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Abstract

A necessary and sufficient condition (“nonresonance”) is established for

every solution of an autonomous linear difference equation, or more generally

for every sequence (x⊤Any) with x, y ∈ Rd and A ∈ Rd×d, to be either trivial

or else conform to a strong form of Benford’s Law (logarithmic distribution of

significands). This condition contains all pertinent results in the literature as

special cases. Its number-theoretical implications are discussed in the context

of specific examples, and so are its possible extensions and modifications.
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1 Introduction

The study of digits generated by dynamical processes is a classical subject that

continues to attract interest from many disciplines, including ergodic and number

theory [1, 13, 14, 23, 27], analysis [11, 29] and statistics [16, 20, 30]. A recurring

theme across the disciplines is the surprising ubiquity of a logarithmic distribution

of digits often referred to as Benford’s Law (BL). The most well-known special case

of BL is the so-called (decimal) first-digit law which asserts that

P(leading digit10 = d1) = log10

(
1 + d−1

1

)
, ∀d1 = 1, . . . , 9 , (1.1)

where leading digit10 refers to the leading (or first significant) decimal digit, and

log10 is the base-10 logarithm (see Section 2 for rigorous definitions); for example,

the leading decimal digit of e = 2.718 is 2, whereas the leading digit of −ee = −15.15

is 1. Note that (1.1) is heavily skewed towards the smaller digits: For instance,
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the leading decimal digit is almost seven times as likely to equal 1 (probability

log10 2 = 30.10%) as it is to equal 9 (probability 1 − log10 9 = 4.57%).

Ever since first recorded by Newcomb [33] in 1881 and re-discovered by Benford

[2] in 1938, examples of data and systems conforming to (1.1) in one form or an-

other have been discussed extensively, for instance in real-life data (e.g. [17, 35]),

stochastic processes (e.g. [37]) and deterministic sequences (e.g. (n!) and the prime

numbers [15]). There now exists a large body of literature devoted to the mecha-

nisms whereby mathematical objects, such as e.g. sequences or random variables,

do or do not satisfy (1.1) or variants thereof. As of this writing, an online database

[3] devoted exclusively to BL lists more than 800 references.

Due to their important role as elementary models throughout science, linear

difference equations have, from very early on, been studied for their conformance to

(1.1). A simple but prominent case in point is the sequence (xn) = (1, 1, 2, 3, 5, . . .)

of Fibonacci numbers, which has long been known [10, 19, 25, 39] to conform to

(1.1) in the sense that

limN→∞
#{n ≤ N : leading digit10(xn) = d1}

N
= log10(1 + d−1

1 ) , ∀d1 = 1, . . . 9 .

(1.2)

Recall that (xn) is a solution of a (very simple) autonomous linear difference equa-

tion, namely xn = xn−1 +xn−2 for all n ≥ 3. This article provides a comprehensive

theory of BL for such equations. Specifically, the central question addressed (and

answered) herein is this: Given d ∈ N and real numbers a1, a2, . . . , ad−1, ad with

ad 6= 0, consider the (autonomous, d-th order) linear difference equation

xn = a1xn−1 + a2xn−2 + . . . + ad−1xn−d+1 + adxn−d , ∀n ≥ d + 1 . (1.3)

Under which conditions on a1, a2, . . . , ad−1, ad, and presumably also on the initial

values x1, . . . , xd, does the solution (xn) of (1.3) satisfy (1.2)? There already exists

a sizeable literature addressing this question; see e.g. [4, 22, 32, 36]. All previous

work, however, seems to have led merely to sufficient conditions that are either

restrictive or difficult to state. By contrast, the main result in this paper (Theorem

3.16) provides an easy-to-state, necessary and sufficient condition for every non-

trivial solution of (1.3) to satisfy (1.2), and in fact to conform to (1.1) in an even

stronger sense. The classical results in the literature are then but simple corollaries.

To illustrate the main result, consider specifically the second-order difference

equation

xn = 2γxn−1 − 5xn−2 , ∀n ≥ 3 , (1.4)

where γ is a real parameter with |γ| <
√

5. Given any initial values x1, x2 ∈ R, does

the solution (xn) of (1.4) satisfy (1.2)? Theorem 3.16 asserts that the answer to this

question is positive provided that the set Zγ = {z2 = 2γz − 5} = {γ ± ı
√

5 − γ2}
has a certain number-theoretical property (“nonresonance”). For example, if γ =√

5 cos(π/
√

8) = 0.9928 then Zγ turns out to be nonresonant, and (1.2) holds for

every solution (xn) of (1.4), unless x1 = x2 = 0, in which case xn ≡ 0. On the
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other hand, if γ =
√

5 cos(1
2π log10 5) = 1.018 then Zγ fails to be nonresonant, and

correspondingly (1.2) does not hold for any solution of (1.4). Finally, if γ = 1 then

(xn) either satisfies (1.2) for all initial values x1, x2 (unless x1 = x2 = 0) or for

none at all, and experimental evidence seems to support the former alternative; see

Figure 1 and also Example 3.18 below.

1 2 3 4 5 6 7 8 9

29.99 17.43 12.82 9.58 7.93 6.70 6.01 5.02 4.52

43.68 7.77 7.20 6.87 6.68 6.62 6.71 6.99 7.48

29.99 17.23 12.78 9.51 7.92 6.61 6.01 5.19 4.76

30.10 17.60 12.49 9.69 7.91 6.69 5.79 5.11 4.57

γ = 0.9928

γ = 1.018

γ = 1

exact BL

Figure 1: Relative frequencies (in percent) of the leading decimal digits for the first

10000 terms of the solution (xn) of (1.4) with x1 = x2 = 1, for different values of the

parameter γ; the bottom row shows the exact BL probabilities 100 · log10(1 + d−1
1 ).

This article is organized as follows. Section 2 introduces the formal definitions

and analytic tools required for the analysis. In Section 3, the main results are

stated and proved, based upon a tailor-made notion of nonresonance (Definition

3.1). Several examples are presented in order to illustrate this notion as well as the

main results. Finally, Section 4 briefly discusses possible extensions and modifica-

tions of the latter. Given the widespread usage of discrete-time linear systems and

linear difference equations as models throughout the sciences, the results of this

article may contribute to a better understanding of, and appreciation for BL and

its applications in many disciplines. For the reader’s convenience, several analytical

facts of an auxiliary nature are deferred to an appendix, including the plausible but

lengthy-to-prove Theorem A.4 which in turn implies the crucial Lemma 2.7.

2 Basic definitions and tools

Throughout this article, the following, mostly standard notation and terminology

is used. The symbols N, N0, Z, Q, R+, R and C denote the sets of, respectively,

positive integer, nonnegative integer, integer, rational, positive real, real and com-

plex numbers, and ∅ is the empty set. For every integer b ≥ 2, the logarithm base

b of x ∈ R+ is denoted logb x, and lnx is the natural logarithm (base e) of x; for

convenience, let logb 0 := 0 for every b, and ln 0 := 0. Given any x ∈ R, the largest

integer not larger than x is symbolized by ⌊x⌋. The real part, imaginary part, com-

plex conjugate and absolute value (modulus) of any z ∈ C is ℜz, ℑz, z and |z|,
respectively. For every z ∈ C \ {0} there exists a unique number −π < arg z ≤ π
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with z = |z|eı arg z. Given any w ∈ C and Z ⊂ C, define w + Z := {w + z : z ∈ Z}
and wZ := {wz : z ∈ Z}. Thus with the unit circle S := {z ∈ C : |z| = 1}, for

example, w + S = {z ∈ C : |z − w| = 1} and wS = {z ∈ C : |z| = |w|} for every

w ∈ C. The cardinality (number of elements) of any finite set Z ⊂ C is #Z.

The symbol d throughout denotes a positive integer, usually unspecified or clear

from the context. The d-dimensional torus Rd/Zd is symbolized by Td, its elements

being represented as 〈x〉 = x + Zd with x ∈ Rd; for simplicity write T instead

of T1. The compact Abelian group Td can be identified with the d-fold product

S × . . . × S, via the identification 〈x〉 = 〈(x1, . . . , xd)〉 ↔ (e2πıx1 , . . . , e2πıxd) which

is both a homeomorphism (of compact spaces) and an isomorphism (of groups).

Denote the Haar (probability) measure on Td by λTd . Call a set J ⊂ T an arc if

J = 〈I〉 := {〈x〉 : x ∈ I} for some interval I ⊂ R. With this, a sequence (xn) of

real numbers is uniformly distributed modulo one, henceforth abbreviated as u.d.

mod 1, if

limN→∞
#{n ≤ N : 〈xn〉 ∈ J }

N
= λT(J ) for every arc J ⊂ T .

Equivalently, limN→∞
1
N

∑N
n=1 f(〈xn〉) =

∫
T

f dλT holds for every continuous (or

merely Riemann integrable) function f : T → C.

Recall that throughout b is an integer with b ≥ 2, informally referred to as a

base. Given a base b and any x 6= 0, there exists a unique real number 1 ≤ Sb(x) < b

and a unique integer k such that |x| = Sb(x)bk. The number Sb(x), referred to as

the (base-b) significand (or mantissa) of x, can be written explicitly as

Sb(x) = blogb |x|−⌊logb |x|⌋ ;

in addition, let Sb(0) := 0 for every base b. The integer ⌊Sb(x)⌋ is the first significant

digit (base b) of x; note that ⌊Sb(x)⌋ ∈ {1, . . . , b − 1} whenever x 6= 0.

In this article, conformance to BL for sequences of real numbers is studied via

the following basic definition.

Definition 2.1. A sequence (xn) in R is a b -Benford sequence, or b -Benford for

short, with b ∈ N \ {1}, if

limN→∞
#{n ≤ N : Sb(xn) ≤ s}

N
= logb s , ∀s ∈ [1, b) .

The sequence (xn) is a Benford sequence, or simply Benford, if it is b -Benford for

every b ∈ N \ {1}.

Specifically, note that (1.2) holds whenever (xn) is 10-Benford, whereas the

converse is not true in general since, for instance, the sequence of first significant

digits of (2n), i.e.
(
⌊S10(2

n)⌋
)

= (2, 4, 8, 1, 3, . . .), is clearly not 10-Benford yet can

easily be shown to satisfy (1.2).

Though very simple, the following observation is fundamental for the purpose

of this work because it enables the application of a host of tools from the theory of

uniform distribution.
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Proposition 2.2. [15, Thm.1] Let b ∈ N \ {1}. A sequence (xn) in R is b -Benford

if and only if the sequence (logb |xn|) is u.d. mod 1.

To prepare for the application of Proposition 2.2, several basic facts from the

theory of uniform distribution are reviewed here for the convenience of the reader

who, for an authoritative account on the theory in general, may also wish to consult

[18, 26].

Lemma 2.3. The following are equivalent for every sequence (xn) in R:

(i) (xn) is u.d. mod 1;

(ii) For every ε > 0 there exists a uniformly distributed sequence (x̃n) with

limN→∞
#{n ≤ N : |xn − x̃n| > ε}

N
< ε ;

(iii) Whenever (yn) converges in R then (xn + yn) is u.d. mod 1;

(iv) (kxn) is u.d. mod 1 for every k ∈ Z \ {0};

(v) (xn + α lnn) is u.d. mod 1 for every α ∈ R.

Proof. Clearly (i)⇒(ii), and the converse is analogous to [4, Lem.2.3]. Also, each of

the statements (iii), (iv), and (v) trivially implies (i), while the reverse implication

is [26, Thm.I.1.2], [26, Exc.I.2.4], and [4, Lem.2.8], respectively.

Lemma 2.4. Let (xn) be a sequence in R, and L ∈ N. If (xnL+ℓ) is u.d. mod 1

for every ℓ ∈ {1, . . . , L} then (xn) is u.d. mod 1 as well.

Proof. This follows directly from Weyl’s criterion [26, Thm.I.2.1]: For every k ∈
Z \ {0},
∣∣∣∣
1

N

∑N

n=1
e2πıkxn

∣∣∣∣ ≤
∣∣∣∣
1

N

∑L⌊N/L⌋

n=1
e2πıkxn

∣∣∣∣+
∣∣∣∣
1

N

∑N

n=L⌊N/L⌋+1
e2πıkxn

∣∣∣∣

≤
∣∣∣∣
1

N

∑L

ℓ=1

∑⌊N/L⌋−1

n=0
e2πıkxnL+ℓ

∣∣∣∣+
L

N

≤ 1

L

∑L

ℓ=1

∣∣∣∣
1

⌊N/L⌋
∑⌊N/L⌋−1

n=0
e2πıkxnL+ℓ

∣∣∣∣+
L

N

N→∞−→ 0 ,

because limM→∞
1

M

∑M−1

n=0
e2πıkxnL+ℓ = 0 for every ℓ, by assumption.

When combined with the well-known fact that (nϑ) is u.d. mod 1 precisely if

ϑ ∈ R is irrational [26, Exp.I.2.1], Lemma 2.3 and 2.4 immediately yield

Lemma 2.5. Let α, ϑ ∈ R, L ∈ N, and assume the sequence (yn) in R has the

property that (ynL+ℓ) converges for every ℓ ∈ {1, . . . , L}. Then (nϑ + α lnn + yn)

is u.d. mod 1 if and only if ϑ ∈ R \ Q.
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The remaining two results in this section deal with sequences of a particular

form that are going to appear naturally in later sections. For a concise formulation,

given any Z ⊂ C, denote by spanQZ the smallest subspace of C (over Q) contain-

ing Z; equivalently, if Z 6= ∅ then spanQZ is the set of all finite rational linear

combinations of elements of Z, i.e.

spanQZ =
{
ρ1z1 + . . . + ρnzn : n ∈ N, ρ1, . . . , ρn ∈ Q, z1, . . . , zn ∈ Z

}
;

note that spanQ∅ = {0}. With this terminology, recall that z1, . . . , zn ∈ C are

Q-independent (or rationally independent) if spanQ{z1, . . . , zn} is n-dimensional, or

equivalently if
∑n

j=1 kjzj = 0 with integers k1, . . . , kn implies k1 = . . . = kn = 0.

The following result is a generalization of [4, Lem.2.9].

Lemma 2.6. Let d ∈ N, ϑ0, ϑ1, . . . , ϑd ∈ R, and assume f : Td → C is continuous,

and non-zero λTd-almost everywhere. If the d + 2 numbers 1, ϑ0, ϑ1, . . . , ϑd are Q-

independent then the sequence
(
nϑ0 + α lnn + β ln

∣∣f
(
〈(nϑ1, . . . , nϑd)〉

)
+ zn

∣∣
)

is u.d. mod 1 for every α, β ∈ R and every sequence (zn) in C with limn→∞ zn = 0.

Proof. For convenience, let

xn := nϑ0 + α lnn + β ln
∣∣f
(
〈(nϑ1, . . . , nϑd)〉

)
+ zn

∣∣ , ∀n ∈ N .

The function g := β ln |f | is continuous on a set of full λTd-measure, and so [4,

Cor.2.6] together with Lemma 2.3(v) shows that the sequence (x̃n) with

x̃n := nϑ0 + α lnn + β ln
∣∣f
(
〈(nϑ1, . . . , nϑd)〉

)∣∣ , ∀n ∈ N ,

is u.d. mod 1 for every α, β ∈ R. Given 0 < ε ≤ 1, choose 0 < δ < 1
2ε/(1 + |β|) so

small that λTd

(
{t ∈ Td : |f(t)| ≤ δ}

)
< ε. There exists T ⊂ Td such that T is a

finite union of open balls, T ⊃ {t ∈ Td : |f(t)| ≤ δ}, and λTd(T ) < ε. Observe now

that if 〈(nϑ1, . . . , nϑd)〉 6∈ T and |zn| < δ2 then

|xn − x̃n| = |β|
∣∣∣∣∣ln
∣∣∣∣1 +

zn

f
(
〈(nϑ1, . . . , nϑd)〉

)
∣∣∣∣

∣∣∣∣∣ ≤ 2|β|δ < ε .

By the Q-independence of 1, ϑ1, . . . , ϑd, the sequence
(
(nϑ1, . . . , nϑd)

)
is u.d. mod

1 in Rd, see e.g. [26, Exp.I.6.1], and so

limN→∞
#{n ≤ N : 〈(nϑ1, . . . , nϑd)〉 ∈ T }

N
= λTd(T ) < ε .

With this and limn→∞ zn = 0, it follows that

limN→∞
#{n ≤ N : |xn − x̃n| > ε}

N

≤ limN→∞
#{n ≤ N : 〈(nϑ1, . . . , nϑd)〉 ∈ T or |zn| ≥ δ2}

N

≤ limN→∞
#{n ≤ N : 〈(nϑ1, . . . , nϑd)〉 ∈ T }

N
+ limN→∞

#{n ≤ N : |zn| ≥ δ2}
N

= λTd(T ) + 0 < ε ,
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and an application of Lemma 2.3(ii) completes the proof.

The assertion of the next, final lemma is very plausible indeed. Its proof, how-

ever, is somewhat technical and hence deferred to an appendix for the reader’s

convenience.

Lemma 2.7. Let d ∈ N, p1, . . . , pd ∈ Z, and β ∈ R \ {0}. Then there exists u ∈ Rd

such that the sequence

(
p1nϑ1 + . . . + pdnϑd + β ln

∣∣u1 cos(2πnϑ1) + . . . + ud cos(2πnϑd)
∣∣
)

is not u.d. mod 1 whenever ϑ1, . . . , ϑd ∈ R and the d + 1 numbers 1, ϑ1, . . . , ϑd are

Q-independent.

Proof. See Appendix A.

3 A Characterization of Benford’s Law

Given a positive integer d and real numbers a1, a2, . . . , ad−1, ad with ad 6= 0, consider

the autonomous, d-th order linear difference equation (or recursion)

xn = a1xn−1 + a2xn−2 + . . . + ad−1xn−d+1 + adxn−d , ∀n ≥ d + 1 . (1.3)

The goal of this section is to provide a necessary and sufficient condition on the

coefficients a1, a2, . . . , ad−1, ad guaranteeing that every solution (xn) of (1.3) is ei-

ther Benford or trivial (identically zero); see Theorem 3.16 below. To make the

analysis as transparent as possible, a standard matrix-vector approach is utilized.

Thus associate with (1.3) the matrix

A =




a1 a2 · · · ad−1 ad

1 0 · · · 0 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0



∈ Rd×d , (3.1)

which is invertible since ad 6= 0, and recall that, given initial values x1, . . . , xd ∈ R,

the solution (xn) of (1.3) can be expressed in the form

xn = (e(d))⊤Any , where y = A−1




xd

...

x1


 ∈ Rd ; (3.2)

here e(1), . . . , e(d) represent the standard basis of Rd; An is the n-th power of A, i.e.

An = AAn−1 for n ≥ 1 and A0 = Id, the d× d-identity matrix; and x⊤ denotes the

transpose of x ∈ Rd, with x⊤y being understood as the real number
∑d

j=1 xjyj . As

suggested by (3.2), in what follows, conditions are studied under which (x⊤Any)
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is b-Benford, where x, y ∈ Rd and A is any given real d × d-matrix. Towards the

end of this section, these conditions are, via (3.1) and (3.2), specialized to solutions

(xn) of the linear difference equation (1.3). Note that with A given by (3.1), the

sequence (x⊤Any) is a solution of (1.3) for every x, y ∈ Rd; see also the proof of

Lemma 3.6 below.

As throughout the entire article, in the subsequent analysis of powers of matrices,

d always denotes a fixed but otherwise unspecified positive integer. For every x ∈
Rd, the number |x| ≥ 0 is the Euclidean norm of x, i.e. |x| =

√
x⊤x =

√∑d
j=1 x2

j .

A vector x ∈ Rd is a unit vector if |x| = 1. For every matrix A ∈ Rd×d, its

spectrum, i.e. the set of its eigenvalues, is denoted by σ(A). Thus σ(A) ⊂ C

is non-empty, contains at most d numbers and is symmetric w.r.t. the real axis,

i.e., all non-real elements of σ(A) come in complex-conjugate pairs. The number

rσ(A) := max{|λ| : λ ∈ σ(A)} ≥ 0 is the spectral radius of A. Note that rσ(A) > 0

unless A is nilpotent, i.e. unless AN = 0 for some N ∈ N; in the latter case Ad = 0

as well. For every A ∈ Rd×d, the number |A| is the (spectral) norm of A as induced

by | · |, i.e. |A| = max{|Ax| : |x| = 1}. It is well-known that |A| =
√

rσ(A⊤A) ≥
rσ(A) = limn→∞ |An|1/n.

As will become clear shortly, some Benford properties related to linear difference

equations can be characterized in terms of the spectrum of an associated matrix.

The following terminology turns out to be useful in this context.

Definition 3.1. Let b ∈ N \ {1}. A non-empty set Z ⊂ C with |z| = r for some

r > 0 and all z ∈ Z, i.e. Z ⊂ rS, is b-nonresonant if the associated set

∆Z :=

{
1 +

arg z − argw

2π
: z, w ∈ Z

}
⊂ R (3.3)

satisfies both of the following conditions:

(i) ∆Z ∩ Q = {1};

(ii) logb r 6∈ spanQ∆Z .

An arbitrary set Z ⊂ C is b-nonresonant if, for every r > 0, the set Z ∩ rS is either

b-nonresonant or empty; otherwise, Z is b-resonant.

Note that the set ∆Z in (3.3) automatically satisfies 1 ∈ ∆Z ⊂ (0, 2) and is

symmetric w.r.t. the point 1, i.e. ∆Z = 2−∆Z . The empty set ∅ and the singleton

{0} are b-nonresonant for every b ∈ N \ {1}. Also, if Z is b-nonresonant then so

is every W ⊂ Z. On the other hand, Z ⊂ C is certainly b-resonant for every b if

either #(Z ∩ rS∩R) = 2 for some r > 0, in which case (i) is violated, or Z ∩S 6= ∅,

which causes (ii) to fail.

Example 3.2. The singleton {z} with z ∈ C is b-nonresonant if and only if either

z = 0 or logb |z| 6∈ Q. Similarly, any set {z, z} with z ∈ C \ R is b-nonresonant if

and only if 1, logb |z| and 1
2π arg z are Q-independent.
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Remark 3.3. (i) If Z ⊂ rS then, for every z ∈ Z,

spanQ∆Z = spanQ

(
{1} ∪

{
arg z − arg w

2π
: w ∈ Z

})
,

which shows that the dimension of spanQ∆Z as a linear space over Q is at most #Z.

Also, if Z ⊂ rS is (non-empty and) symmetric w.r.t. the real axis, i.e. if Z = Z 6= ∅,

then condition (ii) in Definition 3.1 is equivalent to logb r 6∈ spanQ({1}∪ { 1
2π arg z :

z ∈ Z}); cf. [4, Def.3.1].

(ii) The number 1 in (3.3) and part (i) of Definition 3.1 has been chosen for

convenience only; for the purpose of this work, it could be replaced by any non-zero

rational number.

Recall that for the sequence (xany) with any x, y ∈ R and a ∈ R\{0} to be either

b-Benford (if xy 6= 0) or trivial (if xy = 0) it is necessary and sufficient that logb |a|
be irrational. (This follows immediately e.g. from Proposition 2.2 and Lemma 2.5.)

The following theorem, the first main result of this article, extends this simple fact

to arbitrary (finite) dimension by characterizing the b-Benford property of (x⊤Any)

for any x, y ∈ Rd and A ∈ Rd×d. To concisely formulate this and subsequent results,

call (x⊤Any) and (|Anx|) with x, y ∈ Rd and A ∈ Rd×d terminating if, respectively,

x⊤Any = 0 or Anx = 0 for all n ≥ d; similarly, (|An|) is terminating if An = 0

for all n ≥ d. Also, recall that the asymptotic behaviour of (An) is completely

determined by the eigenvalues of A, together with the corresponding (generalized)

eigenvectors. As far as Benford’s Law base b is concerned, the key question turns out

to be whether or not the set σ(A) is b-nonresonant. Notice that for A = [a] ∈ R1×1

with a 6= 0 the set σ(A) = {a} is b-nonresonant if and only if logb |a| is irrational.

Theorem 3.4. Let A ∈ Rd×d and b ∈ N \ {1}. Then the following are equivalent:

(i) For every x, y ∈ Rd the sequence (x⊤Any) is either b-Benford or terminating;

(ii) The set σ(A) is b-nonresonant.

The proof of Theorem 3.4 is facilitated by two simple observations, the first of

which is an elementary fact from linear algebra.

Lemma 3.5. Let L ∈ {1, . . . , d} and assume y(1), . . . , y(L) ∈ Rd are linearly inde-

pendent. Then, given any u ∈ RL, there exists x ∈ Rd such that x⊤y(ℓ) = uℓ for

every 1 ≤ ℓ ≤ L.

Proof. The function

Φ :

{
Rd → RL ,

x 7→ ∑L
ℓ=1(x

⊤y(ℓ))e(ℓ) ,

is linear, and since the (Gram) determinant

det[Φ(y(1)), . . . , Φ(y(L))] = det[(y(ℓ))⊤y(k)]Lℓ,k=1

is non-zero, Φ is also onto.
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A second observation clarifies the role of condition (i) in Definition 3.1 and may

also be of independent interest. Recall that a set N ⊂ N has density if

ρ(N ) := limN→∞
#{n ≤ N : n ∈ N}

N

exists. In this case, ρ(N ) is called the density of N . Clearly, 0 ≤ ρ(N ) ≤ 1

whenever N has density. Not all subsets of N have density, but those most relevant

for Theorem 3.4 do.

Lemma 3.6. For every A ∈ Rd×d and x, y ∈ Rd, let

NA,x,y := {n ∈ N : x⊤Any = 0} . (3.4)

Then NA,x,y has density, and ρ(NA,x,y) ∈ Q ∩ [0, 1].

Proof. By the Cayley–Hamilton Theorem, there exist a1, a2, . . . , ad−1, ad ∈ R such

that

Ad = a1A
d−1 + a2Ad−2 + . . . + ad−1A + adId .

Thus, for every n ∈ N and x, y ∈ Rd,

x⊤An+dy = x⊤(a1A
n+d−1 + a2A

n+d−2 + . . . + ad−1A
n+1 + adA

n)y

= a1x
⊤An+d−1y + a2x

⊤An+d−2y + . . . + ad−1x
⊤An+1y + adx

⊤Any ,

showing that (x⊤Any) satisfies a linear d-step recursion relation with constant co-

efficients. By the Skolem–Mahler–Lech Theorem [31, Thm.A], the set NA,x,y is the

union of a finite (possibly empty) set N0 and a finite (possibly zero) number of

lattices, i.e.

NA,x,y = N0 ∪
⋃L

ℓ=1
{nNℓ + Mℓ : n ∈ N} , (3.5)

where L is a nonnegative integer, and Mℓ, Nℓ ∈ N for 1 ≤ ℓ ≤ L. From (3.5)

it is clear that NA,x,y has density, and ρ(NA,x,y) is a rational number, in fact

ρ(NA,x,y) · lcm{N1, . . . , NL} is a (nonnegative) integer.

By using information about σ(A), more can be said about the possible values of

ρ(NA,x,y) in Lemma 3.6. In order to concisely state the following observation, call

a set N ⊂ N co-finite if N \N is finite. With this, (x⊤Any) is terminating precisely

if NA,x,y is co-finite.

Lemma 3.7. For every A ∈ Rd×d the following three statements are equivalent:

(i) For every x, y ∈ Rd the set NA,x,y in (3.4) is either finite or co-finite;

(ii) ρ(NA,x,y) ∈ {0, 1} for every x, y ∈ Rd;

(iii) For every r > 0 either ∆σ(A)∩rS ∩ Q = {1} or σ(A) ∩ rS = ∅.
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Proof. Clearly (i)⇒(ii), because ρ(N ) = 0 or ρ(N ) = 1 whenever N is finite or

co-finite, respectively.

Next, to establish the implication (ii)⇒(iii), assume (ii) but suppose (iii) did

not hold. (Note that this is possible only if d ≥ 2.) Thus #(∆σ(A)∩rS ∩ Q) ≥ 2 for

some r > 0, which in turn entails one of the following three possibilities: Either

both −r and r are eigenvalues of A, (3.6)

or

A has an eigenvalue λ ∈ C \ R with |λ| = r and 1
2π arg λ > 0 rational, (3.7)

or

A has two eigenvalues λ1, λ2 ∈ C \ R with |λ1| = |λ2| = r and argλ1 > argλ2 > 0

such that at least one of the two numbers 1
2π (arg λ1 ± arg λ2) is rational. (3.8)

Note that these cases are not mutually exclusive, and (3.8) can occur only for d ≥ 4.

In case (3.6), let u, v ∈ Rd be eigenvectors of A corresponding to the eigenvalues

−r, r, respectively. Pick x ∈ Rd such that x⊤u = x⊤v = 1. This is possible because

u, v are linearly independent; see Lemma 3.5. Then, with y := u + v,

x⊤Any = x⊤
(
(−r)nu + rnv

)
= rn

(
(−1)n + 1

)
, ∀n ∈ N ,

showing that NA,x,y = {2n−1 : n ∈ N}. Thus ρ(NA,x,y) = 1
2 6∈ {0, 1}, contradicting

(ii).

In case (3.7), let w ∈ Cd be an eigenvector of A corresponding to the eigenvalue

λ, and observe that, for every n ∈ N,

Anℜw = rn
(
cos(n argλ)ℜw − sin(n argλ)ℑw

)
,

(3.9)
Anℑw = rn

(
sin(n arg λ)ℜw + cos(n argλ)ℑw

)
.

Again, since ℜw,ℑw ∈ Rd are linearly independent, it is possible to choose x ∈ Rd

such that x⊤ℜw = 1 and x⊤ℑw = 0. With y := ℑw, therefore,

x⊤Any = rn sin(n arg λ) , ∀n ∈ N .

Since 1
π arg λ is rational and strictly between 0 and 1, the set NA,x,y equals NN for

some integer N ≥ 2. Thus 0 < ρ(NA,x,y) = 1
N < 1, again contradicting (ii).

Lastly, in case (3.8) let w(1), w(2) ∈ Cd be eigenvectors of A corresponding to

the eigenvalues λ1, λ2, respectively. As seen in (3.9) above, for every n ∈ N,

Anℜ(w(1) + w(2)) = rn
(
cos(n arg λ1)ℜw(1) − sin(n arg λ1)ℑw(1)+

+ cos(n arg λ2)ℜw(2) − sin(n argλ2)ℑw(2)
)
.
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Again, ℜw(1),ℑw(1),ℜw(2),ℑw(2) ∈ Rd are linearly independent, and so by Lemma

3.5 it is possible to choose x ∈ Rd such that x⊤ℜw(1) = −1, x⊤ℑw(1) = x⊤ℑw(2) =

0, and x⊤ℜw(2) = 1. Then, with y := ℜ(w(1) + w(2)),

x⊤Any = rn
(
cos(n arg λ2) − cos(n arg λ1)

)

= 2rn sin

(
πn

arg λ1 − arg λ2

2π

)
sin

(
πn

arg λ1 + argλ2

2π

)
.

Since both numbers 1
2π (arg λ1 ± argλ2) are strictly between 0 and 1 and at least

one of them is rational, the set NA,x,y once more has a rational density that equals

neither 0 nor 1: From NA,x,y = N1N ∪ N2N with two (not necessarily different)

integers N1, N2 ≥ 2, it follows that

0 <
1

min{N1, N2}
≤ ρ(NA,x,y) ≤ 1 − 1

lcm{N1, N2}
< 1 .

Once again this contradicts (ii) and hence completes the proof that indeed (ii)⇒(iii).

Finally, to show that (iii)⇒(i), denote the “upper half” of σ(A) by

σ+(A) := {λ ∈ σ(A) : ℑλ ≥ 0} \ {0} .

Note that σ+(A) = ∅ if and only if A is nilpotent, in which case clearly NA,x,y is

co-finite for all x, y,∈ Rd. From now on, therefore, assume that σ+(A) 6= ∅. Recall

that An can be written in the form

An = ℜ
(∑

λ∈σ+(A)
Pλ(n)λn

)
, ∀n ≥ d , (3.10)

where Pλ is, for every λ ∈ σ+(A), a (possibly non-real) matrix-valued polynomial of

degree at most d− 1, i.e. Pλ ∈ Cd×d, and for all j, k ∈ {1, . . . , d} the entry [Pλ]jk =

(e(j))⊤Pλe(k) is a complex polynomial in n of degree at most d−1. Moreover, Pλ is

real, i.e. Pλ ∈ Rd×d, whenever λ ∈ R. The representation (3.10) follows for instance

from the Jordan Normal Form Theorem. Deduce from (3.10) that

x⊤Any = ℜ
(∑

λ∈σ+(A)
x⊤Pλ(n)yλn

)
=: ℜ

(∑
λ∈σ+(A)

pλ(n)λn

)
, ∀n ≥ d ,

(3.11)

with pλ = x⊤Pλy being, for every λ ∈ σ+(A), a (possibly non-real) polynomial in

n of degree at most d − 1. Clearly, if pλ = 0 for every λ ∈ σ+(A) then NA,x,y is

co-finite. From now on, therefore, assume that pλ 6= 0 for at least one λ ∈ σ+(A),

i.e.

r := max{|λ| : λ ∈ σ+(A), pλ 6= 0} > 0 .

Denote by k ∈ N0 the maximal degree of the polynomials pλ for which |λ| = r, i.e.,

let k = max{deg pλ : λ ∈ σ+(A), |λ| = r}, and consider the (non-empty) subset

σ++ of σ+(A) given by

σ++ = {λ ∈ σ+(A) : |λ| = r, deg pλ = k} .
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Note that cλ := limn→∞ pλ(n)/nk exists for every λ ∈ σ++ and is non-zero. With

this, it follows from (3.11) that

x⊤Any = rnnkℜ
(∑

λ∈σ+(A)

pλ(n)

nk

(
λ

r

)n)
= rnnkℜ

(∑
λ∈σ++

cλeın arg λ + zn

)
,

(3.12)

where (nzn) is a bounded sequence in C. Assume now that (iii) holds but suppose

NA,x,y was infinite. Then, by (3.5),

NA,x,y ⊃ {nN + M : n ∈ N} , (3.13)

with the appropriate M, N ∈ N. Since limn→∞ zn = 0, it follows from (3.12) and

(3.13) that

limn→∞ ℜ
(∑

λ∈σ++
cλeıM arg λ

(
eıN arg λ

)n)
= 0 . (3.14)

Since cλeıM arg λ 6= 0 for every λ ∈ σ++, Lemma A.3 implies that either eıN arg λ1 =

e±ıN arg λ2 for some λ1, λ2 ∈ σ++ with λ1 6= λ2, or else eıN arg λ1 = ±1 for some

λ1 ∈ σ++. In the former case, at least one of the two numbers N
2π (arg λ1 ± arg λ2)

is a non-zero integer, which in turn shows that #(∆σ(A)∩rS ∩ Q) ≥ 2 and hence

contradicts the assumed validity of (iii). In the latter case, note first that #σ++ ≥ 2

because otherwise either cλ1 = 0 (if σ++ = {λ1} ⊂ R), which is impossible by the

very definition of σ++, or else N
π argλ1 is a non-zero integer (if σ++ = {λ1} ⊂ C\R),

which again contradicts (iii). But eıN arg λ1 = ±1, together with #σ++ ≥ 2 and

(3.14), leads to

limn→∞ ℜ
(∑

λ∈σ++\{λ1}
cλeıM arg λ

(
e2ıN arg λ

)n)
= −ℜ

(
cλ1e

ıM arg λ1
)

,

and hence by Lemma A.3 either e2ıN arg λ2 = e±2ıN arg λ3 for some λ2, λ3 ∈ σ++ \
{λ1} with λ2 6= λ3, or else e2ıN arg λ2 = ±1 for some λ2 ∈ σ++ \ {λ1}. As before,

in the former case at least one of the two numbers N
π (arg λ2 ± argλ3) is a non-

zero integer, contradicting (iii) again. Similarly, in the latter case, N
π argλ1 and

2N
π arg λ2 are both integers, hence 1

2π (argλ1 − argλ2) is rational and non-zero,

and this once more violates (iii). In summary, if (iii) holds then the set NA,x,y is

necessarily finite whenever pλ 6= 0 for at least one λ ∈ σ+(A), and, as seen earlier,

it is co-finite otherwise. Thus (iii)⇒(i), and the proof is complete.

Proof of Theorem 3.4: To prove (i)⇒(ii), assume σ(A) is b-resonant. Then, for some

r > 0, either #(∆σ(A)∩rS∩Q) ≥ 2 or logb r ∈ spanQ∆σ(A)∩rS, or both. In the former

case, Lemma 3.7 guarantees the existence of x, y ∈ Rd for which 0 < ρ(NA,x,y) < 1

and hence (x⊤Any) is neither b-Benford nor terminating. As this clearly contradicts

(i), it only remains to consider the case where #(∆σ(A)∩rS ∩Q) ≤ 1 for every r > 0

yet logb r0 ∈ spanQ∆σ(A)∩r0S for some r0 > 0. Label the elements of σ(A) ∩ r0S as

λ1, . . . , λL. Since σ(A) = σ(A),

logb r0 ∈ spanQ∆σ(A)∩r0S = spanQ

(
{1} ∪

{
arg λℓ

2π
: 1 ≤ ℓ ≤ L

})
;
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see Remark 3.3(i). Let L0 +1 be the dimension (over Q) of spanQ∆σ(A)∩r0S. Hence

L0 ≤ L, and L0 ∈ N unless 1
2π argλℓ is rational for every 1 ≤ ℓ ≤ L, in which case

L0 = 0. (For instance, the latter inevitably occurs if d = 1.)

First consider the case of L0 = 0. Here, logb r0 and 1
2π arg λ1 are both rational,

and in fact λ1 ∈ R because otherwise #(∆σ(A)∩r0S ∩ Q) ≥ 2. But then taking x to

be any eigenvector of A corresponding to the eigenvalue λ1 yields

logb |x⊤Anx| = logb(r
n
0 |x|2) = n logb r0 + 2 logb |x| ,

which is periodic modulo one. Hence (x⊤Anx) is neither b-Benford nor terminating,

a fact obviously contradicting (i).

Assume from now on that L0 ≥ 1. In this case, by re-labelling the eigenvalues

λ1, . . . , λL, it can be assumed that 1, 1
2π arg λ1, . . . ,

1
2π argλL0 are Q-independent,

and so

logb r0 =
p0

q
+

p1

q

arg λ1

2π
+ . . . +

pL0

q

arg λL0

2π
, (3.15)

with the appropriate p0, p1, . . . , pL0 ∈ Z and q ∈ N. Let w(1), . . . , w(L0) ∈ Cd be

eigenvectors of A corresponding to the eigenvalues λ1, . . . , λL0 , respectively. Note

that λ1, . . . , λL0 are all non-real, and consequently the 2L0 vectors ℜw(1),ℑw(1),

. . . , ℜw(L0),ℑw(L0) are linearly independent. Lemma 3.5 guarantees that, given

any u ∈ RL0 , it is possible to pick x ∈ Rd such that x⊤ℜw(ℓ) = uℓ and x⊤ℑw(ℓ) = 0

for all 1 ≤ ℓ ≤ L0. With y := ℜ(w(1) + . . . + w(L0)), therefore,

x⊤Any = rn
0

(
u1 cos(n argλ1) + . . . + uL0 cos(n argλL0)

)
, ∀n ∈ N .

As (x⊤Any) is not terminating whenever u 6= 0 ∈ RL0 , Lemma 3.7 shows that

x⊤Any 6= 0 for all sufficiently large n, and (3.15) leads to

q logb |x⊤Any| = p0n + p1n
argλ1

2π
+ . . . + pL0n

arg λL0

2π
+

+
q

ln b
ln

∣∣∣∣u1 cos

(
2πn

argλ1

2π

)
+ . . . + uL0 cos

(
2πn

argλL0

2π

)∣∣∣∣ .

Since 1, 1
2π arg λ1, . . . ,

1
2π argλL0 are Q-independent, by Lemma 2.7 one can specif-

ically choose u ∈ RL0 such that (q logb |x⊤Any|) is not u.d. mod 1, and hence

(logb |x⊤Any|) is not u.d. mod 1 either, by Lemma 2.3(iv). Thus (x⊤Any) is nei-

ther Benford nor terminating, a fact once again contradicting (i). Overall, therefore,

(i)⇒(ii), as claimed.

To prove the reverse implication (ii)⇒(i), let σ(A) be b-nonresonant. Given

x, y ∈ Rd, deduce from (3.11) that (x⊤Any) is either terminating, or else

x⊤Any = |λ1|nnkℜ
(
c1e

ın arg λ1 + . . . + cLeın arg λL + zn

)
, ∀n ∈ N , (3.16)

where k ∈ N0 and L ∈ N; the numbers λ1, . . . , λL are appropriate (different) eigen-

values of A with |λ1| = . . . = |λL| > 0 and ℑλℓ ≥ 0 for all 1 ≤ ℓ ≤ L; the numbers
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c1, . . . , cL ∈ C are all non-zero; and (nzn) is a bounded sequence in C. By the

assumption of σ(A) being b-nonresonant,

logb |λ1| 6∈ spanQ∆σ(A)∩|λ1|S ⊃ spanQ

(
{1} ∪

{
argλℓ

2π
: 1 ≤ ℓ ≤ L

})
.

As before, let L0 +1 be the dimension of spanQ

(
{1} ∪ { 1

2π arg λℓ : 1 ≤ ℓ ≤ L}
)
, and

consider first the case of L0 = 0, that is, 1
2π arg λℓ is rational for every 1 ≤ ℓ ≤ L.

As σ(A) would be b-resonant otherwise, this implies that L = 1 and λ1 ∈ R. Since

λ1 is real, so is c1, and for all n ∈ N,

|x⊤Any| = |λ1|nnk
∣∣ℜ
(
c1e

ın arg λ1 + zn

)∣∣ = |λ1|nnk|c1|
∣∣1 + c−1

1 e−ın arg λ1ℜzn

∣∣ .

For all sufficiently large n, therefore,

logb |x⊤Any| = n logb |λ1| +
k

ln b
lnn + logb |c1| + logb

∣∣1 + c−1
1 e−ın arg λ1ℜzn

∣∣

and since logb |λ1| is irrational, Lemmas 2.3 and 2.5 imply that (x⊤Any) is b-

Benford.

It remains to consider the case of L0 ≥ 1. In this case, assume w.l.o.g. that

1, 1
2π argλ1, . . . ,

1
2π arg λL0 are Q-independent. Hence there exists q ∈ N and, for

every ℓ ∈ {L0 + 1, . . . , L}, an integer p0ℓ as well as a vector p(ℓ) ∈ ZL0 such that

arg λℓ

2π
=

p0ℓ

q
+

p
(ℓ)
1

q

arg λ1

2π
+ . . . +

p
(ℓ)
L0

q

argλL0

2π
, ∀ℓ ∈ {L0 + 1, . . . , L} . (3.17)

Note that p(ℓ) = 0 ∈ ZL0 for at most one ℓ, and the 2L − L0 vectors

qe(1), . . . , qe(L0),±p(L0+1), . . . ,±p(L) ∈ ZL0

are all different because otherwise σ(A) would be b-resonant. As a consequence, for

every w ∈ CL the multi-variate trigonometric polynomial fw : TL0 → R given by

fw(t) = ℜ
(∑L0

ℓ=1
wℓe

2πıqtℓ +
∑L

ℓ=L0+1
wℓe

2πıt⊤p(ℓ)

)

is non-constant, and so fw(t) 6= 0 for λTL0 -almost all t ∈ TL0 , provided that at least

one of the L0 numbers w1, . . . , wL0 is non-zero.

Fix now any m ∈ {1, . . . , q} and deduce from (3.16) and (3.17) that

x⊤Anq+my = |λ1|nq+m(nq + m)kℜ
(∑L

ℓ=1
cℓe

ı(nq+m) arg λℓ + znq+m

)

= |λ1|nqnk|λ1|m
(
q +

m

n

)k

ℜ
(∑L0

ℓ=1
cℓe

ım arg λℓeınq arg λℓ +

+
∑L

ℓ=L0+1
cℓe

ım arg λℓ

∏L0

k=1
eınp

(ℓ)
k

arg λk + znq+m

)

= |λ1|nqnk|λ1|m
(
q +

m

n

)k
(

fw

(
n

arg λ1

2π
, . . . , n

argλL0

2π

)
+ ℜznq+m

)
,
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where w ∈ CL is given by wℓ = cℓe
ım arg λℓ 6= 0 for all ℓ ∈ {1, . . . , L}. Recall

that by assumption the L0 + 2 numbers 1, q logb |λ1|, 1
2π arg λ1, . . . ,

1
2π argλL0 are

Q-independent. Since limn→∞ znq+m = 0 as well, Lemma 2.3 and 2.6 applied to

logb |x⊤Anq+my| = nq logb |λ1| +
k

ln b
lnn + m logb |λ1| + k logb

(
q +

m

n

)
+

+
1

ln b
ln

∣∣∣∣fw

(
n

argλ1

2π
, . . . , n

argλL0

2π

)
+ ℜznq+m

∣∣∣∣

show that (logb |x⊤Anq+my|) is u.d. mod 1. As m ∈ {1, . . . , q} was arbitrary,

(logb |x⊤Any|) is u.d. mod 1, by Lemma 2.4, i.e., (x⊤Any) is b-Benford. In summary,

therefore, (ii)⇒(i), and the proof is complete. �

Remark 3.8. For invertible A the important formula (3.10) holds for all n ∈ N.

In this case, “terminating” in Theorem 3.4(i) can be replaced by “identically zero”;

see also Corollary 3.12 below.

Example 3.9. (i) The spectrum of A =

[
1 1

1 0

]
is σ(A) = {ϕ,−ϕ−1} with

ϕ = 1
2 (1+

√
5). Since A is invertible and logb ϕ is irrational (in fact, transcendental)

for every b ∈ N \ {1}, the sequence (x⊤Any) is, for every x, y ∈ R2, either Benford

or identically zero. The latter alternative occurs if and only if x and y are multiples

of the (orthogonal) eigenvectors corresponding, respectively, to the eigenvalues ϕ

and −ϕ−1, or vice versa.

(ii) Consider the (integer) 3 × 3-matrix

B =




−3 1 0

1 0 1

0 1 6


 ,

the characteristic polynomial of which is

χB(λ) = det(B − λI3) = −λ3 + 3λ2 + 20λ − 3 .

Since B is symmetric, all three eigenvalues of B are real, and from χB(0) < 0 <

χB(1) it is clear that they are all different. They also have different absolute values.

To show that σ(B) is b-nonresonant for every b ∈ N \ {1}, assume that |λ| = bp/q

for some λ ∈ σ(B) and relatively prime p ∈ Z \ {0}, q ∈ N. If p > 0 then bp is an

eigenvalue of Bq or −Bq and hence divides | detBq| = 3q. This is only possible if

b = 3N for some N ∈ N. Similarly, if p < 0 then 3qb|p| is an eigenvalue of one of the

two integer matrices ±(3B−1)q and hence divides | det(3B−1)q| = 32q. Again, this

leaves only the possibility of b = 3N for some N ∈ N. To analyse the latter, assume

now that |λ| = 3p/q with relatively prime p ∈ Z \ {0}, q ∈ N, possibly different

from before. Consider first the case of p > 0. In this case, λ is a root of one of the

two irreducible polynomials λq ± 3p which in turn is a factor of χB. Thus q ≤ 3,

and since 3p is an eigenvalue of one of the two matrices ±Bq, it follows that p ≤ q.
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It can now be checked easily, e.g. by computing χB2 and χB3 , or by means of row

reductions, that none of the four numbers ±3,±32 is an eigenvalue of any of the

three matrices B, B2, B3. The possibility of |λ| = 3p/q with p < 0 is ruled out in

a completely similar manner. In summary, logb |λ| is irrational for every λ ∈ σ(B)

and every b ∈ N \ {1}, and σ(B) is b-nonresonant. (Note that in order to draw this

conclusion, it is not necessary to explicitly know any eigenvalue of B.) By Theorem

3.4 and Remark 3.8, the sequence (x⊤Bny) is, for every x, y ∈ R3, either Benford or

identically zero. As in (i), the latter case occurs precisely if x and y (or vice versa)

are, respectively, proportional and orthogonal to the same eigenvector of B.

(iii) For the (invertible) matrix C = 1
2

[
1 + π 1 − π

1 − π 1 + π

]
the spectrum σ(C) =

{1, π} is b-resonant for every b ∈ N \ {1}. By Theorem 3.4, there exist x, y ∈ R2

for which (x⊤Cny) is neither b-Benford nor identically zero. Indeed, with x =

y = e(1) + e(2), for instance, x⊤Cny ≡ 2. Similarly, |Cnx| ≡
√

2, so (|Cnx|) as

well is neither b-Benford nor trivial. On the other hand, (|Cn|) = (πn) is Benford.

Theorems 3.10 and 3.11 below relate these two simple observations to the fact that

σ(Cn) = {1, πn} is b-resonant for every n ∈ N, whereas σ(C)∩rσ(C)S = {π} is not.

In addition to sequences of the form (x⊤Any) in Theorem 3.4(i), which may be

thought of as linear observables of the process (An), some non-linear observables

may also be of interest. The next theorem establishes the Benford property specifi-

cally for (|Anx|) with x ∈ Rd. For the formulation of the result, note that if Z ⊂ C is

b-nonresonant then so is Zn := {zn : z ∈ Z} for every n ∈ N. The converse does not

hold in general (unless #Z ≤ 1), as the example of the b-resonant set Z = {−π, π}
shows, for which Z2 = {π2} is b-nonresonant. Furthermore, this example illustrates

the easily established fact that Z ⊂ rS satisfies (ii) of Definition 3.1 if and only if

ZN is b-nonresonant for some N ∈ N. Also, recall that σ(An) = σ(A)n for every

A ∈ Rd×d and n ∈ N.

Theorem 3.10. Let A ∈ Rd×d and b ∈ N \ {1}. If σ(AN ) is b-nonresonant for

some N ∈ N then, for every x ∈ Rd, the sequence (|Anx|) is either b-Benford or

terminating.

Proof. Assume that σ(AN ) is b-nonresonant and, as in the proof of Lemma 3.7,

consider the set σ+(A) = {λ ∈ σ(A) : ℑλ ≥ 0} \ {0}. If σ+(A) = ∅ then A

is nilpotent, Anx = 0 for all n ≥ d, and (|Anx|) is terminating. From now on,

therefore, assume that σ+(A) 6= ∅, and hence also σ+(AN ) 6= ∅. Fix any m ∈
{1, . . . , N}. Given x ∈ Rd, deduce from (3.10) with A replaced by AN that

AnN+mx = ℜ
(∑

λ∈σ+(AN )
Pλ(n)Amxλn

)
=: ℜ

(∑
λ∈σ+(AN )

qλ(n)λn

)
,

(3.18)

for all n ≥ d, where each qλ now is a (possibly non-real) vector-valued polynomial

of degree at most d−1, i.e., qλ(n) ∈ Cd, and every component of qλ is a polynomial

in n of degree no larger than d−1. By the identical reasoning as in the proof of the
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(iii)⇒(i) part in Lemma 3.7, deduce from (3.18) that either AnN+mx = 0 for all

n ≥ d, in which case (|Anx|) is terminating, or else, with the appropriate non-empty

set σ++ ⊂ σ+(AN ) and cλ ∈ Cd \ {0} for every λ ∈ σ++,

AnN+mx = rnnk
(
ℜ
(∑

λ∈σ++
cλeın arg λ

)
+ un

)
, (3.19)

where r > 0, k ∈ N0, and (un) is a sequence in Rd for which (n|un|) is bounded.

(Note that σ++, and hence r, k, cλ and (un) as well, may depend on x and m.)

Since σ(AN ) is b-nonresonant,

logb r 6∈ spanQ∆σ(AN )∩rS ⊃ spanQ

(
{1} ∪

{
argλ

2π
: λ ∈ σ++

})
.

The argument now proceeds as in the proof of Theorem 3.4: Let L0 + 1 be the

dimension of spanQ

(
{1} ∪

{
1
2π arg λ : λ ∈ σ++

})
. If L0 = 0 then σ++ = {λ1} for

some λ1 ∈ R\{0}. (Otherwise σ(AN ) would be b-resonant.) In this case, cλ1 is real

as well, i.e. cλ1 ∈ Rd, and (3.19) implies

logb |AnN+mx| = n logb r +
k

ln b
lnn + logb |cλ1 + e−ın arg λ1un| , ∀n ≥ d .

Since logb r is irrational, (logb |AnN+mx|) is u.d. mod 1 by Lemma 2.5. The same

argument can be applied for every m ∈ {1, . . . , N}, and so (logb |Anx|) is u.d. mod

1 as well, by Lemma 2.4. In other words, (|Anx|) is b-Benford.

Consider in turn the case of L0 ≥ 1. Label the elements of σ++ as λ1, . . . , λL and

assume w.l.o.g. that 1, 1
2π argλ1, . . . ,

1
2π arg λL0 are Q-independent. With the same

notation as in (3.17), and given any vectors w(1), . . . , w(L) ∈ Cd, the vector-valued

trigonometric polynomial f : TL0 → Rd given by

fw(1),...,w(L)(t) = ℜ
(∑L0

ℓ=1
w(ℓ)e2πıqtℓ +

∑L

ℓ=L0+1
w(ℓ)e2πıt⊤p(ℓ)

)

is non-constant, provided that w(ℓ) 6= 0 for at least one ℓ ∈ {1, . . . , L0}. In this case,

fw(1),...,w(L)(t) 6= 0, and hence also |fw(1),...,w(L)(t)| 6= 0 for λTL0 -almost all t ∈ TL0 .

Note that |fw(1),...,w(L) | : TL0 → R is continuous. Fix now any l ∈ {1, . . . , q}, and

deduce from (3.19) that

A(nq+l)N+mx = rnqnkrl

(
q +

l

n

)k (
ℜ
(∑L0

ℓ=1
cλℓ

eıl arg λℓeınq arg λℓ+

+
∑L

ℓ=L0+1
cλℓ

eıl arg λℓ

∏L0

ν=1
eınp(ℓ)

ν arg λν

)
+ unq+l

)

= rnqnkrl

(
q +

l

n

)k (
fw(1),...,w(L)

(
n

argλ1

2π
, . . . , n

argλL0

2π

)
+ unq+l

)
,

with w(ℓ) = cλℓ
eıl arg λℓ ∈ Cd \ {0} for every ℓ ∈ {1, . . . , L}. It follows that

|A(nq+l)N+mx| = rnqnkrl

(
q +

l

n

)k
∣∣∣∣∣

∣∣∣∣fw(1),...,w(L)

(
n

argλ1

2π
, . . . , n

arg λL0

2π

) ∣∣∣∣+ zn

∣∣∣∣∣ ,
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where the (real) sequence (zn) is given by

zn =

∣∣∣∣fw(1),...,w(L)

(
n

argλ1

2π
, . . . , n

argλL0

2π

)
+ unq+l

∣∣∣∣

−
∣∣∣∣fw(1),...,w(L)

(
n

arg λ1

2π
, . . . , n

argλL0

2π

)∣∣∣∣ .

Clearly, |zn| ≤ |unq+l|, and so limn→∞ zn = 0. Lemmas 2.3 and 2.6 now show that

(logb |A(nq+l)N+mx|) is u.d. mod 1. Since the number l ∈ {1, . . . q} was arbitrary,

(logb |AnN+mx|) is u.d. mod 1 as well, by Lemma 2.4. Moreover, the same argument

can be applied for every m ∈ {1, . . . , N}, hence (logb |Anx|), too, is u.d. mod 1, i.e.,

(|Anx|) is b-Benford.

In analogy to Theorem 3.10, the next result adresses the b-Benford property of

the sequence (|An|). For a concise statement, the following terminology is useful.

Given any eigenvalue λ of A ∈ Rd×d, let k(λ) ∈ {0, . . . , d− 1} be the largest integer

for which

rank(A − λId)
k+1 < rank(A − λId)k if λ ∈ R ,

and

rank(A2 − 2ℜλA + |λ|2Id)
k+1 < rank(A2 − 2ℜλA + |λ|2Id)

k if λ ∈ C \ R .

Equivalently, k(λ)+1 is the size of the largest block associated with the eigenvalue λ

in the Jordan Normal Form (over C) of A. With this, define the extremal peripheral

spectrum of A, henceforth denoted σEP (A), to be the set

σEP (A) =
{
λ ∈ σ(A) ∩ rσ(A)S : k(λ) = kmax

}
, (3.20)

where kmax = kmax(A) = max{k(λ) : λ ∈ σ(A) ∩ rσ(A)S}. Clearly σEP (A) ⊂ σ(A),

and just as σ(A), the set σEP (A) is non-empty and symmetric w.r.t. the real axis.

Also, σEP (An) = σEP (A)n for every n ∈ N.

Theorem 3.11. Let A ∈ Rd×d and b ∈ N \ {1}. If σEP (AN ) is b-nonresonant for

some N ∈ N then either (|An|) is b-Benford or A is nilpotent.

Proof. Clearly, (|An|) is terminating if and only if A is nilpotent. Assume henceforth

that A is not nilpotent, thus rσ(A) > 0, and let σEP (AN ) be b-nonresonant. Fix

any m ∈ {1, . . . , N} and recall from (3.10) that, in analogy to (3.18) and (3.19)

above,

AnN+m = ℜ
(∑

λ∈σ+(AN )
Pλ(n)Amλn

)

= rnnk

(
ℜ
(∑

λ∈σ+(AN )∩rS
Cλein arg λ

)
+ Dn

)
, ∀n ≥ d , (3.21)

where 0 < r ≤ rσ(AN ) = rσ(A)N and k ∈ {0, . . . , d − 1} with k ≤ kmax(A) =

kmax(A
N ) =: kmax, Cλ ∈ Cd×d, and (Dn) is a sequence in Rd×d for which (n|Dn|)
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is bounded. (As in (3.19) the quantities r, k, Cλ and (Dn) may all depend on m.)

From (3.21), it follows that

|AnN+m| ≤ rnnka , ∀n ∈ N , (3.22)

with the appropriate a > 0. On the other hand, there exist x, y ∈ Rd for which

lim supn→∞

|x⊤AnN+my|
rσ(A)nN+m(nN + m)kmax

≥ 1 . (3.23)

Combining (3.22) and (3.23) yields

1 ≤ lim supn→∞

|x⊤AnN+my|
rσ(A)nN+m(nN + m)kmax

≤ |x||y|a
rσ(A)mNkmax

lim supn→∞

(
r

rσ(A)N

)n

nk−kmax ,

which in turn shows that r = rσ(A)N and k = kmax. With σ+
EP (AN ) := {λ ∈

σEP (AN ) : ℑλ ≥ 0}, therefore, (3.21) can be re-written as

AnN+m = rσ(A)nNnkmax

(
ℜ
(∑

λ∈σ+
EP

(AN )
Cλein arg λ

)
+ En

)
, ∀n ∈ N ,

(3.24)

where Cλ 6= 0 for some λ ∈ σ+
EP (AN ), and (n|En|) is bounded. Using (3.24) and

the b-nonresonance of σEP (AN ), completely analogous arguments as in the proof of

Theorem 3.10 show that (logb |AnN+m|) is u.d. mod 1. Since m ∈ {1, . . . , N} was

arbitrary, (logb |An|) is u.d. mod 1 as well, i.e., (|An|) is b-Benford.

Corollary 3.12. Let A ∈ Rd×d and b ∈ N \ {1}. Assume that A is invertible and

σ(A) is b-nonresonant. Then:

(i) For every x, y ∈ Rd the sequence (x⊤Any) is b-Benford or identically zero;

(ii) For every x ∈ Rd \ {0} the sequence (|Anx|) is b-Benford;

(iii) The sequence (|An|) is b-Benford.

Remark 3.13. (i) Theorems 3.10 and 3.11, and hence also Corollary 3.12(ii,iii),

hold similarly with | · | replaced by any norm on Rd and Rd×d, respectively.

(ii) When comparing Theorems 3.10 and 3.11 to Theorem 3.4, the reader may

wonder what would happen to the latter if in its statement (ii) b-nonresonance was

assumed merely for σ(AN ) with some N ≥ 2, rather than for σ(A). The answer is

simple: With (ii) thus modified, (i)⇒(ii) of Theorem 3.4 would remain unchanged

whereas the converse (ii)⇒(i) would fail because unlike its analogues (3.19) and

(3.24), the representation (3.16) with An replaced by AnN+m may no longer be

valid. Note that this is in perfect agreement with the fact, following from Lemma

3.7, that if σ(AN ) is nonresonant for some N ≥ 2 yet σ(A) is resonant then there

exist x, y ∈ Rd with 0 < ρ(NA,x,y) < 1.
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The converses of Theorems 3.10 and 3.11 do not hold in general: Even if σ(An)

and σEP (An), respectively, are b-resonant for all n ∈ N, the sequence (|Anx|) nev-

ertheless may, for every x ∈ Rd, be b-Benford or terminating, and (|An|) may be

b-Benford. In fact, as the next example shows, it is impossible to characterize

the b-Benford property of (|Anx|) and (|An|) solely in terms of σ(A) and σEP (A),

respectively — except, of course, for the trivial case of d = 1.

Example 3.14. For convenience, fix b = 10 and consider the (invertible) 2 × 2-

matrix

A = 10π

[
cos(π2) − sin(π2)

sin(π2) cos(π2)

]
.

The set σ(An) = σEP (An) = {10πne±π2ın} is b-resonant for every n ∈ N because

πn = log10 10πn ∈ spanQ∆σ(An) = spanQ{1, π} .

Nevertheless, 10−πnAn is simply a rotation, hence |Anx| = 10πn|x| for every x ∈
R2, and since log10 10π = π is irrational, (|Anx|) is 10-Benford whenever x 6= 0.

Similarly, (|An|) = (10πn) is 10-Benford. Thus the nonresonance assumptions in

Theorems 3.10 and 3.11, respectively, are not necessary for the conclusion.

Consider now also the (invertible) matrix

B =
10π

√
3

[ √
3 cos(π2) −3 sin(π2)

sin(π2)
√

3 cos(π2)

]
,

for which σ(B) = σEP (B) = {10πe±π2ı} = σ(A), and so σ(Bn) = σEP (Bn) =

σEP (An) is b-resonant for every n ∈ N. As far as spectral data are concerned,

therefore, the matrices A and B are indistinguishable. (In fact, they are similar.)

However, from

Bn =
10πn

√
3

[ √
3 cos(π2n) −3 sin(π2n)

sin(π2n)
√

3 cos(π2n)

]
, ∀n ∈ N0 ,

it follows for instance that

|Bne(2)| = 10πn
√

2 − cos(2π2n) , ∀n ∈ N0 ,

and consequently

〈
log10 |Bne(2)|

〉
=
〈
πn + 1

2 log10

(
2 − cos(2π2n)

)〉
= f(〈nπ〉) ,

with the smooth function f : T → T given by

f(t) = t + 1
2 log10

(
2 − cos(2πt)

)
.

Recall that (nπ) is u.d. mod 1. Since f is a diffeomorphism of T with non-constant

derivative, it follows that
(
f(〈nπ〉)

)
is not u.d. mod 1, basically because λT ◦ f−1 6=
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λT (cf. Appendix A). Thus (|Bne(2)|), and in fact (|Bnx|) for every x ∈ R2 \ {0}, is

neither 10-Benford nor identically zero. Similarly,

|Bn| =
10πn

√
3

√
4 − cos(2π2n) + | sin(π2n)|

√
14 − 2 cos(2π2n) , ∀n ∈ N0 ,

and a completely analogous argument shows that (|Bn|) is not 10-Benford either.

Example 3.15. Let again b = 10 for convenience and consider the 6 × 6-matrix

A = diag

[[
2 1

0 2

]
,

[
−2 1

0 −2

]
,

2√
3

[ √
3 cos(π log10 2) −3 sin(π log10 2)

sin(π log10 2)
√

3 cos(π log10 2)

]]
,

for which σ(A) = {±2, 2e±πı log10 2} ⊂ 2S. Since

log10 2n = n log10 2 ∈ spanQ{1, log10 2} ⊂ spanQ∆σ(An) ,

the set σ(An) is b-resonant for every n ∈ N. Correspondingly, there exist x, y ∈ R6

for which the sequence (x⊤Any), and in fact (|Anx|) as well, is neither 10-Benford

nor terminating. Essentially the same calculation as in Example 3.14 shows that

one can take for instance x = y = e(6). Note, however, that (x⊤Any) is 10-Benford

whenever |x1y2| 6= |x3y4|, hence for most x, y ∈ R6; see also Theorem 4.1 below.

On the other hand, since k(±2) = 2 and k(2e±πı log10 2) = 1, the set σEP (A)

equals {±2} which is also b-resonant, yet σEP (A2) = {4} is b-nonresonant. By

Theorem 3.11, therefore, the sequence (|An|) is 10-Benford. This could also have

been demonstrated by means of Lemma 2.5 and an explicit calculation yielding

|An| = 2n−1n(1 + αn) , ∀n ∈ N ,

where (αn) is a sequence in R with limn→∞ n2αn = 4.

The final theorem in this section characterizes the b-Benford property of solu-

tions (xn) to linear difference equations (1.3). The result, which has informally been

mentioned already in the Introduction, follows directly from Theorem 3.4.

Theorem 3.16. Let a1, a2, . . . , ad−1, ad be real numbers with ad 6= 0, and b ∈
N \ {1}. Then the following are equivalent:

(i) Every solution (xn) of (1.3) is b-Benford unless x1 = x2 = . . . = xd = 0;

(ii) With the polynomial p(z) = zd − a1z
d−1 − a2z

d−2 − . . . − ad−1z − ad, the set

{z ∈ C : p(z) = 0} is b-nonresonant.

Proof. For convenience, let Z := {z ∈ C : p(z) = 0}. Note that Z = σ(A) for the

matrix A associated with (1.3) via (3.1) because

χA(z) = det(A − zId) = (−1)d(zd − a1z
d−1 − a2z

d−2 − . . . − ad−1z − ad)

= (−1)dp(z) .
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To prove (i)⇒(ii), assume Z is b-resonant. By Theorem 3.4 there exist x, y ∈ Rd

for which (x⊤Any) is neither b-Benford nor terminating. Recall (e.g. from the proof

of Lemma 3.6) that (xn) with xn := x⊤Any for all n ∈ N is a solution of (1.3). By

the choice of x, y, the sequence (xn) is neither b-Benford nor terminating, let alone

identically zero. Hence (i) fails whenever (ii) fails, that is, (i)⇒(ii).

To establish the reverse implication (ii)⇒(i), recall from (3.2) that

xn = (e(d))⊤An−1y , ∀n ∈ N ,

where y =
∑d

j=1 xd+1−je
(j). As A is invertible, if Z = σ(A) is b-nonresonant then,

by Corollary 3.12, (xn) is either b-Benford or identically zero.

Example 3.17. The set associated, via Theorem 3.16, with the familiar difference

equation

xn = xn−1 + xn−2 , ∀n ≥ 3 , (3.25)

i.e. {z ∈ C : z2 − z − 1 = 0} = {ϕ,−ϕ−1}, is b-nonresonant for every b ∈ N \ {1},
see Example 3.9(i). Except for the trivial solution xn ≡ 0, therefore, every solution

(xn) of (3.25) is Benford. This contains as special cases the well-known sequences

of Fibonacci and Lucas numbers corresponding to the initial values x1 = x2 = 1

and x1 = 2, x2 = 1, respectively.

Example 3.18. This example reviews, in the light of Theorem 3.16, the second-

order difference equation (1.4) for the three specific values of the parameter γ ∈ R

already considered in the Introduction (recall Figure 1). For convenience, let b = 10

throughout. Note that the set associated with (1.4) is Z = Zγ = {z ∈ C : z2 =

2γz − 5} = {γ ± ı
√

5 − γ2}, and so for |γ| <
√

5 equals {
√

5e±ı arg z} ⊂
√

5S with

arg z = arccos(γ/
√

5) ∈ (0, π).

(i) Let γ =
√

5 cos(π/
√

8) = 0.9928. Then arg z = π/
√

8, and since

log10 5 6∈ spanQ∆Zγ
= spanQ{1,

√
2} ,

the set Zγ is b-nonresonant. By Theorem 3.16, except for xn ≡ 0, every solution

(xn) of (1.4) is 10-Benford.

(ii) Next, consider the case of γ =
√

5 cos(1
2π log10 5) = 1.018. Now arg z =

1
2π log10 5, and since obviously

log10 5 ∈ spanQ∆Zγ
= spanQ{1, log10 5} ,

the set Zγ is b-resonant. It is clear that no solution of (1.4) is 10-Benford in this

case.

(iii) Finally, let γ = 1. Here arg z = arccos(1/
√

5) = arctan 2. It is not hard to

see that 1
π arctan 2 is irrational (as is, of course, log10 5). Thus, the b-nonresonance

of Zγ is equivalent to log10 5 6∈ spanQ{1, 1
π arctan2}. It appears to be unknown,

however, whether the three numbers 1, log10 5, 1
π arctan 2 are Q-independent. If

they are, then every non-trivial solution of (1.4) is 10-Benford; otherwise none is. As
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seen in Figure 2, numerical evidence seems to be in support of the former alternative.

(Rational independence of 1, log10 5, and 1
π arctan2, and thus 10-nonresonance of

Zγ for γ = 1 would follow immediately from Schanuel’s conjecture, a prominent

but as yet unproven assertion in number theory [38, Sec.1.4].)

1
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xn = 2γxn−1 − 5xn−2 , ∀n ≥ 3
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Figure 2: For different values of the parameter γ, the solutions (xn) of (1.4) may

or may not be 10-Benford; see Example 3.18 and also Figure 1.

Remark 3.19. Earlier, weaker forms and variants of the implication (ii)⇒(i) in

Theorems 3.4 and 3.16, or special cases thereof, can be traced back at least to [32]

and may also be found in [4, 6, 9, 22, 36]. The reverse implication (i)⇒(ii) seems

to have been addressed previously only for d < 4; see [6, Thm.5.37]. For the special

case of b = 10, partial proofs of Theorems 3.4 and 3.16 have been presented in [5, 7].

4 Further examples and concluding remarks

This final section illustrates how key results of this article (Theorems 3.4 and 3.16)

may take a significantly different (and arguably simpler) form if either their con-

clusion is weakened slightly or one additional assumption is imposed. Concretely,

Theorem 3.4 for instance may be weakened in that its b-Benford-or-terminating

dichotomy (i) is assumed to hold only for (Lebesgue) almost all (x, y) ∈ Rd × Rd.

Alternatively, it may be assumed that the matrix AN is positive for some N ∈ N.

As detailed below, either of these modifications gives rise to new forms of the results

that may be of independent interest.

24



As throughout, b ≥ 2 is a positive integer, and given any A ∈ Rd×d, let

Bb(A) :=
{
(x, y) ∈ Rd × Rd : (x⊤Any) is b-Benford

}
.

Denote Lebesgue measure on Rd ×Rd by Lebd,d. Also recall from (3.20) the defini-

tion of the extremal peripheral spectrum σEP (A). Although σEP (A) may constitute

only a small part of σ(A), it nevertheless controls the Benford property of most se-

quence (x⊤Any). More precisely, the following variant of Theorem 3.4 holds.

Theorem 4.1. Let A ∈ Rd×d and b ∈ N \ {1}. Assume A is not nilpotent. Then

the following are equivalent:

(i) For almost every (x, y) ∈ Rd × Rd the sequence (x⊤Any) is b-Benford, i.e.,

Rd × Rd \ Bb(A) is a Lebd,d-nullset;

(ii) The set σEP (AN ) is b-nonresonant for some N ∈ N.

Proof. To demonstrate (i)⇒(ii), assume that σEP (An) = σEP (A)n is b-resonant for

every n ∈ N, and hence logb rσ(A) ∈ spanQ∆σEP (A). In analogy to (3.24), write

An = rσ(A)nnkmax

(
ℜ
(∑

λ∈σ+
EP

(A)
Cλeın arg λ

)
+ En

)
, ∀n ∈ N , (4.1)

where Cλ ∈ Cd×d for every λ ∈ σ+
EP (A), and (En) is a sequence in Rd×d for which

(n|En|) is bounded. If Cλ = 0 for all λ ∈ σ+
EP (A), then (4.1) would imply that

limn→∞
|An|

rσ(A)nnkmax
= 0 ,

whereas on the other hand there always exist x, y ∈ Rd with

1 ≤ lim supn→∞

|x⊤Any|
rσ(A)nnkmax

≤ |x| |y| lim supn→∞

|An|
rσ(A)nnkmax

.

This contradiction shows that Cλ 6= 0 for some λ ∈ σ+
EP (A).

Similarly to the proofs in the previous section, let L0 + 1 be the dimension of

spanQ∆σEP (A) and consider first the case of L0 = 0. Here, with the appropriate

q ∈ N, the numbers q logb rσ(A) and q 1
2π arg λ for all λ ∈ σ+

EP (A) are integers, and

so (4.1) takes the form

An = rσ(A)nnkmax(Bn + En) , ∀n ∈ N , (4.2)

where the sequence (Bn) in Rd×d is q-periodic, i.e. Bn+q = Bn for all n ∈ N.

Suppose that Bℓ = 0 for some ℓ ∈ {1, . . . , q}. Then

limn→∞
|Anq+ℓ|

rσ(A)nq+ℓ(nq + ℓ)kmax
= 0 ,

whereas similarly as before,

lim supn→∞

|x⊤Anq+ℓy|
rσ(A)nq+ℓ(nq + ℓ)kmax

≥ 1
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with the appropriate x, y ∈ Rd. This contradiction shows that Bℓ 6= 0 for every

ℓ ∈ {1, . . . , q}. Consequently, for each ℓ the set

Rℓ :=
{
(x, y) ∈ Rd × Rd : x⊤Bℓ y = 0

}

is a Lebd,d-nullset, and so is R :=
⋃q

ℓ=1 Rℓ. Whenever (x, y) 6∈ R, it follows from

(4.2) that

logb |x⊤Any| = n logb rσ(A) + kmax logb n + logb |x⊤Bny + x⊤Eny|

for all sufficiently large n, and since logb rσ(A) is rational and (x⊤Bny) is periodic,

Lemma 2.5 shows that (x⊤Any) is not b-Benford. In other words, Bb(A) ⊂ R, so

in particular Rd × Rd \ Bb(A) is not a nullset, i.e., (i) fails.

It remains to consider the case of L0 ≥ 1. In this case, label the elements of

σ+
EP (A) as λ1, . . . , λL with L ≥ L0 and assume w.l.o.g. that the L0 + 1 numbers

1, 1
2π argλ1, . . . ,

1
2π arg λL0 are Q-independent. Given any u ∈ RL0 , there exist

xu, yu ∈ Rd such that

x⊤
u Anyu = rσ(A)nnkmax

(∑L0

ℓ=1
uℓ cos(n arg λℓ) + zn

)

= rσ(A)nnkmax

(
ℜ
(∑L0

ℓ=1
uℓe

ın arg λℓ

)
+ zn

)
, ∀n ∈ N , (4.3)

where (nzn) is a bounded sequence in R. On the other hand, (4.1) implies

x⊤
u Anyu = rσ(A)nnkmax

(
ℜ
(∑

λ∈σ+
EP (A)

x⊤
u Cλyueın arg λ

)
+ x⊤

u Enyu

)
, ∀n ∈ N .

(4.4)

Comparing (4.3) and (4.4) yields

ℜ
(∑L0

ℓ=1
uℓe

ın arg λℓ −
∑

λ∈σ+
EP (A)

x⊤
u Cλyueın arg λ

)
n→∞−→ 0 .

Lemma A.2 shows that x⊤
u Cλℓ

yu = uℓ for every ℓ ∈ {1, . . . , L0}, and x⊤
u Cλℓ

yu = 0

for every ℓ ∈ {L0 + 1, . . . , L}. Recall now that logb rσ(A) ∈ spanQ∆σ+
EP (A). Lemma

2.7 guarantees that it is possible to choose u ∈ RL0 in such a way that the sequence

(x⊤
u Anyu) in (4.3) is neither b-Benford nor terminating. The continuity of the map

{
Rd × Rd → CL

(x, y) 7→ (x⊤Cλ1y, . . . , x⊤CλL
y)

implies that (x⊤Any) is not b-Benford whenever x and y are sufficiently close to xu

and yu, respectively. Thus Rd × Rd \ Bb(A) contains a non-empty open set, and so

again (i) fails. This completes the proof of (i)⇒(ii).

To establish the reverse implication (ii)⇒(i), let σEP (AN ) be b-nonresonant and

fix any m ∈ {1, . . . , N}. It follows from (4.1) that

AnN+m = rσ(A)nNnkmax

(
ℜ
(∑

λ∈σ++
Cλeın arg λ

)
+ En

)
, ∀n ∈ N ,
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where σ++ ⊂ σ+
EP (AN ) is non-empty, Cλ ∈ Cd×d \ {0} for every λ ∈ σ++, and

(n|En|) is bounded. (Once again it should be noted that the set σ++, the matrices

Cλ and the sequence (En) may all vary with m.) The set

Rm,λ :=
{
(x, y) ∈ Rd × Rd : x⊤Cλy = 0

}

is a Lebd,d-nullset, and so is R :=
⋃N

m=1

⋃
λ∈σ++ Rm,λ. Whenever (x, y) 6∈ R,

an argument completely analogous to the one establishing (ii)⇒(i) in Theorem 3.4

shows that (x⊤Any) is b-Benford. Thus Rd × Rd \ Bb(A) ⊂ R, and the proof is

complete.

Example 4.2. (i) As seen in Example 3.9(iii) the matrix A = 1
2

[
1 + π 1 − π

1 − π 1 + π

]

has σ(A) = {1, π} b-resonant for every b. However, σEP (A) = {π} is b-nonresonant,

and since

An =
πn

π − 1
(A − I2) +

1

π − 1
(πI2 − A) (4.5)

for all n ∈ N, it is clear that

R2 × R2 \ Bb(A) =
{
(x, y) ∈ R2 × R2 : x⊤(A − I2)y = 0

}

=
{
(x, y) ∈ R2 × R2 : (x1 − x2)(y1 − y2) = 0

}

is a nullset. Also, (|Anx|) is Benford unless Ax = x.

(ii) Let B := A−1. Then σ(B) = {π−1, 1}, so σEP (Bn) = {1} is b-resonant for

every b and n ∈ N. Since (4.5) actually holds for all n ∈ Z, the sequence (x⊤Bny)

can only be b-Benford if x⊤(πI2 − A)y = 0, i.e.

Bb(B) ⊂
{
(x, y) ∈ R2 × R2 : x⊤(πI2 − A)y = 0

}

=
{
(x, y) ∈ R2 × R2 : (x1 + x2)(y1 + y2) = 0

}
,

showing that Bb(B) is a nullset in this case. Similarly, (|Bnx|) can only be Benford

if Bx = π−1x.

Remark 4.3. Recall from Theorem 3.10 that (|Anx|) is b-Benford provided that

σ(AN ) is b-nonresonant for some N ∈ N. If A is not nilpotent then (|Anx|) is

terminating only if x is an element of the proper subspace (and hence nullset)

kerAd. For almost all x ∈ Rd, therefore, (|Anx|) is b-Benford. As it turns out, a

much weaker assumption suffices to guarantee the latter conclusion: Similarly to

Theorem 4.1, it can be shown that b-nonresonance of σEP (AN ) for some N implies

that (|Anx|) is b-Benford for almost all x ∈ Rd. Unlike in Theorem 4.1 (yet much like

in Theorem 3.10), the converse does not hold in general. In fact, as demonstrated

already by Example 3.14, it is impossible to characterize the b-Benford property of

(|Anx|) for almost all x ∈ Rd using only σ(A), let alone σEP (A).

The following variant of Theorem 3.16 is motivated by Theorem 4.1. Recall that

Zn = {zn : z ∈ Z} for any Z ⊂ C. If p = p(z) is a non-constant polynomial and
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Z = {z ∈ C : p(z) = 0}, let ζ := maxz∈Z |z| and, for each z ∈ Z, let k(z) be the

multiplicity of z as a root of p, that is, k(z) = min{n ∈ N : p(n)(z) 6= 0}. In analogy

to the extremal peripheral spectrum, define

ZEP := {z ∈ C : p(z) = 0}EP := {z ∈ Z ∩ ζS : k(z) = kmax} ,

where kmax := max{k(z) : z ∈ Z ∩ ζS}.

Theorem 4.4. Let a1, a2, . . . , ad−1, ad be real numbers with ad 6= 0, and b ∈ N\{1}.
Then the following are equivalent:

(i) The solution (xn) of (1.3) is b-Benford for almost all (x1, . . . , xd) ∈ Rd;

(ii) With the polynomial p(z) = zd − a1z
d−1 − a2z

d−2 − . . . − ad−1z − ad, the set

{z ∈ C : p(z) = 0}N
EP is b-nonresonant for some N ∈ N.

Proof. As seen in the proof of Theorem 3.16, for the matrix A associated with (1.3)

via (3.1), σ(A) = {z ∈ C : p(z) = 0}, and in fact σEP (An) = {z ∈ C : p(z) = 0}n
EP

for every n ∈ N. With this as well as (3.2) and (4.1), the argument is completely

analogous to the proof of Theorem 4.1; details are left to the reader.

Example 4.5. (i) For convenience let b = 10 and consider the third-order equation

xn = 5xn−1 − 11xn−2 + 15xn−3 , ∀n ≥ 4 . (4.6)

With the associated set

Z = {z ∈ C : z3 − 5z2 + 11z − 15 = 0} = {z ∈ C : (z − 3)(z2 − 2z + 5) = 0} ,

clearly ζ = 3, and ZEP = {3} is b-nonresonant. For almost all (x1, x2, x3) ∈ R3,

therefore, the solution (xn) of (4.6) is 10-Benford. In fact, since limn→∞ 3−nxn =
1
24 (x3 − 2x2 + 5x1), the sequence (xn) is 10-Benford unless x3 = 2x2 − 5x1. Note

that in the latter case, (xn) solves the second-order equation xn = 2xn−1 − 5xn−2,

i.e. (1.4) with γ = 1, and as seen in Example 3.18, except for the trivial case of

xn ≡ 0 it is not known whether (xn) is 10-Benford.

(ii) The set Z associated with the second-order equation

xn = π−2xn−2 , ∀n ≥ 3 , (4.7)

i.e. Z = {±π−1} is b-resonant for all b ∈ N \ {1}. However, with ζ = π−1, the set

Z2 = Z2
EP = {π−2} is b-nonresonant. Hence the solution (xn) of (4.7) is Benford

for almost all (x1, x2) ∈ R2. Again, it is easy to check that in fact (xn) is Benford

if and only if x1x2 6= 0.

(iii) As a variant of (4.7), consider the recursion

xn = (1 − π−2)xn−1 + π−2xn−2 , ∀n ≥ 3 . (4.8)

Now Z = {−π−2, 1}, hence ζ = 1, and Zn
EP = {1} is b-resonant for every n ∈ N.

By Theorem 4.4, the solution (xn) of (4.8) is not Benford for almost all (x1, x2) ∈
R2. In fact, (xn) can only be Benford if x1 + π2x2 = 0, hence {(x1, x2) ∈ R2 :

(xn) is Benford} is a nullset.
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Remark 4.6. In light of the above examples, it may be conjectured that in the

context of Theorem 4.1, Bb(A) is actually a nullset if σEP (An) is b-resonant for all

n ∈ N. Similarly, the solution (xn) of (1.3) may for almost all (x1, . . . , xd) ∈ Rd not

be b-Benford whenever {z ∈ C : p(z) = 0}n
EP is b-resonant for every n. Using Lem-

mas A.8 and A.10, it is not hard to verify this conjecture for d ∈ {1, 2, 3}. However,

the authors do not know of any proof of, or counter-example to the conjecture for

d ≥ 4; cf. Remark A.12(i).

Clearly, if σ(AN ) is b-nonresonant for some N ∈ N then so is σEP (AN ), and

unless A is nilpotent, this in turn implies that logb rσ(A) is irrational. As the next

result shows, even the latter, seemingly much weaker condition alone suffices to

recover a strong form of Theorem 3.4 — provided that some power of A is positive.

Recall that A ∈ Rd×d is positive (nonnegative), in symbols A > 0 (A ≥ 0), if

[A]jk > 0 ([A]jk ≥ 0) for all j, k ∈ {1, . . . , d}; here [A]jk denotes the entry of A at

position (j, k), i.e. in the j-th row and k-th column, thus [A]jk = (e(j))⊤Ae(k). For

convenience, write x > 0 (x ≥ 0) for x ∈ Rd if xj > 0 (xj ≥ 0) for all j ∈ {1, . . . , d}.
A proof of the following result can be found in [5, Sec.3] for b = 10, but the argument

given there immediately carries over to arbitrary base b.

Proposition 4.7. Let A ∈ Rd×d and b ∈ N \ {1}. Assume that AN > 0 for some

N ∈ N. Then the following four statements are equivalent:

(i) For every x, y ∈ Rd\{0} with x ≥ 0, y ≥ 0 the sequence (x⊤Any) is b-Benford;

(ii) For every x ∈ Rd \ {0} with x ≥ 0 the sequence (|Anx|) is b-Benford;

(iii) The sequence (|An|) is b-Benford;

(iv) logb rσ(A) is irrational.

Example 4.8. (i) For the matrix

A =




0 1 0

0 0 1

6 1 0


 ,

one finds σ(A) = {−1 ± ı
√

2, 2}, and so σ(A) is b-resonant whenever b ∈ {2n, 3n :

n ∈ N}. For any other base b, and similarly to Example 3.18(iii), it is apparently

unknown whether σ(A) is b-resonant. Note, however, that A ≥ 0 and A5 > 0,

hence Proposition 4.7 applies with rσ(A) = 2. For every b not an integer power

of 2, therefore, and for all x, y ∈ R3 \ {0} with x, y ≥ 0, the sequences (x⊤Any)

and (|Anx|) are b-Benford. This nicely complements the fact that (x⊤Any) and

(|Anx|) are b-Benford in this case for almost all (x, y) ∈ R3 × R3 (by Theorem 4.1)

and almost all x ∈ R3 (by Remark 4.3), respectively. Also, (|An|) is b-Benford by

Theorem 3.11.
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(ii) For the matrix

B =




−3 1 0

1 0 1

0 1 6


 ,

it is easily checked that B8 > 0. An argument similar to, but simpler than the one in

Example 3.9(ii) shows that logb rσ(B) is irrational for every b. Hence again Propo-

sition 4.7 applies. Note that in order to reach this conclusion it is not necessary to

explicitly determine the value of rσ(B).

Remark 4.9. For nonnegative A ∈ Rd×d, it is well-known that AN > 0 for some

N ∈ N (if and) only if Ad2−2d+2 > 0; see e.g. [21, Prop.8.5]. On the other hand, for

d ≥ 3 and arbitrary A ∈ Rd×d, the minmal number N for which AN > 0, if at all

existant, may be arbitrarily large; see [5, Sec.3].

Proposition 4.7 has a counterpart for difference equations which is a variant of

Theorem 3.16 under the assumption of positivity, both for the coefficients and the

initial data; for a proof the reader is again referred to [5].

Proposition 4.10. Let a1, a2, . . . , ad−1, ad be positive real numbers, and b ∈ N\{1}.
Then the following are equivalent:

(i) Every solution (xn) of (1.3) with x1, . . . , xd ≥ 0 and maxd
j=1 xj > 0 is b-

Benford;

(ii) logb ζ is irrational where z = ζ is the right-most root of p(z) = 0 with the

polynomial p(z) = zd − a1z
d−1 − a2z

d−2 − . . . − ad−1z − ad.

To finally put Theorems 3.4 and 4.1 as well as Corollary 3.12 in perspective,

recall that, informally put, b-Benford sequences are prevalent among the sequences

(x⊤Any), (|Anx|), and (|An|) derived from (An) whenever σ(AN ) is b-nonresonant

for some N ∈ N. For most matrices A ∈ Rd×d the set σ(A) is b-nonresonant for

every b, as are σ(An) and σEP (An) for all n ∈ N, and logb rσ(A) is irrational. More

formally, let

Gd,b :=
{
A ∈ Rd×d : A is invertible and σ(A) is b-nonresonant

}
.

With this, it can be shown that while the set Rd×d \ Gd,b is dense in Rd×d, it never-

theless is a first-category set (i.e. a countable union of nowhere dense sets) and has

(Lebesgue) measure zero. The same, therefore, is true for
⋃

b∈N\{1}(R
d×d \ Gd,b).

In other words, most real d × d-matrices, both in a topological and measure-

theoretical sense, belong to
⋂

b∈N\{1} Gd,b, and thus are invertible with their spec-

trum b-nonresonant for every b; see e.g. [4, 8, 6] for details. This observation may

help explain the conformance to BL often observed empirically across a wide range

of scientific disciplines.
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A Some auxiliary results

The purpose of this appendix is to provide proofs for several analytical facts that

have been used in establishing the main results of this article. Throughout, let d

be a fixed positive integer.

Lemma A.1. Given any z1, . . . , zd ∈ S = {z ∈ C : |z| = 1}, the following are

equivalent:

(i) If c1, . . . , cd ∈ C and limn→∞(c1z
n
1 + . . .+ cdz

n
d ) exists then c1 = . . . = cd = 0;

(ii) zj 6∈ {1} ∪ {zk : k 6= j} for every 1 ≤ j ≤ d.

Proof. Clearly (i)⇒(ii) because if zj = 1 for some j simply let cj = 1 and cℓ = 0

for all ℓ 6= j, whereas if zj = zk for some j 6= k take cj = 1, ck = −1, and

cℓ = 0 for all ℓ ∈ {1, . . . , d} \ {j, k}. To show that (ii)⇒(i) as well, proceed by

induction. Trivially, if d = 1 then (c1z
n
1 ) with z1 ∈ S converges only if c1 = 0 or

z1 = 1. Assume now that (ii)⇒(i) has been established already for some d ∈ N, let

z1, . . . , zd+1 ∈ S, and assume that zj 6∈ {1} ∪ {zk : k 6= j} for every 1 ≤ j ≤ d + 1.

If limn→∞(c1z
n
1 + . . . + cd+1z

n
d+1) exists then, as zd+1 6= 1,

{
c1

(
z1

zd+1

)n
z1 − 1

zd+1 − 1
+ . . . + cd

(
zd

zd+1

)n
zd − 1

zd+1 − 1
+ cd+1

}
zn

d+1(zd+1 − 1)

= c1z
n
1 (z1 − 1) + . . . + cd+1z

n
d+1(zd+1 − 1)

= c1z
n+1
1 + . . . + cd+1z

n+1
d+1 −

(
c1z

n
1 + . . . + cd+1z

n
d+1

) n→∞−→ 0 ,

which in turn yields

limn→∞

{
c1

z1 − 1

zd+1 − 1

(
z1

zd+1

)n

+ . . . + cd
zd − 1

zd+1 − 1

(
zd

zd+1

)n}
= −cd+1 .

Note that
zj

zd+1
6∈ {1} ∪

{
zk

zd+1
: k 6= j

}
for every 1 ≤ j ≤ d. By the induction

assumption, cj
zj − 1

zd+1 − 1
= 0 for all 1 ≤ j ≤ d. Hence c1 = . . . = cd = 0, and clearly

cd+1 = 0 as well.

Two simple consequences of Lemma A.1 have been used repeatedly.

Lemma A.2. Let 0 = t0 < t1 < . . . < td < td+1 = π and c0, c1 . . . , cd, cd+1 ∈ C. If

limn→∞ ℜ(c0e
ınt0 + c1e

ınt1 + . . . + cde
ıntd + cd+1e

ıntd+1) = 0 ,

then ℜc0 = ℜcd+1 = 0 and c1 = . . . = cd = 0.
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Proof. For every j ∈ {1, . . . , 2d + 1} let

zj =

{
eıtj if 1 ≤ j ≤ d + 1 ,

e−ıt2d+2−j if d + 2 ≤ j ≤ 2d + 1 ,

and note that zj 6∈ {1} ∪ {zk : k 6= j}. Since

2 limn→∞ ℜ
(
c0e

ınt0 + c1e
ınt1 + . . . + cde

ıntd + cd+1e
ıntd+1

)
− 2ℜc0

= 2 limn→∞ ℜ
(
c1e

ınt1 + . . . + cde
ıntd + cd+1e

ıntd+1
)

= limn→∞

(∑d

j=1
cjz

n
j + 2(ℜcd+1)z

n
d+1 +

∑2d+1

j=d+2
c2d+2−jz

n
j

)

exists by assumption, Lemma A.1 shows that c1 = . . . = cd = 0 and ℜcd+1 = 0,

and so clearly ℜc0 = 0 as well.

Lemma A.3. Given any z1, . . . , zd ∈ S, the following are equivalent:

(i) If c1, . . . , cd ∈ C and limn→∞ ℜ(c1z
n
1 +. . .+cdz

n
d ) exists then c1 = . . . = cd = 0;

(ii) zj 6∈ {−1, 1} ∪ {zk, zk : k 6= j} for every 1 ≤ j ≤ d.

Proof. Clearly (i)⇒(ii) because if zj ∈ {−1, 1} for some 1 ≤ j ≤ d simply let cj = ı

and cℓ = 0 for all ℓ 6= j, whereas if zj ∈ {zk, zk} for some j 6= k, take cj = 1,

ck = −1, and cℓ = 0 for all ℓ ∈ {1, . . . , d} \ {j, k}. Conversely, if

limn→∞ ℜ(c1z
n
1 + . . . + cdz

n
d ) = 1

2 limn→∞(c1z
n
1 + c1 z1

n + . . . + cdz
n
d + cd zd

n)

exists then, by Lemma A.1, c1 = . . . = cd = 0 unless either zj = 1 or zj = zj

(and hence zj ∈ {−1, 1}) for some j, or else zj ∈ {zk, zk} for some j 6= k. Overall,

c1 = . . . = cd = 0 unless zj ∈ {−1, 1, zk, zk} for some j 6= k. Thus (ii)⇒(i), as

claimed.

Let ϑ1, . . . , ϑd and β 6= 0 be real numbers, and p1, . . . , pd integers. With these

ingredients, consider the sequence (xn) of real numbers given by

xn = p1nϑ1 + . . . + pdnϑd + β ln
∣∣u1 cos(2πnϑ1) + . . . + ud cos(2πnϑd)

∣∣ , ∀n ∈ N ,

(A.1)

where u ∈ Rd. Recall that Lemma 2.7, which has been instrumental in the proof of

Theorem 3.4, asserts that it is possible to choose u ∈ Rd in such a way that (xn) is

not u.d. mod 1 whenever the d + 1 numbers 1, ϑ1, . . . , ϑd are Q-independent. The

remainder of this appendix is devoted to providing a rigorous proof of Lemma 2.7.

To prepare for the argument, recall that Td denotes the d-dimensional torus

Rd/Zd, together with the σ-algebra B(Td) of its Borel sets. Let P(Td) be the set of

all probability measures on
(
Td,B(Td)

)
, and given any µ ∈ P(Td), associate with

it the family
(
µ̂(k)

)
k∈Zd of its Fourier coefficients, defined as

µ̂(k) =

∫

Td

e2πık⊤t dµ(t) =

∫

Td

e2πı(k1t1+...+kdtd) dµ(t1, . . . , td) , ∀k ∈ Zd .
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Recall that µ 7→
(
µ̂(k)

)
k∈Zd is one-to-one, i.e., the Fourier coefficients determine µ

uniquely. Arguably the most prominent element in P(Td) is the Haar measure λTd

for which, with dλTd(t) abbreviated dt as usual,

λ̂Td(k) =

∫

Td

e2πı(k1t1+...+kdtd) dt =
∏d

j=1

∫

T

e2πıkj tdt =

{
1 if k = 0 ∈ Zd ,

0 if k 6= 0 .

Given µ ∈ P(Td), therefore, to show that µ 6= λTd it is (necessary and) sufficient to

find at least one k ∈ Zd \{0} for which µ̂(k) 6= 0. Recall also that, given any (Borel)

measurable map T : Td → T, each µ ∈ P(Td) induces a unique µ ◦T−1 ∈ P(T), via

µ ◦ T−1(B) = µ
(
T−1(B)

)
, ∀B ∈ B(T) .

Note that the Fourier coefficients of µ ◦ T−1 are simply

µ̂ ◦ T−1(k) =

∫

T

e2πıktd(µ ◦ T−1)(t) =

∫

Td

e2πıkT (t)dµ(t) , k ∈ Z .

If in particular d = 1 and µ ◦ T−1 = µ then µ is said to be T -invariant (and T is

µ-preserving).

With a view towards Lemma 2.7, for any p1, . . . , pd ∈ Z and β ∈ R consider the

map

Λu :

{
Td → T ,

t 7→
〈
p1t1 + . . . + pdtd + β ln

∣∣u1 cos(2πt1) + . . . + ud cos(2πtd)
∣∣〉 ;

(A.2)

here u ∈ Rd may be thought of as a parameter. (Recall the convention, adhered to

throughout, that ln 0 = 0.) Note that each map Λu is (Borel) measurable, in fact

differentiable outside a set of λTd-measure zero. For every µ ∈ P(Td), therefore, the

measure µ ◦ Λ−1
u is a well-defined element of P(T). Lemma 2.7 is a consequence of

the following fact which may also be of independent interest.

Theorem A.4. For every p1, . . . , pd ∈ Z and β ∈ R \ {0}, there exists u ∈ Rd such

that λTd ◦ Λ−1
u 6= λT, with Λu given by (A.2).

To see that Theorem A.4 does indeed imply Lemma 2.7, let p1, . . . , pd ∈ Z and

β ∈ R \ {0} be given, and pick u ∈ Rd such that λTd ◦ Λ−1
u 6= λT. Consequently,

there exists a continuous function f : T → C for which
∫

T
f d(λTd ◦Λ−1

u ) 6=
∫

T
f dλT.

Note that f ◦Λu : Td → C is continuous λTd-almost everywhere as well as bounded,

hence Riemann integrable. Also recall that the sequence
(
(nϑ1, . . . , nϑd)

)
is u.d.

mod 1 in Rd whenever 1, ϑ1, . . . , ϑd are Q-independent [26, Exp.I.6.1]. In the latter

case, therefore,

limN→∞
1

N

∑N

n=1
f(〈xn〉) = limN→∞

1

N

∑N

n=1
f ◦ Λu

(
〈(nϑ1, . . . , nϑd)〉

)

=

∫

Td

f ◦ Λu dλTd =

∫

T

f d(λTd ◦ Λ−1
u ) 6=

∫

T

f dλT ,
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showing that (xn) is not u.d. mod 1.

Thus it remains to prove Theorem A.4. Though the assertion of the latter

is quite plausible intuitively, the authors do not know of any simple but rigorous

justification. The proof presented here is computational and proceeds in essentially

two steps: First the case of d = 1 is analyzed in detail. Specifically, it is shown

that λT ◦ Λ−1
u 6= λT unless p1 6= 0 and βu1 = 0. For itself, this could be seen

directly by noticing that the map Λu : T → T has a non-degenerate critical point

whenever βu1 6= 0, and hence cannot possibly preserve λT, see e.g. [5, Lem.2.6] or

[6, Ex.5.27(iii)]. The more elaborate calculation given here, however, is useful also

in the second step of the proof, i.e. the analysis for d ≥ 2. As it turns out, the case

of d ≥ 2 can, in essence, be reduced to calculations already done for d = 1.

To concisely formulate the subsequent results, recall that the Euler Gamma

function, denoted Γ = Γ(z) as usual, is a meromorphic function with poles precisely

at z ∈ −N0 = {0,−1,−2, . . .}, and Γ(z + 1) = zΓ(z) 6= 0 for every z ∈ C \
(−N0). Also, for convenience every “empty sum” is understood to equal zero, e.g.∑

2≤j≤1 j2 = 0, whereas every “empty product” is understood to equal 1, e.g.∏
2≤j≤1 j2 = 1. Finally, the standard (ascending) Pochhammer symbol (z)n will be

used where, given any z ∈ C,

(z)n := z(z + 1) . . . (z + n − 1) =
∏n−1

ℓ=0
(z + ℓ) , ∀n ∈ N ,

and (z)0 := 1, in accordance with the convention on empty products. Note that

(z)n = Γ(z + n)/Γ(z) whenever z 6∈ C \ (−N0).

For every p ∈ Z and β ∈ R, consider now the integral

Ip,β :=

∫

T

e4πıpt+2ıβ ln | cos(2πt)| dt . (A.3)

The specific form of Ip,β is suggested by the Fourier coefficients of λT ◦ Λ−1
u in the

case of d = 1; see the proof of Lemma A.6 below. Not surprisingly, the value of Ip,β

can be expressed explicitly by means of special functions.

Lemma A.5. For every p ∈ Z and β ∈ R \ {0},

Ip,β = (−1)pe−ıβ ln 4 2ıβΓ(2ıβ)
(
ıβΓ(ıβ)

)2 · (−ıβ)|p|

(1 + ıβ)|p|
, (A.4)

and hence in particular

|Ip,β |2 =
β tanh(πβ)

π(p2 + β2)
> 0 . (A.5)

Proof. Substituting −t for t in (A.3) shows that Ip,β = I|p|,β , and a straightforward

34



calculation, with Tℓ denoting the ℓ-th Chebyshev polynomial (ℓ ∈ N0), yields

Ip,β =

∫

T

e4πı|p|t+2ıβ ln | cos(2πt)| dt =

∫ 1

0

e2πı|p|x+2ıβ ln | cos(πx)| dx

=

∫ 1
2

0

2 cos(2π|p|x)e2ıβ ln | cos(πx)| dx = 2

∫ 1
2

0

T2|p|

(
cos(πx)

)
e2ıβ ln | cos(πx)| dx

=
2

π

∫ 1

0

T2|p|(x)√
1 − x2

e2ıβ ln x dx =
2

π

∫ +∞

0

T2|p|

(
1√

1 + x2

)
e−ıβ ln(1+x2)

1 + x2
dx .

As the polynomial T2|p| can, for every p ∈ Z and y 6= 0, be written as

T2|p|(y) = y2|p|
∑|p|

ℓ=0

(
2|p|
2ℓ

)
(1 − y−2)ℓ ,

it follows that

Ip,β =
2

π

∑|p|

ℓ=0
(−1)ℓ

(
2|p|
2ℓ

)∫ +∞

0

x2ℓ

(1 + x2)1+|p|+ıβ
dx

=
1

π

∑|p|

ℓ=0
(−1)ℓ

(
2|p|
2ℓ

)∫ +∞

0

xℓ− 1
2

(1 + x)1+|p|+ıβ
dx

=
1

πΓ(1 + |p| + ıβ)

∑|p|

ℓ=0
(−1)ℓ

(
2|p|
2ℓ

)
Γ(1

2 + ℓ)Γ(1
2 + |p| − ℓ + ıβ) .

Note that Γ is finite and non-zero for each argument appearing in this sum. Recall

that

Γ(1
2 + ℓ) =

(2ℓ)!
√

π

ℓ! 22ℓ
, ∀ℓ ∈ N0 ,

and so

Ip,β =
(−1)p(2|p|)!√

π22|p|Γ(1 + |p| + ıβ)

∑|p|

ℓ=0

{
(−1)ℓ 22ℓΓ(1

2 + ℓ + ıβ)

(2ℓ)!(|p| − ℓ)!

}

=
(−1)pΓ(1

2 + |p|)Γ(1
2 + ıβ)

πΓ(1 + |p| + ıβ)

∑|p|

ℓ=0

{
(−1)ℓ

(
|p|
ℓ

)∏ℓ

k=1

2k − 1 + 2ıβ

2k − 1

}

=
(−1)pΓ(1

2 + ıβ)√
π2|p|Γ(1 + |p| + ıβ)

·

·
∑|p|

ℓ=0

{
(−1)ℓ

(
|p|
ℓ

)∏ℓ

k=1
(2k − 1 + 2ıβ)

∏|p|

k=ℓ+1
(2k − 1)

}

=
(−1)pΓ(1

2 + ıβ)√
π2|p|Γ(1 + |p| + ıβ)

R|p|(2ıβ) ,

where, for every m ∈ N0, the polynomial Rm is given by

Rm(z) =
∑m

ℓ=0

{
(−1)ℓ

(
m

ℓ

)∏ℓ

k=1
(2k − 1 + z)

∏m

k=ℓ+1
(2k − 1)

}
. (A.6)
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Thus for example R0(z) ≡ 1, R1(z) = −z, R2(z) = −2z + z2. Note that the degree

of Rm equals m, and for every m ∈ N and j ∈ {0, 1, . . . , m − 1},

Rm(2j) =
∑m

ℓ=0

{
(−1)ℓ

(
m

ℓ

)∏ℓ

k=1
(2k − 1 + 2j)

∏m

k=ℓ+1
(2k − 1)

}

=
∑m

ℓ=0

{
(−1)ℓ

(
m

ℓ

)∏m

k=j+1
(2k − 1)

∏ℓ+j

k=ℓ+1
(2k − 1)

}

=
{∏m

k=j+1
(2k − 1)

}∑m

ℓ=0

{
(−1)ℓ

(
m

ℓ

)∏j

k=1
(2ℓ + 2k − 1)

}
= 0 .

Here the elementary fact has been used that
∑m

ℓ=0(−1)ℓ

(
m

ℓ

)
Q(ℓ) = 0 holds for

every polynomial Q of degree less than m. As the polynomial Rm has degree m, it

cannot have any further roots besides 0, 2, 4, . . . , 2m− 2, and so

Rm(z) = cm

∏m−1

ℓ=0
(z − 2ℓ) , (A.7)

with a constant cm yet to be determined. The correct value of cm is readily found

by observing that (A.7) yields

Rm(−1) = cm

∏m−1

ℓ=0
(−1 − 2ℓ) = cm(−1)m · 1 · 3 · . . . · (2m − 1) ,

whereas, by the very definition (A.6) of Rm,

Rm(−1) =
∑m

ℓ=0

{
(−1)ℓ

(
m

ℓ

)∏ℓ

k=1
(2k − 2)

∏m

k=ℓ+1
(2k − 1)

}
=
∏m

k=1
(2k−1) .

Thus cm = (−1)m, and overall

Rm(z) = (−1)m
∏m−1

ℓ=0
(z − 2ℓ) =

∏m−1

ℓ=0
(2ℓ − z) = 2m

(
− 1

2z
)
m

.

With this, one obtains

Ip,β =
(−1)pΓ(1

2 + ıβ)√
π2|p|Γ(1 + |p| + ıβ)

∏|p|−1

ℓ=0
(2ℓ − 2ıβ)

=
2(−1)p+1e−ıβ ln 4

|p| − ıβ
· Γ(2ıβ)

Γ(ıβ)2

∏|p|

ℓ=1

ℓ − ıβ

ℓ + ıβ

= (−1)pe−ıβ ln 4 2ıβΓ(2ıβ)
(
ıβΓ(ıβ)

)2 · (−ıβ)|p|

(1 + ıβ)|p|
,

where the so-called Legendre duplication formula for the Γ-function has been used

in the form

Γ(ıβ)Γ(1
2 + ıβ) = 21−2ıβ√π Γ(2ıβ) , ∀β ∈ R \ {0} .
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Thus (A.4) has been established, and together with the standard fact

|Γ(ıβ)|2 =
π

β sinh(πβ)
, ∀β ∈ R \ {0} ,

this immediately yields

|Ip,β |2 =
4

p2 + β2
· |Γ(2ıβ)|2
|Γ(ıβ)|4 =

4β2π

2β sinh(2πβ)
· sinh2(πβ)

π2(p2 + β2)
=

β tanh(πβ)

π(p2 + β2)
,

i.e., (A.5) holds as claimed.

An immediate consequence of Lemma A.5 is that for d = 1 the map Λu does

typically not preserve λT. Notice that the following result is much stronger than

(and hence obviously proves) Theorem A.4 for d = 1.

Lemma A.6. Let p1 ∈ Z, β ∈ R and u1 ∈ R. Then λT ◦ Λ−1
u = λT, where Λu is

given by (A.2) with d = 1, if and only if p1 6= 0 and βu1 = 0.

Proof. Simply note that for βu1 = 0 and every k ∈ Z,

̂λT ◦ Λ−1
u (k) =

{
1 if kp1 = 0 ,

0 if kp1 6= 0 ,

and hence λT ◦ Λ−1
u = λT precisely if p1 6= 0. On the other hand, for βu1 6= 0,

̂λT ◦ Λ−1
u (2) =

∫

T

e4πıt d(λT ◦ Λ−1
u )(t) =

∫

T

e4πı(p1t+β ln |u1 cos(2πt)|) dt

= e4πıβ ln |u1|Ip1,2πβ 6= 0 ,

showing that λT ◦ Λ−1
u 6= λT in this case.

As indicated earlier, the case of d ≥ 2 of Theorem A.4 is now going to be studied

and, in a way, reduced to the case of d = 1. To this end, let again p ∈ Z and β ∈ R

be given, and consider the function ip,β : R → C with

ip,β(x) =

∫

T

e4πıpt+2ıβ ln |x+cos(2πt)| dt , ∀x ∈ R . (A.8)

A few elementary properties of ip,β are contained in

Lemma A.7. For every p ∈ Z and β ∈ R, the function ip,β is continuous and even,

with |ip,β(x)| ≤ 1 for all x ∈ R. Moreover, ip,β(0) = Ip,β and ip,β(1) = eıβ ln 4I2p,2β;

in particular, ip,β(0) 6= ip,β(1) whenever β 6= 0.

Proof. Since for every x ∈ R,

limy→x ln |y + cos(2πt)| = ln |x + cos(2πt)|

holds for all but (at most) two t ∈ T, the continuity of ip,β follows from the Domi-

nated Convergence Theorem. Clearly, ip,β is even, with |ip,β(x)| ≤
∫

T
1 dλT = 1 for

every x ∈ R, and ip,β(0) = Ip,β . Finally, it follows from

ip,β(1) = eıβ ln 4

∫

T

e4πıpt+4ıβ ln | cos(πt)| dt = eıβ ln 4I2p,2β ,
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and (A.5) that, for every p ∈ Z and β ∈ R \ {0},
∣∣∣∣
ip,β(1)

ip,β(0)

∣∣∣∣
2

=
|I2p,2β |2
|Ip,β |2

=
2β tanh(2πβ)

4p2 + 4β2
· p2 + β2

β tanh(πβ)
=

1

2

(
1 +

1

cosh(2πβ)

)
< 1 ,

and hence ip,β(1) 6= ip,β(0).

The subsequent analysis crucially depends on the fact that ip,β is actually much

smoother than Lemma A.7 seems to suggest. Recall that a function f : Rm → C

is real-analytic on an open set U ⊂ Rm if f can, in a neighbourhood of each point

in U , be represented as a convergent power series. As will become clear soon, the

ultimate proof of Theorem A.4 relies heavily on the following refinement of Lemma

A.7.

Lemma A.8. For every p ∈ Z and β ∈ R, the function ip,β is real-analytic on

(−1, 1).

Proof. As ip,0 is constant, and thus trivially real-analytic, henceforth assume β 6= 0.

By Lemma A.7, the function f : T → C with f(t) = ip,β

(
cos(πt)

)
is well-defined

and continuous. Hence it can be represented, at least in the L2(λT)-sense, as a

Fourier series f(t) ∼∑k∈Z cke2πıkt where, for every k ∈ Z,

ck =

∫

T

f(t)e−2πıkt dt =

∫

T2

e−2πıkt1+4πı|p|t2+2ıβ ln | cos(πt1)+cos(2πt2)| dt

=

∫

T2

e4πı|p|(t1−t2)−4πık(t1+t2)+2ıβ ln |2 cos(2πt1) cos(2πt2)| dt

= eıβ ln 4

∫

T

e4πı(|p|−k)t+2ıβ ln | cos(2πt)| dt

∫

T

e4πı(|p|+k)t+2ıβ ln | cos(2πt)| dt

= eıβ ln 4I|p|−k,βI|p|+k,β .

Since c−k = ck, the Fourier series of f is

c0 + 2
∑

n∈N
cn cos(2πnt) = c0 + 2

∑∞

n=1
cnT2n

(
cos(πt)

)
,

and since furthermore

|cn| = |In−|p|,βIn+|p|,β | =
β tanh(πβ)

π
√

(n2 + p2 + β2)2 − 4n2p2
= O(n−2) , as n → ∞ ,

and hence
∑∞

n=1 |cn| < +∞, this series converges uniformly on T, by the Weierstrass

M-test. It follows that ip,β(x) = c0 + 2
∑∞

n=1 cnT2n(x) uniformly in x ∈ [−1, 1].

For every y ∈ (−1, 1), consider now the auxiliary function

h(x, y) := 2
∑∞

n=1+|p|
cnT2n(x)yn .

Note that ip,β(x) = c0 + 2
∑|p|

n=1 cnT2n(x) + limy↑1 h(x, y) uniformly in x ∈ [−1, 1].

In addition, introduce an analytic function on the open unit disc as

H(z) :=
∑∞

n=1+|p|
cnzn , ∀z ∈ C : |z| < 1 , (A.9)
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and observe that

H(z) = z1+|p|
∑∞

n=0
cn+1+|p|z

n = eıβ ln 4z1+|p|
∑∞

n=0
In+1,βIn+1+2|p|,βzn

= e−ıβ ln 4z1+|p|

(
2ıβΓ(2ıβ)

)2
(
ıβΓ(ıβ)

)4
∑∞

n=0

(−ıβ)n+1(−ıβ)n+1+2|p|

(1 + ıβ)n+1(1 + ıβ)n+1+2|p|
zn

= e−ıβ ln 4z1+|p|

(
2ıβΓ(2ıβ)

)2
(
ıβΓ(ıβ)

)4 · (ıβ)2

(1 + ıβ)2
· (1 − ıβ)2|p|

(2 + ıβ)2|p|
·

·
∑∞

n=0

(1 − ıβ)n(1 + 2|p| − ıβ)n

(2 + ıβ)n(2 + 2|p| + ıβ)n
zn

=
4e−ıβ ln 4Γ(2ıβ)2(1 − ıβ)2|p|

(1 + ıβ)2Γ(ıβ)4(2 + ıβ)2|p|
·

· 3F2(1 − ıβ, 1 + 2|p| − ıβ, 1; 2 + ıβ, 2 + 2|p| + ıβ; z)z1+|p| ;

here the standard notation for (generalized) hypergeometric functions has been

used, see e.g. [28, Ch.II] or [34, Ch.16]. Recall that 3F2 is an analytic function on

C \ [1, +∞), that is, on the entire complex plane minus a cut from 1 to ∞ along

the positive real axis. Hence H as given by (A.9) can be extended analytically to

C \ [1, +∞) as well. Observe now that

H(e2πıty) + H(e−2πıty) = 2
∑∞

n=1+|p|
cnT2n

(
cos(πt)

)
yn

= h
(
cos(πt), y

)
, ∀t ∈ T, y ∈ (−1, 1) .

It follows that, for all x ∈ [−1, 1],

ip,β(x) = c0 + 2
∑|p|

n=1
cnT2n(x) +

+ limy↑1

{
H
(
(2x2 − 1 + 2ıx

√
1 − x2)y

)
+ H

(
(2x2 − 1 − 2ıx

√
1 − x2)y

)}

= c0 + 2
∑|p|

n=1
cnT2n(x) +

+ H
(
2x2 − 1 + 2ıx

√
1 − x2

)
+ H

(
2x2 − 1 − 2ıx

√
1 − x2

)
.

Note now that 2z2 − 1 ± 2ız
√

1 − z2 6∈ [1, +∞) whenever |z| < 1. The function

z 7→ c0 +2
∑|p|

n=1
cnT2n(z)+H

(
2z2−1+2ız

√
1 − z2

)
+H

(
2z2−1−2ız

√
1 − z2

)
,

therefore, is analytic on the open unit disc and coincides with ip,β on {z : |z| <

1} ∩ R = (−1, 1). Thus ip,β is real-analytic on (−1, 1), and in fact ip,β(x) =∑∞
n=0 i

(n)
p,β(0)xn/n! for all x ∈ (−1, 1).

Remark A.9. Since t 7→ x+cos(2πt) does not change sign on T whenever |x| > 1,

it is clear from (A.8) that the function ip,β is real-analytic on R \ [−1, 1] as well.

For every d ∈ N, define a non-empty open subset of Rd as

Ed :=
{

u ∈ Rd : ∃j ∈ {1, . . . , d} with |uj | >
∑

k 6=j
|uk|

}
.
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Geometrically, Ed is the disjoint union of 2d open cones. For example, E1 = R \ {0}
and E2 = {u ∈ R2 : |u1| 6= |u2|}, hence Ed is also dense in Rd for d = 1, 2. For d ≥ 3

this is no longer the case. In fact, a simple calculation shows that

Leb(Ed ∩ [−1, 1]d)

Leb([−1, 1]d)
=

2d/Γ(d)

2d
=

1

Γ(d)
, ∀d ∈ N ,

and so the (relative) portion of Rd taken up by Ed decays rapidly with growing d.

In order to utilize Lemma A.8 for a proof of Theorem A.4, given any p1, . . . , pd ∈
Z and β ∈ R, recall the map Λu from (A.2) and consider the integral

J = J(u) = ̂λTd ◦ Λ−1
u (2) =

∫

T

e4πıt d(λTd ◦ Λ−1
u )(t)

=

∫

Td

e4πı(p1t1+...pdtd+β ln |u1 cos(2πt1)+...+ud cos(2πtd)|) dt . (A.10)

An important consequence of Lemma A.8 is

Lemma A.10. For every p1, . . . , pd ∈ Z and β ∈ R \ {0}, the function u 7→ J(u)

given by (A.10) is real-analytic and non-constant on each connected component of

Ed.

Proof. If d = 1 then, as seen in essence already in the proof of Lemma A.6,

u1 7→ J(u1) =

∫

T

e4πıp1t+4πıβ ln |u1 cos(2πt)| dt = e4πiβ ln |u1|Ip1,2πβ

is real-analytic and non-constant on each of the two connected parts of R\{0} = E1.

Assume in turn that d ≥ 2. As the roles of t1, . . . , td can be interchanged in

(A.10), assume w.l.o.g. that ud 6= 0. Since J(±u1, . . . ,±ud) = J(u1, . . . , ud) for all

u ∈ Rd and every possible combination of + and − signs, and since also

J(u) = e4πiβ ln |ud|J

(
u1

ud
, . . . ,

ud−1

ud
, 1

)
,

it suffices to show that J̃ = J̃(u) := J(u1, . . . , ud−1, 1) is real-analytic and non-

constant on Ẽd−1 := {u ∈ Rd−1 :
∑d−1

j=1 |uj| < 1}. To this end note first that

J̃(u) =

∫

Td−1

e4πı(p1t1+...+pd−1td−1)ipd,2πβ

(
u1 cos(2πt1)+ . . .+ ud−1 cos(2πtd−1)

)
dt .

With Lemma A.7 and the Dominated Convergence Theorem, it is clear that J̃

is continuous on Rd−1. Recall from the proof of Lemma A.8 that ip,β can be

represented by a power series, namely ip,β(x) =
∑∞

n=0 i
(n)
p,β(0)xn/n! for all p ∈ Z,

β ∈ R and |x| < 1. For every u ∈ Ẽd−1, therefore,

J̃(u) =

∫

Td−1

e4πı(p1t1+...+pd−1td−1)
∑∞

n=0

i
(n)
pd,2πβ(0)

n!

(∑d−1

j=1
uj cos(2πtj)

)n

=
∑∞

n=0

i
(2n)
pd,2πβ(0)

22n

∑
|ν|=n

{∏d−1

j=1

u
2νj

j

(2νj)!

(
2νj

νj+|pj|

)}
, (A.11)
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where the standard notation for multi-indices ν = (ν1, . . . , νd−1) ∈ (N0)
d−1 has been

used, see e.g. [24, pp.25–29]. Thus J̃ is real-analytic on Ẽd−1, by [24, Prop.2.2.7].

It remains to show that J̃ is non-constant on Ẽd−1. Consider first the case of

d = 2, for which (A.11) takes the form

J̃(u1) =
∑∞

n=|p1|

i
(2n)
p2,2πβ(0)

22n

(
2n

n+|p1|

)
u2n

1

(2n)!
, ∀u1 ∈ Ẽ1 = (−1, 1) . (A.12)

Recall that u1 7→ J̃(u1) is continuous. If p1 6= 0 then J̃(0) = 0 whereas

J̃(1) =

∫

T2

e4πı(p1t1+p2t2+β ln | cos(2πt1)+cos(2πt2)|) dt

=

∫

T2

e4πı(p1(t1−t2)+p2(t1+t2)+β ln |2 cos(2πt1) cos(2πt2)|) dt

= e4πıβ ln 2Ip1+p2,2πβIp1−p2,2πβ 6= 0 ,

since β 6= 0. If, on the other hand, p1 = 0 then J̃(0) = Ip2,2πβ , while J̃(1) =

e4πıβ ln 2I2
p2,2πβ 6= J̃(0). In either case, therefore, u1 7→ J̃(u1) is non-constant on

Ẽ1 = (−1, 1). This concludes the proof for d = 2.

Finally, to deal with the case of d ≥ 3, note first that the above argument for

d = 2 really shows that, given any p ∈ Z and β ∈ R \ {0}, the number i
(2n)
p,2πβ(0) is

non-zero for infinitely many n ∈ N0. (Otherwise, by (A.12), the function u1 7→ J̃(u1)

would be constant for |p1| sufficiently large, which has just been shown not to be

the case.) But then

J̃(u) =
∑∞

n=|p1|+...+|pd−1|

i
(2n)
pd,2πβ(0)

22n

∑
|ν|=n

{∏d−1

j=1

u
2νj

j

(2νj)!

(
2νj

νj+|pj|

)}

is obviously non-constant on Ẽd−1.

Given p1, . . . , pd ∈ Z and β ∈ R, denote by Dd the set of all u ∈ Rd for which

λTd ◦Λ−1
u coincides with λT, i.e., let Dd = {u ∈ Rd : λTd ◦Λ−1

u = λT}. An immediate

consequence of Lemma A.10 is

Lemma A.11. For every p1, . . . , pd ∈ Z and β ∈ R \ {0} the set Dd ∩ Ed ⊂ Rd is

nowhere dense and has Lebesgue measure zero.

Proof. This is clear from the fact that Dd ∩Ed ⊂ {u ∈ Ed : J(u) = 0}. As u 7→ J(u)

is real-analytic and non-constant on each component of Ed, the zero-locus of J on

Ed is nowhere dense and has Lebesgue measure zero; see e.g. [8, Lem.19] or [24,

Sec.4.1].

At long last, the Proof of Theorem A.4 has become very simple: Since Dd ∩ Ed

is nowhere dense, Ed \ Dd 6= ∅, and λTd ◦ Λ−1
u 6= λT for every u ∈ Ed \ Dd, by the

definition of Dd.
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Remark A.12. (i) Since E1 and E2 are dense in R and R2, respectively, the set Dd

is nowhere dense in Rd for d = 1, 2 whenever β 6= 0. It may be conjectured that Dd

is nowhere dense (and has Lebesgue measure zero) for d ≥ 3 also; no proof of, or

counter-example to this conjecture is known to the authors.

(ii) Note that λTd ◦ Λ−1
u = λT if, for some j ∈ {1, . . . , d}, both pj 6= 0 and

βuj = 0. Thus ⋃
j:pj 6=0

{
u ∈ Rd : βuj = 0

}
⊂ Dd , (A.13)

and hence for β 6= 0 the set Dd contains the union of at most d coordinate hyper-

planes. Beyond the conjecture formulated in (i), it is tempting to speculate whether

in fact equality holds in (A.13) always, i.e. for any p1, . . . , pd ∈ Z and β ∈ R — as

it does for β = 0 (trivial) and d = 1 (Lemma A.6). Obviously, equality in (A.13)

would establish a much stronger version of Theorem A.4.

(iii) Even if the set Dd ⊂ Rd is indeed nowhere dense and has Lebesgue measure

zero for every d ∈ N, as conjectured in (i), for large values of d the equality λTd ◦
Λ−1

u = λT, though generically false, is nevertheless often true approximately — in

some sense, and quite independently of the specific values of p1, . . . , pd ∈ Z and

β ∈ R\{0}. Under mild conditions on these parameters, this observation can easily

be made rigorous as follows: Assume, for instance, that the integer sequence (pn)

is not identically zero, say p1 6= 0 for convenience, and β 6= 0. Also assume that

(un) is a bounded sequence in R with
∑∞

n=1
u2

n = +∞ . (A.14)

If u1 = 0 then λTd ◦ Λ−1
u = λT for all d ∈ N. On the other hand, if u1 6= 0, let

σd :=
√

1 +
∑d

j=2 u2
j and observe that, for every k ∈ Z \ {0},

̂λTd ◦ Λ−1
u (k) = e2πıkβ ln σd ·

·
∫

Td

e2πık(p1t1+
Pd

j=2 pjtj+β ln|u1/σd cos(2πt1)+
Pd

j=2 uj/σd cos(2πtj)|) dt .

Since σd → +∞ as d → ∞ yet (un) is bounded, it follows from the Central Limit

Theorem (see e.g. [12, Sec.9.1]) that limd→∞
̂λTd ◦ Λ−1

u (k) = 0. Under the mild

assumption (A.14), therefore, limd→∞ λTd ◦ Λ−1
u = λT in P(T) in the sense of

weak convergence of probability measures. Informally put, the probability measure

λTd ◦ Λ−1
u typically differs but little from λT whenever d is large.

(iv) The above proof of Theorem A.4 relies heavily on specific properties of the

logarithm, notably on the fact that ln |xy| = ln |x| + ln |y| whenever xy 6= 0. It

seems plausible, however, that the conclusion of that theorem may remain valid if

the function ln | · | in (A.2) is replaced by virtually any non-constant function that

is real-analytic on R\{0} and has 0 as a mild singularity. Establishing such a much

more general version of Theorem A.4 will likely require a conceptual approach quite

different from the rather computational strategy pursued herein.
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Birkhäuser, 2002.

[25] L. Kuipers, Remark on a paper by R.L. Duncan concerning the uniform dis-

tribution mod 1 of the sequence of the logarithms of the Fibonacci numbers,

Fibonacci Quart. 7(1969), 465–466, 473.

[26] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, 1974.

[27] J.C. Lagarias and K. Soundararajan, Benford’s law for the 3x + 1 function, J.

London Math. Soc. 74(2006), 289–303.

[28] W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas and Theorems for the

Special Functions of Mathematical Physics, Springer, 1966.
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