn = 0. But then

logb

∣∣<(
γnH(z)

)∣∣− logb

∣∣<Tn(z)
∣∣ = logb

∣∣∣∣
γnH(z)
Tn(z)

∣∣∣∣ + logb

∣∣cos
(
n arg γ + arg H(z)

)∣∣

− logb

∣∣cos
(
n arg γ + arg H(z) + ψn

)∣∣ ,

and the claim follows from Lemma 2.3, because for any given ε > 0 the right-hand
side is (in absolute value) less than ε for all n in a set Jε ⊆ N0 with lower density
at least 1− ε (by an argument similar to the one in Lemma 2.9).

The assertion concerning the imaginary part =OT (z) is verified in a completely
analogous manner.

Remark 4.9. A rational value of 1
2π arg γ need not rule out the emergence of

Benford sequences, as the (linear) map z 7→ ie−1z shows. This is a direct analogue
of Example 3.5(ii) because (ie−1)R = A−1 with the matrix A used there. Therefore
<OT (z) and =OT (z) are strict Benford sequences for every z not in R ∪ iR. For
z ∈ R∪iR the mantissa distribution of <OT (z) and =OT (z) is a convex combination
of Benford’s distribution and an atom at 0.

The situation encountered above is fairly general: if, within the setting of The-
orem 4.8, logb |γ| is irrational but 1

2π arg γ = p
2q for relatively prime integers p, q

and 0 < |p| < q, then for |z| sufficiently small, <OT (z) and =OT (z) are b-Benford
sequences unless

H(z) ∈
q⋃

l=1

(R ∪ iR)eπiq−1l ,

that is, unless H(z) belongs to a union of at most 2q lines intersecting at the origin.
In the latter case, in addition to the logarithmic distribution, an atom at 0 occurs
in the base b mantissa distribution of <OT (z) or =OT (z).
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Corollary 4.10. Under the hypotheses of Theorem 4.8, for almost all γ with 0 <
|γ| < 1, the sequences <OT (z), =OT (z) and |OT (z)| are strict Benford sequences
for all sufficiently small |z|.

If T ′(0) = 0, then the dynamics of T near 0 is essentially non-linear. As a
simple example consider the map T : z 7→ z2. By [6], <OT (z) is a strict Benford
sequence for λ1-almost all z ∈ R, whereas =Tn(z) vanishes identically for such z.
Since Tn(iz) = Tn(z) for n ≥ 2 and all z, it is natural to expect that the real as
well as the imaginary part of OT (z) is typically a Benford sequence. Notice that
this assertion cannot be proved by falling back on Theorem 4.5 because T , when
considered as a two-dimensional real map, does not have a dominant polynomial
term. Nevertheless, a rather complete analysis is again provided by means of a
shadowing argument.

Theorem 4.11. Let T 6≡ 0 be analytic at 0, with T (0) = 0 and T ′(0) = 0. For
almost all z sufficiently close to the origin, <OT (z), =OT (z) and |OT (z)| are strict
Benford sequences.

Proof. Rewrite T as T (z) = γzp
(
1− f(z)

)
, where γ ∈ C \ {0}, p ∈ N \ {1} and f is

an analytic function with f(0) = 0. Let ρ denote a complex number with ρp−1 = γ,
and define a map H by setting

H(z) := ρz

∞∏

l=0

(
1− f ◦ T l(z)

)p−(l+1)

, (4.20)

where for every l ∈ N the pl-th root is understood as that branch of the root which
maps the positive real axis into itself. It is easily checked that (4.20) defines an
analytic function near the origin, with limz→0 z−1H(z) = ρ 6= 0. Therefore H is
locally a conformal map with H ◦ T (z) = Hp(z) for all z sufficiently close to 0.
Consequently,

lim
n→∞

H(z)pn

Tn(z)
= ρ ,

from which the assertion about the strict Benford property of |OT (z)| follows im-
mediately, because for all bases b

pn logb |H(z)| − logb |Tn(z)| → logb |ρ| as n →∞ ,

and (pnx)n∈N0 is u.d. mod 1 for λ1-almost all x ∈ R, see [9, 12].
To prove that <OT (z) is a strict Benford sequence for almost all z, it is sufficient

to show that the same is true for
(<ρ−1H(z)pn)

n∈N0
, as is seen by writing

∣∣<(
ρ−1H(z)pn)∣∣ =

∣∣ρ−1H(z)pn ∣∣ ·
∣∣cos(pn arg H(z)− arg ρ)

∣∣ (4.21)

and
|<Tn(z)| = |Tn(z)| · ∣∣cos(pn arg H(z)− arg ρ + ψn)

∣∣ (4.22)
with limn→∞ ψn = 0. From (4.21) and (4.22) it follows that

logb

∣∣<(
ρ−1H(z)pn)∣∣− logb |<Tn(z)| = logb

∣∣∣∣
H(z)pn

Tn(z)ρ

∣∣∣∣ +

+ logb

∣∣cos(pn arg H(z)− arg ρ)
∣∣− logb

∣∣cos(pn arg H(z)− arg ρ + ψn)
∣∣ .

Provided that 1
2π arg H(z) is a p-normal number [12, 14], the right-hand side is

less than a given ε > 0 for all n in a set Jε ⊆ N which has lower density at least
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1−ε. Therefore, if 1
2π arg H(z) is p-normal and

(<(ρ−1H(z)pn

)
)
n∈N0

is a b-Benford
sequence, then so is <OT (z).

Since H is a conformal map near the origin, and the countable union of sets of
measure zero has measure zero itself, it is enough to establish the Benford property
for

(<(ρ−1zpn

)
)
n∈N0

for almost every z. However, since

logb

∣∣<(ρ−1zpn

)
∣∣ = pn logb |z| − logb |ρ|+ logb

∣∣cos(pn arg z − arg ρ)
∣∣ ,

this follows immediately from Lemma 2.7.
The proof of the strict Benford property for =OT (z) is completely analogous.

In the following corollary the term exceptional point refers to any point z for
which neither of the sequences <OT (z), =OT (z) nor |OT (z)| is a strict Benford
sequence.

Corollary 4.12. Let T 6≡ 0 be analytic at 0, with T (0) = 0 and T ′(0) = 0. Then
every sufficiently small disc centered at the origin contains an uncountable dense
set of exceptional points.

Proof. Fix a base b ∈ N \ {1}, and consider the (uncountable, dense) set

Eb := {z ∈ C \ {0} : logb |z| = kpl with k, l ∈ Z ,
1
2π

arg z is p-normal } .

Since the map x 7→ logb |cos 2πx| (mod 1) does not preserve λT1 for any base b,
taking an appropriate neighborhood U of the origin, it follows as in the proof of
Theorem 4.11, in particular (4.21) and (4.22), that neither of the sequences <OT (z),
=OT (z) nor |OT (z)| is a b-Benford sequence for any z ∈ H−1(Eb ∩ U).

Remark 4.13. (i) For any domain U ⊆ C containing the origin, the family H0(U)
of analytic maps T on U with T (0) = 0 is a Polish space when endowed with
the topology of uniform convergence on compact sets, and so are the open subset
A(U) := {T ∈ H0(U) : |T ′(0)| < 1} and the closed subset A0(U) := {T ∈ A(U) :
T ′(0) = 0}, which represent the family of analytic maps having 0 as a stable
attracting and a super-attracting fixed point, respectively, see e.g. [5]. Let B(U)
denote the set of maps T ∈ A(U) which under iteration typically produce strict
Benford sequences near the origin, more precisely

B(U) := {T ∈ A(U) : ∃ ε > 0 such that <OT (z),=OT (z), |OT (z)| are strict

Benford sequences for (at least) almost all z with |z| < ε} .

Theorem 4.11 implies that A0(U) ⊆ B(U), and the set A(U) \ B(U) is of first
category by Theorem 4.8. The generation of Benford sequences is thus a generic
phenomenon in A(U).

(ii) The set of p-normal numbers on the real line is of first category [12], so the
sets of full measure referred to in Theorem 4.11 may be of first category, too.
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