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Abstract. We study the existence, structure, and topological entropy of al-
most automorphic arrays in symbolic lattice dynamical systems. In particular
we show that almost automorphic arrays with arbitrarily large entropy are
typical in symbolic lattice dynamical systems. Applications to pattern forma-
tion and spatial chaos in infinite dimensional lattice systems are considered,
and the construction of chaotic almost automorphic signals is discussed.

1. Introduction

Almost automorphic functions were introduced by Bochner in 1955 ([5]). These
functions generalize the (Bohr) almost periodic functions, and they are known to
coincide with the Levitan class of N -almost periodic functions ([28]). The closure
of an almost automorphic orbit in a dynamical system is minimal ([41]), and an
almost automorphic function yielding a compact flow is necessarily uniformly con-
tinuous. Every almost periodic function is almost automorphic, but the converse
does not hold in general. Almost automorphic functions defined on a locally com-
pact Abelian group and valued in a Banach space admit well-defined Fourier series.
But unlike for the almost periodic case, Fourier series of an almost automorphic
function need not be unique, and the respective Bochner-Fejer sums only converge
pointwise in general ([41]). Nevertheless, the frequency module of an almost au-
tomorphic function, defined as the smallest additive group containing the Fourier
spectrum, is well-defined and algebraically isomorphic to the dual group of the
maximal almost periodic factor of the hull of the almost automorphic function in
question ([39]). It is due to these harmonic properties that both almost periodic
and almost automorphic functions may be considered natural generalizations of
periodic functions in a stronger and a weaker sense, respectively.

Almost automorphic functions and flows play an important role in characterizing
recurrence, randomness and complexity of dynamical systems. They are known to
be fundamental in almost periodically forced differential equations, simply because
almost automorphic solutions largely exist in such systems but almost periodic ones
need not ([21, 22, 37, 39]). The complexity of almost automorphic dynamics has
mainly been studied for symbolic flows. It was first observed in [13, 32] that almost
automorphic symbolic flows can differ quite considerably from periodic and almost
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periodic ones, e.g., by exhibiting positive entropy and/or lacking unique ergodicity.
Following the work of [20, 31, 33, 43] on the characterization of almost automor-
phic symbolic sequences, Toeplitz sequences have received considerable attention
recently as a special class of almost automorphic sequences (e.g. [2, 10, 11, 15, 19]).
While regular Toeplitz sequences are uniquely ergodic with zero topological entropy,
it is known that irregular Toeplitz sequences are typically not uniquely ergodic and
exhibit positive topological entropy, though they may also be uniquely ergodic with
positive entropy ([15, 19]).

The aim of the present paper is to study almost automorphic dynamics in

higher dimensional symbolic flows, i.e., symbolic lattice systems (SZ
d

,Zd), where
S = {s0, s1, . . . , sm−1} denotes a finite alphabet and a Z

d-action is defined via the
full shift of symbols. By generalizing results for 1D systems, not only will a com-
plete characterization of almost automorphic arrays including Toeplitz arrays be
given, but also their chaotic nature will be analyzed in terms of the positivity of
topological entropy. In fact, similar to the 1D case with two symbols ([43]), we will
show that typical irregular almost automorphic arrays lack unique ergodicity and
have topological entropy arbitrarily close to the maximal entropy of the underlying
symbolic lattice system.

The main motivation for this study comes from the role played by almost auto-
morphic symbolic lattice flows in pattern formation and the onset of spatial chaos
in high (spatial) dimensional lattice dynamical systems. Pattern formation and
spatial chaos have been studied extensively in lattice dynamical systems during
recent years, mainly due to important potential applications in chemistry, image
processing, biology, and communications (see [1, 3, 8, 9, 24, 40] and references
therein). Since almost automorphic dynamics is close to periodic dynamics but at
the same time can be complicated and even chaotic, it is to be expected that almost
automorphy may be responsible for the formation of regular patterns as well as the
existence of spatial chaos in lattice dynamical systems. The present study gives
support to this assertion.

Further motivation for this study stems from the problem of constructing al-
most automorphic chaotic signals. Since chaotic signals, which are non-periodic yet
short-term predictable, combine in a sense determinism and randomness, they have
repeatedly been proposed as information-bearing signals for secure communication
in tele-communication and information technology. Various methods of construct-
ing chaotic signals have been proposed in recent years, most of them based on
symbolic dynamics and solutions of chaotic systems such as Lorenz’s equations and
Chua’s circuit (see [29, 34] and references therein). Our study on symbolic flows
provides an alternative approach to the generation of chaotic signals which, due to
their almost automorphic properties, exhibit a somewhat more visible structure.

This paper is organized as follows. Section 2 contains basic definitions as well as
a simple yet useful inheritance lemma. In Section 3 almost automorphic symbolic
lattices are constructed and their most important dynamical properties are stud-
ied. Applications of the general results to toral rotations and Toeplitz sequences
are discussed in some detail. Section 4 demonstrates the relevance of the results
obtained earlier to the fascinating topic of pattern formation and spatial chaos in
(continuous-time) lattice dynamical systems. Finally, in Section 5 a simple method
of constructing almost automorphic signals is presented together with a number of
significant examples.
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2. Preliminaries

2.1. Almost automorphy. Let T be a locally compact Abelian group and X a
complete metric space.

Definition 2.1. (i) A continuous function f : T → X is said to be almost auto-

morphic if whenever tα is a sequence such that f(t+ tα) → g(t) holds pointwise for
some function g, then also g(t− tα) → f(t).

(ii) A compact flow (X,T ) is almost automorphic minimal if it is the closure of
an almost automorphic orbit.

We define the frequency module of an almost automorphic minimal set as the dual
group of its maximal almost periodic factor. This definition makes sense because
the phase space of an almost periodic minimal flow is a topological group, and
all maximal almost periodic factors of a minimal flow are isomorphic. In [41] the
structure of an almost automorphic minimal flow is characterized as follows.

Lemma 2.1 (Veech’s structure theorem). A minimal flow (X,T ) is almost auto-

morphic if and only if it is an almost 1-1 extension of its maximal almost periodic

factor (Y, T ), i.e., there is a residual subset Y0 ⊂ Y such that each fiber over Y0 is

a singleton.

Almost automorphic minimal flows admit the following inheritance property
which is similar to the corresponding property for minimal flows ([12]).

Lemma 2.2 (Inheritance Property). Let S be a syndetic subgroup of T . Then

(X,T ) is almost automorphic minimal with maximal almost periodic factor (Y, T )
if and only if (X,S) is almost automorphic minimal with maximal almost periodic

factor (Y, S). Consequently, (X,T ) is almost periodic if and only if (X,S) is.

Proof. Since S is a syndetic subgroup of T , there is a compact set K ⊂ T such
that S + K = T . If x0 ∈ X is an almost automorphic point of (X,T ), then it is
clear that it is also an almost automorphic point of (X,S). Conversely, let x0 ∈ X
be an almost automorphic point of (X,S) and let tα be a sequence in T such that
x0 · tα → x∗. Write tα = sα+kα, where sα ∈ S, kα ∈ K. Without loss of generality,
we assume that x0 · sα → x1, kα → k ∈ K. Then x∗ = x1 · k and hence

x∗ · (−tα) = x1 · k · (−tα) = x1 · (−sα) · (k − kα) → x0 · 0 = x0 .

This shows that x0 is also an almost automorphic point of (X,T ). By [12], the
orbit closure of x0 equals X under both the actions of T and S.

The assertion about the maximal almost periodic factor follows immediately
from Lemma 2.1. It also follows from Lemma 2.1 that a minimal flow (X,T ) is
almost periodic if and only if it is almost automorphic minimal and every point in
X is almost automorphic. Hence, (X,T ) is almost periodic if and only if (X,S)
is. �

A typical application of the above lemma is the suspension of continuous maps.
Let f denote a homeomorphism of the compact metric space (X, d). The suspension

space Xf is obtained from [0, 1] ×X by identifying for all x ∈ X the points (1, x)
and

(
0, f(x)

)
. This space is itself a compact metric space (see e.g. [25]). We denote

by df any metric inducing the topology of Xf and assume that df and d coincide
on {0} × X ⊂ Xf . As a continuous-time interpolation of f , the suspension flow
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(Xf ,R) is defined by making points travel along the first coordinate with constant
velocity, more explicitly

(a, x) · t =
(
a+ t− ba+ tc, f ba+tc(x)

)

for all (a, x) ∈ Xf and t ∈ R; here and throughout, brc denotes the integral part
of any r ∈ R. Applying Lemma 2.2, we immediately obtain

Proposition 2.1. The discrete flow (X, f) is almost automorphic (almost peri-

odic, periodic, uniquely ergodic) if and only if the suspension flow (Xf ,R) has the

corresponding property. Moreover, both flows have the same topological entropy.

As a special case, the Denjoy flow on the 2-torus is almost automorphic minimal
with topological entropy equal to zero. We note that as a subflow of a fixed-point-
free C1 flow (in continuous time) on the 2-torus, the Denjoy flow is topologically
conjugate to a suspension of a Denjoy homeomorphism on the circle which in turn is
an almost 1-1 extension of a pure rotation ([30]) and therefore almost automorphic
(in discrete time). An argument directly using the definition of almost automorphy
shows that Aubry-Mather sets on the annulus are also almost automorphic (with
vanishing topological entropy), and so are their suspensions.

2.2. Symbolic lattice systems. Let S = {s0, s1, . . . , sm−1} be an alphabet of

m ≥ 2 symbols endowed with a metric d and let Σ = SZ
d

be the set of all bi-infinite
Z
d-arrays furnished with the product topology. With this topology Σ is compact

and metrizable. For instance, if x = {x(k)}k∈Zd , y = {y(k)}k∈Zd ∈ Σ, then for any
β > 1,

d1(x, y) :=
∑

k∈Zd

β−|k|d
(
x(k), y(k)

)
,

d2(x, y) := β−κ,

d3(x, y) :=
∑

k∈Zd

β−|k| d
(
x(k), y(k)

)

1 + d
(
x(k), y(k)

)

are metrics inducing the product topology on Σ, where, for k = (k1, k2 · · · , kd)
∈ Z

d, |k| = max{|kj |, 1 ≤ j ≤ d}, and κ = max{m ∈ N : x(k) = y(k), |k| < m}.
(Here and in the sequel N denotes the set of positive integers.)

We define the symbolic d-lattice dynamical system (Σ,Zd) as the full shift, that
is, {x(k)} · l = {x(k + l)} for all {x(k)} ∈ Σ, l ∈ Z

d.
We call a compact Abelian group G a d-fold monothetic group if G is the direct

product of d monothetic groups G1, G2, . . . , Gd. Let gj be a generator of Gj , for
j = 1, 2, . . . , d, respectively. We refer to g = (g1, g2, . . . , gd) as a generator of G and

write (G, g) =
∏d
j=1(Gj , gj), where (Gj , gj), j = 1, 2, . . . , d, are referred to as the

factor monothetic groups of (G, g). Since the set
{
k · g ≡ (k1g1, k2g2, . . . , kdgd) : k = (k1, k2, . . . , kd) ∈ Z

d
}

is dense in G, it is clear that z 7→ z + k · g (z ∈ G, k ∈ Z
d) defines a Z

d-action
(G,Zd) on G which we simply denote by (G, g). Moreover, the flows (G, g), (G, g′)
are conjugate for any two generators g, g′ ∈ G.

The connection between d-fold monothetic groups and symbolic d-lattice dynam-
ical systems is established by
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Lemma 2.3. Any minimal set of (Σ,Zd) has a d-fold monothetic group as its

maximal almost periodic factor.

Proof. We note that the universal almost periodic minimal flow with Z
d-action is

the Bohr compactification of Z
d, hence a d-fold monothetic group. The lemma

immediately follows since any maximal almost periodic factor of a minimal set of
(Σ,Zd) is a factor of the universal almost periodic minimal flow. �

LetM ⊂ Σ be an invariant set. We recall the definition of the topological entropy
of M from [8]. Given any d-tuple N = (N1, N2, . . . , Nd) ∈ N

d, denote by

EN :=
{
(k1, k2, . . . , kd) ∈ Z

d : 0 ≤ kj ≤ Nj − 1 for 1 ≤ j ≤ d
}

an N1 × N2 × · · · × Nd parallelepiped in Z
d. Let πEN

: Σ → SEN be the natural
projection and ΓN (M) = cardπEN

(M). Then the topological entropy of M is
defined as the limit

h(M) := lim
N→∞

1

N1N2 · · ·Nd
log ΓN (M) ,

where N → ∞ means that Nj → ∞ for each j = 1, 2, . . . , d. It has been shown in
[8] that h(M) is well defined and 0 ≤ h(M) ≤ logm.

3. Almost automorphic symbolic lattice dynamics

3.1. Construction and characterization of almost automorphic symbolic

dynamics. In order to characterize almost automorphic symbolic lattice minimal
flows, we generalize the concept of separating covers to d-fold monothetic groups.
We thereby follow the work of [32] for the case d = 1.

Definition 3.1. A separating cover of a d-fold monothetic group (G, g) is an
ordered finite cover α = {D0, D1, . . . , Dm−1} of G satisfying

a) cl
(
int(Di)

)
= Di for all i = 0, 1, . . . ,m− 1;

b) int(Di ∩Dj) = ∅ for all i 6= j;
c) Di + z = Di for i = 0, 1, . . . ,m− 1 implies z = 0.

It is known that if (G, g) admits a separating cover then it must be metrizable
([31, 33]). Using a separating cover, almost automorphic arrays in the lattice system
(Σ,Zd) can be constructed as follows. Let U = G\

⋃
i ∂Di and A =

⋂
k∈Zd(U+k ·g).

Then A is a residual subset of G. Fix a point z ∈ A. We define x ∈ Σ to be such
that for any k ∈ Z

d,

(3.1) x(k) = si, precisely if z + k · g ∈ Di ,

for i = 0, 1, . . . ,m− 1.

Lemma 3.1. Let (G, g) be a metrizable d-fold monothetic group having a finite

cover α = {D0, D1, . . . , Dm−1}.

(i) If the properties a),b) in Definition 3.1 hold for α, then any array x con-

structed via (3.1) is almost automorphic.

(ii) If, in addition, property c) also holds, i.e., if α is a separating cover,

then for the almost automorphic array x constructed via (3.1), (G, g) is

a maximal almost periodic factor of the almost automorphic minimal set

M = cl{x · k : k ∈ Z
d} ⊂ Σ.
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Proof. (i) We note that

x(k) =

m−1∑

i=0

siχDi
(z + k · g), k ∈ Z

d ,

where χDi
denotes the characteristic function of Di for i = 0, 1, . . . ,m − 1. For

fixed i, we consider the function F : Z
d → {0, 1} with F (k) = χDi

(z + k · g). Let
(kn) be a sequence in Z

d such that F (k + kn) → F∗(k) pointwise. Without loss
of generality, we may assume that kn · g converges in G. Then (kn − kn′) · g → 0

as n, n′ → ∞. Since, for any k ∈ Z
d, z + k · g ⊂

⋃m−1
i=0 intDi, we see that F is

continuous at k. Hence F (k− kn′ + kn) → F (k) as n, n′ → ∞. It now follows from
the identity

F∗(k − kn) − F (k) =
(
F∗(k − kn) − F (k − kn + kn′)

)
+

(
F (k − kn + kn′) − F (k)

)

that F is almost automorphic, and so is the array x.
The proof of (ii) is completely analogous to the proof of Theorem 1.5 in [31] and

Theorem 2.5 in [33]. We omit the details. �

The converse of the above lemma is also true.

Lemma 3.2. Let M ⊂ Σ be an almost automorphic minimal set with a d-fold
monothetic group (G, g) as its maximal almost periodic factor (hence G is metriz-

able). Then (G, g) admits a separating cover from which any almost automorphic

array x ∈M can be constructed via (3.1).

Proof. Let p : (M,Zd) → (G, g) be the induced flow homomorphism and define
Di := p({x ∈ M : x(0) = si}), i = 0, 1, . . . ,m− 1. Then it is easy to see that α =
{D0, D1, . . . , Dm−1} is a separating cover of G, and any almost automorphic array
x ∈M satisfies x(k) = si if p(x) + k · g ∈ Di, for all k ∈ Z

d, i = 0, 1, . . . ,m− 1. �

In general, it may be difficult to construct a separating cover with desired prop-
erties for a d-fold monothetic group. However, we do have

Lemma 3.3. A d-fold monothetic group (G, g) =
∏d
j=1(Gj , gj) admits a separating

cover if each factor group (Gj , gj) does.

Proof. For each j = 1, 2, . . . , d let αj = {Dj
0, D

j
1, . . . , D

j
m−1} be a separating cover

of (Gj , gj). We obtain a finite cover
{
Dn : n = (n1, n2, . . . , nd) ∈ {0, 1, . . . ,m− 1}d

}

by setting

Dn :=

d∏

j=1

Dj
nj
.

Let Sd = {0, 1, . . . ,m− 1}d and f : Sd → S be an onto map. It is easy to see that
α = {D0, D1, . . . , Dm−1} with

Di :=
⋃

n∈Sd

{Dn : f(n) = si}, i = 0, 1, . . . ,m− 1 ,

is a separating cover of (G, g). �
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Since any monothetic group admits a separating cover ([33]), the same holds
for any d-fold monothetic group. It follows from Lemma 3.1 that given any d-fold
monothetic group (G, g) there is an almost automorphic minimal subflow of (Σ,Zd)
having (G, g) as its maximal almost periodic factor.

Following a technique introduced in [32] we now construct separating covers of a

compact metrizable d-fold monothetic group (G, g) =
∏d
j=1(Gj , gj) from a so-called

base set of separating covers.

Definition 3.2. Let (G, g) be a compact metrizable d-fold monothetic group. A
base set of separating covers for (G, g) is a sequence {Un}n∈Nd of disjoint open sets
of G with the following properties:

a) The set C ⊂ G with

C := G \
⋃

n∈Nd

Un ,

is nowhere dense, and C + z = C implies z = 0.
b) For any z ∈ C and any neighborhood V of z, one has V ∩ Un 6= ∅ for

infinitely many n.

Similarly to [32], one can use a base set {Un}n∈Nd of separating covers for (G, g)

to construct a separating cover as follows. Let Σ+ = SN
d

be the set of “one-sided”
symbolic lattice arrays. Then each ω = {ωn}n∈Nd ∈ Σ+ defines the sets

(3.2) Di(ω) := cl
[ ⋃

n∈Nd

{Un : ωn = si}
]
, i = 0, 1, . . . ,m− 1 .

It is easy to see that α(ω) = {D0(ω), D1(ω), . . . , Dm−1(ω)} is a finite cover of (G, g)
satisfying the conditions a), b) in Definition 3.1. Hence by Lemma 3.1 (i) this cover
generates an almost automorphic lattice array xω via (3.1), which in the present
situation takes the form

(3.3) xω(k) = ωn, whenever z + kg ∈ Un .

In general, unless α(ω) becomes a separating cover, one cannot be sure that the
orbit closure of xω has (G, g) as its maximal almost periodic factor. The following
lemma can be proved similarly to Lemma 2 in [32].

Lemma 3.4. Given a base set of separating covers for (G, g) there exists a residual

set R ⊂ Σ+ such that for each ω ∈ R the cover α(ω) according to (3.2) is a

separating cover of (G, g) with C = ∂α(ω).

Base sets of separating covers for monothetic groups have been studied exten-
sively in [32]. In particular, it is known that sets of separating covers exist for
monothetic groups such as the p-adic odometer (adding machine associated to the
group of p-adic integers) and the circle group. This allows us to construct a separat-

ing cover for a compact metrizable d-fold monothetic group (G, g) =
∏d
j=1(Gj , gj)

based on the base sets of separating covers for the factor monothetic groups, if they
exist. For each j = 1, 2, . . . , d, suppose that the group (Gj , gj) admits a base set of

separating covers {U ji }i∈N and let Cj = Gj \
⋃
i∈N

U ji . Define

(3.4) Un :=

d∏

j=1

U jnj
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for each n = (n1, n2, . . . , nd) ∈ N
d. Then it is clear that {Un}n∈Nd satisfies both

conditions a) and b) in Definition 3.2. Hence {Un}n∈Nd is a base of separating covers
for (G, g), from which an almost automorphic lattice array xω , or equivalently, an
almost automorphic minimal set M(ω) = cl{xω · k : k ∈ Z

d} ⊂ Σ, can be obtained
for each ω ∈ Σ+ by using (3.3). If (G, g) is metrizable, then according to Lemma 3.4
there are residually many ω in Σ+ which generate separating covers of (G, g) such
that M(ω) has (G, g) as its maximal almost periodic factor.

We now discuss the positivity of the topological entropy of the almost automor-

phic minimal set M(ω). Let (G, g) =
∏d
j=1(Gj , gj) be metrizable and {U ji }i∈N as

above. For each j ∈ {1, 2, . . . , d} and each fixed zj ∈
⋂
k∈Z

(Gj\Cj + kgj), one

can define inductively an increasing sequence of natural numbers {cji}i∈N such that

zj + cjigj ∈ U ji and zj + lgj ∈
⋃i−1
q=1 U

j
q for all 1 ≤ l < cji . (It may be necessary to

re-index the sets U ji , see [32] for the details).

Theorem 3.1. If limi→∞c
j
i/i ≤ δ <∞ for all j = 1, . . . , d and m > 2ρ

d

with ρ =
bδc+ 1, then there exists a residual set R ⊂ Σ+, depending on (G, g) and the above

prescribed base set of separating covers {Un}, such that for every ω ∈ R the almost

automorphic minimal set M(ω) has (G, g) as its maximal almost periodic factor, is

not uniquely ergodic, and has topological entropy h
(
M(ω)

)
≥ ρ−d log(2−ρ

d

m) > 0.

Proof. Define for l ∈ N and j ∈ {1, . . . , d} the set M j
l as

M j
l := {i ∈ N : cji+l − cji+1 < ρl} .

The same argument as in [32] shows that M j
l is infinite for all j, l. Consequently,

Ml :=
∏d
j=1M

j
l ⊂ N

d is infinite, too. For any (n1, . . . , nd) ∈ Ml we have cjnj+l
−

cjnj+1 < ρl for all j = 1, . . . , d. Let a ∈ Sl
d

be any ld-block built from the m

symbols and set

Qa :=
{
ω ∈ Σ+ : {xω(n+ k)}k∈Nd,|k|≤l 6= a for all n ∈Ml

}
,

where xω is determined according to (3.3) and {xω(n + k)}k∈Nd,|k|≤l denotes the

ld-block of xω having its “lower left corner” at n + (1, . . . , 1). Then Qa is closed
and nowhere dense in Σ+, implying that

R∗ :=
⋂

l∈N

⋂

a∈Sld

Qca ⊂ Σ+

is residual. Now fix an ω ∈ R∗. For any l ∈ N and any ld-block a there exists
n ∈ Ml such that {xω(n + k)}k∈Nd,|k|≤l = a. The point xω according to (3.3)

therefore displays within (ρl)d-blocks all mld possible ld-blocks. The number of
different (ρl)d-blocks in xω is thus at least

mld
(

(ρl)d

ld

)−1

≥ mld2−(ρl)d

,

which in turn implies that

h
(
M(ω)

)
≥ ρ−d log(2−ρ

d

m) .

Similar to [32], we now claim that M(ω) cannot be uniquely ergodic. First of all,
using the above argument, for any l, one can find a (ρl)d block Al in xω containing
si at least ld times. Next, consider for each symbol si the set Ei = {x ∈ M(ω) :
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x(0) = si}. If M(ω) is uniquely ergodic, then a straightforward application of the
Birkhoff ergodic theorem to the continuous characteristic function χEi

: M(ω) → R

yields that the frequency of the symbol si

(3.5) γi = lim
l→∞

card{n ∈ N
d : x(n) = si, |n| ≤ l}

ld

is well defined, i.e., the limit exists uniformly and is independent of x ∈ M(ω).
Given ε > 0, we have by the uniform convergence of (3.5) that there is an L > 0
such that

(3.6)
card{n ∈ N

d : xω(n+ k) = si, |n| ≤ Lρ}

Ld
< ρdγi + ε, for all k ∈ Z

d.

In particular, let k be chosen such that {xω(n+ k)}n∈Nd,|n|≤Lρ = AL. Then, with

such a k the left hand side of (3.6) is greater or equal to 1. It follows that ρdγi ≥ 1
for all i = 0, 1, · · · ,m− 1, and hence

1 =

m−1∑

i=0

γi ≥
m

ρd
> 1,

a contradiction.
The proof is completed by taking the intersection of R∗ with the residual set

defined in Lemma 3.4. �

We now consider the special case that G = T
d, i.e. the d-torus. Let γ =

(γ1, γ2, . . . , γd) be an irrational vector (that is, γj is irrational for every j) and
define a Z

d flow (Td, γ) as z 7→ z · k = z + (γ1k1, γ2k2, . . . , γdkd) for all z ∈ T
d,

k = (k1, k2, . . . , kd) ∈ Z
d. Take Cantor sets Cj ⊂ T

1 of positive Lebesgue measure
λ(Cj), j = 1, 2, . . . , d, and write the complement of each Cantor set as a disjoint

union of countably many intervals, i.e., T
1\Cj =

⋃∞
i=1 U

j
i . It has been shown in

[32] that for each j, {U ji }i∈N is a base set of separating covers for T
1, and more-

over, fixing any zj ∈ Aj :=
⋂
k∈Z

({T
1\Cj} + γjk), j = 1, 2, . . . , d, one can define

a sequence {cji} for which the condition of Theorem 3.1 is satisfied with d = 1
and δ = 2/minj λ(C

j). Let {Un}n∈Nd be a base set of separating covers for G

generated from {U ji } by making direct products as in (3.4). For each ω ∈ Σ+, let
M(ω) = cl{xω · k : k ∈ Z

d} be the almost automorphic minimal set obtained from
(3.3) using {Un}n∈Nd . Then, by Theorem 3.1, there exists a residual set R ⊂ Σ+

such that for any ω ∈ R, M(ω) is not uniquely ergodic, of positive topological
entropy, and has (Td, γ) as its maximal almost periodic factor. In fact, more can
be said about the topological entropy of such an almost automorphic minimal set.

Theorem 3.2. Given η ∈ (0, logm). There exists a Cantor set C ⊂ T
1, an

irrational vector γ, and a residual set R ⊂ Σ+, depending on η, C, γ, such that

for every ω ∈ R, the respective almost automorphic minimal set M(ω) has (Td, γ)
as its maximal almost periodic factor, is not uniquely ergodic and has topological

entropy h
(
M(ω)

)
> η.

Proof. For simplicity, we only consider the case that γ = (γ0, γ0, · · · , γ0). We
start with a preliminary observation. Take γ0 ∈ R and denote by q1 < q2 < . . . the
sequence of denominators of the convergents to γ0. We require that limn→∞ qn+1/qn
= +∞. (Though having measure zero the set of such γ0 is dense on the real line.)
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For Dn, i.e. the discrepancy of the sequence (nγ0)n∈N, the following estimate is well
known:

Dqn
≤ q−1

n + q−1
n+1 (n ∈ N) .

(We refer to [27] for details about continued fractions and uniform distribution.)
Consequently, limn→∞qnDqn

≤ 1.
Given now η ∈ (0, logm) fix a number κ < 1 sufficiently close to 1 such that

κ logκm+ (1 − κ) log(1 − κ) > η, and let C ⊂ T
1 be a Cantor set with λ(C)d > κ.

Setting Cj := C, T
1\C =

⋃∞
i=1 Ui, U

j
i := Ui for j = 1, . . . , d we may construct

a base set of separating covers for T
d as described above. By the definition of

discrepancy

qnDqn
= sup

0≤α<β≤1

∣∣card{1 ≤ k ≤ qn : γ0k + z0 ∈ [α, β)} − qn(β − α)
∣∣

≥
∣∣card{1 ≤ k ≤ qn : γ0k + z0 ∈ Ui} − qnλ(Ui)

∣∣

for all n, i ∈ N. Therefore

qn ≤ lnqnDqn
+ qn

(
1 − λ(C)

)

where ln := max{i : ci ≤ qn} with the quantities {ci} as in Theorem 3.1. Conse-
quently

cln
ln

≤
qn
ln

≤ λ(C)−1qnDqn
≤ λ(C)−1

(
1 +

qn
qn+1

)
.

Since ln → ∞ as n → ∞, limn→∞cn/n ≤ λ(C)−1. By construction cji = ci, and
therefore Theorem 3.1 applies with δ = λ(C)−1. A careful re-examination of the
proof of that theorem shows that the argument remains valid for every ρ > δ (see
also Theorem 3.4 below). Now, for any ω from the appropriate residual set R ⊂ Σ+,

h
(
M(ω)

)
≥ liml→∞bρlc−d log

(
mld

(
bρlcd

ld

)−1)

= ρ−d logm− d log ρ+ (1 − ρ−d) log(ρd − 1)

by virtue of Stirling’s formula. Taking ρ sufficiently close to δ = λ(C)−1 we thus
have

h
(
M(ω)

)
≥ κ logm+ log κ+ (1 − κ) log(κ−1 − 1) > η .

An application of Lemma 3.4 and Theorem 3.1 (providing residual sets for the other
claimed properties) therefore completes the proof. �

3.2. Toeplitz arrays. Toeplitz sequences form an important class of almost auto-
morphic points in the usual symbolic dynamical system (Σ,Z1). In fact, it is known
that a minimal set of (Σ,Z1) is Toeplitz (i.e., closure of a Toeplitz sequence) if and
only if it is almost automorphic with a 0-dimensional (totally disconnected) mono-
thetic group (odometer, adding machine) as the maximal almost periodic factor
(see [10, 32]). We now define Toeplitz arrays in the lattice case.

Definition 3.3. A lattice array {x(k)} ∈ Σ is said to be Toeplitz if for any k ∈ Z
d

there is n = (n1, n2, . . . , nd) ∈ N
d such that x(k) = x(k′) for all k′ ∈ Z

d, k′ ≡ k
(mod n). A Toeplitz set is the orbit closure of a Toeplitz array.
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Theorem 3.3. A minimal set of (Σ,Zd) is Toeplitz if and only if it is almost

automorphic with a 0-dimensional d-fold monothetic group as its maximal almost

periodic factor. Moreover, the Toeplitz arrays in such a minimal set are precisely

the almost automorphic points.

Proof. Let (E,Zd) be an almost automorphic minimal subflow of (Σ,Zd) with a 0-
dimensional d-fold monothetic group (G, g) as its maximal almost periodic factor.
We denote by p : (E,Zd) → (G, g) the induced flow homomorphism. Let E0 be
the set of almost automorphic points in E. Then by Lemma 2.1 A = p(E0) is
a residual subset of G and p−1p(x) = {x} for all x ∈ E0. Define f : A → S
as f

(
p(x)

)
:= x(0) for all x ∈ E0. Since E0 consists of singleton fibers and A is

invariant (i.e., A + kg ⊂ A for all k ∈ Z
d), f is continuous and f(p(x) + kg) =

p−1(p(x) + k · g)(0) = p−1p(x)(k) = x(k), for all x ∈ E0 and k ∈ Z
d.

We now fix an x ∈ E0 and k ∈ Z
d. Let x(k) = f(p(x) + k · g) = si ∈ S.

By continuity, there exists an open neighborhood U∗
k of p(x) + k · g such that

f(z′) = si whenever z′ ∈ U∗
k ∩ A. Let Uk = U∗

k − p(x) − k · g. Then Uk is
a neighborhood of 0 ∈ G. Hence there is a nontrivial open subgroup H ⊂ Uk
([18]), and f(p(x) + k · g + h) = si whenever h ∈ H and z + k · g + h ∈ A.
Let Hk = {n : n · g ∈ H}. It is clear that Hk is a subgroup of Z

d, and in fact

Hk =
∏d
j=1 njZ, for some nj ∈ N, j = 1, 2, . . . , d. Let n0 = (n1, n2, . . . , nd)

and assume that k′ ≡ k (mod n0). Then k′ = k + k′′ for some k′′ ∈ Hk and
p(x) + k′′ · g ∈ U∗

k ∩A. Hence x(k′) = f(p(x) + k′ · g) = si = x(k). This shows that
x is a Toeplitz array.

The converse is a straightforward generalization of a result in [43]. Let x ∈ Σ be
a Toeplitz array. For each n = (n1, n2, . . . , nd) ∈ N

d we consider the set

Pern =
⋃

si∈S

Pern(si) ,

where

Pern(si) := {k ∈ Z
d : x(k′) = si for all k′ ≡ k (modn)}.

It is clear that Pern ⊂ Pern′ whenever n|n′ (i.e., each component of n divides the
corresponding component of n′). Since x is Toeplitz, we have

(3.7) Z
d =

⋃

n∈Nd

Pern .

Consider the set P of all n ∈ N
d such that whenever Pern(si) = Pern(si) + n′ for

all si ∈ S then n|n′. For n, n′ ∈ P let n∗ be the d-tuple each component of which
equals the least common multiple of the corresponding components in n, n′. It is
easy to see that n∗ ∈ P . This implies that P is a directed set. The quotient groups

Gn =

d∏

j=1

(
Z

njZ

)
, n = (n1, n2, . . . , nd) ∈ P ,

form an inverse system and therefore admit an inverse limit G which is easily seen
to be a direct product of d odometer groups. Hence G is a 0-dimensional d-fold
monothetic group. Due to (3.7) we also have

Z
d =

⋃

n∈P

Pern .



12 ARNO BERGER, STEFAN SIEGMUND, AND YINGFEI YI

Using this fact and an argument analogous to [43] one can readily show that G is
a maximal almost periodic factor of the orbit closure of x. �

In [32] an important class of Toeplitz sequences is constructed using groups of p-
adic integers. We now generalize this construction to the lattice case with particular
attention on Toeplitz lattice arrays with large topological entropy. Fix a family of
prime numbers pj , j = 1, 2, . . . , d, and for i ∈ N, j = 1, 2, . . . , d let

U ji := (cji + pN
j+i

j Z) ∪ (−cji + pN
j+i

j Z) ⊂ Z ,

where N j ∈ N will be chosen later. (If some pj = 2 we correspondingly require

N j ≥ 2 in order to obtain infinitely many different sets). The integers cji ≥ 0 are
determined inductively according to

cj1 := 0 and cji+1 := min
{
n ≥ 0 : n 6∈

i⋃

l=1

U jl
}
.

For each j the disjoint union of the sets U ji equals Z, and Cj = ∆pj
\

⋃∞
i=1 U

j
i

is nowhere dense, where (∆pj
,⊕1) denotes the pj-adic odometer group (adding

machine) associated to the group of pj-adic integers [26]. It has been shown in [32]

that the sets Cj , {U ji } together with the sequence {cji} satisfy the conditions of
Theorem 3.1 with d = 1. Again, let {Un}n∈Nd be the base of separating covers for

G generated from {U ji }i∈N,1≤j≤d via the direct product (3.4). For each ω ∈ Σ+, we
let M(ω) = cl{xω · k : k ∈ Z

d} be the almost automorphic minimal set obtained
from (3.3) using {Un}n∈Nd . That is, for each ω = {ωn} ∈ Σ+, xω ∈ Σ is a Toeplitz
array defined by setting xω(k) := ωn whenever k ∈ Un.

Theorem 3.4. Given η ∈ (0, logm) there exists a residual set R ⊂ Σ+, depending

on η, p1, p2, · · · , pd, such that for every ω ∈ R, the almost automorphic minimal set

M(ω) has the group
∏d
j=1(∆pj

,⊕1) as its maximal almost periodic factor, is not

uniquely ergodic and has topological entropy h
(
M(ω)

)
> η.

Proof. The maximal (topological) entropy of (Σ,Zd) amounts to logm. We shall
now demonstrate that the above construction typically yields an almost automor-
phic system with entropy close to this maximal value. The argument is a refine-
ment of the proof of Theorem 3.1. Take 0 < ε < 1

2 . We let N j be such that
∑
i∈N

p
−(Nj+i)
j < ε/4. Then

[−cji + 1, cji − 1] ∩ Z ⊂
i−1⋃

l=0

U ji

and

card(U ji ∩ [−cji + 1, cji − 1]) ≤ 2p
−(Nj+i)
j (2cji − 1) + 2

so that limi→∞c
j
i/i < 1 + ε for all j. For any l ∈ N the set M j

l := {i ∈ N :

cji+l − cji+1 < (1 + ε)l} therefore is infinite (cf. the proof of Theorem 3.1). Define

Ml =
∏d
j=1M

j
l and Al = {1, 2, . . . , l}d. Then, given ω ∈ Σ+, we see any ld-block of

the m symbols infinitely often within blocks of size b(1+ ε)lcd in Σ+. Intuitively, it
is clear that ω may be chosen in such a way that it contains all possible ld-blocks at
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the right place. More precisely, proceed as in the proof of Theorem 3.1 by drawing

an ld-block a from S, i.e. a ∈ Sl
d

and let

Qa := {ω ∈ Σ+ : {xω(n+ k)}k∈Nd,|k|≤l 6= a for all (n1, . . . , nd) ∈Ml} .

Clearly, Qa is a closed, nowhere dense set, and hence

R̃ :=
⋂

l∈N

⋂

a∈Sld

Qca ⊂ Σ+

is residual. Given ω ∈ R̃ and any ld-block a one may thus find an index n =
(n1, n2, . . . , nd) ∈ N

d such that {xω(n+k)}k∈Nd,|k|≤l = a and cjnj+l
−cjnj+1 < (1+ε)l

for all j = 1, 2, . . . , d. Consequently, xω with ω ∈ R̃ contains all mld possible ld-
blocks within blocks whose sizes are at most b(1 + ε)lcd. We can therefore find at
least

mld
(
b(1 + ε)lcd

ld

)−1

different blocks of size b(1 + ε)lcd within xω. A straightforward application of
Stirling’s formula yields

lim
l→∞

(
b(1 + ε)lc−d log

(
mld

(
b(1 + ε)lcd

ld

)−1))
≥

(1 + ε)−d logm− d log(1 + ε) +
(
1 − (1 + ε)−d

)
log

(
(1 + ε)d − 1

)
.

Choosing ε appropriately and taking ω ∈ R ∩ R̃, where R is as in Lemma 3.4, we
have therefore proved the theorem. �

We remark that the residual sets in Theorems 3.1, 3.2, and 3.4 above have full
measure with respect to any Bernoulli measure giving positive weight to every
symbol. Therefore, the generic properties listed in these theorems are also typical
from a statistical point of view.

Corollary 3.1. Given prime numbers p1, p2, · · · , pd, there exists a residual set R ⊂
Σ+, depending on p1, p2, · · · , pd, such that for every ω ∈ R, the almost automorphic

minimal set M(ω) has the group
∏d
j=1(∆pj

,⊕1) as its maximal almost periodic

factor, is not uniquely ergodic and has topological entropy h
(
M(ω)

)
= logm.

Proof. Let ηn → logm be an increasing sequence and Rn ⊂ Σ+ be the residual set
associate to each ηn according to Theorem 3.4. Then R =

⋂∞
n=1Rn clearly satisfies

the properties stated in the corollary. �

4. Almost automorphic dynamics, pattern formation and spatial

chaos

A (continuous-time) lattice dynamical system is an infinite system of ODEs,
coordinated by a lattice Z

d, of the form

dul
dt

= Fn({uk}k∈Zd), l ∈ Z
d ,

which naturally generates a bi-transformation dynamical system with time dynam-
ics defined by the time evolution and spatial dynamics defined by the group of shift
maps σluk = ul+k, l, k ∈ Z

d.
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As a special case, let us exam the discrete Allen-Cahn equations originally con-
sidered in [8] as models for pattern formation and spatial chaos in lattice systems.
The models in 1D and 2D have the form

(4.1) u̇l = −β∆ul − f(ul), l ∈ Z ,

and

(4.2) u̇l,k = −β+∆+ul,k − β×∆×ul,k − f(ul,k), (l, k) ∈ Z
2 ,

respectively, where ∆ is the usual discrete Laplace operator in Z, and ∆+ and ∆×

are two discrete Laplace operators, given respectively by the nearest neighbor and
the next nearest neighbor stencils on the lattice Z

2 ([8]); also, f is the piecewise
linear function defined by

(4.3) f(u) = f ε(u) =





ε−1(u + 1) − α if u ≤ −1 ,
αu if |u| ≤ 1 ,
ε−1(u − 1) + α if u ≥ 1 .

Taking ε→ 0 in (4.3), we obtain the set valued function

(4.4) f0(u) =





(−∞,−α] if u = −1 ,
αu if |u| < 1 ,
[α,∞) if u = 1 ,
∅ if |u| > 1 .

Hence with the limiting function f0, (4.1), (4.2) become differential inclusions, and
the solutions ul, ul,k can only take values in the interval [−1, 1].

Since the discrete Allen-Cahn equations are gradient systems (with respect to
a reasonable norm on the phase space [8]), the structure of equilibrium solutions
of these equations is vital for the analysis. The analysis is of particular interests
when β, β+, β× are allowed to change signs, because of the rich dynamics which
(4.1), (4.2) correspond. Equilibrium solutions of the limiting equation of (4.1), (4.2)
which only assume values in {−1, 0, 1} are called mosaic solutions. (All sequences

in {−1, 0, 1}Z and arrays in {−1, 0, 1}Z
2

are referred to as mosaics.) As in [8], two
special sets of attracting mosaic solutions (called S-solutions), denoted by S1 =
S1(β, α), S2 = S2(β

+, β×, α) for (4.1), (4.2) respectively, are of particular interest
in the sense that (4.1) or (4.2) is said to exhibit spatial chaos (pattern formation,
respectively) for the parameter value (β, α) or (β+, β×, α), if the topological entropy
of S1(β, α) or S2(β

+, β×, α) is positive (zero respectively). A complete classification
of parameter values corresponding to either pattern formation or spatial chaos has
been provided in [8] for both dimensions. It turns out that a large class of regular
patterns discussed in [8] are actually almost automorphic, in fact, Toeplitz.

We now discuss spatial chaos responding to the onset of almost automorphic
dynamics. From the definition of the discrete Laplacians in (4.1), (4.2), it is clear
that each component of a mosaic solution is constrained by (or coupled to) its
nearest neighbors (and the next nearest neighbors in the 2D case). In fact, as shown
in [8], for each parameter value (β+, β×, α) ((β, α), resp.), the set S2(β

+, β×, α)
(S1(β, α), resp.) consists of arrays built from a set S of admissible blocks (words) of
a fixed size less than or equal to three. More precisely, depending on the value of
parameters, there are integers 1 ≤ A,B ≤ 3 (one integer 1 ≤ A ≤ 3, resp.) and a
set S of finitely many A×B blocks (word of length A) such that for each {ul,k} ∈ S2

({ul} ∈ S1) one has {ul+a,k+b}1≤a≤A,1≤b≤B ∈ S ({ul+a}1≤a≤A ∈ S, resp.) for all



ON ALMOST AUTOMORPHIC DYNAMICS IN SYMBOLIC LATTICES 15

(l, k) ∈ Z
2 (l ∈ Z). In general, admissible blocks (words) do not appear in an array

of S2 (sequence of S1) in arbitrary order. Nevertheless, it is proved in [8] that S1,2

are equivalent to Markov subshifts of (SZ
d

,Zd), d = 1, 2.
To explore the construction of a certain class of arrays via admissible blocks,

let us consider the general situation (Σ,Zd) as in the previous section. Given
positive integers M , N = {N1, N2, . . . , Nd}, we let S = {S1, S2, . . . , SM} be a set
of N1 ×N2 × · · · ×Nd building blocks in (Σ,Zd). We treat S as a new alphabet set

and consider the new symbolic d-lattice space Ξ = SZ
d

carrying the Z
d-shift action

defined earlier.
Let U ⊂ Σ be the set of arrays built from S, i.e., any array in U is obtained

from “opening up” the blocks of an array in Ξ. Hence there is an one to one

correspondence between Ξ and U. Moreover, if we let ZN =
∏d
j=1NjZ, then it is

clear that (Ξ,Zd) is topologically conjugate to the subshift (U,ZN ).

Lemma 4.1. h(Ξ) = logM = (N1N2 . . . Nd)h(U).

Proof. It is easy to see that the entropy of (U,ZN ) equals (N1N2 · · ·Nd)h(U). The
lemma then follows easily from the conjugacy between (Ξ,Zd) and (U,ZN ). �

We now take specifically (G, g) = (Td, γ) or
∏d
j=1(∆pj

,⊕1) with a base set

of separating covers {Un}n∈Nd as in Theorem 3.2 or Theorem 3.4, respectively.

Consider the set Ξ+ = SN
d

. As before, there is a residual set R ⊂ Ξ+ such that
each ω ∈ R defines an almost automorphic minimal set in (Ξ,Zd) and hence in
(U,ZN ) which corresponds to an almost automorphic minimal set M(ω) in (U,Zd)
by Lemma 2.2. As an immediate consequence of the above lemma and Theorem 3.2
or Theorem 3.4 we have

Corollary 4.1.

(i) For any η ∈
(
0, h(U)

)
, there is an irrational vector γ ∈ R

d and a residual

set R ⊂ Ξ+ such that for each ω ∈ R, M(ω) has (Td, γ) as its maximal

almost periodic factor, is not uniquely ergodic and has topological entropy

h
(
M(ω)

)
> η.

(ii) For any prime numbers p1, p2, · · · , pd, there is a residual set R ⊂ Ξ+ such

that for each ω ∈ R, M(ω) has
∏d
j=1(∆pj

,⊕1) as its maximal almost

periodic factor, is not uniquely ergodic and attains the maximal topological

entropy h
(
M(ω)

)
= h(U).

We note that M(ω) is non-Toeplitz in the case (i) and Toeplitz in the case (ii).
Thus, almost automorphic minimal sets of (U,Zd) which are non-uniquely ergodic
with nearly maximal topological entropy, can have completely different topological
and harmonic structure. (Recall that the dual group of the maximal almost periodic
factor of an almost automorphic minimal set M(ω) defines its frequency module.)

Going back to the lattice models (4.1),(4.2), we consider the case that mosaics
only take values in {−1, 1}. It is shown in [8] that there are various cases in which
S-solutions can be built from available building blocks as above. For instance, in
the 1D case with α < 0, S1 = {−1, 1}Z, and in the 2D case the set S2 for each case
considered in Theorem 6.1 of [8], contain a subset W of S-solutions which are built
from either two 2×1 or two 2×2 admissible building blocks. Applying Corollary 4.1
we conclude that non-Toeplitz chaotic almost automorphic dynamics form a large
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subset of W with topological entropies arbitrarily close to that of W, and Toeplitz
chaotic almost automorphic dynamics actually form a large subset of W with the
maximal topological entropy of W. This gives strong evidence that chaotic almost
automorphic dynamics should largely be responsible for the spatial chaos occurring
in lattice models like (4.1), (4.2).

5. Construction of chaotic almost automorphic signals

In this final section, we propose a new approach to the construction of chaotic
almost automorphic signals based on the study in the previous sections as well as on
interpolation and suspension techniques. By a chaotic signal we mean a function f
whose topological hull H(f) as a (time-)translation dynamical system has positive
topological entropy.

Let (V, ‖ · ‖) denote a finite-dimensional normed space and consider X := V Z

endowed with the product topology. To be specific we shall think of this topology
as being induced by the metric

d(v, w) = d
(
(vk)k∈Z, (wk)k∈Z

)
:=

∑

k∈Z

2−|k| ‖vk − wk‖

1 + ‖vk − wk‖
.

By X∞ ⊂ X we denominate the subset of bounded sequences in V . Dynamics on
X originate from the continuous (left) shift map σ : X → X with σ(v)k := vk+1

for all k. Furthermore, let C(R, V ) stand for the space of continuous functions
from R to V , endowed with the compact-open topology. Analogously, there is a
continuous shift dynamics on C(R, V ) given by θtf := f(· + t) for all t ∈ R. If
f is uniformly continuous (e.g., f is almost automorphic under θ), then the hull

H(f) = Oθ(f) = {θtf : t ∈ R} is compact.
We now fix e ∈ V and define a uniformly continuous map Φe : X → C(R, V ) by

setting

Φev(s) :=
∑

k∈Z

(
vbk/2c max{0, 1− 2|2s− k|} + emax{0, 1 − 2|2s− 2k − 1|}

)

for all v = (vk)k∈Z ∈ X . Graphically, the function Φev linearly interpolates the
points (k, vk), (k+ 1

4 , 0), (k+ 1
2 , vk+e) and (k+ 3

4 , 0) for all k (see Figure 5.1). More
smoothness could have been assigned to the function Φev, but the simple Lipschitz
version chosen here seems to be sufficient for potential applications. Obviously,
Φe ◦ σ = θ1 ◦ Φe, and with Ψ : C(R, V ) → X according to Ψ(f) :=

(
f(k)

)
k∈Z

we

have Ψ ◦ Φe = idX .

k− 1

2
k k+ 1

2

k+1 k+ 3

2

vk

vk + e

vk+1

vk+1 + e

s

t
Φev(s)

θtΦev(s)

Figure 5.1. The continuous function Φev interpolates the se-
quence (vk)k∈Z.
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Fixing v ∈ X∞ we write X(v) := Oσ(v) and H(v) := Oθ(Φev) for the respective
compact orbit closures. For the sake of brevity the restrictions of σ and θ to X(v)
and H(v), respectively, will again be denoted by σ and θ.

Theorem 5.1. Let e 6= 0 and v ∈ X∞. Then the suspension flow (X(v)σ, ϕσ)
of (X(v), σ) is topologically conjugate to (H(v), θ). Consequently, h

(
X(v)

)
=

h
(
H(v)

)
, and H(v) is almost automorphic (almost periodic, periodic, uniquely er-

godic) with respect to θ if and only if X(v) has the corresponding property with

respect to σ.

Proof. We first notice that σ is a homeomorphism of the compact space X(v),
and clearly Φe

(
X(v)

)
⊂ H(v). Define now a map α : X(v)σ → H(v) by setting

α(a,w) := θa(Φew) for all (a,w) ∈ X(v)σ. Evidently, α is continuous, and by
virtue of Φe ◦ σ = θ1 ◦ Φe also α ◦ ϕσt = θt ◦ α for all t ∈ R. We claim that
every f ∈ H(v) has the form α(a,w) for some (a,w) ∈ X(v)σ. Indeed, whenever
θtn(Φev) = θtn−btnc

(
Φe ◦σbtnc(v)

)
→ f we may assume that (for some subsequence

whose subscripts we suppress) tn−btnc → a′ ∈ [0, 1] and σbtnc(v) → w′ ∈ X(v). By

continuity we have f = α(a,w) with a = a′−ba′c and w = σba′c(w′). We may thus
assign to each f ∈ H(v) an element (a,w) ∈ X(v)σ which satisfies f = α(a,w). It
remains to show that this assignment is well-defined, for then α is one-to-one and
thus a homeomorphism. So let α(a,w) = α(b, x), that is, θa(Φew) = θb(Φex), or
equivalently, θa−b(Φew) = Φex. Since e 6= 0 we must have a − b ∈ Z, and even
a = b as 0 ≤ a, b < 1. But Φe is one-to-one, implying that (a,w) = (b, x). The
remaining assertions of the theorem follow from Proposition 2.1. �

We close this section by briefly discussing three examples.

Example 5.1. (Non-chaotic almost automorphic signals with two frequencies) We
take V = R and fix an irrational number ϑ. It is easy to see that the sequence
v = (cos 2πϑk)k∈Z ∈ X defines an almost periodic point w.r.t. σ. The above
construction thus yields an almost periodic function Φev : R → R. In this case,
the assignment σlv 7→ e2πiϑl (l ∈ Z) may straightforwardly be extended to yield a
topological conjugacy between (X(v), σ) and the rotation Rϑ of the unit circle T

1

by the angle 2πϑ. Hence (H(v), θ) is flow isomorphic to the minimal Kronecker
flow (R(t,ϑt))t∈R of the two-torus T

2 = T
1 × T

1; here R(ϑ1,ϑ2) := Rϑ1
× Rϑ2

for

all ϑ1, ϑ2 ∈ R. Consider now the point v′ :=
(
sign(cos 2πϑk)

)
k∈Z

∈ X where, as

usual, sign(r) equals +1, 0, or –1, depending on whether r > 0, r = 0 or r < 0,
respectively. An elementary calculation confirms that v′ is almost automorphic but
not almost periodic w.r.t. σ ([41]). Still the assignment σlv′ 7→ e2πiϑl (l ∈ Z) gives
rise to a continuous map p : X(v′) → T

1 which satisfies p ◦ σ = Rϑ ◦ p. However,
if z ∈ {±ie2πiϑk : k ∈ Z} = ORϑ

(i) ∪ ORϑ
(−i) then there are two p-pre-images

to z in X(v′). For e 6= 0 therefore f = Φev
′ is an almost automorphic signal

whose orbit closure has the above Kronecker flow as its almost periodic factor.
Moreover, H(v′) may be thought of as T

2 with two trajectories “doubled”. Since
(T1, Rϑ) is uniquely ergodic with respect to the (normalized) Haar measure λT1

and λT1

(
ORϑ

(i) ∪ ORϑ
(−i)

)
= 0, it follows that (H(v′), θ) is also uniquely ergodic

with respect to (the appropriately lifted version of) λT2 = λT1 ⊗λT1 , and h(θ) = 0.
Thus, f is non-chaotic with frequency module M(f) ∼ {n+ ϑm : n,m ∈ Z} and so
admits two (basic) frequencies {1, ϑ}.
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Example 5.2. (Chaotic almost automorphic signals with two frequencies) We
consider V = R and the full shift (Σ,Z) = (SZ, σ) on the m-symbol alphabet
S = {s0, s1, . . . , sm−1}. Note that Σ can homeomorphically be embedded into
X = R

Z via im : Σ ↪→ X with im ◦ σ = σ ◦ im.
Now let d = 1, ϑ = γ in Theorem 3.2 and let R be the corresponding resid-

ual subset of Σ+. Then any ω ∈ R gives rise to an almost automorphic sequence

xω ∈ Σ such that M(ω) = (Oσ(xω), σ) is not uniquely ergodic, exhibits a topo-
logical entropy arbitrarily close to logm, and has (T1, Rϑ) as its maximal almost
periodic factor. Applying Theorem 5.1, we obtain an almost automorphic function
f = Φ1im(xω) ∈ C(R,R) such that the system (H(f), θ) =

(
H(im(xω)), θ

)
is not

uniquely ergodic, exhibits large topological entropy, and has the Kronecker flow
(R(t,ϑt))t∈R as its maximal almost periodic factor. Again, f admits two (basic)
frequencies {1, ϑ}.

Example 5.3. (Chaotic almost automorphic signals with infinitely many frequen-

cies) Within the setting of Example 5.2, we now apply Theorem 3.4 with d = 1,
p1 = p and let R be the residual subset of Σ+ as in that theorem. For each
ω ∈ R, the generated almost automorphic sequence xω ∈ Σ and its orbit closure

M(ω) = Oσ(xω) have the same properties as described in Example 5.2, except for
the fact that the maximal almost periodic factor of M(ω) is now the p-adic odome-
ter (∆p,⊕1). Let f := Φ1im(xω) ∈ C(R,R) be the almost automorphic function

constructed as in Theorem 5.1. Then (H(f), θ) = (Oθ(f), θ) is not uniquely er-
godic with nearly maximal entropy and has the suspension flow (∆⊕1

p , ϕ⊕1) as its

maximal almost periodic factor. The group ∆⊕1

p ∼ T
1 ×∆p is a solenoid which can

be visualized by means of the map Ψ : ∆⊕1

p → (T1)N0 defined according to

Ψ : (a, x) = (a,

∞∑

j=0

xjp
j) 7→ (e2πiψn)n∈N0

with ψn := (a+

n−1∑

j=0

xjp
j)p−n ;

for n = 0 the empty sum is understood to equal zero. It is not difficult to see
that Ψ maps ∆⊕1

p isomorphically to the inverse limit space Γp := {(zn) ∈ (T1)N0 :

zn = zpn+1 for all n} ⊂ (T1)N0 . Since the dual group of T
1 × ∆p is isomorphic to

Z × {k/pn : k ∈ Z, n ∈ N}, f admits countably many (basic) frequencies
{
1/pn :

n ∈ N ∪ {0}
}
.
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