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Chapter 1

The Complex Numbers

Definition. The complex numbers—denoted by C—are R2 equipped with the oper-
ations

(x, y) + (u, v) := (x+ u, y + v),

(x, y)(u, v) := (xu− yv, xv + yu)

for x, y, u, v ∈ R.

Theorem 1.1 (C is a Field). The complex numbers are a field. Specifically, we have:

• (0, 0) is the identity element of addition;

• −(x, y) = (−x,−y) for x, y ∈ R;

• (1, 0) is the identity element of multiplication;

• (x, y)−1 =
(

x
x2+y2

, −y
x2+y2

)

for x, y ∈ R with (x, y) 6= (0, 0).

Proof (of the last claim only). Let x, y ∈ R be such that (x, y) 6= (0, 0), and note that

(x, y)

(
x

x2 + y2
,

−y

x2 + y2

)

=

(
x2

x2 + y2
− −y2

x2 + y2
,

−xy

x2 + y2
+

xy

x2 + y2

)

=

(
x2 + y2

x2 + y2
,
−xy + xy

x2 + y2

)

= (1, 0).

Proposition 1.1. The set {(x, 0) : x ∈ R} is a subfield of C, and the map

θ : R → C, x 7→ (x, 0)

is an isomorphism onto its image.
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6 CHAPTER 1. THE COMPLEX NUMBERS

Proposition 1.1 is often worded as:

R “is” a subfield of C.

Set 1 := (1, 0) and i := (0, 1). Then, for any z = (x, y) ∈ C, we have

z = (x, 0) + (0, y) = (1, 0)(x, 0) + (0, 1)(y, 0) = x+ iy.

We write

Re z := x = “the real part of z”

and

Im z := y = “the imaginary part of z”.

The complex number i is called the imaginary unit and satisfies

i2 = (0, 1)2 = (−1, 0) = −1.

Unlike R, the set C = {(x, y) : x ∈ R, y ∈ R} is not ordered; there is no notion of
positive and negative (greater than or less than) on the complex plane. For example,
if i were positive or zero, then i2 = −1 would have to be positive or zero. If i were
negative, then −i would be positive, which would imply that (−i)2 = i2 = −1 is
positive. It is thus not possible to divide the complex numbers into of negative, zero,
and positive numbers.

The frequently appearing notation
√
−1 for i is misleading and should be avoided,

because the rule
√
xy =

√
x
√
y (which one might anticipate) does not hold for negative

x and y, as the following contradiction illustrates:

1 =
√
1 =

√

(−1)(−1) =
√
−1

√
−1 = i2 = −1.

Furthermore, by definition
√
x ≥ 0, but one cannot write i ≥ 0, since C is not ordered.

Definition. For z = x+ iy ∈ C, its complex conjugate is defined as z̄ = x− iy.

Proposition 1.2. For z, w ∈ C, the following hold true:

(i) Re z = 1
2
(z + z̄) and Im z = 1

2i
(z − z̄);

(ii) z + w = z̄ + w̄;

(iii) zw = z̄w̄;

(iv) z−1 = z̄−1 if z 6= 0.
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Proof. (i): If z = x+ iy, then z̄ = x− iy, so that 2x = z+ z̄; this yields the claim for
Re z. The assertion for Im z is proven similarly.

(ii) is obvious.
(iii): Let z = x+ iy and w = u+ iv, so that

zw = (xu− yv) + i(xv + yu)

and thus

zw = (xu− yv)− i(xv + yu).

On the other hand, we have z̄ = x− iy and w̄ = u− iv, which yields

z̄w̄ = (xu− (−y)(−v)) + i(x(−v) + (−y)u)

= (xu− yv)− i(xv + yu)

= zw,

as claimed.
(iv): By (iii), we have

z−1z̄ = z−1z = 1̄ = 1,

which yields the claim.

For any z = x+ iy ∈ C, we note that zz̄ = x2 + y2 ≥ 0. This provides us with a
natural generalization of the absolute value function to C.

Definition. For z ∈ C, set |z|:=
√
zz̄.

Proposition 1.3. |·| is the Euclidean norm on R2. In particular, the following hold:

(i) |z|≥ 0 with |z|= 0 if and only if z = 0;

(ii) |z + w|≤ |z|+|w| for z, w ∈ C.

Moreover, we have |zw|= |z||w| for z, w ∈ C and z−1 = z̄
|z|2

for z ∈ C \ {0}.

Proof. Noting that |x+ iy|=
√

x2 + y2, we see that |·| is the Euclidean norm, which
entails (i) and (ii). Letting z, w ∈ C, we see that

|zw|2= zwzw = (zz̄)(ww̄) = |z|2|w|2.

Also, since |z|2= zz̄, we have 1 = z z̄
|z|2

for z 6= 0 and thus z−1 = z̄
|z|2

.

There is a remarkable similarity between the complex multiplication rule

(x, y) · (u, v) = (xu− yv, xv + yu)
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and the trigonometric angle sum formulae. Notice that

(cos θ, sin θ) · (cosφ, sinφ) = (cos θ cosφ− sin θ sinφ, cos θ sinφ+ sin θ cosφ)

= (cos(θ + φ), sin(θ + φ)).

That is, multiplication of 2 complex numbers on the unit circle x2+y2 = 1 corresponds
to addition of their angles of inclination to the x axis. In particular, the mapping
f(z) = z2 doubles the angle of z = (x, y) and f(z) = zn multiplies the angle of z
by n. These statements hold even if z lies on a circle of radius r 6= 1:

(r cos θ, r sin θ)n = rn(cos nθ, sinnθ);

this is known as deMoivre’s Theorem.



Chapter 2

Complex Differentiation

Definition. Let D ⊂ C, and let z0 be an interior point of D, i.e. there exists ǫ > 0
such that Bǫ(z0) := {z ∈ C : |z − z0|< ǫ} ⊂ D. A function f : D → C is called
complex differentiable at z0 if

f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0

exists.

Proposition 2.1. Let D ⊂ C, let z0 ∈ intD, and let f : D → C be complex differen-
tiable at z0. Then f is continuous at z0.

Proof. Since lim
z→z0

f(z)− f(z0)

z − z0
exists, we have

0 = lim
z→z0

(z − z0) lim
z→z0

f(z)− f(z0)

z − z0
= lim

z→z0
(z − z0)

f(z)− f(z0)

z − z0
= lim

z→z0
(f(z)− f(z0)),

so that f(z0) = lim
z→z0

f(z).

Proposition 2.2. Let D ⊂ C, and let f, g : D → C be complex differentiable at
z0 ∈ intD. Then the following functions are complex differentiable at z0: f + g, fg,
and, if g(z0) 6= 0, f

g
. Moreover, we have:

(f + g)′(z0) = f ′(z0) + g′(z0),

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0),

and

(
f

g

)′

(z0) =
f ′(z0)g(z0)− f(z0)g

′(z0)

g(z0)2
.
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Proof. As over R.

Proposition 2.3. Let D,E ⊂ C, let g : D → C and f : E → C be such that
g(D) ⊂ E, and let z0 ∈ intD be such that w0 := g(z0) ∈ intE. Further, suppose
that g is complex differentiable at z0 and f is complex differentiable at w0. Then f ◦ g
is complex differentiable at z0 with

(f ◦ g)′(z0) = f ′(g(z0))g
′(z0).

Proof. As over R.

Examples.

1. All constant functions are (on all of C) complex differentiable, as is z 7→ z on
C. Consequently, all complex polynomials are complex differentiable on all of
C, and rational functions are complex differentiable wherever they are defined.

2. Let
f : C → C, z 7→ z̄,

and let z0 = x0 + iy0 ∈ C. Assume that f is complex differentiable at z0. Then
we have

f ′(z0) = lim
z→z0

z̄ − z̄0
z − z0

= lim
y→y0

(x0 − iy)− (x0 − iy0)

(x0 + iy)− (x0 + iy0)

= lim
y→y0

i(y0 − y)

i(y − y0)

= −1

as well as

f ′(z0) = lim
z→z0

z̄ − z̄0
z − z0

= lim
x→x0

(x− iy0)− (x0 − iy0)

(x+ iy0)− (x0 + iy0)

= lim
x→x0

x− x0

x− x0

= 1,

which is impossible. Hence, f is not complex differentiable at any z0 ∈ C. (On
the other hand, f is continuously partially differentiable—as a function of two
real variables—on all of C.)

Lemma 2.1. The following are equivalent for an R-linear map T : C → C:
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(i) there exists c ∈ C such that T (z) = cz for all z ∈ C;

(ii) T is C-linear;

(iii) T (i) = iT (1);

(iv) the real 2×2 matrix representing T with respect to the standard basis of R2 may
be written as

A =

[
a b

−b a

]

for some real a, b ∈ R.

Proof. (i) =⇒ (ii) =⇒ (iii) is obvious.
(iii) =⇒ (i): Set c := T (1). For z = x+ iy ∈ C, this means that

T (x+ iy) = T (x) + T (iy)

= xT (1) + yT (i)

= xT (1) + iyT (1)

= zT (1)

= cz.

(iv) ⇐⇒ (iii): Let a, b, c, d ∈ R be such that

A =

[
a b
c d

]

.

represents T with respect to the standard basis of R2. Note that

T (1) =

[
a b
c d

] [
1
0

]

=

[
a
c

]

= a+ ic,

and

T (i) =

[
a b
c d

] [
0
1

]

=

[
b
d

]

= b+ id.

Since
iT (1) = −c + ia,

we see that
T (i) = iT (1) ⇐⇒ c = −b and d = a.

Theorem 2.1 (Cauchy–Riemann Equations). Let D ⊂ C be open, and let z0 ∈ D.
Let f : D → C and denote u := Re f , v := Im f . Then the following are equivalent:

(i) f is complex differentiable at z0;
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(ii) f is totally differentiable at z0 (in the sense of multivariable calculus), and the
Cauchy–Riemann differential equations

∂u

∂x
(z0) =

∂v

∂y
(z0) and

∂u

∂y
(z0) = −∂v

∂x
(z0)

hold.

Proof. (i) =⇒ (ii): Define

T : C → C, z 7→ f ′(z0)z,

and note that

|f(z)− f(z0)− T (z − z0)|
|z − z0|

=

∣
∣
∣
∣

f(z)− f(z0)

z − z0
− f ′(z0)

∣
∣
∣
∣
→ 0

as z → z0. Therefore, f is totally differentiable at z0. From multivariable calculus, it
follows that the matrix representation of T with respect to the standard basis of R is
the Jacobian of f , i.e.

Jf(z0) =

[
ux(z0) uy(z0)
vx(z0) vy(z0)

]

.

Since T is C-linear, Lemma 2.1 yields that

ux(z0) = vy(z0) and uy(z0) = −vx(z0).

(ii) =⇒ (i): Since f is totally differentiable at z0, we have a unique R-linear map
T : C → C such that

lim
z→z0

|f(z)− f(z0)− T (z − z0)|
|z − z0|

= 0.

As we know from multivariable calculus, T is represented by Jf(z0) with respect to the
standard basis of R2. Since the Cauchy–Riemann differential equations are supposed
to hold, Jf(z0) is of the form described in Lemma 2.1(iv). By Lemma 2.1, there thus
exists c ∈ C such that T (z) = cz for all z ∈ C. It follows that

∣
∣
∣
∣

f(z)− f(z0)

z − z0
− c

∣
∣
∣
∣
=

|f(z)− f(z0)− c(z − z0)|
|z − z0|

→ 0

as z → z0. Hence, f is complex differentiable at z0.

Remark. In the situation of Theorem 2.1, we have

f ′(z0)1 =

[
ux(z0) uy(z0)
vx(z0) vy(z0)

] [
1
0

]

= ux(z0) + ivx(z0)

as well as

f ′(z0)i =

[
ux(z0) uy(z0)
vx(z0) vy(z0)

] [
0
1

]

= uy(z0) + ivy(z0),

so that
f ′(z0) = ux(z0) + ivx(z0) = vy(z0)− iuy(z0).
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Example. Let
f : C → C, z 7→ |z|2.

Then f is totally differentiable, with

ux = 2x, uy = 2y, vx = vy = 0,

noting that v = 0. The Cauchy–Riemann equations

ux(z0) = vy(z0) and uy(z0) = −vx(z0)

thus hold if and only if z0 = 0. By Theorem 2.1, this means that f is complex
differentiable at z0 if and only if z0 = 0.

Corollary 2.1.1. Let D ⊂ C be open and connected, and let f : D → C be complex
differentiable. Then f is constant on D if and only if f ′ ≡ 0.

Proof. Suppose that f ′ ≡ 0. From the remark after Theorem 2.1, it follows that

ux = vx = uy = vy ≡ 0.

Multivariable calculus then yields that f is constant.



Chapter 3

Power Series

Definition. A (complex) power series is an infinite series of the form
∑∞

n=0 an(z−z0)
n

with z, z0, a0, a1, a2, . . . ∈ C. The point z0 is called the point of expansion for the series.

Examples.

1. For m ∈ N, we have
m∑

n=0

zn =
1− zm+1

1− z

if z 6= 1. For |z|< 1, we obtain (letting m → ∞)

∞∑

n=0

zn =
1

1− z
.

2. For z ∈ C, define

exp(z) :=

∞∑

n=0

zn

n!
.

Let z 6= 0, and note that

∣
∣
∣
∣

zn+1

(n+ 1)!

∣
∣
∣
∣

/∣
∣
∣
∣

zn

n!

∣
∣
∣
∣
=

|z|
n+ 1

→ 0

as n → ∞. As the ratio test holds for series with summands in C as well as for
series over R, we conclude that exp(z) converges absolutely.

Let z, w ∈ C, and note that the Cauchy product formula for series over R also

14
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holds over C. We obtain:

exp(z) exp(w) =

(
∞∑

j=0

zj

j!

)(
∞∑

k=0

wk

k!

)

=

∞∑

n=0

n∑

k=0

zn−k

(n− k)!

wk

k!
by the Cauchy product formula, letting n = j + k,

=
∞∑

n=0

1

n!

n∑

k=0

(
n

k

)

zn−kwk

=
n∑

n=0

(z + w)n

n!

= exp(z + w).

We call exp : C → C the exponential function. The above property suggests
using the shorthand ez for exp(z). An interactive three-dimensional graph of
exp(z) is shown in Figure 3.1.

3. The sine and cosine functions on C are defined as

sin(z) :=
∞∑

n=0

(−1)n
z2n+1

(2n+ 1)!

and

cos(z) :=
∞∑

n=0

(−1)n
z2n

(2n)!

for z ∈ C. As for exp(z), we see that both sin(z) and cos(z) converge absolutely
for all z ∈ C. Moreover, we have for z ∈ C:

eiz =
∞∑

n=0

(iz)n

n!

=
∞∑

n=0

(iz)2n

(2n)!
+

∞∑

n=0

(iz)2n+1

(2n+ 1)!

=

∞∑

n=0

(−1)n
z2n

(2n)!
+ i

∞∑

n=0

(−1)n
z2n+1

(2n+ 1)!

= cos(z) + i sin(z).

Interactive three-dimensional graphs of the complex cosine and sine functions
are shown in Figures 3.2, and 3.3.
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Figure 3.1: Surface plot of exp(z) in the complex plane, using an RGB color wheel
to represent the phase. Red indicates real positive values.

Theorem 3.1 (Radius of Convergence). Let
∑∞

n=0 an(z − z0)
n be a complex power

series. Then there exists a unique R ∈ [0,∞] with the following properties:

• ∑∞
n=0 an(z − z0)

n converges absolutely at each z ∈ BR(z0);

• for each r ∈ [0, R), the series
∑∞

n=0 an(z−z0)
n converges uniformly on Br[z0] :=

{z ∈ C : |z − z0|≤ r};

• ∑∞
n=0 an(z − z0)

n diverges for each z /∈ BR[z0].

Moreover, R can be computed via the Cauchy–Hadamard formula:

R =
1

lim sup
n→∞

n
√

|an|
.

It is called the radius of convergence for
∑∞

n=0 an(z − z0)
n.


////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Alexander Grahn
//
// 3Dmenu.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard and be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts in
//      the 3D scene. Parts which have been selected with the mouse can be
//      moved around and rotated like the cross section as described above, as
//      well as scaled using the s and S keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';
  for(var i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    var meshUTFName = '';
    for (var j=0; j<mesh.name.length; j++) {
      var theUnicode = mesh.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      meshUTFName += theUnicode;
    }
    var end=mesh.name.lastIndexOf('.');
    if(end>0) var meshUserName=mesh.name.substr(0,end);
    else var meshUserName=mesh.name;
    respart='  PART='+meshUserName+'\n';
    respart+='    UTF16NAME='+meshUTFName+'\n';
    defaultvals=true;
    if(!mesh.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(mesh.opacity<1.0){
      respart+='    OPACITY='+mesh.opacity+'\n';
      defaultvals=false;
    }
    currender=defaultrender;
    switch(mesh.renderMode){
      case scene.RENDER_MODE_BOUNDING_BOX:
        currender='BoundingBox';break;
      case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
        currender='TransparentBoundingBox';break;
      case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
        currender='TransparentBoundingBoxOutline';break;
      case scene.RENDER_MODE_VERTICES:
        currender='Vertices';break;
      case scene.RENDER_MODE_SHADED_VERTICES:
        currender='ShadedVertices';break;
      case scene.RENDER_MODE_WIREFRAME:
        currender='Wireframe';break;
      case scene.RENDER_MODE_SHADED_WIREFRAME:
        currender='ShadedWireframe';break;
      case scene.RENDER_MODE_SOLID:
        currender='Solid';break;
      case scene.RENDER_MODE_TRANSPARENT:
        currender='Transparent';break;
      case scene.RENDER_MODE_SOLID_WIREFRAME:
        currender='SolidWireframe';break;
      case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
        currender='TransparentWireframe';break;
      case scene.RENDER_MODE_ILLUSTRATION:
        currender='Illustration';break;
      case scene.RENDER_MODE_SOLID_OUTLINE:
        currender='SolidOutline';break;
      case scene.RENDER_MODE_SHADED_ILLUSTRATION:
        currender='ShadedIllustration';break;
      case scene.RENDER_MODE_HIDDEN_WIREFRAME:
        currender='HiddenWireframe';break;
      //case scene.RENDER_MODE_DEFAULT:
      //  currender='Default';break;
    }
    if(currender!=defaultrender){
      respart+='    RENDERMODE='+currender+'\n';
      defaultvals=false;
    }
    if(!mesh.transform.isEqual(origtrans[mesh.name])){
      var lvec=mesh.transform.transformDirection(new Vector3(1,0,0));
      var uvec=mesh.transform.transformDirection(new Vector3(0,1,0));
      var vvec=mesh.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +mesh.transform.translation.x+' '
               +mesh.transform.translation.y+' '
               +mesh.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  for(i=0; i<scene.nodes.count; i++){
    if(
       scene.nodes.getByIndex(i).name == '$$$$$$' ||
       scene.nodes.getByIndex(i).name == 'Clipping Plane'
    ) {
      clip=scene.nodes.getByIndex(i);
    }
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+='  END\n';
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected mesh node;
var mshSelected=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected && e.node.constructor.name=="Mesh"){
    mshSelected=e.node;
  }else{
    mshSelected=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  for(i=0; i<scene.nodes.count; i++){
    if(
       scene.nodes.getByIndex(i).name == '$$$$$$' ||
       scene.nodes.getByIndex(i).name == 'Clipping Plane'
    ) {
      runtime.removeCustomMenuItem("csection");
      runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
    }
  }
}
runtime.addEventHandler(cameraEventHandler);

//key event handler for moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var target=null;
  var backtrans=new Matrix4x4();
  if(mshSelected){
    target=mshSelected;
    var trans=target.transform;
    var parent=target.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    try {
      target=scene.nodes.getByName("Clipping Plane");
    }catch(e){
      var ndcnt=scene.nodes.count;
      target=scene.createClippingPlane();
      if(ndcnt!=scene.nodes.count){
        target.remove();
        target=null;
      }
    }
  }
  if(!target) return;
  switch(e.characterCode){
    case 30://tilt up
      tiltTarget(target, -Math.PI/900);
      break;
    case 31://tilt down
      tiltTarget(target, Math.PI/900);
      break;
    case 28://spin right
      spinTarget(target, -Math.PI/900);
      break;
    case 29://spin left
      spinTarget(target, Math.PI/900);
      break;
    case 120: //x
      translateTarget(target, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(target, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(target, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(target, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(target, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(target, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      scaleTarget(target, 1, e);
      break;
    case 83: //shift + s
      scaleTarget(target, -1, e);
      break;
  }
  if(mshSelected)
    target.transform.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

function tiltTarget(t,a){
  var centre=new Vector3();
  if(mshSelected) {
    centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
  }else{
    centre.set(t.transform.translation);
  }
  var rotVec=t.transform.transformDirection(new Vector3(0,1,0));
  rotVec.normalize();
  t.transform.translateInPlace(centre.scale(-1));
  t.transform.rotateAboutVectorInPlace(a, rotVec);
  t.transform.translateInPlace(centre);
}

function spinTarget(t,a){
  var centre=new Vector3();
  var rotVec=new Vector3(0,0,1);
  if(mshSelected) {
    centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
    rotVec.set(t.transform.transformDirection(rotVec));
    rotVec.normalize();
  }else{
    centre.set(t.transform.translation);
  }
  t.transform.translateInPlace(centre.scale(-1));
  t.transform.rotateAboutVectorInPlace(a, rotVec);
  t.transform.translateInPlace(centre);
}

//translates object by amount calculated based on Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.transform.translateInPlace(d.scale(scale));
}

//scales object by amount calculated based on Canvas size
function scaleTarget(t, d, e){
  if(mshSelected) {
    var bbox=t.computeBoundingBox();
    var diag=new Vector3(bbox.max.x, bbox.max.y, bbox.max.z);
    diag.subtractInPlace(bbox.min);
    var dlen=diag.length;

    var cam=scene.cameras.getByIndex(0);
    if(cam.projectionType==cam.TYPE_PERSPECTIVE){
      var scale=Math.tan(cam.fov/2)
                *cam.targetPosition.subtract(cam.position).length
                /dlen
                /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
    }else{
      var scale=cam.viewPlaneSize/2
                /dlen
                /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
    }
    var centre=new Vector3();
    centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
    t.transform.translateInPlace(centre.scale(-1));
    t.transform.scaleInPlace(1+d*scale);
    t.transform.translateInPlace(centre);
  }
}

function addremoveClipPlane(chk) {
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(mshSelected){
      //local to parent transformation matrix
      var trans=mshSelected.transform;
      //build local to world transformation matrix by recursively
      //multiplying the parent's transf. matrix on the right
      var parent=mshSelected.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      //get the centre of the mesh (local coordinates)
      centre.set(mshSelected.computeBoundingBox().center);
      //transform the local coordinates to world coords
      centre.set(trans.transformPosition(centre));
      mshSelected=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    clip.remove();
  }
}

//function to store current transformation matrix of all mesh nodes in the scene
function getCurTrans() {
  var nc=scene.meshes.count;
  var tA=new Array(nc);
  for(var i=0; i<nc; i++){
    var cm=scene.meshes.getByIndex(i);
    tA[cm.name]=new Matrix4x4(cm.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<tA.length; i++){
    var msh=scene.meshes.getByIndex(i);
    msh.transform.set(tA[msh.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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Figure 3.2: Surface plot of cos(z) in the complex plane, using an RGB color wheel to
represent the phase. Red indicates real positive values.

Proof. The uniqueness of R follows from the first and the last property.
Let R ∈ [0,∞] be defined by the Cauchy–Hadamard formula (we set 1

0
= ∞ and

1
∞

= 0).
Let r ∈ [0, R), and choose r′ ∈ (r, R). It follows that

lim sup
n→∞

n
√

|an| =
1

R
<

1

r′
,

so that there exists n0 ∈ N such that n
√

|an| < 1
r′
whenever n ≥ n0, i.e.

|an|<
(
1

r′

)n

for all n ≥ n0. For n ≥ n0 and z ∈ Br[z0], we then have

|an(z − z0)
n|≤

( r

r′

)n

.
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Figure 3.3: Surface plot of sin(z) in the complex plane, using an RGB color wheel to
represent the phase. Red indicates real positive values.

Since r
r′

< 1, we have
∑∞

n=0

(
r
r′

)n
< ∞. The Weierstraß M-test thus yields that

∑∞
n=0 an(z − z0)

n converges absolutely and uniformly on Br[z0].
Since every z ∈ BR(z0) is contained in Br[z0] for some r ∈ [0, R), it follows that

∑∞
n=0 an(z − z0)

n converges absolutely for each such z.
Let z /∈ BR[z0], i.e. |z − z0|> R, so that

1

|z − z0|
<

1

R
= lim sup

n→∞

n
√

|an|

and thus, for infinitely many n ∈ N,

1

|z − z0|
< n
√

|an|

or, equivalently,
1 < |an(z − z0)

n|.
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It follows that {an(z−z0)
n}∞n=1 does not converge to zero. Consequently,

∑∞
n=0 an(z−

z0)
n diverges.

Examples.

1.
∑∞

n=0 z
n: R = 1.

2.
∑∞

n=0
zn

n!
: R = ∞.

3.
∑∞

n=0 n! z
n: R = 0.

4.
∑∞

n=0(−1)n z2n+1

(2n+1)!
and

∑∞
n=0(−1)n z2n

(2n)!
: R = ∞.

Theorem 3.2 (Term-by-Term Differentiation). Let
∑∞

n=0 an(z − z0)
n be a complex

power series with radius of convergence R. Then

f : BR(z0) → C, z 7→
∞∑

n=0

an(z − z0)
n

is complex differentiable at each point z ∈ BR(z0) with

f ′(z) =

∞∑

n=1

nan(z − z0)
n−1.

Proof. Without loss of generality, suppose that z0 = 0.
We first show that

∑∞
n=1 nanz

n−1 converges absolutely for each z ∈ BR(0).

Let z ∈ BR(0), and choose r such that |z|< r < R. Since
1

r
> lim sup

n→∞

n
√

|an|,
there exists n0 ∈ N such that |an|<

(
1
r

)n
for n ≥ n0 and thus

|nanzn−1|< n

r

( |z|
r

)n−1

for n ≥ n0. Since |z|
r
< 1, we know from the Ratio Test that

∑∞
n=1

n
r

(
|z|
r

)n−1

< ∞;

the Comparison Test then yields that
∑∞

n=1 nanz
n−1 converges absolutely.

In view of the foregoing, we may define

g : BR(0) → C, z 7→
∞∑

n=1

nanz
n−1.

We shall devote the rest of the proof to showing that f is complex differentiable on
BR(0) with f ′ = g.

To this end, fix ǫ > 0, and define, for z ∈ BR(0) and n ∈ N,

Sn(z) :=

n∑

k=0

akz
k and Rn(z) :=

∞∑

k=n+1

akz
k.



20 CHAPTER 3. POWER SERIES

Fix z ∈ BR(0) and let r ∈ (0, R) be such that z ∈ Br(0). Note that

f(w)− f(z)

w − z
− g(z) =

(
Sn(w)− Sn(z)

w − z
− S ′

n(z)

)

+ (S ′
n(z)− g(z)) +

Rn(w)− Rn(z)

w − z

for all w ∈ BR(0) \ {z}. We shall see that each of the three summands on the right-
hand side of this equation has modulus less than ǫ

3
, provided that n is sufficiently

large and w is sufficiently close to z.
We start with the last summand. First, note that

Rn(w)− Rn(z)

w − z
=

∞∑

k=n+1

ak
wk − zk

w − z

for all w ∈ BR(0) \ {z} and also that

∣
∣
∣
∣

wk − zk

w − z

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

k∑

j=1

wk−jzj−1

∣
∣
∣
∣
∣
≤

k∑

j=1

|w|k−j|z|j−1≤ krk−1

for all w ∈ Br(0) \ {z}. Since r < R, we have
∑∞

k=1 k|ak|rk−1 < ∞. Consequently,
there exists n1 ∈ N such that

∑∞
k=n+1 k|ak|rk−1 < ǫ

3
for all n ≥ n1 and therefore

∣
∣
∣
∣

Rn(w)− Rn(z)

w − z

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

k=n+1

ak
wk − zk

w − z

∣
∣
∣
∣
∣
≤

∞∑

k=n+1

k|ak|rk−1 <
ǫ

3

for all n ≥ n1 and all w ∈ Br(0) \ {z}.
For the second summand, just note that lim

n→∞
S ′
n(z) = g(z); consequently, there

exists n2 ∈ N such that |S ′
n(z)− g(z)|< ǫ

3
for all n ≥ n2.

For the first summand, fix n ≥ max{n1, n2}. Since

lim
w→z

Sn(w)− Sn(z)

w − z
= S ′

n(z),

there exists δ ∈ (0, r) such that

∣
∣
∣
∣

Sn(w)− Sn(z)

w − z
− S ′

n(z)

∣
∣
∣
∣
<

ǫ

3

for all w ∈ Bδ(z) ⊂ Br(0) \ {z}. Consequently, we obtain for all w ∈ Bδ(z) \ {z} that

∣
∣
∣
∣

f(w)− f(z)

w − z
− g(z)

∣
∣
∣
∣
≤
∣
∣
∣
∣

Sn(w)− Sn(z)

w − z
− S ′

n(z)

∣
∣
∣
∣
+|S ′

n(z)− g(z)|+
∣
∣
∣
∣

Rn(w)− Rn(z)

w − z

∣
∣
∣
∣
<

ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ.

Since ǫ > 0 was arbitrary, we see that f ′(z) exists and equals g(z).
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Problem 3.1. Show in Theorem 3.2 that the power series for f ′ and f have the same
radius of convergence.

Examples.

1. exp′(z) = exp(z).

2. sin′(z) = cos(z).

3. cos′(z) = − sin(z).

Corollary 3.2.1 (Higher Derivatives of Power Series). Let
∑∞

n=0 an(z − z0)
n be a

complex power series with radius of convergence R. Then

f : BR(z0) → C, z 7→
∞∑

n=0

an(z − z0)
n

is infinitely often complex differentiable on BR(z0) with

f (k)(z) =

∞∑

n=k

n(n− 1) · · · (n− k + 1)an(z − z0)
n−k.

for z ∈ BR(z0) and k ∈ N. In particular, when z = z0 we see that

an =
1

n!
f (n)(z0)

holds for each n ∈ N0.

Corollary 3.2.2 (Integration of Power Series). Let
∑∞

n=0 an(z − z0)
n be a complex

power series with radius of convergence R. Then

F : BR(z0) → C, z 7→
∞∑

n=0

an
n+ 1

(z − z0)
n+1

is complex differentiable on BR(z0) with

F ′(z) =

∞∑

n=0

an(z − z0)
n

for z ∈ BR(z0).
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Complex Line Integrals

We call a function f : [a, b] → C integrable if Re f, Im f : [a, b] → R are integrable in
the sense of real variables. (The Riemann integral will do.) In this case, we define

∫ b

a

f(t) dt :=

∫ b

a

Re f(t) dt+ i

∫ b

a

Im f(t) dt.

Definition. A curve (or path) in C is a continuous map γ : [a, b] → C. We call

• γ(a) the initial point of γ,

• γ(b) the endpoint (or terminal point) of γ, and

• {γ} := γ([a, b]) the trajectory of γ.

Collectively, we call γ(a) and γ(b) the endpoints of γ.

Examples.

1. Let z, w ∈ C. Then

γ : [0, 1] → C, t 7→ z0 + t(z − z0)

has the initial point z0 and the endpoint z, and {γ} is the line segment con-
necting z0 with z.

2. For k ∈ Z, let
γk : [0, 2π] → C, θ 7→ eikθ.

Then γk(0) = 1 = γk(2π) holds, and for k 6= 0, we have {γk} = {z ∈ C : |z|= 1}.

Definition. A curve γ : [a, b] → C is called piecewise smooth if there exists a partition
a = a0 < a1 < · · · < an = b such that γ|[aj−1,aj ] is continuously differentiable for
j = 1, . . . , n.

22
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Definition. The length of a piecewise smooth curve γ : [a, b] → C is defined as

ℓ(γ) :=
n∑

j=1

∫ aj

aj−1

|γ′(t)| dt,

where a = a0 < a1 < · · · < an = b is a partition such that γ|[aj−1,aj ] is continuously
differentiable for j = 1, . . . , n.

Definition. Let γ : [a, b] → C be a piecewise smooth curve, let a = a0 < a1 < · · · <
an = b be a partition such that γ|[aj−1,aj ] is continuously differentiable for j = 1, . . . , n,
and let f : {γ} → C be continuous. Then the line integral (or contour integral) of f
along γ is defined as

∫

γ

f :=

∫

γ

f(ζ) dζ =

n∑

j=1

∫ aj

aj−1

f(γ(t))γ′(t) dt.

Properties of the Line Integral. 1. Let γ be a piecewise smooth curve, let
λ, µ ∈ C, and let f, g : {γ} → C be continuous. Then we have

∫

γ

(λf + µg) = λ

∫

γ

f + µ

∫

γ

g.

2. Let γ be a piecewise smooth curve, let f : {γ} → C be continuous, and let
C ≥ 0 be such that |f(ζ)|≤ C for ζ ∈ {γ}. Then

∣
∣
∣
∣

∫

γ

f

∣
∣
∣
∣
≤ C ℓ(γ)

holds.

3. Let γ : [c, d] → C be a piecewise smooth curve, let φ : [a, b] → [c, d] be a
continuously differentiable function with φ(a) = c and φ(b) = d, and let f :
{γ} → C be continuous. Then we have

∫

γ

f =

∫

γ◦φ

f.

4. Let D ⊂ C be open, and let f : D → C be continuous with antiderivative
F : D → C; i.e. F is complex differentiable at each z ∈ D, with F ′(z) = f(z).
Then ∫

γ

f = F (γ(b))− F (γ(a))

holds for every piecewise smooth curve γ : [a, b] → D.
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Definition. A curve γ : [a, b] → C is called closed if γ(a) = γ(b).

Proposition 4.1. Let D ⊂ C be open, and let f : D → C be continuous with an
antiderivative. Then

∫

γ
f = 0 holds for each closed, piecewise smooth curve γ in D.

Example. Let z0 ∈ C, let r > 0, and let

γ : [0, 2π] → C, θ 7→ reiθ + z0,

i.e. γ is a counterclockwise-oriented circle centered at z0 with radius r.
Let n ∈ Z, and consider

∫

γ
(ζ − z0)

n dζ .
For n 6= −1, let

F : C → C, z 7→ (z − z0)
n+1

n+ 1
,

so that F ′(z) = (z − z0)
n for all z ∈ C. It follows that

∫

γ
(ζ − z0)

n dζ = 0.
On the other hand, we have

∫

γ

(ζ − z0)
−1 dζ =

∫ 2π

0

rieiθ

reiθ
dθ =

∫ 2π

0

i dt = 2πi.

Consequently,

C \ {z0} → C, z 7→ 1

z − z0

has no antiderivative.

Recall the following definition from multivariable calculus:

Definition. A subset D ⊂ C is called connected if there are no open sets U, V ⊂ C

with

• U ∩D 6= ∅ 6= V ∩D;

• U ∪ V ⊃ D;

• U ∩ V ⊂ C \D.

In other words, there are no open sets U and V , each containing points of D, such
that every point of D lies in exactly one of the sets U and V .

Definition. Let D ⊂ C be open. A function f : D → C is called locally constant if,
for each z0 ∈ D, there exists ǫ > 0 such that Bǫ(z0) ⊂ D and f is constant on Bǫ(z0).

The following curve constructions will be useful in understanding the relation
between locally constant functions and connectivity.
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1. Given a < b < c and two curves γ1 : [a, b] → C and γ2 : [b, c] → C with
γ1(b) = γ2(b), the concatenation of γ1 and γ2 is the curve

γ1 ⊕ γ2 : [a, c] → C, t 7→
{

γ1(t), t ∈ [a, b],
γ2(t), t ∈ [b, c].

If γ1 and γ2 are piecewise smooth, then so is γ1 ⊕ γ2, and we have
∫

γ1⊕γ2

f =

∫

γ1

f +

∫

γ2

f

for each continuous f : {γ1} ∪ {γ2} → C.

2. For any curve γ : [a, b] → C, the reversed curve is defined as

γ− : [a, b] → C, t 7→ γ(a + b− t).

If γ is piecewise smooth, then so is γ−, and we have
∫

γ−

f = −
∫

γ

f

for each continuous f : {γ} → C.

3. We denote the straight line segment {z0 + t(z − z0) : t ∈ [0, 1]} by [z0, z].

Proposition 4.2 (Locally Constant vs. Connectivity). Let D ⊂ C be open. Then
the following are equivalent:

(i) D is connected;

(ii) every locally constant function f : D → C is constant;

(iii) for any z, w ∈ D, there exists a piecewise smooth curve γ : [a, b] → D such that
γ(a) = z and γ(b) = w.

Proof. (iii) =⇒ (ii): Let f : D → C be a locally constant function, and let z, w ∈ D.
Let γ : [a, b] → D be a piecewise smooth curve with γ(a) = z and γ(b) = w. Since f
is locally constant, the function

[a, b] → C, t 7→ f(γ(t))

is differentiable with zero derivative and therefore constant. It follows that f(z) =
f(γ(a)) = f(γ(b)) = f(w).

(ii) =⇒ (i): Suppose that D is not connected. Then there exist non-empty open
sets U, V ⊂ C with U ∩ V = ∅ and U ∪ V = D. Define

f : D → C, z 7→
{

0, z ∈ U,
1, z ∈ V.
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Then f is locally constant, but not constant.
(i) =⇒ (iii): Let z ∈ D, and set

U := {w ∈ D : ∃ a piecewise smooth curve γ : [a, b] → D with γ(a) = z, γ(b) = w}.
Obviously, U 6= ∅ (because z ∈ U).

We claim that U is open. To see this, let w0 ∈ U , so that there exists a piecewise
smooth curve γ : [a, b] → D with γ(a) = z and γ(b) = w0. Choose ǫ > 0 such that
Bǫ(w0) ⊂ D. For w ∈ Bǫ(w0), we know that [w0, w] is a curve in Bǫ(w0) ⊂ D with
initial point w0 and endpoint w. Consequently, γ ⊕ [w0, w] is a piecewise smooth
curve in D with initial point z and endpoint w. It follows that w ∈ U , and since
w ∈ Bǫ(w0) was arbitrary, we have Bǫ(w0) ⊂ U . This proves the openness of U .

Next, we claim that D \ U is also open. To see this, let w0 ∈ D \ U , and let
ǫ > 0 be so small that Bǫ(w0) ⊂ D. Assume towards a contradiction that there exists
w ∈ Bǫ(w0) ∩ U . Let γ : [a, b] → D be a piecewise smooth curve with γ(a) = z and
γ(b) = w. Then γ ⊕ [w,w0] is a piecewise smooth curve in D with initial point z and
endpoint w0, so that w0 ∈ U . This contradicts the choice of w0 ∈ D \ U . It follows
that Bǫ(w0) ∩ U = ∅, i.e. Bǫ(w0) ⊂ D \ U .

Since U and D \ U are both open with U ∪ (D \ U) = D and U ∩ (D \ U) = ∅,
the connectedness of D yields that D \ U = ∅, i.e. D = U .

Lemma 4.1. Suppose D ⊂ C is an open connected set (a region) and f : D → C is
continuous. Let z0 ∈ D. For each z ∈ D, let γz : [a, b] → D be a piecewise smooth
curve in D such that γz(a) = z0 and γz(b) = z. Consider the function

F : D → C, z 7→
∫

γz

f(ζ) dζ.

For each z, let δ > 0 such that Bδ(z) ⊂ D. If the condition

F (w)− F (z) =

∫

[z,w]

f(ζ) dζ

holds for each z and all w ∈ Bδ(z), then F is an antiderivative for f .

Proof. Let z ∈ D. Given ǫ > 0, choose δ > 0 small enough such that Bδ(z) ⊂ D and

|ζ − z|< δ ⇒ |f(ζ)− f(z)|< ǫ.

For all w ∈ Bδ(z), we find
∣
∣
∣
∣

F (w)− F (z)

w − z
− f(z)

∣
∣
∣
∣
=

1

|w − z|

∣
∣
∣
∣

∫

[z,w]

f −
∫

[z,w]

f(z)

∣
∣
∣
∣

=
1

|w − z|

∣
∣
∣
∣

∫

[z,w]

(f − f(z))

∣
∣
∣
∣

≤ |w − z|
|w − z| sup{|f(ζ)− f(z)|: ζ ∈ {[z, w]}}

= sup{|f(ζ)− f(z)|: ζ ∈ {[z, w]}} < ǫ.
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That is, F ′(z) = f(z).

Theorem 4.1 (Antiderivative Theorem). Let D ⊂ C be open and connected and let
f : D → C be continuous. Then the following are equivalent:

(i) f has an antiderivative;

(ii)
∫

γ
f(ζ) dζ = 0 for any closed, piecewise smooth curve γ in D;

(iii) for any piecewise smooth curve γ in D, the value of
∫

γ
f depends only on the

inital point and the endpoint of γ.

Proof. (i) =⇒ (ii) is Proposition 4.1.
(ii) =⇒ (iii): Let γ,Γ : [a, b] → D be piecewise smooth curves with γ(a) = Γ(a)

and γ(b) = Γ(b). Then γ ⊕ Γ− is a closed, piecewise smooth curve, so that

0 =

∫

γ⊕Γ−

f =

∫

γ

f +

∫

Γ−

f =

∫

γ

f −
∫

Γ

f.

(iii) =⇒ (i): Fix z0 ∈ D. For each z ∈ D, choose a piecewise smooth curve
γz : [a, b] → D with γz(a) = z0 and γz(b) = z and let

F : D → C, z 7→
∫

γz

f(ζ) dζ.

For each z ∈ D, choose δ > 0 such that Bδ(z) ⊂ D and note for w ∈ Bδ(z) that

F (w) =

∫

γw

f(ζ) dζ

=

∫

γz⊕[z,w]

f(ζ) dζ by (iii)

=

∫

γz

f(ζ) dζ +

∫

[z,w]

f(ζ) dζ

= F (z) +

∫

[z,w]

f(ζ) dζ.

Lemma 4.1 then implies that F is an antiderivative for f .

From now on, we shall use the word curve as shorthand for piecewise smooth curve.
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Cauchy’s Integral Theorem and

Formula

Definition. Let D ⊂ C be open. If f : D → C is complex differentiable at each
z ∈ D, then we call f holomorphic (or analytic) on D.

Let z1, z2, and z3 be three different points in C. They span a triangle ∆. Its
boundary can be parametrized as a curve with counterclockwise orientation.

z1 z2

z3

∆

We denote this curve by ∂∆.

Theorem 5.1 (Goursat’s Lemma). Let D ⊂ C be open, let f : D → C be holomorphic,
and let ∆ ⊂ D be a triangle. Then we have

∫

∂∆

f(ζ) dζ = 0.

Proof. First, we note that the result holds trivially whenever z1, z2, and z3 are colin-
ear. Otherwise, we can split ∆ at its medians into four subtriangles ∆(1), ∆(2), ∆(3),
and ∆(4) as shown in the following figure:

28
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∆(4)

∆(3)

∆(1) ∆(2)

As the line segments in the interior of ∆ also occur as their reversed paths, we
have

∫

∂∆

f =

4∑

j=1

∫

∂∆(j)

f,

so that
∣
∣
∣
∣

∫

∂∆

f

∣
∣
∣
∣
≤

4∑

j=1

∣
∣
∣
∣

∫

∂∆(j)

f

∣
∣
∣
∣
.

Choose j ∈ {1, 2, 3, 4} such that
∣
∣
∫

∂∆(j) f
∣
∣ is largest, and set ∆1 := ∆(j). It follows

that ∣
∣
∣
∣

∫

∂∆

f

∣
∣
∣
∣
≤ 4

∣
∣
∣
∣

∫

∂∆1

f

∣
∣
∣
∣
;

also, note that ℓ(∂∆1) =
1
2
ℓ(∂∆).

Repeat this argument with ∆1 in place of ∆, and obtain a triangle ∆2 ⊂ ∆1 with

ℓ(∂∆2) =
1

2
ℓ(∂∆1) =

1

4
ℓ(∂∆)

and ∣
∣
∣
∣

∫

∂∆1

f

∣
∣
∣
∣
≤ 4

∣
∣
∣
∣

∫

∂∆2

f

∣
∣
∣
∣
,

so that ∣
∣
∣
∣

∫

∂∆

f

∣
∣
∣
∣
≤ 4

∣
∣
∣
∣

∫

∂∆1

f

∣
∣
∣
∣
≤ 16

∣
∣
∣
∣

∫

∂∆2

f

∣
∣
∣
∣
.

Inductively, we obtain triangles

∆ ⊃ ∆1 ⊃ ∆2 ⊃ · · ·
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with

ℓ(∂∆n) =
1

2n
ℓ(∂∆)

and ∣
∣
∣
∣

∫

∂∆

f

∣
∣
∣
∣
≤ 4n

∣
∣
∣
∣

∫

∂∆n

f

∣
∣
∣
∣

for n ∈ N.
Let z0 ∈

⋂∞
n=1∆n, and define

r : D → C, z 7→ f(z)− f(z0)− f ′(z0)(z − z0),

so that lim
z→z0

|r(z)|
|z − z0|

= 0 and
∫

γ
(r − f) =

∫

γ
[−f(z0)− f ′(z0)(z − z0)] dz = 0 for each

closed curve γ in D (noting that the integrand has an antiderivative). Consequently,
∣
∣
∣
∣

∫

∂∆

f

∣
∣
∣
∣
≤ 4n

∣
∣
∣
∣

∫

∂∆n

r

∣
∣
∣
∣

for n ∈ N. Let ǫ > 0 and choose δ > 0 such that
∣
∣
∣
∣

r(z)

z − z0

∣
∣
∣
∣
≤ ǫ

[ℓ(∂∆)]2

for all z ∈ D with |z − z0|< δ. Choose n ∈ N such that ∆n ⊂ Bδ(z0). For z ∈ ∆n,
this means that

|z − z0|≤ ℓ(∂∆n) =
1

2n
ℓ(∂∆).

We thus obtain:
∣
∣
∣
∣

∫

∂∆

f

∣
∣
∣
∣
≤ 4n

∣
∣
∣
∣

∫

∂∆n

r

∣
∣
∣
∣

≤ 4nℓ(∂∆n) sup
ζ∈∂∆n

|r(ζ)|= 2nℓ(∂∆) sup
ζ∈∂∆n

|r(ζ)|

≤ 2nℓ(∂∆) sup
ζ∈∂∆n

ǫ

[ℓ(∂∆)]2
|ζ − z0|
︸ ︷︷ ︸

≤ 1
2n

ℓ(∂∆)

≤ ǫ.

As ǫ > 0 was arbitrary, this proves the claim.

Definition. A set D ⊂ C is called star shaped if there exists z0 ∈ D such that
[z0, z] ⊂ D for each z ∈ D. The point z0 is called a center for D.

Theorem 5.2. Let D ⊂ C be open and star shaped with center z0, and let f : D → C

be continuous such that ∫

∂∆

f(ζ) dζ = 0

for each triangle ∆ ⊂ D with z0 as a vertex. Then f has an antiderivative.
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Proof. Let z0 ∈ D be a center for D. Define

F : D → C, z 7→
∫

[z0,z]

f.

Let z ∈ D, and let δ > 0 be such that Bδ(z) ⊂ D. Let w ∈ Bδ(z). Since [z0, z] ⊕
[z, w]⊕ [w, z0] is the boundary of a triangle ∆ ⊂ D,

∫

[z0,z]⊕[z,w]⊕[w,z0]

f = 0,

so that

F (w) =

∫

[z0,w]

f = −
∫

[w,z0]

f =

∫

[z0,z]

f +

∫

[z,w]

f = F (z) +

∫

[z,w]

f.

Lemma 4.1 then implies that F is an antiderivative for f .

Corollary 5.2.1. Let D ⊂ C be open and star shaped, and let f : D → C be
holomorphic. Then f has an antiderivative.

Proof. Apply Goursat’s Lemma and Theorem 5.2.

Corollary 5.2.2. Let D ⊂ C be open, and let f : D → C be holomorphic. Then,
for each z0 ∈ D, there exists a neighbourhood U ⊂ D of z0 such that f |U has an
antiderivative.

Corollary 5.2.3 (Cauchy’s Integral Theorem for Star-Shaped Domains). Let D ⊂ C

be open and star shaped, and let f : D → C be holomorphic. Then
∫

γ
f(ζ) dζ = 0 for

each closed curve γ in D.

Proof. This follows from Corollary 5.2.1 and Theorem 4.1.

Example. The sliced plane is defined as

C− := {z ∈ C : z /∈ (−∞, 0]}.

Then C− is star shaped (1 is a center, for instance). As seen in the proof of Theo-
rem 5.2, the function

Log: C− → C, z 7→
∫

[1,z]

1

ζ
dζ

is an antiderivative of z 7→ 1
z
on C−; it is called the principal branch of the logarithm.

Let z ∈ C−, and let γz be any curve in C− with initial point 1 and endpoint z.
From Theorem 4.1, we conclude that

∫

γz
1
ζ
dζ = Log z.

For any z ∈ C−, there exists a unique θ ∈ (−π, π)—the principal argument Arg z
of z—such that z = |z|eiθ. For z ∈ C−, the curve

γ : [0, θ] → C, t 7→ |z|eit.
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has the initial point |z| and the endpoint z. It follows that [1, |z|]⊕ γ is curve with
initial point 1 and endpoint z as shown:

y

x

γ

θ

z

[1, |z|]1 |z|

[1, z]

It follows that

Log z :=

∫

[1,|z|]

1

ζ
dζ +

∫

γ

1

ζ
dζ = log|z|+i

∫ θ

0

|z|eit
|z|eit dt = log|z|+iArg z.

Lemma 5.1. Let D ⊂ C be open and star shaped with center z0, and let f : D → C

be continuous such that f |D\{z0} is holomorphic. Then f has an antiderivative on D.

Proof. Let ∆ be a triangle in D having a vertex z0:

z0 w

z

z1

z3

z2

Let z1 be an interior point of [z0, w], let z2 be an interior point of [z0, z], and let
z3 be an interior point of [w, z]. As shown above, we use these points to split ∆ into
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four subtriangles, denoted by ∆(z0, z1, z2), ∆(z1, z3, z2), ∆(z1, w, z3), and ∆(z2, z3, z).
As in the proof of Goursat’s Lemma, we have

∫

∂∆

f =

∫

∂∆(z0,z1,z2)

f +

∫

∂∆(z1,z3,z2)

f +

∫

∂∆(z1,w,z3)

f +

∫

∂∆(z2,z3,z)

f.

Since ∆(z1, z3, z2),∆(z1, w, z3),∆(z2, z3, z) ⊂ D \ {z0}, and since f is holomorphic on
D \ {z0}, Goursat’s Lemma yields

∫

∂∆(z1,z3,z2)

f =

∫

∂∆(z1,w,z3)

f =

∫

∂∆(z2,z3,z)

f = 0,

so that ∫

∂∆

f =

∫

∂∆(z0,z1,z2)

f.

It follows that
∣
∣
∣
∣

∫

∂∆

f

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

∂∆(z0,z1,z2)

f

∣
∣
∣
∣
≤ ℓ(∂∆(z0, z1, z2)) sup

ζ∈∂∆(z0,z1,z2)

|f(ζ)|.

Since |f | is continuous on ∆, it is bounded above by someM > 0. By placing z1 and z2
sufficiently close to z0, we see that ℓ(∂∆(z0, z1, z2)) can be made smaller than every
ǫ/M > 0. We deduce that

∫

∂∆
f = 0. The result then follows from Theorem 5.2.

Let z0 ∈ C, and let r > 0. Slightly abusing notation, we use ∂Br(z0) to denote
the boundary of Br(z0) oriented counterclockwise.

Lemma 5.2. Let D ⊂ C be open, let z0 ∈ D, and let r > 0 be such that Br[z0] ⊂ D.
Then ∫

∂Br(z0)

1

ζ − z
dζ = 2πi

for all z ∈ Br(z0).

Proof. Through direct computation, we saw on pg. 24 that
∫

∂Br(z0)

1

ζ − z0
dζ = 2πi.

Let z ∈ Br(z0), and choose ǫ > 0 such that Bǫ[z] ⊂ Br(z0), so that
∫

∂Bǫ(z)

1

ζ − z
dζ = 2πi.

We need to show that
∫

∂Br(z0)

1

ζ − z
dζ =

∫

∂Bǫ(z)

1

ζ − z
dζ = −

∫

∂Bǫ(z)−

1

ζ − z
dζ.
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This is how the situation looks like:

z0

∂B−
ǫ z

We connect the boundaries of Br(z0) and Bǫ(z) through line segments:

z0

z

Consider the following two closed curves γ1 and γ2:
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z0

z

γ1

γ2

z0

z

Then it is clear that

∫

γ1

1

ζ − z
dζ +

∫

γ2

1

ζ − z
dζ =

∫

∂Br(z0)

1

ζ − z
dζ +

∫

∂Bǫ(z)−

1

ζ − z
dζ.

The sketches also show that there exist star-shaped open set Dj ⊂ C \ {z} with
{γj} ⊂ Dj for j = 1, 2. Cauchy’s integral theorem for star-shaped domains thus
yields that

∫

γj

1

ζ − z
dζ = 0

for j = 1, 2, which proves the claim.

Theorem 5.3 (Cauchy’s Integral Formula for Circles). Let D ⊂ C be open, let
f : D → C be holomorphic, and let z0 ∈ D and r > 0 be such that Br[z0] ⊂ D. Then
we have

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

for all z ∈ Br(z0).

Remark. A consequence of Theorem 5.3 is that the values of f on all of Br[z0] are
pre-determined by those on ∂Br(z0)!

Proof of Theorem 5.3. Since Br[z0] is compact, we may choose R > 0 be such that
Br[z0] ⊂ BR(z0) ⊂ D. Let z ∈ Br(z0), and note that z is a center for the star-shaped
domain BR(z0).

Define

g : D → C, ζ 7→
{ f(ζ)−f(z)

ζ−z
, ζ 6= z,

f ′(z), ζ = z.
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Then g is continuous on D and holomorphic on D \ {z}. By Lemma 5.1, g has an
antiderivative on BR(z0). Since ∂Br(z0) is closed, this means that

0 =

∫

∂Br(z0)

g(ζ) dζ =

∫

∂Br(z0)

f(ζ)

ζ − z
dζ − f(z)

∫

∂Br(z0)

1

ζ − z
dζ

︸ ︷︷ ︸

=2πi

,

using the identity
∫

∂Br(z0)
1

ζ−z
dζ = 2πi established by Lemma 5.2. Division by 2πi

yields the claim.

Corollary 5.3.1 (Mean Value Equation). Let D ⊂ C be open, let f : D → C be
holomorphic, and let z0 ∈ D and r > 0 be such that Br[z0] ⊂ D. Then we have

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.

Proof. Parametrize ∂Br(z0) as

γ : [0, 2π] → C, θ 7→ z0 + reiθ.

The Cauchy Integral Formula then yields

f(z0) =
1

2πi

∫

γ

f(ζ)

ζ − z0
dζ

=
1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
ireiθ dθ

=
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.

Lemma 5.3. Let D ⊂ RN be open, and let f : [a, b]×D → R be continuous such that
∂f
∂x1

, . . . , ∂f
∂xN

: [a, b]×D → R all exist and are continuous. Define

g : D → R, x 7→
∫ b

a

f(t, x) dt.

Then g is continuously partially differentiable with

∂g

∂xj
(x) =

∫ b

a

∂f

∂xj
(t, x) dt

for x ∈ D and j = 1, . . . , N .
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Proof. There is no loss of generality supposing that N = 1.
Let x0, x ∈ D be such that every number between them is also in D. By the

Mean Value Theorem of single variable calculus, there exists, for each t ∈ [a, b], a real
number ξt between x0 and x such that

f(t, x)− f(t, x0)

x− x0

=
∂f

∂x
(t, ξt).

Let ǫ > 0. By uniform continuity, there exists a δ > 0 such that
∣
∣
∣
∣

∂f

∂x
(t, x1)−

∂f

∂x
(t, x2)

∣
∣
∣
∣
<

ǫ

b− a

for any t ∈ [a, b] and all x1, x2 between x0 and x with |x1 − x2|< δ.
Suppose that |x0 − x|< δ. Then we have:

∣
∣
∣
∣

g(x)− g(x0)

x− x0
−
∫ b

a

∂f

∂x
(t, x0) dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ b

a

(
f(t, x)− f(t, x0)

x− x0
− ∂f

∂x
(t, x0)

)

dt

∣
∣
∣
∣

≤
∫ b

a

∣
∣
∣
∣

f(t, x)− f(t, x0)

x− x0

− ∂f

∂x
(t, x0)

∣
∣
∣
∣
dt

=

∫ b

a

∣
∣
∣
∣

∂f

∂x
(t, ξt)−

∂f

∂x
(t, x0)

∣
∣
∣
∣
dt

≤
∫ b

a

ǫ

b− a
dt, because |ξt − x0|< δ,

= ǫ.

This proves that g is differentiable at x0 with g′(x0) =
∫ b

a
∂f
∂x
(t, x0) dt.

A similar (but easier) argument shows that g′ is continuous.

Lemma 5.4. Let D ⊂ C be open, and let f : [a, b] ×D → C be continuous such that
∂f
∂z

: [a, b]×D → C exists and is continuous. Define

g : D → R, z 7→
∫ b

a

f(t, z) dt.

Then g is holomorphic with

g′(z) =

∫ b

a

∂f

∂z
(t, z) dt

for z ∈ D.

Proof. Apply Lemma 5.3 to Re f and Im f and note that the Cauchy Riemann dif-
ferential equations are satisfied.
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Theorem 5.4 (Higher Derivatives). Let D ⊂ C be open, let z0 ∈ D and r > 0 be
such that Br[z0] ⊂ D, and let f : D → C be continuous such that

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

holds for all z ∈ Br(z0). Then f is infinitely often complex differentiable on Br(z0)
and satisfies

f (n)(z) =
n!

2πi

∫

∂Br(z0)

f(ζ)

(ζ − z)n+1
dζ (∗)

holds for all z ∈ Br(z0) and n ∈ N0.

Proof. We prove by induction on n ∈ N0: f is n-times complex differentiable and (∗)
holds.

For n = 0, the claim is clear, so suppose that it is true for some n ∈ N0. Define

F : [0, 2π]×Br(z0) → C, (θ, z) 7→ n!

2π

f(z0 + reiθ)reiθ

(z0 + reiθ − z)n+1
.

Then F is continuous and, by the induction hypothesis, satisfies

f (n)(z) =
n!

2πi

∫

∂Br(z0)

f(ζ)

(ζ − z)n+1
dζ =

∫ 2π

0

F (θ, z) dθ

for all z ∈ Br(z0). Furthermore,

∂F

∂z
(θ, z) =

(n+ 1)!

2π

f(z0 + reiθ)reiθ

(z0 + reiθ − z)n+2

is continuous on [0, 2π] × Br(z0). From Lemma 5.4, we thus conclude that f (n) is
holomorphic on D with

f (n+1)(z) =

∫ 2π

0

∂F

∂z
(θ, z) dθ =

(n + 1)!

2πi

∫

∂Br(z0)

f(ζ)

(ζ − z)n+2
dζ.

Corollary 5.4.1 (Generalized Cauchy Integral Formula). Let D ⊂ C be open, and
let f : D → C be holomorphic. Then f is infinitely often complex differentiable on D.
Moreover, for any z0 ∈ D and r > 0 such that Br[z0] ⊂ D, the generalized Cauchy
integral formula

f (n)(z) =
n!

2πi

∫

∂Br(z0)

f(ζ)

(ζ − z)n+1
dζ

holds for all z ∈ Br(z0) and n ∈ N0.
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Proof. Apply Theorem 5.3 and 5.4.

Example. We shall use Cauchy’s integral theorem and formula to evaluate the line
integral

∫

γ

eζ

ζ(ζ − 1)
dζ

for various curves γ:

(a) γ = ∂Bπ(−3): The function

f : C \ {1} → C, z 7→ ez

z − 1

is holomorphic, and we have Bπ[−3] ⊂ C \ {1}. Cauchy’s integral formula thus
yields:

∫

∂Bπ(−3)

eζ

ζ(ζ − 1)
dζ =

∫

∂Bπ(−3)

f(ζ)

ζ
dζ = 2πi f(0) = −2πi.

(b) γ = ∂B 1
2
(i): As the integrand is holomorphic in the star-shaped domain B 3

4
(i),

Cauchy’s integral theorem yields that
∫

∂B 1
2
(i)

eζ

ζ(ζ − 1)
dζ = 0.

(c) γ = ∂B2(0): the method of partial fractions yields

1

z(z − 1)
=

1

z − 1
− 1

z
.

Since 0, 1 ∈ B2(0), we obtain with the help of Cauchy’s integral formula:
∫

∂B2(0)

eζ

ζ(ζ − 1)
dζ =

∫

∂B2(0)

eζ

ζ − 1
dζ −

∫

∂B2(0)

eζ

ζ
dζ = 2πi (e− 1).

Theorem 5.5 (Characterizations of Holomorphic Functions). Let D ⊂ C be open,
and let f : D → C be continuous. Then the following are equivalent:

(i) f is holomorphic;

(ii) the Morera condition holds, i.e.
∫

∂∆
f(ζ) dζ = 0 for each triangle ∆ ⊂ D;

(iii) for each z0 ∈ D and r > 0 with Br[z0] ⊂ D, we have

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

for z ∈ Br(z0);
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(iv) for each z0 ∈ D, there exists r > 0 with Br[z0] ⊂ D and

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

for z ∈ Br(z0);

(v) f is infinitely often complex differentiable on D;

(vi) for each z0 ∈ D, there exists a neighbourhood U ⊂ D of z0 such that f has an
antiderivative on U .

Proof. (i) =⇒ (ii) is Goursat’s Lemma.
(i) =⇒ (iii) is the Cauchy Integral Formula for circles, and (iii) =⇒ (iv) is trivial.
(iv) =⇒ (v) follows immediately from Theorem 5.4, and (v) =⇒ (i) is again trivial.
(ii) =⇒ (vi) follows from Theorem 5.2 because every z0 ∈ D has an open, star-

shaped neighbourhood contained in D.
(vi) =⇒ (v): Let z0 ∈ D, and let U ⊂ D be a neighbourhood of z0 such that f

has an antiderivative, say F , on U . Then F is holomorphic on U . Applying (i) =⇒
(v) to F , we see that F is infinitely often complex differentiable on U . Consequently,
f = F ′ is infinitely complex differentiable on U . Since z0 ∈ D was arbitrary, we
conclude that f is infinitely often complex differentiable on D.

We conclude this chapter with Liouville’s Theorem and its application to the
Fundamental Theorem of Algebra.

Definition. A holomorphic function defined on all of C is called entire.

Theorem 5.6 (Liouville’s Theorem). Let f : C → C be a bounded entire function.
Then f is constant.

Proof. We will show that f ′ ≡ 0.
Let C ≥ 0 be such that |f(z)|≤ C for all z ∈ C. Let z ∈ C be arbitrary, and let

r > 0. By the generalized Cauchy integral formula, we have

|f ′(z)|= 1

2π

∣
∣
∣
∣

∫

∂Br(z)

f(ζ)

(ζ − z)2
dζ

∣
∣
∣
∣
≤ 1

2π
ℓ(∂Br(z)) sup

ζ∈∂Br(z)

|f(ζ)|
|ζ − z|2 ≤ 1

2π
2πr

C

r2
=

C

r
.

Letting r → ∞, we obtain f ′(z) = 0. This completes the proof.

Corollary 5.6.1 (Fundamental Theorem of Algebra). Let p be a non-constant poly-
nomial with complex coefficients. Then p has a zero.

Proof. Assume that p has no zero. Then the function

f : C → C, z 7→ 1

p(z)
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is entire. Since p is a nonconstant polynomial, we have lim
|z|→∞

|p(z)|= ∞ and thus

lim
|z|→∞

|f(z)|= 0. Let R > 0 be such that |f(z)|≤ 1 for |z|> R. Since f is continuous it

is bounded on BR[0], and by the choice of R, it is bounded on C\BR[0], too, and thus
bounded on all of C. By Liouville’s Theorem, f is thus constant, and so is therefore
p, which is a contradiction.

Problem 5.1. Let D ⊂ C be open.

(a) Suppose f : D → C has an antiderivative on D and 0 /∈ f(D). Show that there
exists a holomorphic function g : D → C such that f = exp ◦g.
Hint: consider f ′(z)

f(z)
.

(b) If D is star shaped, and f : D → C is holomorphic such that 0 /∈ f(D), show that
there exists a holomorphic function g : D → C such that f = exp ◦g.

Problem 5.2. Let z0 ∈ C, let r > 0, and let f : Br[z0] → C be continuous such that
f |Br(z0) is holomorphic. Show that

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

for all z ∈ Br(z0). Hint: For θ ∈ (0, 1), apply the Cauchy integral formula to
z 7→ f(θ(z − z0) + z0) on ∂B r

θ
(z0); then let θ → 1−.



Chapter 6

Convergence of Holomorphic

Functions

Recall the following definition:

Definition. Let D ⊂ C be open. A sequence (fn)
∞
n=1 of C-valued functions on D is

said to converge uniformly on D to f : D → C if, for each ǫ > 0, there exists N ∈ N

such that |fn(z)− f(z)|< ǫ for all n ≥ N and all z ∈ D.

We recall the following theorem from analysis:

Theorem 6.1 (Uniform Convergence Preserves Continuity). Let D ⊂ C be open, and
let (fn)

∞
n=1 be a sequence of continuous, C-valued functions on D converging uniformly

on D to f : D → C. Then f is continuous.

We now “localize” the notion of uniform convergence:

Definition. Let D ⊂ C be open. Then a sequence (fn)
∞
n=1 of C-valued functions on

D is said to converge locally uniformly on D to f : D → C if, for each z0 ∈ D, there
exists a neighbourhood U ⊂ D of z0 such that (fn|U)∞n=1 converges to f |U uniformly
on U .

Proposition 6.1 (Local Uniform Convergence). Let D ⊂ C be open, and let (fn)
∞
n=1

be a sequence of continuous, C-valued functions on D converging locally uniformly on
D to f : D → C. Then f is continuous.

Proof. Let z0 ∈ D, and let U ⊂ D be a neighbourhood of z0 such that fn|U→ f |U
uniformly on U By Theorem 6.1, f |U is continuous. Hence, f is continuous at z0.

Proposition 6.2 (Compact Convergence). Let D ⊂ C be open, and let f, f1, f2, . . . :
D → C be functions. Then the following are equivalent:

(i) (fn)
∞
n=1 converges to f locally uniformly on D;
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(ii) for each compact K ⊂ D, the sequence (fn|K)∞n=1 converges to f |K uniformly on
K.

Proof. (i) =⇒ (ii): Let K ⊂ D be compact. For each z ∈ K, there exists a neigh-
bourhood Uz ⊂ D of z such that fn|Uz→ f |Uz uniformly on Uz. Since K is compact,
there exist z1, . . . , zm ∈ K such that

K ⊂ Uz1 ∪ · · · ∪ Uzm .

Let ǫ > 0. For each j = 1, . . . , m, there exists nj ∈ N such that |fn(z)− f(z)|< ǫ for
all n ≥ nj and all z ∈ Uzj . Set N := max{n1, . . . , nm}. Then |fn(z)− f(z)|< ǫ holds
for all n ≥ N and z ∈ K.

(ii) =⇒ (i): Let z0 ∈ D, and let r > 0 be such that Br[z0] ⊂ D. Since Br[z0] is com-
pact, (fn|Br[z0])

∞
n=1 converges uniformly on Br[z0] to f |Br[z0]. Trivially, (fn|Br(z0))

∞
n=1

thus converges uniformly on Br(z0) to f |Br(z0).

Instead of locally uniform convergence, we therefore often speak of compact con-
vergence.

Lemma 6.1. Let D ⊂ C be open, let γ be a curve in D, and let f, f1, f2, . . . : D → C

be continuous functions such that (fn|{γ})∞n=1 converges to f |{γ} uniformly on {γ}.
Then we have ∫

γ

f(ζ) dζ = lim
n→∞

∫

γ

fn(ζ) dζ.

Proof. Let ǫ > 0, and choose N ∈ N such that

|fn(ζ)− f(ζ)|< ǫ

ℓ(γ) + 1

for all n ≥ N and z ∈ {γ}. For n ≥ N , we thus obtain:
∣
∣
∣
∣

∫

γ

fn −
∫

γ

f

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

γ

(fn − f)

∣
∣
∣
∣

≤ ℓ(γ) sup{|fn(ζ)− f(ζ)|: ζ ∈ {γ}}

≤ ǫ ℓ(γ)

ℓ(γ) + 1

< ǫ.

Lemma 6.2. Let D ⊂ C be open, let γ be a curve in D, and let f1, f2, . . . : D → C be
continuous functions converging compactly to f : D → C. Then f is continuous, and
we have ∫

γ

f(ζ) dζ = lim
n→∞

∫

γ

fn(ζ) dζ.
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Proof. If γ : [a, b] → C is a curve (and thus continuous) then {γ} = γ([a, b]) is
compact. Hence, Lemma 6.1 applies.

Theorem 6.2 (Weierstraß Theorem). Let D ⊂ C be open, let f1, f2, . . . : D → C

be holomorphic such that (fn)
∞
n=1 converges to f : D → C compactly. Then f is

holomorphic, and (f
(k)
n )∞n=1 converges compactly to f (k) for each k ∈ N.

Proof. By Theorem 6.1, f is continuous.

To see that f is holomorphic, let ∆ ⊂ D be a triangle. By Goursat’s Lemma,
∫

∂∆
fn(ζ) dζ = 0 holds for all n ∈ N. From Lemma 6.2, we conclude that

∫

∂∆

f(ζ) dζ = lim
n→∞

∫

∂∆

fn(ζ) dζ = 0,

i.e. f satisfies the Morera condition and thus is holomorphic.

Let z0 ∈ D, and let 0 < r < R be such that Br[z0] ⊂ BR(z0) ⊂ BR[z0] ⊂ D. For
any z ∈ Br(z0), we have

|f ′
n(z)− f ′(z)| = 1

2π

∣
∣
∣
∣

∫

∂BR(z0)

fn(ζ)− f(ζ)

(ζ − z)2
dζ

∣
∣
∣
∣

≤ 1

2π
ℓ(∂BR(z0)) sup

ζ∈∂BR(z0)

∣
∣
∣
∣

fn(ζ)− f(ζ)

(ζ − z)2

∣
∣
∣
∣

≤ R

(R− r)2
sup

ζ∈∂BR(z0)

|fn(ζ)− f(ζ)|.

Let ǫ > 0, and choose N ∈ N such that

|fn(ζ)− f(ζ)|< ǫ
(R − r)2

R

for all n ≥ N and ζ ∈ ∂BR(z0). Then it follows from the above estimates that
|f ′

n(z)−f ′(z)|≤ ǫ for all n ≥ N and z ∈ Br(z0). Consequently, (f
′
n|Br(z0))

∞
n=1 converges

to f ′|Br(z0) uniformly on Br(z0). As z0 ∈ D is arbitrary, this means that (f ′
n)

∞
n=1

converges to f locally uniformly, i.e. compactly, on D.

For higher derivatives, the claim now follows by induction.

Lemma 6.3. Let z0 ∈ C, let r > 0, and let z ∈ Br(z0). Then

1

ζ − z
=

∞∑

n=0

1

(ζ − z0)n+1
(z − z0)

n

converges absolutely and uniformly on ∂Br(z0).
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Proof. Let ζ ∈ ∂Br(z0), and note that

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

1

1− z−z0
ζ−z0

.

Since |z − z0|< r and |ζ − z0|= r, we have
∣
∣
∣
z−z0
ζ−z0

∣
∣
∣ < 1, so that

1

ζ − z
=

1

(ζ − z0)

∞∑

n=0

(
z − z0
ζ − z0

)n

=

∞∑

n=0

1

(ζ − z0)n+1
(z − z0)

n.

Since
∣
∣
∣

(z−z0)n

(ζ−z0)n+1

∣
∣
∣ =

|z−z0|n

rn+1 and
∑∞

n=0
|z−z0|n

rn+1 < ∞, the Weierstraß M-test yields abso-

lute and uniform convergence on ∂Br(z0).

Theorem 6.3 (Power Series for Holomorphic Functions). Let D ⊂ C be open. Then
the following are equivalent for f : D → C:

(i) f is holomorphic;

(ii) for each z0 ∈ D, there exists r > 0 with Br(z0) ⊂ D and a0, a1, a2, . . . ∈ C such
that f(z) =

∑∞
n=0 an(z − z0)

n for all z ∈ Br(z0);

(iii) for each z0 ∈ D and r > 0 with Br(z0) ⊂ D, we have

f(z) =
∞∑

n=0

f (n)(z0)

n!
(z − z0)

n

for all z ∈ Br(z0).

Proof. (iii) =⇒ (ii) is trivial; (ii) =⇒ (i) follows from Theorem 3.2.
(i) =⇒ (iii): Let z0 ∈ D, and let r > 0 be such that Br(z0) ⊂ D. Let z ∈ Br(z0)

and choose ρ ∈ (0, r) such that z ∈ Bρ(z0). Then we have:

f(z) =
1

2πi

∫

∂Bρ(z0)

f(ζ)

ζ − z
dζ

=
1

2πi

∫

∂Bρ(z0)

∞∑

n=0

f(ζ)

(ζ − z0)n+1
(z − z0)

n dζ, by Lemma 6.3,

=

∞∑

n=0

(

1

2πi

∫

∂Bρ(z0)

f(ζ)

(ζ − z0)n+1
dζ

)

(z − z0)
n, by Lemma 6.1,

=

∞∑

n=0

f (n)(z0)

n!
(z − z0)

n.
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Elementary Properties of

Holomorphic Functions

Theorem 7.1 (Identity Theorem). Let D ⊂ C be open and connected, and let f, g :
D → C be holomorphic. Then the following are equivalent:

(i) f = g;

(ii) the set {z ∈ D : f(z) = g(z)} has a cluster point in D;

(iii) there exists z0 ∈ D such that f (n)(z0) = g(n)(z0) for all n ∈ N0.

Proof. Without loss of generality, it suffices to prove the case where g = 0.
(i) =⇒ (iii) is trivial.
(iii) =⇒ (ii): Let z0 ∈ D be as in (iii), and let r > 0 be such that Br(z0) ⊂ D.

Then we have by Theorem 6.3 that

f(z) =

∞∑

n=0

f (n)(z0)

n!
(z − z0)

n = 0

for all z ∈ Br(z0), so that

Br(z0) ⊂ Z(f) := {z ∈ D : f(z) = 0}.

Every point in Br(z0) is therefore a cluster point of Z(f).
(ii) =⇒ (i): Let

V := {z ∈ D : z is a cluster point of Z(f)},

so that V 6= ∅ by (ii).
We claim that V is open. Let z0 ∈ V , and let r > 0 be such that Br(z0) ⊂ D.

Then

f(z) =

∞∑

n=0

an(z − z0)
n

46
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holds for some a0, a1, a2, . . . ∈ C and all z ∈ Br(z0). As z0 is a cluster point of Z(f),
there exists a sequence (zk)

∞
k=1 in Z(f) \ {z0} such that z0 = lim

k→∞
zk. Inductively, we

find that an = 0 for all n ∈ N0: given that an = 0 for n = 0, 1, 2, m− 1 we see that

0 = lim
k→∞

f(zk)

(zk − z0)m

= lim
k→∞

∞∑

n=m

an(zk − z0)
n−m = am,

on noting, in view of Theorems 3.1 and 6.3, that the uniform convergence of the
power series on, say, Br/2[z0] justifies the interchange of limits. Hence f(z) = 0 for
all z ∈ Br(z0). That is, Br(z0) ⊂ Z(f) so that Br(z0) ⊂ V .

We now claim that D \ V is also open. Let z0 ∈ D \ V , and ǫ > 0 be such that
Bǫ(z0) ⊂ D and (Bǫ(z0) \ {z0})∩Z(f) = ∅. For any z ∈ Bǫ(z0) \ {z0} and δ > 0 such
that Bδ(z) ⊂ Bǫ(z0) \ {z0}, we thus have (Bδ(z) \ {z}) ∩ Z(f) = ∅. It follows that
z /∈ V . Consequently, Bǫ(z0) ⊂ D \ V .

In summary, V and D \ V are both open and clearly satisfy D = V ∪ (D \V ) and
V ∩ (D \ V ) = ∅. The connectedness of D yields D = V and thus Z(f) = D.

Examples.

1. There is no non-zero entire function f : C → C such that f
(
1
n

)
= 0 for n ∈ N.

For any entire function f with this property, 0 is a cluster point of Z(f). By
the Identity Theorem, this means f ≡ 0.

2. Since R has cluster points in C, the holomorphic extensions of exp, cos, and sin
from R to C are unique. For analogous reasons, Log is the only holomorphic
extension of log to C−.

3. There is no entire function f such that

f

(
1

n

)

=
1

n
and f

(

−1

n

)

=
1

n2

for n ∈ N. In the view of the identity theorem, the first condition necessitates
that f(z) = z whereas the second one implies that f(z) = (−z)2 for all z ∈ C.

Lemma 7.1. Let D ⊂ C be open, let f : D → C be holomorphic, and let z0 ∈ D and
r > 0 be such that Br[z0] ⊂ D. Suppose that

|f(z0)|< inf
z∈∂Br(z0)

|f(z)|.

Then f has a zero in Br(z0).
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Proof. Assume otherwise, i.e. f has no zero in Br(z0). The hypothesis implies that f
has no zero on ∂Br(z0), so that f has no zero in Br[z0]. Assume however, that for each
R > 0 such that Br[z0] ⊂ BR(z0) ⊂ D, there is a zero of f in BR(z0). Then we have
a sequence (Rn)

∞
n=1 in (r,∞) with r = lim

n→∞
Rn such that Br[z0] ⊂ BRn(z0) ⊂ D and

Z(f)∩BRn(z0) 6= ∅ for each n ∈ N. For each n ∈ N, pick zn ∈ Z(f)∩BRn(z0). Then
(zn)

∞
n=1 is bounded, and thus has a convergent subsequence (znk

)∞k=1 with limit z′.
Clearly, z′ ∈ Z(f), and since lim

k→∞
Rnk

= r, we have z′ ∈ Br[z0], which is impossible.

Consequently, f has no zero on some BR(z0) with Br[z0] ⊂ BR(z0) ⊂ D.
From the Cauchy Integral Formula, we obtain

1

|f(z0)|
=

∣
∣
∣
∣

1

2πi

∫

∂Br(z0)

1

f(ζ)

1

ζ − z0
dζ

∣
∣
∣
∣

≤ 1

2π
2πr sup

ζ∈∂Br(z0)

1

|f(ζ)|r =
1

infζ∈∂Br(z0)|f(ζ)|

and thus
|f(z0)|≥ inf

ζ∈∂Br(z0)
|f(ζ)|,

which is a contradiction.

Theorem 7.2 (Open Mapping Theorem). Let D ⊂ C be open and connected, and let
f : D → C be holomorphic and not constant. Then f(D) ⊂ C is open and connected.

Proof. By the continuity of f , it is clear that f(D) is connected.
Let w0 ∈ f(D), and let z0 ∈ D be such that w0 = f(z0). Choose r > 0 such

that Br[z0] ⊂ D and such that {z ∈ Br[z0] : f(z) = w0} = {z0}. (This can be
accomplished with the help of the Identity Theorem.) Let ǫ = 1

2
inf

∂Br(z0)
|f(z)−w0|> 0.

We claim that Bǫ(w0) ⊂ f(D). Let w ∈ Bǫ(w0). For z ∈ ∂Br(z0), we have

|f(z)− w|≥ |f(z)− w0|−|w − w0|> 2ǫ− ǫ = ǫ.

It follows that

|f(z0)− w|= |w − w0|< ǫ ≤ inf
z∈∂Br(z0)

|f(z)− w|.

By Lemma 7.1, this means that

D → C, z 7→ f(z)− w

has a zero in Br(z0). It follows that w ∈ f(D).

Theorem 7.3 (Maximum Modulus Principle). Let D ⊂ C be open and connected,
and let f : D → C be holomorphic such that the function

|f |: D → C, z 7→ |f(z)|

attains a local maximum on D. Then f is constant.
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Proof. Let z0 ∈ D be such that |f | attains a local maximum at z0, i.e. there exists
ǫ > 0 such that Bǫ(z0) ⊂ D and |f(z0)|≥ |f(z)| for all z ∈ Bǫ(z0). Then f(z0) is
not an interior point of f(Bǫ(z0)), so that f |Bǫ(z0) is constant by the Open Mapping
Theorem. The Identity Theorem then yields that f is constant.

Corollary 7.3.1. Let D ⊂ C be open and connected, and let f : D → C be holo-
morphic such that |f | attains a local minimum on D. Then f is constant or f has a
zero.

Proof. Suppose that f has no zero. Applying the Maximum Modulus Principle to 1/f
yields that f is constant.

Corollary 7.3.2 (Maximum Modulus Principle for Bounded Domains). Let D ⊂ C

be open, connected, and bounded, and let f : D → C be continuous such that f |D is
holomorphic. Then |f | attains its maximum over D on ∂D.

Proof. The claim is trivial if f is constant, so suppose that f is not constant.
Since f is continuous and D is compact, there exists a point z0 ∈ D with |f(z0)|=

max
{
|f(z)|: z ∈ D

}
. If z0 ∈ D, then |f | would attain a local maximum at z0, which

is impossible by the Maximum Modulus Principle. Therefore z0 ∈ ∂D must hold.

From now on, we shall use D to denote the open unit disc B1(0).

Theorem 7.4 (Schwarz’s Lemma). Let f : D → D be holomorphic such that f(0) = 0.
Then one has

|f(z)|≤ |z| for z ∈ D and |f ′(0)|≤ 1.

Moreover, if there exists z0 ∈ D \ {0} such that |f(z0)|= |z0| or if |f ′(0)|= 1, then
there exists c ∈ C with |c|= 1 such that f(z) = cz for z ∈ D.

Proof. Let f(z) =
∑∞

n=0 anz
n be the power series expansion of f . Since f(0) = 0, we

have a0 = 0. Define

g : D → C, z 7→
∞∑

n=1

anz
n−1.

Then g is holomorphic with g(0) = a1 = f ′(0) and f(z) = zg(z) for z ∈ D. Let
r ∈ (0, 1). Then we have

|g(z)|= |f(z)|
r

≤ 1

r

for z ∈ ∂Br(0) and thus for all z ∈ Br[0] by the Maximum Modulus Principle. Letting
r → 1, we deduce that |g(z)|≤ 1 for all z ∈ D and thus |f(z)|≤ |z| for all z ∈ D as
well as |f ′(0)|= |g(0)|≤ 1.

Suppose that there exists z0 ∈ D\{0} such that |f(z0)|= |z0| or |f ′(0)|= |g(0)|= 1.
Then |g| has a maximum at z0 or 0, respectively, so that g is constant. Hence, there
exists c ∈ C with |c|= 1 such that f(z) = zg(z) = cz for z ∈ D.
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Definition. Let D1, D2 ⊂ C be open. Then f : D1 → D2 is called biholomorphic (or
conformal) if

(a) f is bijective and

(b) both f and f−1 are holomorphic.

Corollary 7.4.1. Let f : D → D be biholomorphic such that f(0) = 0. Then there
exists c ∈ C with |c|= 1 such that f(z) = cz for z ∈ D.

Proof. Let z ∈ D. Then |f(z)|≤ |z| holds by Schwarz’s Lemma, as does

|z|= |f−1(f(z))|≤ |f(z)|.
The result then follows from Schwarz’s Lemma.

Lemma 7.2. Let w ∈ D, and define

φw : D → C, z 7→ w − z

1− w̄z
.

Then:

(i) φw maps D bijectively onto D;

(ii) φw(w) = 0;

(iii) φw(0) = w;

(iv) φ−1
w = φw.

Proof. Obviously, φw is holomorphic and extends continuously to D.
Then for |z|= 1 we may express

|φw(z)|=
∣
∣
∣
∣

w − z

1− w̄z

∣
∣
∣
∣

1

|z̄| =
∣
∣
∣
∣

w − z

z̄ − w̄

∣
∣
∣
∣
= 1.

By the Maximum Modulus Principle, φw(D) ⊂ D holds. Since φw is not constant,
φw(D) is open and thus contained in the interior of D, i.e. in D.

It is obvious that φw(w) = 0 and φw(0) = w.
Moreover, we have for z ∈ D:

(φw ◦ φw)(z) =
w − w−z

1−w̄z

1− w̄ w−z
1−w̄z

=
w(1− w̄z)− (w − z)

(1− w̄z)− w̄(w − z)

=
−|w|2z + z

1− |w|2
= z.

Hence, φw is bijective with φ−1
w = φw.
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Theorem 7.5 (Biholomorphisms of D). Let f : D → D be biholomorphic. Then there
exist w ∈ D and c ∈ ∂D with f(z) = cφw(z) for z ∈ D.

Proof. Set w := f−1(0). Then f ◦ φw : D → D is biholomorphic with (f ◦ φw)(0) = 0.
By Corollary 7.4.1, there exists c ∈ C with |c|= 1 such that f(φw(z)) = cz for z ∈ D,
so that

f(z) = f(φw(φw(z))) = c φw(z)

for z ∈ D.
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The Singularities of a Holomorphic

Function

Definition. Let D ⊂ C be open, and let f : D → C be holomorphic. We call
z0 ∈ C\D an isolated singularity of f if there exists ǫ > 0 such that Bǫ(z0)\{z0} ⊂ D.
We say that the isolated singularity z0 is removable if there exists a holomorphic
function g : D ∪ {z0} → C such that g|D= f .

Theorem 8.1 (Riemann’s Removability Condition). Let D ⊂ C be open, let f :
D → C be holomorphic, and let z0 ∈ C \D be an isolated singularity of f . Then the
following are equivalent:

(i) z0 is removable;

(ii) there is a continuous function g : D ∪ {z0} → C such that g|D= f ;

(iii) there exists ǫ > 0 with Bǫ(z0)\{z0} ⊂ D such that f is bounded on Bǫ(z0)\{z0}.

Proof. (i) =⇒ (ii) follows from the continuity of a differentiable function.
(ii) =⇒ (iii) follows from the boundedness of g on a compact set Bǫ[z0] ⊂ D.
(iii) =⇒ (i): Let C ≥ 0 be such that |f(z)|≤ C for z ∈ Bǫ(z0) \ {z0}. Define

h : D ∪ {z0} → C, z 7→
{

(z − z0)
2f(z), z 6= z0,

0, z = z0.

Then we have for z ∈ Bǫ(z0) \ {z0} that
∣
∣
∣
∣

h(z)− h(z0)

z − z0

∣
∣
∣
∣
= |(z − z0)f(z)|≤ C|z − z0|.

Hence, h is holomorphic with h′(z0) = h(z0) = 0. Let h(z) =
∑∞

n=0 an(z − z0)
n

be the power series representation of h on Bǫ(z0). Then h′(z0) = h(z0) = 0 means
that a0 = a1 = 0, so that h(z) =

∑∞
n=2 an(z − z0)

n for z ∈ Bǫ(z0) and thus f(z) =
∑∞

n=0 an+2(z − z0)
n for z ∈ Bǫ(z0) \ {z0}.
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Define

g : D ∪ {z0} → C, z 7→







∞∑

n=0

an+2(z − z0)
n, z ∈ Bǫ(z0),

f(z), z ∈ D \Bǫ(z0).

Then g is a holomorphic function extending f .

Definition. Let D ⊂ C be open, let f : D → C be holomorphic, and let z0 ∈ C \D
be an isolated singularity of f . Then z0 is called a pole of f if lim

z→z0
|f(z)|= ∞.

Example. For n ∈ N, the function

C \ {0} → C, z 7→ 1

zn

has a pole at 0.

Theorem 8.2 (Poles). Let D ⊂ C be open, let f : D → C be holomorphic, and let
z0 ∈ C \D be an isolated singularity of f . Then z0 is a pole of f ⇐⇒ there exist a
unique k ∈ N and a holomorphic function g : D ∪ {z0} → C such that g(z0) 6= 0 and

f(z) =
g(z)

(z − z0)k

for z ∈ D.

Proof.
”⇐” This follows directly from the definition of a pole.
”⇒” Let us prove the uniqueness first. Suppose that there exist natural numbers
k1 ≤ k2 and holomorphic functions g1, g2 : D ∪ {z0} → C such that gj(z0) 6= 0 and

f(z) =
gj(z)

(z − z0)kj

for z ∈ D and j = 1, 2. If k2 > k1, we then find for all z ∈ D that

g2(z0) = lim
z→z0

g2(z) = lim
z→z0

(z − z0)
k2−k1g1(z) = 0 · g1(z0) = 0,

which is a contradiction. Hence k1 = k2 and thus g1 = g2 on D and, by continuity,
on D ∪ {z0}.

To establish the existence of k and g, choose r > 0 such that Br(z0) \ {z0} ⊂ D
and |f(z)|≥ 1 for all z ∈ Br(z0) \ {z0}. Then

Br(z0) \ {z0} → C, z 7→ 1

f(z)
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is holomorphic and bounded and thus, by Riemann’s Removability Criterion, has a
holomorphic extension h : Br(z0) → C with h(z0) = lim

z→z0
1/f(z) = 0. Note that z0 is

the only zero of h. Let

h(z) =

∞∑

n=0

an(z − z0)
n

for z ∈ Br(z0) be the power series representation of h. Set k := min{n ∈ N0 : an 6= 0}.
Since a0 = h(z0) = 0, we have k ≥ 1. Define

h̃ : Br(z0) → C, z 7→
∞∑

n=k

an(z − z0)
n−k.

Then h̃ is holomorphic, has no zeros, and satisfies h(z) = (z−z0)
kh̃(z) for z ∈ Br(z0).

For z ∈ Br(z0) \ {z0}, we thus have

f(z) =
1

(z − z0)kh̃(z)
,

so that we can construct the holomorphic function

g : D ∪ {z0} C, z 7→
{
(z − z0)

kf(z), z 6= z0,
1

h̃(z0)
, z = z0.

Definition. Let D ⊂ C be open, let f : D → C be holomorphic, and let z0 ∈ C \D
be a pole of f . Then the positive integer k in Theorem 8.2 is called the order of z0
and denoted by ord(f, z0). If ord(f, z0) = 1, we call z0 a simple pole of f .

Example. For m ∈ N, consider

fm : C \ {0} → C, z 7→ sin z

zm
.

We claim that f1 has a removable singularity at 0 whereas fm has a pole of order
m− 1 at 0 for m ≥ 2.

Recall that

sin z =

∞∑

n=0

(−1)n
z2n+1

(2n+ 1)!

for z ∈ C. For z 6= 0, we thus have

f1(z) =
sin z

z
=

∞∑

n=0

(−1)n
z2n

(2n+ 1)!
.
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Define

g : C → C, z 7→
∞∑

n=0

(−1)n
z2n

(2n+ 1)!
.

Then g is holomorphic and extends f1. Hence, f1 has a removable singularity at 0.
For m ≥ 2 and z 6= 0, note that fm(z) =

g(z)
zm−1 . Since g(0) 6= 0, we see that fm has

a pole of order m− 1 at 0.

Example. Consider
f : C \ {0} → C, z 7→ e

1
z .

Then 0 is not removable because lim
n→∞

f

(
1

n

)

= lim
n→∞

en = ∞. But 0 is not a pole

for f either: for n ∈ N, we have
∣
∣
∣
∣
f

(
i

n

)∣
∣
∣
∣
= |e−in|= 1.

Definition. Let D ⊂ C be open, let f : D → C be holomorphic, and let z0 ∈ C \D
be an isolated singularity of f . Then z0 is called essential if it is neither removable
nor a pole.

Theorem 8.3 (Casorati–Weierstraß Theorem). Let D ⊂ C be open, let f : D → C be
holomorphic, and let z0 ∈ C \D be an isolated singularity of f . Then z0 is essential
⇐⇒ f(Bǫ(z0) ∩D) = C for each ǫ > 0.

Proof. “⇐” For each n ∈ N choose zn ∈ B 1
n
(z0) ∩ D such that |f(zn) − n|< 1

n
. It

follows that lim
n→∞

|f(zn)|= ∞. Hence, z0 cannot be removable.

For each n ∈ N, choose z′n ∈ B 1
n
(z0) ∩D such that |f(z′n)|< 1

n
. This means that

lim
n→∞

f(z′n) = 0, so that z0 is not a pole either.

“⇒” Assume for some ǫ0 > 0 that f(Bǫ0(z0) ∩D) 6= C. Without loss of generality,
suppose that Bǫ0(z0) \ {z0} ⊂ D. Let w0 ∈ C and δ > 0 be such that Bδ(w0) ⊂
C \ f(Bǫ0(z0) \ {z0}). Consider

g : Bǫ0(z0) \ {z0} → C, z 7→ 1

f(z)− w0

.

Then g is holomorphic with

|g(z)|= 1

|f(z)− w0|
≤ 1

δ

for z ∈ Bǫ0(z0) \ {z0}. Hence, z0 is a removable singularity of g. Let g̃ : Bǫ0(z0) → C

be a holomorphic extension of g.
Case 1: g̃(z0) 6= 0. Since f(z) = 1

g̃(z)
+ w0 for z ∈ Bǫ0(z0) \ {z0}, this means

that z0 is a removable singularity of f , contradicting the fact that z0 is an essential
singularity.
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Case 2: g̃(z0) = 0. For z ∈ Bǫ0(z0), we have

|f(z)|=
∣
∣
∣
∣

1

g̃(z)
+ w0

∣
∣
∣
∣
≥ 1

|g̃(z)| − |w0| →
z→z0

∞.

Hence, z0 is a pole of f , again contradicting the fact that z0 is an essential singularity.

Problem 8.1.

Let D ⊂ C be open, let f : D → C be holomorphic, and let z0 ∈ D. Show that the
following are equivalent for n ∈ N:

(i) f (k)(z0) = 0 for k = 0, . . . , n− 1 and f (n)(z0) 6= 0;

(ii) there exists a holomorphic function g : D → C with g(z0) 6= 0 such that f(z) =
(z − z0)

ng(z) for z ∈ D.

If either condition holds, we say that z0 is a zero of f of order n.

Problem 8.2.

Let D ⊂ C be open, let f, g : D → C be holomorphic, and let z0 ∈ D be a zero of
order n for f and of order m ≥ 1 for g. Show the singularity z0 of f

g
is

(i) removable if m ≤ n and

(ii) a pole of order m− n otherwise.

Problem 8.3.

Let D ⊂ C be open, let f : D → C be holomorphic, and let z0 ∈ C \D be an isolated
singularity of f .

(a) Show that, if z0 is a pole of order k of f , then it is a pole of order k + 1 of f ′.
(b) Show that exp ◦f has either a removable or an essential singularity at z0.



Chapter 9

Holomorphic Functions on Annuli

Definition. Let z0 ∈ C, and let r, R ∈ [0,∞] be such that r < R. Then the annulus
centered at z0 with inner radius r and outer radius R is defined as

Ar,R(z0) := {z ∈ C : r < |z − z0|< R}.
Theorem 9.1 (Cauchy’s Integral Theorem for Annuli). Let z0 ∈ C, let r, ρ, P, R ∈
[0,∞] be such that r < ρ < P < R, and let f : Ar,R(z0) → C be holomorphic. Then
we have ∫

∂BP (z0)

f(ζ) dζ =

∫

∂Bρ(z0)

f(ζ) dζ.

Proof. The claim is equivalent to
∫

∂BP (z0)

f(ζ) dζ +

∫

∂Bρ(z0)−
f(ζ) dζ = 0.

Consider

z0

r
ρ

P

R

57
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Split ∂BP (z0) and ∂Bρ(z0)
− into finitely many arc segments α1, . . . , αn and β1, . . . , βn,

respectively, and connect them with line segments γ1, . . . , γn as shown below for n = 3:

γ−
1

γ1

γ−
2

γ2γ−
3
γ3

α1

α2

α3

β1

β2

β3

We thus obtain

∫

∂BP (z0)

f(ζ) dζ +

∫

∂Bρ(z0)−
f(ζ) dζ =

n∑

j=1

∫

αj

f(ζ) dζ +
n∑

j=1

∫

βj

f(ζ) dζ

=

n∑

j=1

∫

αj⊕γ−

j ⊕βj⊕γ(j+1)mod n

f(ζ) dζ

By making the arc segments α1, . . . , αn and β1, . . . , βn sufficiently small, we can ensure
that each of the closed curves α1 ⊕ γ−

1 ⊕ β1 ⊕ γ2, . . . , αn−1 ⊕ γ−
n−1 ⊕ βn−1 ⊕ γn, αn ⊕

γ−
n ⊕ βn ⊕ γ1 lies inside a star-shaped open subset of Ar,R(z0):
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It follows that

∫

∂BP (z0)

f(ζ) dζ +

∫

∂Bρ(z0)−
f(ζ) dζ

=

n∑

j=1

∫

αj⊕γ−

j ⊕βj⊕γ(j+1)mod n

f(ζ) dζ = 0

as claimed.

Theorem 9.2 (Laurent Decomposition). Let z0 ∈ C, let r, R ∈ [0,∞] be such that
r < R, and let f : Ar,R(z0) → C be holomorphic. Then there exists a holomorphic
function

g : BR(z0) → C and h : C \Br[z0] → C

with f = g + h on Ar,R(z0). Moreover, h can be chosen such that lim
|z|→∞

h(z) = 0, in

which case g and h are uniquely determined.

Proof. We prove the uniqueness assertion first.
Let g1, g2 : BR(z0) → C and h1, h2 : C \ Br[z0] → C be holomorphic such that

lim
|z|→∞

hj(z) = 0 for j = 1, 2 and

f = g1 + h1 = g2 + h2.

It follows that g1 − g2 = h2 − h1 on Ar,R(z0). Define

F : C → C, z 7→
{

g1(z)− g2(z), z ∈ BR(z0),
h2(z)− h1(z), z ∈ C \Br[z0].
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Then F is entire with lim
|z|→∞

|F (z)|= lim
|z|→∞

|h2(z) − h1(z)|= 0. Hence, F is bounded

and entire and thus constant by Liouville’s theorem. Since lim
|z|→∞

|F (z)|= 0, this means

that F ≡ 0, so that g1 = g2 and h1 = h2.
To show that g and h exists, for z ∈ Ar,R(z0) choose ρ and P such that

r < ρ < |z − z0|< P < R.

Define

G : Ar,R(z0) → C, ζ 7→
{ f(ζ)−f(z)

ζ−z
, ζ 6= z,

f ′(z), ζ = z.

ThenG is certainly holomorphic onAr,R(z0)\{z}. Because it is continuous onAr,R(z0),
Riemann’s Removability Criterion implies thatG is in fact holomorphic on all of Ar,R(z0).
It follows from Cauchy’s Integral Theorem for Annuli that

∫

∂Bρ(z0)

G(ζ) dζ =

∫

∂BP (z0)

G(ζ) dζ,

i.e.
∫

∂Bρ(z0)

f(ζ)

ζ − z
dζ − f(z)

∫

∂Bρ(z0)

1

ζ − z
dζ

︸ ︷︷ ︸

=0

=

∫

∂BP (z0)

f(ζ)

ζ − z
dζ − f(z)

∫

∂BP (z0)

1

ζ − z
dζ

︸ ︷︷ ︸

=2πi

,

Let us define the holomorphic functions (cf. Lemma 5.4)

h(z) :=
−1

2πi

∫

∂Bρ(z0)

f(ζ)

ζ − z
dζ

on C \Bρ[z0] and

g(z) :=
1

2πi

∫

∂BP (z0)

f(ζ)

ζ − z
dζ

on BP (z0), noting from Cauchy’s Integral Theorem for Annuli that these definitions
are independent of the precise choices of ρ ∈ (r, |z − z0|) and P ∈ (|z − z0|, R). Then
the above result may be expressed as

−2πi h(z) = 2πi g(z)− 2πi f(z)

and thus
f(z) = g(z) + h(z).

Finally, we note that h satisfies

|h(z)|≤ ρ sup
ζ∈∂Bρ(z0)

∣
∣
∣
∣

f(ζ)

ζ − z

∣
∣
∣
∣
≤ ρ

sup
ζ∈∂Bρ(z0)

|f(ζ)|

dist(z, ∂Bρ(z0))
−→
|z|→∞

0.
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Definition. The function h in Theorem 9.2 is called the principal part and g is called
the secondary part of the Laurent decomposition f = g + h.

Theorem 9.3 (Laurent Coefficients). Let z0 ∈ C, let r, R ∈ [0,∞] be such that
r < R, and let f : Ar,R(z0) → C be holomorphic. Then f has a representation

f(z) =

∞∑

n=−∞

an(z − z0)
n

for z ∈ Ar,R(z0) as a Laurent series, which converges uniformly and absolutely on
compact subsets of Ar,R(z0). Moreover, for every n ∈ Z and ρ ∈ (r, R), the coeffi-
cients an are uniquely determined as

an =
1

2πi

∫

∂Bρ(z0)

f(ζ)

(ζ − z0)n+1
dζ.

Proof. Let g and h be as in Theorem 9.2 (in particular, with lim
|z|→∞

h(z) = 0).

For z ∈ BR(z0), we have the Taylor series

g(z) =

∞∑

n=0

an(z − z0)
n,

which converges uniformly and absolutely on compact subsets of BR(z0).
Define

h̃ : A0, 1
r
(0) → C, z 7→ h

(

z0 +
1

z

)

,

so that h̃ is holomorphic with lim
z→0

h̃(z) = 0. Hence, h̃ has a removable singularity at 0

and thus extends to B 1
r
(0) as a holomorphic function. This holomorphic function,

which we also denote by h̃, can then be expanded in a Taylor series for z ∈ B 1
r
(0):

h̃(z) =

∞∑

n=0

bnz
n =

∞∑

n=1

bnz
n,

so that

h(z) =

∞∑

n=1

bn(z − z0)
−n

converges uniformly and absolutely on compact subsets of C \Br[z0].
Set an := b−n for n < 0. For z ∈ Ar,R(z0), we obtain

f(z) = g(z) + h(z) =

∞∑

n=0

an(z − z0)
n +

∞∑

n=1

a−n(z − z0)
−n =

∞∑

n=−∞

an(z − z0)
n.
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Finally, pick m ∈ Z and ρ ∈ (r, R). Note that

f(z)

(z − z0)m+1
=

∞∑

n=−∞

an(z − z0)
n−m−1 =

∞∑

n=−∞

an+m+1(z − z0)
n

converges uniformly on ∂Bρ(z0). Hence, we find

∫

∂Bρ(z0)

f(ζ)

(ζ − z0)m+1
dζ =

∞∑

n=−∞

an+m+1

∫

∂Bρ(z0)

(ζ−z0)
n dζ = am

∫

∂Bρ(z0)

1

ζ − z0
dζ = 2πi am,

noting that (ζ − z0)
n has an antiderivative for all n 6= −1. Thus

am =
1

2πi

∫

∂Bρ(z0)

f(ζ)

(ζ − z0)m+1
dζ

Corollary 9.3.1. Let z0 ∈ C, let r > 0, and let f : Br(z0)\{z0} → C be holomorphic
with Laurent representation f(z) =

∑∞
n=−∞ an(z− z0)

n. Then the singularity z0 of f
is

(i) removable if and only if an = 0 for n < 0;

(ii) a pole of order k ∈ N if and only if a−k 6= 0 and an = 0 for all n < −k;

(iii) essential if and only if an 6= 0 for infinitely many n < 0.

Proof.

(i) The “if” part follows from Theorem 6.3.

Conversely, suppose that z0 is a removable singularity, and let f̃ : Br(z0) → C

be a holomorphic extension of f with Taylor expansion f̃(z) =
∑∞

n=0 bn(z−z0)
n

for z ∈ Br(z0). The uniqueness of the Laurent representation yields an = bn for
n ∈ N0 and an = 0 for n < 0.

(ii) For the “if” part, set

g(z) := (z − z0)
kf(z) =

∞∑

n=−k

an(z − z0)
n+k

for z ∈ Br(z0) \ {z0}. Then g extends holomorphically to Br(z0) with g(z0) =

a−k 6= 0. By definition, we have f(z) = g(z)
(z−z0)k

for z ∈ Br(z0) \ {z0}. Hence, f
has a pole of order k at z0.
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For the converse, let g : Br(z0) → C be holomorphic such that g(z0) 6= 0 and

f(z) = g(z)
(z−z0)k

for z ∈ Br(z0) \ {z0}. Let g(z) =
∑∞

n=0 bn(z− z0)
n for z ∈ Br(z0)

be the Taylor series of g, so that

f(z) =

∞∑

n=0

bn(z − z0)
n−k

for z ∈ Br(z0) \ {z0}. The uniqueness of the Laurent representation yields that
an = bn+k for n ≥ −k and an = 0 for n < −k.

(iii) This follows from (i) and (ii) by elimination.

Examples.

1. Let
f : C \ {0} → C, z 7→ e−

1
z2 .

Then f has the Laurent representation

f(z) =

∞∑

n=0

(−1)n

n!

1

z2n

for z ∈ C \ {0} and thus has an essential singularity at 0.

2. Let

f : C \ {0} → C, z 7→ ez − 1

z3
,

so that

f(z) =
1

z3

∞∑

n=1

zn

n!
=

∞∑

n=1

zn−3

n!

for z ∈ C \ {0}. Hence, f has a pole of order two at 0.

Remark. The Laurent representation of a holomorphic function on an annulus Ar,R(z0)
depends not only on z0, but also on r and R.

Example. Consider the function

f : C \ {1, 3} → C, z 7→ 2

z2 − 4z + 3
,

and note that

f(z) =
1

1− z
− 1

3− z
.

Then f has the following Laurent representations:
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(a) On A0,1(0): For |z|< 1, we have

1

1− z
=

n∑

n=0

zn

and, for |z|< 3,

1

3− z
=

1

3
(
1− z

3

) =
1

3

∞∑

n=0

(z

3

)n

.

We thus have for z ∈ A0,1(0) that

f(z) =

∞∑

n=0

(

1− 1

3n+1

)

zn.

(b) On A1,3(0): For |z|> 1, we have

1

1− z
= − 1

z − 1
= − 1

z
(
1− 1

z

) = −
∞∑

n=0

1

zn+1
,

so that, for z ∈ A1,3(0):

f(z) = −
(

∞∑

n=1

1

zn
+

∞∑

n=0

zn

3n+1

)

.

(c) On A3,∞(0): For |z|> 3, we have

− 1

3 − z
=

1

z − 3
=

1

z
(
1− 3

z

) =
∞∑

n=0

3n

zn+1

and thus, for z ∈ A3,∞(0):

f(z) =

∞∑

n=1

(3n−1 − 1)
1

zn
.
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The Winding Number of a Curve

Definition. Let γ be a closed curve in C, and let z ∈ C \ {γ}. Then the winding
number of γ with respect to z is defined as

ν(γ, z) :=
1

2πi

∫

γ

1

ζ − z
dζ.

Remark. Geometrically, ν(γ, z) is the number of times γ winds around z in the coun-
terclockwise direction.

Lemma 10.1. Let γ : [0, 1] → C be a curve, and let z ∈ C \ {γ}. Then there exist
open discs D1, . . . , Dn ⊂ C \ {z} and a partition 0 = t0 < t1 < · · · < tn = 1 such that
γ([tj−1, tj]) ⊂ Dj for j = 1, . . . , n.

Proof. Let ǫ := dist(z, {γ}) > 0. Since γ is uniformly continuous, there exists δ > 0
such that |γ(t) − γ(t′)|< ǫ for all t, t′ ∈ [0, 1] such that |t− t′|< δ. Choose 0 = t0 <
t1 < · · · < tn = 1 such that |tj−1− tj |< δ for j = 1, . . . , n, and set Dj := Bǫ(γ(tj)) for
j = 1, . . . , n. By the choice of ǫ, it is clear thatD1, . . . , Dn ⊂ C\{z}. For j = 1, . . . , n,
let t ∈ [tj−1, tj], and note that |t − tj |≤ |tj−1 − tj |< δ, so that |γ(t) − γ(tj)|< ǫ, i.e.
γ(t) ∈ Dj; consequently, γ([tj−1, tj]) ⊂ Dj holds.

Proposition 10.1. Let γ be a closed curve in C, and let z ∈ C \ {γ}. Then
ν(γ, z) ∈ Z.

Proof. Choose a partition 0 = t0 < t1 < · · · < tn = 1 and open discs D1, . . . , Dn such
that γ([tj−1, tj ]) ⊂ Dj for j = 1, . . . , n.

Let j ∈ {1, . . . , n}. Since z /∈ Dj, there exists a holomorphic function Lj : Dj → C

such that
eLj(w) = w − z for w ∈ Dj .

On noting that γ(tn) = γ(t0), it is convenient to denote Dn+1 := D1 and Ln+1 := L1.
For j = 1, . . . , n we then see that γ(tj) ∈ Dj ∩Dj+1 and hence

exp(Lj(γ(tj))) = γ(tj)− z = exp(Lj+1(γ(tj))),
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so that

exp(Lj(γ(tj))− Lj+1(γ(tj))) = 1

and thus

Lj(γ(tj))− Lj+1(γ(tj)) ∈ 2πiZ.

On differentiating eLj(w) = w − z, we find that eLj(w)L′
j(w) = 1. Thus

L′
j(w) =

1

w − z
for w ∈ Dj ;

this allows us to express

∫

γ

1

ζ − z
dζ =

n∑

j=1

∫

γ|[tj−1,tj ]

1

ζ − z
dζ

=
n∑

j=1

[Lj(γ(tj))− Lj(γ(tj−1))]

=
n∑

j=1

Lj(γ(tj))−
n−1∑

j=0

Lj+1(γ(tj))

= Ln(γ(tn))− L1(γ(t0)) +

n−1∑

j=1

[Lj(γ(tj))− Lj+1(γ(tj))].

= Ln(γ(tn))− Ln+1(γ(tn)) +

n−1∑

j=1

[Lj(γ(tj))− Lj+1(γ(tj))].

=
n∑

j=1

[Lj(γ(tj))− Lj+1(γ(tj))].

We thus see that

∫

γ

1

ζ − z
dζ ∈ 2πiZ.

Definition. Let γ be a closed curve in C. We define the interior and exterior of γ
to be

int γ := {z ∈ C \ {γ} : ν(γ, z) 6= 0}

and

ext γ := {z ∈ C \ {γ} : ν(γ, z) = 0}.
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Proposition 10.2 (Winding Numbers Are Locally Constant). Let γ be a closed curve
in C. Then:

(i) the map
C \ {γ} → C, z 7→ ν(γ, z)

is locally constant;

(ii) there exists R > 0 such that C \BR[0] ⊂ ext γ.

Proof. (i): Let z0 ∈ C \ {γ} and choose R > r > 0 such that BR(z0) ⊂ C \ {γ}.
Consider the function

F : {γ} × Br[z0] → C, (ζ, z) 7→ 1

ζ − z
.

Then F is continuous and thus uniformly continuous. Choose δ ∈ (0, r) such that

z ∈ Bδ(z0), ζ ∈ {γ} ⇒ |F (ζ, z)− F (ζ, z0)|<
π

ℓ(γ) + 1
.

Then

|ν(γ, z)− ν(γ, z0)| =
∣
∣
∣
∣

1

2πi

∫

γ

(
1

ζ − z
− 1

ζ − z0

)

dζ

∣
∣
∣
∣

≤ ℓ(γ)

2π
sup
ζ∈{γ}

|F (ζ, z)− F (ζ, z0)|

≤ ℓ(γ)

2π

π

ℓ(γ) + 1

<
1

2
.

Since ν(γ, z)− ν(γ, z0) ∈ Z, this means that ν(γ, z) = ν(γ, z0).
(ii): For any z ∈ C \ {γ}, we have

|ν(γ, z)|=
∣
∣
∣
∣

1

2πi

∫

γ

1

ζ − z
dζ

∣
∣
∣
∣
≤ ℓ(γ)

2π

1

dist(z, {γ}) .

Since lim
|z|→∞

dist(z, {γ}) = ∞, there exists R > 0 such that |ν(γ, z)|≤ ℓ(γ)
2π

1
dist(z,{γ})

< 1

for all z ∈ C such that |z|> R. Since ν(γ, z) ∈ Z for all z ∈ C \ {γ}, this implies that
ν(γ, z) = 0 for all z ∈ C with |z|> R.
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The General Cauchy Integral

Theorem

Definition. Let D ⊂ C be open. We call a closed curve γ in D homologous to zero
if ν(γ, z) = 0 for each z ∈ C \D. That is, the interior of γ is a subset of D.

Definition. An open connected subset D of C is simply connected if every closed
curve in D is homologous to zero. Equivalently, the interior of every closed curve in
D is a subset of D.

Theorem 11.1 (Cauchy’s Integral Formula). Let D ⊂ C be open, let f : D → C be
holomorphic, and let γ be a closed curve in D that is homologous to zero. Then, for
n ∈ N0 and z ∈ D \ {γ}, we have

ν(γ, z)f (n)(z) =
n!

2πi

∫

γ

f(ζ)

(ζ − z)n+1
dζ.

Proof. It is enough to prove the claim for n = 0: for n ≥ 1, differentiate the integral
with respect to z and use induction.

Define

g : D ×D → C, (w, z) 7→
{

f(w)−f(z)
w−z

, w 6= z,

f ′(z), w = z.

We claim that g is continuous. To see this, let (w0, z0) ∈ D × D. As g is clearly
continuous at (w0, z0) if w0 6= z0, we need only show that g is continuous at (z0, z0).
Given ǫ > 0, choose δ > 0 small enough that Bδ[z0] ⊂ D and |f ′(z) − f ′(z0)|< ǫ for
all z ∈ Bδ[z0]. For (w, z) ∈ Bδ(z0)× Bδ(z0) we find:

• if w = z:

|g(w, z)− g(z0, z0)|= |f ′(z)− f ′(z0)|< ǫ;
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• if w 6= z:

|g(w, z)− g(z0, z0)| =
∣
∣
∣
∣

f(w)− f(z)

w − z
− f ′(z0)

∣
∣
∣
∣

=

∣
∣
∣
∣

1

w − z

∫

[z,w]

[f ′(ζ)− f ′(z0)] dζ

∣
∣
∣
∣
≤ sup

ζ∈{[z,w]}

|f ′(ζ)− f ′(z0)|≤ ǫ.

Thus, g is continuous.

Next, define

h0 : D → C, z 7→
∫

γ

g(ζ, z) dζ.

We claim that h0 is holomorphic. It is easy to see that h0 is continuous. To see that
it is indeed holomorphic, we shall show that it satisfies the Morera condition. Let
∆ ⊂ D be a triangle. For fixed ζ ∈ {γ}, the function

D → C, z 7→ g(ζ, z)

is holomorphic as a consequence of Riemann’s Removability Condition. Goursat’s Lemma
thus yields

∫

∂∆

g(ζ, z) dz = 0

for each ζ ∈ {γ}. As a consequence, we find

0 =

∫

γ

(∫

∂∆

g(ζ, z) dz

)

dζ

=

∫

∂∆

(∫

γ

g(ζ, z) dζ

)

dz

=

∫

∂∆

h0(z) dz,

so that h0 is holomorphic as claimed.

Define

h1 : ext γ → C, z 7→
∫

γ

f(ζ)

ζ − z
dζ.
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Then h1 is holomorphic. For z ∈ D ∩ ext γ, we note that

h0(z) =

∫

γ

g(ζ, z) dζ

=

∫

γ

f(ζ)− f(z)

ζ − z
dζ

=

∫

γ

f(ζ)

ζ − z
dζ − f(z)

∫

γ

1

ζ − z
dζ

︸ ︷︷ ︸

=0

=

∫

γ

f(ζ)

ζ − z
dζ

= h1(z).

Define

h : D ∪ ext γ, z 7→
{

h0(z), z ∈ D,
h1(z), z ∈ ext γ.

Then h is holomorphic. Since γ is homologous to zero, we have C \ D ⊂ ext γ.
Hence, h is entire.

For any z ∈ ext γ, we have the estimate

|h(z)|= |h1(z)|≤
ℓ(γ)

dist(z, {γ}) sup
ζ∈{γ}

|f(ζ)|. (∗)

Let R > 0 be such that C \ BR(0) ⊂ ext γ. Since (∗) implies that h is bounded
on C \ BR(0) and h is trivially bounded by continuity on BR[0], we see that h is
bounded on C and hence constant by Liouville’s Theorem. From (∗) again, we see
that lim

|z|→∞
|h(z)|= 0. Hence, h ≡ 0.

In summary, we have for z ∈ D \ {γ} that

0 = h(z) = h0(z) =

∫

γ

f(ζ)− f(z)

ζ − z
dζ =

∫

γ

f(ζ)

ζ − z
dζ − 2πiν(γ, z)f(z).

Theorem 11.2 (Cauchy’s Integral Theorem). Let D ⊂ C be open, let f : D → C

be holomorphic, and let γ be a closed curve in D that is homologous to zero. Then
∫

γ
f(ζ) dζ = 0.

Proof. Let z0 ∈ D \ {γ} be arbitrary, and define

g : D → C, z 7→ (z − z0)f(z),

so that

0 = 2πiν(γ, z0)g(z0) =

∫

γ

g(ζ)

ζ − z0
dζ =

∫

γ

f(ζ) dζ.
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Corollary 11.2.1. Let D be an open, connected subset of C. Then D is simply
connected ⇐⇒ every holomorphic function on D has an antiderivative.

Problem 11.1. Let D ⊂ C be open and connected such that, for each holomorphic
f : D → C, there is a sequence (pn)

∞
n=1 of polynomials converging to f compactly

on D. Show that D is simply connected.

Definition. Let D ⊂ C be open and connected and n ∈ N. We say that D admits

(a) holomorphic logarithms if, for every holomorphic function f : D → C with
Z(f) = ∅, there exists a holomorphic function g : D → C with f = exp ◦g;

(b) holomorphic nth roots if for every holomorphic function f : D → C with Z(f) = ∅,
there exists a holomorphic function hn : D → C with f(z) = [hn(z)]

n for z ∈ D;

(c) holomorphic roots if D admits holomorphic nth roots for each n ∈ N.

Corollary 11.2.2 (Holomorphic Logarithms). A simply connected domain admits
holomorphic logarithms.

Proof. This follows from Corollary 11.2.1 and Problem 5.1(a).

Corollary 11.2.3 (Holomorphic Roots). A simply connected domain admits holo-
morphic roots.

Proof. Let g be such that f = exp ◦g, and set hn := exp ◦
(
g
n

)
for n ∈ N.



Chapter 12

The Residue Theorem and

Applications

Definition. Let z0 ∈ C, let r > 0, and let f : Br(z0) \ {z0} → C be holomorphic with
Laurent series representation

f(z) =
∞∑

n=−∞

an(z − z0)
n

for z ∈ Br(z0) \ {z0}. Then a−1 is called the residue of f at z0 and denoted by
res(f, z0).

Remarks. 1. By Theorem 9.3, we have

res(f, z0) =
1

2πi

∫

∂Bρ(z0)

f(ζ) dζ

for any ρ ∈ (0, r).

2. If f has a removable singularity at z0, then res(f, z0) = 0.

3. Suppose that f has a simple pole at z0, i.e.

f(z) =

∞∑

n=−1

an(z − z0)
n

with a−1 6= 0, then
res(f, z0) = lim

z→z0
(z − z0)f(z).

4. Suppose that f(z) =
∑∞

n=−k an(z − z0)
n has a pole of order k at z0. On letting

g(z) = (z− z0)
kf(z), we see that res(f, z0) is the coefficient in the Taylor series

of g(z) =
∑∞

n=−k an(z−z0)
n+k =

∑∞
n=0 an−k(z−z0)

n corresponding to n = k−1:

res(f, z0) =
g(k−1)(z0)

(k − 1)!
=

1

(k − 1)!

dk−1

dzk−1

[
(z − z0)

kf(z)
]

z=z0
.
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Examples.

1. Let

f(z) =
eiz

z2 + 1
,

so that f has a simple pole at z0 = i. It follows that

res(f, i) = lim
z→i

(z − i)f(z) = lim
z→i

eiz

z + i
= − i

2e
.

2. Let

f(z) =
cos(πz)

sin(πz)
,

so that f has a simple pole at each n ∈ Z. For n ∈ Z, we thus have:

res(f, n) = lim
z→n

(z − n)
cos(πz)

sin(πz)

= lim
z→n

(z − n)
cos(πz)

sin(πz)− sin(πn)

=
1

π
lim
z→n

πz − πn

sin(πz)− sin(πn)
cos(πz)

=
1

π
.

3. Let

f(z) =
1

(z2 + 1)3
;

then f has a pole of order 3 at z0 = i. With

g(z) = (z − i)3f(z) =
1

(z + i)3
,

we have

g′(z) = − 3

(z + i)4
and g′′(z) =

12

(z + i)5
,

so that

res(f, i) =
1

2

12

(2i)5
= − 3i

16
.

Theorem 12.1 (Residue Theorem). Let D ⊂ C be open and simply connected,
z1, . . . , zn ∈ D be such that zj 6= zk for j 6= k, f : D \ {z1, . . . , zn} → C be holo-
morphic, and γ be a closed curve in D \ {z1, . . . , zn}. Then we have

∫

γ

f(ζ) dζ = 2πi
n∑

j=1

ν(γ, zj) res(f, zj).
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Proof. Let ǫ > 0 be such that Bǫ(zj) ⊂ D for j = 1, . . . , n, with zk /∈ Bǫ(zj) for k 6= j.
For j = 1, . . . , n, we have Laurent representations

f(z) =

∞∑

k=−∞

a
(j)
k (z − zj)

k

for z ∈ Bǫ(zj) \ {zj}, so that res(f, zj) = a
(j)
−1. For j = 1, . . . , n, define

hj : C \ {zj} → C, z 7→
−1∑

k=−∞

a
(j)
k (z − zj)

k,

so that hj is holomorphic on C \ {zj}. Define

g : D \ {z1, . . . , zn} → C, z 7→ f(z)−
n∑

j=1

hj(z),

and note that z1, . . . , zn are removable singularities for g.
Since D is simply connected, Cauchy’s Integral Theorem yields:

0 =

∫

γ

g(γ) dζ

=

∫

γ

f(ζ) dζ −
n∑

j=1

∫

γ

hj(ζ) dζ

=

∫

γ

f(ζ) dζ −
n∑

j=1

∫

γ

(
−1∑

k=−∞

a
(j)
k (ζ − zj)

k

)

dζ

=

∫

γ

f(ζ) dζ −
n∑

j=1

−1∑

k=−∞

a
(j)
k

∫

γ

(ζ − zj)
k dζ

=

∫

γ

f(ζ) dζ −
n∑

j=1

a
(j)
−1

∫

γ

1

ζ − zj
dζ

=

∫

γ

f(ζ) dζ −
n∑

j=1

res(f, zj) 2πi ν(γ, zj).

Corollary 12.1.1. Let D ⊂ C be open and simply connected, f : D → C be
holomorphic, and γ be a closed curve in D. Then we have

ν(γ, z) f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ

for z ∈ D \ {γ}.
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Proof. Fix z ∈ D \ {γ}, and define

g : D \ {z} → C, w 7→ f(w)

w − z
.

Then g is holomorphic with an isolated singularity at z. Let

f(w) =

∞∑

n=0

an(w − z)n

be the Taylor series expansion of f near z, so that

g(w) =
∞∑

n=−1

an+1(w − z)n,

and thus res(g, z) = a0 = f(z). The Residue Theorem then yields:

2πi ν(γ, z) f(z) = 2πi ν(γ, z) res(g, z) =

∫

γ

g(ζ) dζ =

∫

γ

f(ζ)

ζ − z
dζ.

12.1 Applications of the Residue Theorem to Real

Integrals

Proposition 12.1 (Rational Trigonometric Polynomials). Let p and q be polynomials
of two real variables such that q(x, y) 6= 0 for all (x, y) ∈ R2 with x2 + y2 = 1. Then
we have ∫ 2π

0

p(cos t, sin t)

q(cos t, sin t)
dt = 2πi

∑

z∈D

res(f, z),

where

f(z) =
1

iz
·
p

(
1

2

(

z +
1

z

)

,
1

2i

(

z − 1

z

))

q

(
1

2

(

z +
1

z

)

,
1

2i

(

z − 1

z

)) .

Proof. Just note that, by the Residue Theorem,

2πi
∑

z∈D

res(f, z) =

∫

∂D

f(ζ) dζ

=

∫ 2π

0

f(eiθ)i eiθ dθ

=

∫ 2π

0

p(cos θ, sin θ)

q(cos θ, sin θ)
dθ.
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Examples.

1. Let a > 1. What is

∫ π

0

dt

a + cos t
?

First, note that

∫ π

0

dt

a+ cos t
=

1

2

∫ π

−π

dt

a+ cos t
=

1

2

∫ 2π

0

dt

a+ cos t
.

Let
p(x, y) = 1 and q(x, y) = a + x,

so that

f(z) =
1

iz
· 1

a + 1
2

(
z + 1

z

)

=
−i

az + z2

2
+ 1

2

=
−2i

z2 + 2az + 1

=
−2i

(z − z1)(z − z2)
,

where

z1 = −a +
√
a2 − 1 ∈ D and z2 = −a−

√
a2 − 1 /∈ D, (12.1)

on noting that 1 +
√
a2 − 1 > a implies that z1 > −1.

By Proposition 12.1, we thus obtain

∫ π

0

dt

a + cos t
=

1

2

∫ 2π

0

dt

a+ cos t

= πi res(f, z1)

= πi · −2i

z1 − z2

=
2π

2
√
a2 − 1

=
π√

a2 − 1
.

2. Let a > 0. What is

∫ 2π

0

dt

(a+ cos t)2
?

Let
p(x, y) = 1 and q(x, y) = (a+ x)2,
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so that

f(z) =
1

iz
· 1
(
a + 1

2

(
z + 1

z

))2

=
−4iz

(z2 + 2az + 1)2

=
−4iz

(z − z1)2(z − z2)2
,

where z1 and z2 are again given by Eq. 12.1.

At z1, the function f has a pole of order two. In order to calculate res(f, z1),
set

g(z) := (z − z1)
2f(z) =

−4iz

(z − z2)2
,

so that

g′(z) = −4i

[
1

(z − z2)2
− 2z

(z − z2)3

]

=
−4i

(z − z2)3
[(z − z2)− 2z]

=
4i(z + z2)

(z − z2)3
;

it follows that

res(f, z1) = g′(z1)

=
−4i(−2a)

8
(√

a2 − 1
)3

=
−ai

(√
a2 − 1

)3 .

From Proposition 12.1, we conclude that

∫ 2π

0

dt

(a+ cos t)2
= 2πi res(f, z1) =

2πa
(√

a2 − 1
)3 .

Problem 12.1.

Let D ⊂ C be open, let f : D → C be holomorphic, and let z0 ∈ D be a zero of order
one of f . Show that

res

(
1

f
; z0

)

=
1

f ′(z0)
.
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Problem 12.2.

Let D ⊂ C be open, let f : D → C be holomorphic, and let z0 ∈ C \D be a simple
pole of f . Show that

res(gf ; z0) = g(z0) res(f ; z0)

for every holomorphic function g : D ∪ {z0} → C.

Proposition 12.2 (Rational Functions). Let p and q be polynomials of one real
variable with deg q ≥ deg p+ 2 and such that q(x) 6= 0 for x ∈ R. Then we have

∫ ∞

−∞

p(x)

q(x)
dx = 2πi

∑

z∈H

res

(
p

q
, z

)

,

where
H := {z ∈ C : Im z > 0}.

Proof. Since deg q ≥ deg p+2, the Comparison Test yields that the indefinite integral
exists.

For r > 0 consider the semicircle

γr : [0, π] → C, θ 7→ reiθ.

Let ǫ > 0 be such that, for D := {z ∈ C : Im z > −ǫ}, we have

{z ∈ H : q(z) = 0} = {z ∈ D : q(z) = 0}.

Then D is simply connected and p
q
is holomorphic on D except at the zeros of q in

H. For r large enough so that all zeros of q in D lie in the interior of [−r, r]⊕ γr, we
see by the Residue Theorem that

∫

[−r,r]⊕γr

p(ζ)

q(ζ)
dζ = 2πi

∑

z∈D

res

(
p

q
, z

)

= 2πi
∑

z∈H

res

(
p

q
, z

)

.

Since deg q ≥ deg p+ 2, there exist numbers R > 0 and C ≥ 0 such that
∣
∣
∣
∣

p(z)

q(z)

∣
∣
∣
∣
≤ C

|z|2

for all z ∈ C with |z|≥ R. It follows that

∣
∣
∣
∣

∫

γr

p(ζ)

q(ζ)
dζ

∣
∣
∣
∣
≤ πr sup

ζ∈{γr}

C

|ζ |2 ≤ πC

r

for r ≥ R and thus

lim
r→∞

∫

γr

p(ζ)

q(ζ)
dζ = 0.
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We then find that
∫ ∞

−∞

p(x)

q(x)
dx = lim

r→∞

∫

[−r,r]

p(ζ)

q(ζ)
dζ

= lim
r→∞

∫

[−r,r]

p(ζ)

q(ζ)
dζ + lim

r→∞

∫

γr

p(ζ)

q(ζ)
dζ

= lim
r→∞

∫

[−r,r]⊕γr

p(ζ)

q(ζ)
dζ

= 2πi
∑

z∈H

res

(
p

q
, z

)

.

Examples.

1. What is

∫ ∞

0

1

1 + x6
dx?

The zeros of q(z) = 1 + z6 are of the form eiθ where θ ∈ [0, 2π) is such that
ei6θ = −1 = eiπ, i.e. 6θ − π ∈ 2π Z, so that θ = π

6
, π
2
, 5π

6
, 7π

6
, 3π

2
, 11π

6
. For

k = 1, . . . , 6, let

zk = ei(2k−1)π
6 .

Then 1
q
has a simple pole at zk for k = 1, . . . , 6.

By Problem 12.1, we have

res

(
1

q
, zk

)

=
1

q′(zk)
=

1

6z5k
= −zk

6
,

so that by, Proposition 12.2,

∫ ∞

0

1

1 + x6
dx =

1

2

∫ ∞

−∞

1

1 + x6
dx

= πi

3∑

k=1

res

(
1

q
, zk

)

= −πi

6

(

ei
π
6 + ei

π
2 + ei

5π
6

)

= −πi

6

(

cos
π

6
+ i sin

π

6
+ i+ cos

5π

6
+ i sin

5π

6

)

=
π

6

(

2 sin
π

6
+ 1
)

=
π

3
.
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2. What is

∫ ∞

−∞

1

(x2 + 1)n
dx, where n ∈ N?

The polynomial q(z) := (z2 + 1)n has zeros of order n at ±i. Define

g(z) = (z − i)n
1

q(z)
= (z + i)−n,

so that
g(n−1)(z) = (−n) · · · (−2n + 2)(z + i)−2n+1

and thus

res

(
1

q
, i

)

=
g(n−1)(i)

(n− 1)!

=
1

(n− 1)! 22n−1i
· n · · · (2n− 2)

=
(2n− 2)!

i22n−1(n− 1)!2
.

It follows that
∫ ∞

−∞

1

(x2 + 1)n
dx = 2πi res

(
1

q
, i

)

=
π

22n−2

(2n− 2)!

(n− 1)!2
;

in particular, we have
∫ ∞

−∞

1

x2 + 1
dx = π,

∫ ∞

−∞

1

(x2 + 1)2
dx =

π

2
, and

∫ ∞

−∞

1

(x2 + 1)3
dx =

3π

8
.

Problem 12.3.

(a) Prove that sin θ ≥ 2

π
θ for 0 ≤ θ ≤ π

2
.

(b) Use part (a) to show that for R > 0 that
∫ π

0

e−R sin θ dθ <
π

R
.

(c) Let CR be the semicircular contour {Reiθ : 0 ≤ θ ≤ π}, with R > 0. Use part (b)
to establish Jordan’s Lemma: ∣

∣
∣
∣

∫

CR

eiz dz

∣
∣
∣
∣
< π.

Problem 12.4.

Let D be an open set. If f : D \ {z0} → C is holomorphic, where f has a simple pole
at z0, and Cr = {z0 + reiθ : α ≤ θ ≤ β}, prove the Fractional Residue Theorem:

lim
r→0

∫

Cr

f(z) dz = (β − α)i res(f, z0).
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12.2 The Gamma Function

For Re(z) > 0, define

Γ+(z) :=

∫ ∞

0+
e−ttz−1 dt,

where the integration is performed along the positive real axis. Then Γ+ is holomor-
phic in the right half plane {z ∈ C : Re(z) > 0}. A single integration by parts yields
the following recurrence relation

(12.2)Γ+(z + 1) =

∫ ∞

0+
e−ttz dt = −e−ttz

∣
∣
∣
∣

∞

0

+ z

∫ ∞

0+
e−ttz−1 dt

= zΓ+(z).

Since Γ+(1) =
∫∞

0
e−t dt = 1 = 0!, we see that Γ+(n+1) = n! for n ∈ N0. Continuing

in this manner we find that Γ+(z+n) = (z+n−1) . . . (z+1)zΓ+(z). On rearranging
this formula,

Γ+(z) =
Γ+(z + n)

z(z + 1) . . . (z + n− 1)
,

it is possible to analytically continue the function to the left-half plane:

Γ(z) :=







Γ+(z) Re(z) > 0,
Γ+(z + n)

z(z + 1) . . . (z + n− 1)
−n < Re(z) ≤ −n+ 1, z 6= −n + 1, n = 1, 2, 3, . . .

The resulting function Γ(z) is holomorphic in the complex plane except at z =
0,−1,−2, . . . , where it has simple poles. The graph of Γ(x) for x ∈ R is shown
in Figure 12.1 and an interactive three-dimensional plot of the surface Γ(z) for z ∈ C

is shown in Figure 12.2.
We proceed to derive a few useful relationships involving the Γ function.

• For α ∈ (0, 1) we have

Γ(α) =

∫ ∞

0+
e−ttα−1 dt = 2

∫ ∞

0+
e−y2y2α−1 dy (letting t = y2),

which leads to

Γ(α)Γ(1− α) =

(

2

∫ ∞

0+
e−y2y2α−1 dy

)(

2

∫ ∞

0+
e−x2

x1−2α dx

)

= 4

∫ ∞

0+

∫ ∞

0+
e−(x2+y2)

(y

x

)2α−1

dx dy

= 4

∫ π/2

0

tan2α−1 θ

∫ ∞

0

e−r2r dr dθ

= 2

∫ π/2

0

tan2α−1 θ dθ.
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In particular, we see for α = 1/2 that Γ2(1/2) = 2
∫ π/2

0
dθ = π and

∫ ∞

−∞

e−x2

dx = 2

∫ ∞

0

e−x2

dx = Γ

(
1

2

)

=
√
π.

A substitution then leads to the important result
∫∞

−∞
e−ax2

dx =
√

π/a for
a > 0.

For arbitrary α ∈ (0, 1), we find, on substituting z = tan2 θ,

I(α) := Γ(α)Γ(1− α) = 2

∫ π/2

0+
tan2α−1 θ dθ =

∫ ∞

0+

zα−1

1 + z
dz.

The integral here can be evaluated by a contour integration in the complex
plane, noting that the function zα−1 = e(α−1) log z is holomorphic on the star-
shaped domain obtained by slicing the complex plane along the positive real
axis. This branch cut is shown in red in the following figure. In other words we
choose the antiderivative log z = log |z|+ i arg z of the function z 7→ 1/z, where
arg z ∈ [0, 2π).

Im z

Re z

ir−1

iR

CR

Cr

Here the large circular contour CR is chosen to have radius R ≥ 2, so that
|1 + z| ≥ R/2 on CR, and the small semicircular contour Cr is chosen to have
radius r ≤ 1/2, so that |1 + z| ≥ 1/2 on Cr. On denoting

f(z) :=
zα−1

1 + z
=

e(α−1) log z

1 + z
,

we then see, accounting for the residue from the pole of f at z = −1, that

2πie(α−1)iπ =

∫ R+ir

ir

f +

∫

CR

f +

∫ −ir

R−ir

f +

∫

Cr

f.
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Since α < 1, we see that the contribution from the circular arc CR is
∣
∣
∣
∣

∫

CR

f

∣
∣
∣
∣
≤ Rα−1

R
2

· 2πR = 4πRα−1 →
R→∞

0.

Likewise, since α > 0, the contribution from the semicircular contour Cr is
∣
∣
∣
∣

∫

Cr

f

∣
∣
∣
∣
≤ rα−1

1
2

· πr = 2πrα →
r→0

0.

We thus deduce that

2πie(α−1)iπ = lim
r→0
R→∞

[∫ R+ir

ir

f −
∫ R−ir

−ir

f

]

=

∫ ∞

0+

e(α−1) log|z|

1 + z
dz −

∫ ∞

0+

e(α−1)(log|z|+i2π)

1 + z
dz

= I(α)
(
1− e(α−1)2πi

)
.

Thus

π = I(α) · e
−(α−1)πi − e(α−1)πi

2i
= I(α) · −e−απi + eαπi

2i
,

from which we see that

I(α) = Γ(α)Γ(1− α) =
π

sin πα
,

On extending this result by analytic continuation, one finds for all z ∈ C \ Z

that
Γ(z)Γ(1 − z) =

π

sin πz
.

• For α ≥ 1 and positive x and λ, another frequently encountered integral can be
expressed in terms of Γ using the substitution u = xtλ:

∫ ∞

0

e−xtλtα−1 dt =
1

λx
α
λ

∫ ∞

0

e−uu
α
λ
−1 du =

Γ
(
α
λ

)

λx
α
λ

. (12.3)

For the special case α = x = 1, this result simplifies to
∫ ∞

0

e−tλ dt =
1

λ
Γ

(
1

λ

)

= Γ

(

1 +
1

λ

)

.

For 0 < α < 1 and x > 0, a related integral is

(12.4)

∫ ∞

0

eixttα−1 dt =
iαΓ(α)

xα
.

To establish this result, it is convenient to introduce a branch cut, shown in
red, along the negative real axis:
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Im z

Re zr R

ir

iR
CR

Cr

We note that f(z) = eixzzα−1 is holomorphic inside the blue contour. Cauchy’s
Integral Theorem thus implies that

0 =

∫ R

r

f(t) dt+

∫

CR

f + i

∫ r

R

f(it) dt+

∫

Cr

f.

Since α < 1, we see on using Problem 12.3 (a) that

∣
∣
∣
∣

∫

CR

f

∣
∣
∣
∣
≤
∫ π/2

0

e−xR sin θRα−1R dθ

≤ Rα−1

∫ π/2

0

e−2xRθ/πR dθ = Rα−1 π

2x

(
1− e−xR

)
→

R→∞
0.

Likewise, since α > 0, we see that

∣
∣
∣
∣

∫

Cr

f

∣
∣
∣
∣
≤ rα

π

2x

(
1− e−xr

r

)

→
r→0

0.

Hence
∫ ∞

0

f(t) dt = −
∫ 0

∞

f(it) idt = iα
∫ ∞

0

e−xttα−1 dt =
iαΓ(α)

xα
,

as claimed.
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Figure 12.1: Graph of Γ(x) on the real line.
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Figure 12.2: Surface plot of Γ(z) in the complex plane, using an RGB color wheel
to represent the phase. Red indicates real positive values. The poles at the negative
integers and 0 are evident.




Chapter 13

Function Theoretic Consequences

of the Residue Theorem

Definition. Let D ⊂ C be open. We call S ⊂ D discrete in D if it has no cluster
points in D.

Example. If D is open and connected, and f : D → C is holomorphic and not identi-
cally zero, then Z(f) is discrete.

Remark. Let S ⊂ D be discrete, and let K ⊂ D be compact. If K ∩ S were infinite,
then K ∩ S would have cluster points, which would lie in K ⊂ D. Thus, K ∩ S must
be finite.

Remark. Let S be a discrete subset of an open setD. For suitably small radii r(z) > 0,
we note that D can be expressed as a countable union of compact sets:

D =
⋃

z∈D∩Q2

Br(z)[z].

On denoting these compact sets as {Kn}∞n=1, we see that each Kn ∩ S is finite. Thus

S =

∞⋃

n=1

(Kn ∩ S).

is either finite or countably infinite.

Example. If D is open and connected, and f : D → C is holomorphic and not identi-
cally zero, then Z(f) is at most countably infinite.

Proposition 13.1. Let D ⊂ C be open, let γ be a closed curve in D, and let S ⊂ D
be discrete. Then S ∩ int γ is finite.

Proof. By Proposition 10.2(ii), there exists R > 0 such that int γ ⊂ BR[0].

Definition. Denote the set of poles of a holomorphic function f by P(f).

87
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Definition. Let D ⊂ C be open. A meromorphic function on D is a holomorphic
function f : D \P(f) → C such that P(f) ⊂ D is discrete in D.

Remark. If D is open and connected, and f, g : D → C are holomorphic, then
f

g
is

meromorphic if g is not identically zero.

Proposition 13.2. Let D ⊂ C be open, and let f be meromorphic on D. Then,
for each z0 ∈ D, there exist ǫ > 0 with Bǫ(z0) ⊂ D and holomorphic functions

g, h : Bǫ(z0) → C such that f(z) = g(z)
h(z)

for z ∈ Bǫ(z0) \ {z0}.

Proof. If z0 is not a pole of f , the claim is clear.

Otherwise, choose ǫ > 0 so small that Bǫ(z0) ⊂ D and P(f) ∩ Bǫ(z0) = {z0}. We
can then find a holomorphic function g : Bǫ(z0) → C with g(z0) 6= 0 and k ∈ N such
that

f(z) =
g(z)

(z − z0)k

for z ∈ Bǫ(z0) \ {z0}. Setting h(z) := (z − z0)
k yields the claim.

Definition. It is convenient to define the set of extended complex numbers C∞ =
C ∪ {∞} and extend the domain of meromorphic functions to include their poles,
assigning the function value ∞ at the poles. Here ω · ∞ is identified with ∞ for all
ω ∈ ∂D. Furthermore, we define 1/0 = ∞ and 1/∞ = 0.

Definition. We can reinterpret C∞ as the unit sphere S2 in R3 by connecting every
point x + iy in the xy plane (which we identify with C) to the north pole (0, 0, 1)
with a straight line that intersects S2 at a point P (x+ iy). This defines an injective
map P : C∞ → S2. Under this mapping, 0 maps to the south pole, ∞ maps to the
north pole, and the unit circle ∂D maps to the equator. One can readily show that P
is continuous, and that the inverse P−1 : S2 → C∞ is also continuous; this allows us
to identify C∞ with the Riemann sphere S2.
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Lemma 13.1. Let D ⊂ C be open and connected, and let S ⊂ D be discrete. Then
D \ S is open and connected.

Proof. Let z ∈ D \ S. Since S is discrete in D, there exists ǫ1 > 0 such that
Bǫ1(z) ∩ S = ∅. Also, since D is open, there exists ǫ2 > 0 with Bǫ2(z) ⊂ D. Setting
ǫ := min{ǫ1, ǫ2}, we get Bǫ(z). This proves the openness of D \ S.

Assume that D \S is not connected. Then there exist open sets U 6= ∅ 6= V with
U ∩ V = ∅ and U ∪ V = D \ S. Let s ∈ S, and choose ǫ > 0 such that Bǫ(s) ⊂ D
and Bǫ(s)∩ S = {s}. Set W := Bǫ(s) \ {s}, and note that W is open and connected.
Since (U ∩W ) ∩ (V ∩W ) = ∅ and (U ∩W ) ∪ (V ∪W ) = W , the connectedness of
W yields that either U ∩W = ∅ or V ∩W = ∅ and thus W ⊂ U or W ⊂ V .

Set
SU := {s ∈ S : there exists ǫ > 0 such that Bǫ(s) \ {s} ⊂ U}

and
SV := {s ∈ S : there exists ǫ > 0 such that Bǫ(s) \ {s} ⊂ V }.

By the foregoing, we have S = SU ∪ SV , and trivially, SU ∩ SV = ∅ holds. Set

Ũ := U ∪ SU and Ṽ := V ∪ SV .

Then Ũ 6= ∅ 6= Ṽ are easily seen to be open and clearly satisfy Ũ ∩ Ṽ = ∅ and
Ũ ∪ Ṽ = D, which contradicts the connectedness of D.

Theorem 13.1 (Meromorphic Functions Form a Field). Let D ⊂ C be open and
connected. Then the meromorphic functions on D, where we define (f + g)(z) =
lim
w→z

[f(w) + g(w)] and (fg)(z) = lim
w→z

[f(w)g(w)], form a field.
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Proof. It is easily checked that the meromorphic functions do indeed form a commu-
tative ring. For each meromorphic function f 6≡ 0 on D define

f̃ : D → C, z 7→ 1

f(z)
.

AsP(f) is discrete, D\P(f) is connected by Lemma 13.1. From the Identity Theorem,
we then conclude that Z(f) is discrete, too. Thus f̃ is meromorphic and (f f̃)(z) = 1
(the multiplicative identity) for z ∈ D.

Definition. Let z0 ∈ Z(f). If f(z) = (z−z0)
kg(z), where g is a holomorphic function

with g(z0) 6= 0, we say that k := ord(f, z0).

Theorem 13.2 (Argument Principle). Let D ⊂ C be open and simply connected, let
f be meromorphic on D, and let γ be a closed curve in D \ (P(f) ∪ Z(f)). Then we
have

1

2πi

∫

γ

f ′(ζ)

f(ζ)
dζ =

∑

z∈Z(f)

ν(γ, z) ord(f, z)−
∑

z∈P(f)

ν(γ, z) ord(f, z).

Proof. By the Residue Theorem, we have

1

2πi

∫

γ

f ′(ζ)

f(ζ)
dζ =

∑

z∈Z(f)

ν(γ, z) res

(
f ′

f
, z

)

+
∑

z∈P(f)

ν(γ, z) res

(
f ′

f
, z

)

.

Let z0 ∈ Z(f), and let k := ord(f, z). Then there is a holomorphic function g
with g(z0) 6= 0 such that f(z) = (z − z0)

kg(z) and thus

f ′(z) = k (z − z0)
k−1g(z) + (z − z0)

kg′(z).

It follows that
f ′(z)

f(z)
=

k

z − z0
+

g′(z)

g(z)

for z near z0, so that

res

(
f ′

f
, z

)

= k.

Let z0 ∈ P(f), and let k := ord(f, z0). Then f(z) =
g(z)

(z − z0)k
holds with g

holomorphic such that g(z0) 6= 0 and, consequently,

f ′(z) = −k(z − z0)
−(k+1)g(z) + (z − z0)

−kg′(z).

It follows that
f ′(z)

f(z)
=

−k

z − z0
+

g′(z)

g(z)

for z 6= z0 near z0, so that

res

(
f ′

f
, z

)

= −k.
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Definition. Let D ⊂ C be open, and let f : D → C be holomorphic. We say that f
attains w0 ∈ C with multiplicity k ∈ N at z0 ∈ D if the function

D → C, z 7→ f(z)− w0

has a zero of order k at z0.

Theorem 13.3 (Bifurcation Theorem). Let D ⊂ C be open, let f : D → C be
holomorphic, and suppose that, at z0 ∈ D, the function f attains w0 with multiplicity
k ∈ N. Then there exist neighbourhoods V ⊂ D of z0 and W ⊂ f(V ) of w0 such that,
for each w ∈ W \ {w0}, there exist distinct z1, . . . , zk ∈ V with f(z1) = · · · = f(zk) =
w, where f attains w at each zj with multiplicity one.

Proof. In view of the Identity Theorem, we may choose ǫ > 0 with Bǫ[z0] ⊂ D such
that f(z) 6= w0 and f ′(z) 6= 0 for all z in the open connected set Bǫ(z0) \ {z0}.

Set V := Bǫ(z0) and γ := ∂Bǫ(z0). Choose δ > 0 such that Bδ(w0) ⊂ C \ {f ◦ γ},
and set W := Bδ(w0). Let w ∈ W . By the Argument Principle, the number of
times w is attained in V (counting multiplicity) is

1

2πi

∫

γ

f ′(ζ)

f(ζ)− w
dζ =

1

2πi

∫

f◦γ

dζ

ζ − w
= ν(f ◦ γ, w).

As ν(f ◦γ, ·) is constant on W , the number of times w is attained in V is the same as
the number of times w0 is attained in V , i.e. k. Since f ′(z) 6= 0 for all z ∈ V \{z0}, for
w 6= w0 there exist distinct z1, . . . , zk ∈ V \ {z0} such that f(z1) = · · · = f(zk) = w;
necessarily, f attains w at each zj with multiplicity one.

Theorem 13.4 (Hurwitz’s Theorem). Let D ⊂ C be open and connected, let f1, f2, . . . :
D → C be holomorphic such that (fn)

∞
n=1 converges to f compactly on D, and suppose

that Z(fn) = ∅ for n ∈ N. Then f ≡ 0 or Z(f) = ∅.

Proof. In view of Theorem 6.2, we note that f itself is holomorphic. Suppose that
f 6≡ 0, but that there exists z0 ∈ Z(f). Choose ǫ > 0 such that Bǫ[z0] ⊂ D and
f(z) 6= 0 for all z ∈ Bǫ[z0] \ {z0}, and note that

0 = lim
n→∞

1

2πi

∫

∂Bǫ(z0)

f ′
n(ζ)

fn(ζ)
dζ =

1

2πi

∫

∂Bǫ(z0)

f ′(ζ)

f(ζ)
dζ = ord(f, z0),

which is a contradiction.

Corollary 13.4.1. Let D ⊂ C be open and connected, let f1, f2, . . . : D → C be
holomorphic such that (fn)

∞
n=1 converges to f compactly on D, and suppose that fn

is injective for n ∈ N. Then f is constant or injective.
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Proof. Suppose that f is not constant. Let z0 ∈ D be arbitrary, and define

gn : D \ {z0} → C, z 7→ fn(z)− fn(z0)

for n ∈ N. Then g1, g2, . . . have no zeros. Since f is not constant, the function

D \ {z0} → C, z 7→ f(z)− f(z0)

is not zero, so that it has no zeros by Hurwitz’s theorem, i.e. f(z) 6= f(z0) for all
z ∈ D, z 6= z0.

Theorem 13.5 (Rouché’s Theorem). Let D ⊂ C be open and simply connected, and
let f, g : D → C be holomorphic. Suppose that γ is a closed curve in D such that
int γ = {z ∈ D \ {γ} : ν(γ, z) = 1} and that

|f(ζ)− g(ζ)|< |f(ζ)|

for ζ ∈ {γ}. Then f and g have the same number of zeros in int γ (counting multi-
plicity).

Proof. For t ∈ [0, 1], define ht := f + t(g− f), so that h0 = f and h1 = g. Also, since

|t(g − f)|≤ |g − f |< |f |

for any t ∈ [0, 1] on {γ}, the functions ht have no zeros on {γ}. For t ∈ [0, 1], let
n(t) ∈ N0 denote the number of zeros of ht in int γ. Since the functions ht have no
poles in D, we know from the Argument Principle that

n(t) =
1

2πi

∫

γ

h′
t(ζ)

ht(ζ)
dζ =

1

2πi

∫

γ

f ′(ζ) + t(g′(ζ)− f ′(ζ))

f(ζ) + t(g(ζ)− f(ζ))
dζ.

We thus see that n(t) is a continuous function of t. But since n(t) can only taken on
integer values, it must be constant on [0, 1]; in particular, n(0) = n(1).

Example. How many zeros does z4 − 4z + 2 have in D?
Set

g(z) := z4 − 4z + 2 and f(z) = −4z + 2.

For ζ ∈ ∂D, we have |f(ζ)|≥ |−4z| − 2 = 4− 2 = 2, so that

|f(ζ)− g(ζ)|= |ζ4|= 1 < 2 ≤ |f(ζ)|.

Since f has precisely one zero in D, so does g.

Corollary 13.5.1 (Fundamental Theorem of Algebra). Let p be a polynomial with
n := deg p ≥ 1. Then p has n zeros (counting multiplicity).
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Proof. Let
p(z) = anz

n + · · ·+ a1z + a0

with an 6= 0, and let g(z) := anz
n, so that lim

|z|→∞

∣
∣
∣
∣

p(z)− g(z)

g(z)

∣
∣
∣
∣
= 0. Choose R > 0

such that ∣
∣
∣
∣

p(z)− g(z)

g(z)

∣
∣
∣
∣
< 1

for z ∈ C with |z|≥ R. Consequently, if z ∈ ∂BR(0), we have |p(z) − g(z)|< |g(z)|.
By Rouché’s Theorem, p thus has as many zeros in BR(0) as g, namely n. Since p
has at most n zeros, these are all of the zeros of p.



Chapter 14

Harmonic Functions

Definition. Let D ⊂ RN be open, and let u : D → R be twice continuously partially
differentiable. Then u is called harmonic if

∆u =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
N

≡ 0.

We will only be concerned with harmonic functions on R2, i.e. on C.

Proposition 14.1 (Harmonic Components). Let D ⊂ C be open, and let f : D → C

be holomorphic. Then Re f and Im f are harmonic.

Proof. Clearly, Re f and Im f are twice continuously differentiable.
We have

∂2(Re f)

∂x2
=

∂

∂x

∂

∂x
Re f

=
∂

∂x

∂

∂y
Im f, by Cauchy–Riemann,

=
∂

∂y

∂

∂x
Im f

= −∂2(Re f)

∂y2
, by Cauchy–Riemann again,

so that ∆Re f ≡ 0, i.e. Re f is harmonic. Similarly, one sees that Im f is harmonic.

Remark. The converse of Proposition 14.1 is not true: a harmonic function need not
be the real part of some holomorphic function. Consider

u : C \ {0} → R, z 7→ log|z|,

so that

u(x, y) = log
√

x2 + y2 =
1

2
log(x2 + y2)

94
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for (x, y) ∈ R2 \ {(0, 0)}. The partial derivatives of u with respect to x are

∂u

∂x
=

x

x2 + y2
.

and
∂2u

∂x2
=

(x2 + y2)− 2x2

(x2 + y2)2
=

−x2 + y2

(x2 + y2)2

Moreover, since u is symmetric in x and y, we find

∂2u

∂y2
=

−y2 + x2

(x2 + y2)2
.

Consequently, u is harmonic.
Now suppose that there is a holomorphic function f : C \ {0} → C such that

Re f = u. On C−, we then have that Re f = log|z|= ReLog. The Cauchy–Riemann
Equations thus yield

∂(Im f)

∂x
(z) = −∂Re f

∂y
(z) = −∂(Re Log)

∂y
(z) =

∂(ImLog)

∂x
(z),

so that

f ′(z) =
∂Re f

∂x
(z) + i

∂(Im f)

∂x
(z) =

∂ReLog

∂x
(z) + i

∂(ImLog)

∂x
(z) = Log′ z =

1

z

for z ∈ C−. By continuity, it follows that f ′(z) = 1
z
for all z ∈ C \ {0}, so that f is

an antiderivative of z 7→ 1
z
on C \ {0}. This is impossible (cf. page 24).

Definition. Let D ⊂ C be open, and let u : D → R be harmonic. We call a harmonic
function v : D → R a harmonic conjugate of u if u+ i v is holomorphic.

Theorem 14.1 (Harmonic Conjugates). Let D ⊂ C be open and suppose that there
exists (x0, y0) ∈ D with the following property: for each (x, y) ∈ D, we have

• (x, t) ∈ D for each t between y and y0 and

• (s, y0) ∈ D for each s between x and x0.

Then every harmonic function on D has a harmonic conjugate.

Proof. Let u : D → R be harmonic. We will find a harmonic v : D → R such that

∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y
. (∗)

For (x, y) ∈ D, define

v(x, y) =

∫ y

y0

∂u

∂x
(x, t) dt+ φ(x),
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where φ will be specified later. First, note that

∂v

∂x
(x, y) =

∫ y

y0

∂2u

∂x2
(x, t) dt+ φ′(x), by Lemma 5.3,

= −
∫ y

y0

∂2u

∂y2
(x, t) dt+ φ′(x)

= −∂u

∂y
(x, y) +

∂u

∂y
(x, y0) + φ′(x).

Hence, if we want the Cauchy–Riemann differential equations to hold for u + iv, we
require that φ′(x) = −∂u

∂y
(x, y0). We thus set

v(x, y) =

∫ y

y0

∂u

∂x
(x, t) dt−

∫ x

x0

∂u

∂y
(s, y0) ds.

Then (∗) holds, so that

∂2v

∂x2
=

∂

∂x

∂v

∂x
= − ∂

∂x

∂u

∂y
= − ∂

∂y

∂u

∂x
= −∂2v

∂y2
,

i.e. v is harmonic.

Example. Let

u : R2 → R, (x, y) 7→ xy.

Then u is harmonic and

v(x, y) =

∫ y

0

t dt−
∫ x

0

s ds =
y2

2
− x2

2

is a harmonic conjugate for u.

Corollary 14.1.1. Let D ⊂ C be open, and let u : D → R be harmonic. Then, for
each z0 ∈ D, there is a neighbourhood U ⊂ D of z0 such that u|U has a harmonic
conjugate.

Corollary 14.1.2. Let D ⊂ C be open, and let u : D → R be harmonic. Then u is
infinitely often partially differentiable.

Corollary 14.1.3. Let D ⊂ C be open and connected, and let u : D → R be
harmonic. Then the following are equivalent:

(i) u ≡ 0;

(ii) there exists a nonempty open set U ⊂ D with u|U≡ 0.
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Proof. Of course, only (ii) =⇒ (i) needs proof.

Given a nonempty open set U ⊂ D with u|U≡ 0, let z0 ∈ U . Corollary 14.1.1
implies that there exists a holomorphic function f = u+iv on an open ball Bǫ(z0) ⊂ U
of z0. But then

f ′ =
∂u

∂x
− i

∂u

∂y
≡ 0

on Bǫ(z0). Consequently, f = u+iv is constant on Bǫ(z0) ⊂ D. The Identity Theorem
then implies that f is constant throughout the open connected set D.

Corollary 14.1.4. Let D ⊂ C be open, let u : D → R be harmonic, and let z0 ∈ D
and r > 0 be such that Br[z0] ⊂ D. Then we have

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ) dθ.

Corollary 14.1.5. Let D ⊂ C be open and connected, and let u : D → R be
harmonic with a local maximum or minimum on D. Then u is constant.

Proof. It is enough to consider the case of a local maximum: otherwise, replace u
by −u.

Let z0 ∈ D be a point where u attains a local maximum. Let ǫ > 0 be such that
Bǫ(z0) ⊂ D and u(z) ≤ u(z0) for all z ∈ Bǫ(z0). Let v be a harmonic conjugate of
u on Bǫ(z0). Hence, f := u + i v : Bǫ(z0) → C is holomorphic such that Re f has
a local maximum at z0. On considering the holomorphic function ef , with modulus
eRe f , we then see that eRe f has a local maximum at z0. The Maximum Modulus
Principle then implies that ef , and hence its modulus eRe f , must be constant on
Bǫ(z0). On taking the real logarithm, we see that u = Re f also is constant on Bǫ(z0).
On applying Corollary 14.1.3 to u minus this constant value, we then see that u is
constant throughout D.

Corollary 14.1.6. Let D ⊂ C be open, connected, and bounded, and let u : D → R

be continuous such that u|D is harmonic. Then u attains its maximum and minimum
over D on ∂D.

The Dirichlet Problem. Let D ⊂ C be open, connected, and bounded, and let
f : ∂D → R be continuous. Is there a continuous g : D → R such that g|∂D= f and
g|D is harmonic?

Remark. If the Dirichlet problem has a solution, it must be unique. To see this, let
g1, g2 : D → R be such that gj|∂D= f and gj|D is harmonic for j = 1, 2. Then g1 − g2
vanishes on ∂D. Since g1 − g2 attains both its maximum and minimum on ∂D, it
follows that g1 − g2 ≡ 0 on D.
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Definition. Let r > 0. The Poisson kernel for Br(0) is defined as

Pr(ζ, z) :=
r2 − |z|2
2π|ζ − z|2

for z ∈ Br(0) and ζ ∈ ∂Br(0).

Lemma 14.1. Let D ⊂ C be open, let r > 0 be such that Br[0] ⊂ D, and let
f : D → C be holomorphic. Then we have

f(z) =
1

2π

∫ 2π

0

f(reiθ)
r2 − |z|2
|reiθ − z|2 dθ =

∫ 2π

0

f(reiθ)Pr(re
iθ, z) dθ.

for z ∈ Br(0).

Proof. Fix z ∈ Br(0), and define g(w) :=
f(w)

r2 − wz
, which is holomorphic for w in

Br+ǫ(0) for some ǫ > 0. The Cauchy Integral Formula then yields

f(z)

r2 − |z|2 = g(z) =
1

2πi

∫

∂Br(0)

g(ζ)

ζ − z
dζ =

1

2πi

∫ 2π

0

g(reiθ)ireiθ

reiθ − z
dθ

=
1

2π

∫ 2π

0

f(reiθ)reiθ

(r2 − reiθz)(reiθ − z)
dθ=

1

2π

∫ 2π

0

f(reiθ)

(re−iθ − z)(reiθ − z)
dθ=

1

2π

∫ 2π

0

f(reiθ)

|reiθ − z|2 dθ,

so that

f(z) =
1

2π

∫ 2π

0

f(reiθ)
r2 − |z|2
|reiθ − z|2 dθ.

Remark. If we apply Lemma 14.1 to the function f = 1 we see for all z ∈ Br(0) that
∫ 2π

0

Pr(re
iθ, z) dθ = 1.

Theorem 14.2 (Poisson’s Integral Formula). Let r > 0, and let u : Br[0] → R be
continuous such that u|Br(0) is harmonic. Then

u(z) =

∫ 2π

0

u(reiθ)Pr(re
iθ, z) dθ

holds for all z ∈ Br(0).

Proof. Suppose first that u extends to BR(0) for some R > r as a harmonic function.
Then u has a harmonic conjugate v on BR(0), so that f := u + i v is holomorphic.
By Lemma 14.1, we have, for z ∈ Br(0), that

u(z) + i v(z) = f(z)

=

∫ 2π

0

f(reiθ)Pr(re
iθ, z) dθ =

∫ 2π

0

u(reiθ)Pr(re
iθ, z) dθ+ i

∫ 2π

0

v(reiθ)Pr(re
iθ, z) dθ,
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so that

u(z) =

∫ 2π

0

u(reiθ)Pr(re
iθ, z) dθ.

Suppose now that u is arbitrary. For t ∈ (0, 1), define

ut : B r
t
(0) → R, z 7→ u(tz).

Then ut is harmonic, and by the foregoing we have

ut(z) =

∫ 2π

0

ut(re
iθ)Pr(re

iθ, z) dθ

for z ∈ Br(0). Letting t → 1− (cf. Problem 5.2), we obtain for z ∈ Br(0) that

u(z) = lim
t→1

ut(z) = lim
t→1

∫ 2π

0

ut(re
iθ)Pr(re

iθ, z) dθ =

∫ 2π

0

u(reiθ)Pr(re
iθ, z) dθ.

Theorem 14.3. Let r > 0, and let f : ∂Br(0) → R be continuous. Define

g : Br[0] → R, z 7→
{

f(z), z ∈ ∂Br(0),
∫ 2π

0
f(reiθ)Pr(re

iθ, z) dθ, z ∈ Br(0).

Then g is harmonic on Br(0) and continuous on Br[0].

Proof. There is no loss of generality if we suppose that r = 1.
For z ∈ D and ζ ∈ ∂D, note that

Re
ζ + z

ζ − z
= Re

(ζ + z)(ζ̄ − z̄)

|ζ − z|2 =
1

|ζ − z|2Re(|ζ |
2−|z|2+zζ̄−ζz̄) =

1− |z|2
|ζ − z|2 = 2πP1(ζ, z).

As the real part of a holomorphic function,

D → R, z 7→ P1(ζ, z)

is therefore harmonic for each ζ ∈ ∂D. We thus obtain for z = x+ iy ∈ D:

(∆g)(z) =
∂2g

∂x2
(z) +

∂2g

∂y2
(z) =

∫ 2π

0

f(eiθ)

(
∂2

∂x2
P1(e

iθ, z) +
∂2

∂y2
P1(e

iθ, z)

)

dθ = 0.

Consequently, g is harmonic on Br(0).
What remains to be shown is that g is continuous at any point z0 ∈ ∂D.
Let z0 = eiθ0, and suppose without loss of generality (if necessary considering

instead g(−z)) that θ0 ∈ (0, 2π). Let ǫ > 0. We need to find δ > 0 such that
|g(z0)− g(z)|< ǫ for all z ∈ D with |z0 − z|< δ.

For δ0 > 0, let J := [θ0 − 2δ0, θ0 + 2δ0]. By making δ0 > 0 sufficiently small, we
can ensure that J ⊂ [0, 2π] and |f(eiθ)− f(z0)|< ǫ

2
for θ ∈ J . Set

S := {seiθ : s ∈ [0, 1), θ ∈ [θ0 − δ0, θ0 + δ0]},
and note that C := inf{|eiθ − z|: θ ∈ [0, 2π] \ J, z ∈ S} > 0.
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z0

S

θ0 + 2δ0 θ0 θ0 − 2δ0

Since
∫ 2π

0
P1(e

iθ, z) dθ = 1 for all z ∈ D, we have

g(z)− g(z0) =

∫ 2π

0

(f(eiθ)− f(z0))P1(e
iθ, z) dθ

=

∫

J

(f(eiθ)− f(z0))P1(e
iθ, z) dθ

︸ ︷︷ ︸

I1

+

∫

[0,2π]\J

(f(eiθ)− f(z0))P1(e
iθ, z) dθ

︸ ︷︷ ︸

I2

.

Note that

|I1|≤
∫

J

|f(eiθ)− f(z0)|
︸ ︷︷ ︸

< ǫ
2

P1(e
iθ, z) dθ ≤ ǫ

2

∫ 2π

0

P1(e
iθ, z) dθ =

ǫ

2
.
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Set K := supζ∈∂D|f(ζ)|. For z ∈ S, we then have

|I2| ≤
∫

[0,2π]\J

(|f(eiθ)|+|f(z0)|)P1(e
iθ, z) dθ

=
1

2π

∫

[0,2π]\J

(|f(eiθ)|+|f(z0)|)
1− |z|2
|eiθ − z|2 dθ

≤ K

π

∫

[0,2π]\J

1− |z|2
|eiθ − z|2 dθ

≤ K

πC2

∫

[0,2π]\J

(1− |z|2) dθ, because z ∈ S,

≤ 2K

C2
(1− |z|2)

Choose δ ∈ (0, δ0) so small that |z0 − z|< δ for z ∈ D implies

1− |z|2< C2

2K

ǫ

2
.

For z ∈ D with |z0 − z|< δ, we then have z ∈ S and hence |I2|< ǫ
2
. On combining

these results, we see that |g(z0)− g(z)|< ǫ.

Definition. Let D ⊂ C be open, and let f : D → C be continuous. We say that f
has the mean value property if, for every z0 ∈ D, there exists R > 0 with BR[z0] ⊂ D
such that

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ

for all r ∈ [0, R].

Theorem 14.4. Let D ⊂ C be open, and let f : D → C have the mean value
property such that |f | attains a local maximum at z0 ∈ D. Then f is constant on a
neighbourhood of z0.

Proof. Choose R > 0 with BR[z0] ⊂ D such that |f(z0)|≥ |f(z)| for all z ∈ BR[z0]

and f(z0) = 1
2π

∫ 2π

0
f(z0 + reiθ) dθ for all r ∈ [0, R]. If f(z0) = 0 then the result is

trivial. Otherwise, let

h(z) =
|f(z0)|
f(z0)

f(z)

and set g := Reh− |h(z0)|. Then g has the mean value property and satisfies

g(z) ≤ |h(z)|−|h(z0)|≤ 0

for z ∈ BR[z0]. It follows that

0 = g(z0) =

∫ 2π

0

g(z0 + reiθ)
︸ ︷︷ ︸

≤0

dθ
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for all r ∈ [0, R]. As the integrand is continuous, we conclude that g(z0 + reiθ) = 0
for all r ∈ [0, R] and θ ∈ [0, 2π], i.e. g ≡ 0 on BR[z0]. This means that, for z ∈ BR[z0],
we have

|h(z)|≤ |h(z0)|= Reh(z) ≤ |h(z)|,
so that Reh(z) = |h(z)|= |h(z0)| for z ∈ BR[z0]. That is, h(z) = |h(z)|= |h(z0)|=
|f(z0)|, so that f(z) = f(z0) for z ∈ BR[z0].

Corollary 14.4.1. Let D ⊂ C be open, let f : D → R be continuous and have
the mean value property, and suppose that f has a local maximum or minimum at
z0 ∈ D. Then f is constant on a neighbourhood of z0.

Proof. We only consider the case of a local maximum (for a local minimum, replace
f by −f).

Let R > 0 be such that BR[z0] ⊂ D and f(z) ≤ f(z0) for all z ∈ BR[z0]. Choose C
such that f(z)+C ≥ 0 for all z ∈ BR[z0]. It follows that |f+C| has a local maximum
at z0. Hence, f + C is constant on a neighbourhood of z0, as is f .

Corollary 14.4.2. Let D ⊂ C be open, connected, and bounded, and let f : D →
R be continuous such that f |D has the mean value property. Then f attains its
maximum and minimum on ∂D.

Proof. Without loss of generality, suppose that f is not constant. Let z0 ∈ D be such
that f(z0) is maximal. Set

V := {z ∈ D : f(z) < f(z0)}.
Then V is open and not empty. Let z ∈ D \ V , i.e. f(z) = f(z0). Then f has a
local maximum at z, so that, by Corollary 14.4.1, f(w) = f(z) = f(z0) for w in a
neighbourhood, say W ⊂ D, of z. Consequently, W ⊂ D \ V holds, so that z is an
interior point of D \ V . Since z ∈ D \ V is arbitrary, this shows that D \ V is open.
Since D is connected, and V 6= ∅, we must have D \ V = ∅, i.e. V = D.

The case of a minimum is treated analogously.

Corollary 14.4.3 (Equivalence of Harmonic and Mean-Value Properties). LetD ⊂ C

be open, and let f : D → R be continuous. Then the following are equivalent:

(i) f is harmonic;

(ii) f has the mean value property.

Proof. Only (ii) =⇒ (i) needs proof (cf. Corollary 14.1.4).
Let z0 ∈ D, and let R > 0 be such that BR[z0] ⊂ D. By Theorem 14.3, there is a

continuous function g : BR[z0] → R such that g|∂BR[z0]= f |∂BR[z0] and g|Br(z0) is har-
monic. Consequently, (g−f)|BR(z0) has the mean value property. By Corollary 14.4.2,
this means that g − f attains its maximum and minimum over BR[z0] on ∂BR[z0],
so that g = f on BR[z0]. Hence, f |BR(z0) is harmonic, i.e. ∆f ≡ 0 on BR[z0]. Since
z0 ∈ D was arbitrary, this means that ∆f ≡ 0.



Chapter 15

Analytic Continuation along a

Curve

Example. Let

D1 := {z ∈ C : Re z > 0},
D2 := {z ∈ C : Im z > Re z},

and

D3 := {z ∈ C : Im z < −Re z},

so that

D1 ∪D2 ∪D3 = C \ {0}.

Let

g : C \ {0} → C, z 7→ 1

z
,

and let f1 = Log|D1, so that f1 is an antiderivative of g on D1. Since D2 is simply
connected, g also has an antiderivative on D2; since (f

′
1−f ′

2)|D1∩D2= (g−g)|D1∩D2≡ 0,
it follows that (f1− f2)|D1∩D2 is constant, and by altering f2 by an additive constant,
we can achieve that f1|D1∩D2= f2|D1∩D2 . In the same fashion, we can find an an-
tiderivative f3 of g on D3 such that f2|D2∩D3= f3|D2∩D3. However, f1|D1∩D3 6= f3|D1∩D3

because otherwise, we would have an antiderivative of g on all of C \ {0}, which we
know to be impossible.

Since f ′
1 − f ′

3|D1∩D3= g − gD1∩D3 ≡ 0, however, there exists c ∈ C such that
f3(z) = f1(z)+c for z ∈ D1∩D2. We claim that c = 2πi. To see this, let z1, z2, z3 ∈ ∂D
be such that z1 ∈ D1∩D3, z2 ∈ D2∩D1, and z3 ∈ D3∩D2. Let γz1,z2, γz2,z3, and γz3,z1
be the arc segments of ∂D from z1 to z2, from z2 to z3, and from z3 to z1, respectively.
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Since fj is an antiderivative of g on Dj for j = 1, 2, 3, we obtain

∫

γz1,z2

g = f1(z2)− f1(z1),

∫

γz2,z3

g = f2(z3)− f2(z2),

and

∫

γz3,z1

g = f3(z1)− f3(z3).

It follows that

c = f3(z1)− f1(z1)

= f3(z1)− f3(z3) + f2(z3)− f2(z2) + f1(z2)− f1(z1)

=

∫

γz3,z1

g +

∫

γz2,z3

g +

∫

γz1,z2

g

=

∫

γz1,z2⊕γz2,z3⊕γz3,z1

g

=

∫

∂D

1

ζ
dζ

= 2πi.

y

x

z1

z2

z3

D1

D2

D3

Definition. A function element is a pair (D, f), where D ⊂ C is open and connected,
and f : D → C is a holomorphic function. For a given function element (D, f) and
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z0 ∈ D, the germ of f at z0—denoted by 〈f〉z0—is the collection of all function
elements (E, g) such that z0 ∈ E and there is a neighbourhood U ⊂ D ∩E of z0 such
that f(z) = g(z) for all z ∈ U .

Definition. Let γ : [0, 1] → C be a path, and suppose that, for each t ∈ [0, 1], there
is a function element (Dt, ft) such that:

(a) γ(t) ∈ Dt;

(b) there exists δ > 0 such that, whenever s ∈ [0, 1] is such that |s − t|< δ, then
γ(s) ∈ Dt and 〈fs〉γ(s) = 〈ft〉γ(s).

Then we call {(Dt, ft) : t ∈ [0, 1]} an analytic continuation along γ and say that
(D1, f1) is obtained by analytic continuation of (D0, f0) along γ.

Remark. Since γ is continuous and Dt is open for each t ∈ Dt, it is clear that there
exists δ > 0 such that γ(s) ∈ Dt for all s ∈ [0, 1] such that |s − t|< δ. What is
important about part (b) of the definition is that 〈fs〉γ(s) = 〈ft〉γ(s), i.e. there is a
neighbourhood Us ⊂ Ds ∩Dt of γ(s) such that fs(z) = ft(z) for z ∈ Us.

γ

γ(0)

γ(1)

D0

D1

Theorem 15.1 (Monodromy Theorem). Let γ : [0, 1] → C be a path, and let
{(Dt, ft) : t ∈ [0, 1]} and {(Et, gt) : t ∈ [0, 1]} be analytic continuations along γ
such that 〈f0〉γ(0) = 〈g0〉γ(0). Then we have 〈f1〉γ(1) = 〈g1〉γ(1).
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Proof. Let
I = {t ∈ [0, 1] : 〈ft〉γ(t) = 〈gt〉γ(t)},

so that 0 ∈ I.
We first claim that I is closed. Let t ∈ I, and let δ > 0 be such that γ(s) ∈ Dt∩Et

and
〈fs〉γ(s) = 〈ft〉γ(s) and 〈gs〉γ(s) = 〈gt〉γ(s)

for all s ∈ [0, 1] with |s− t|< δ. Since t ∈ I, there exists s ∈ I with |s− t|< δ. There
is thus a neighbourhood U ⊂ Dt ∩ Ds ∩ Et ∩ Es of γ(s) such that fs(z) = gs(z) for
all z ∈ U by the definition of I. From the choice of δ, we also have—after possibly
making U smaller—that fs(z) = ft(z) and gs(z) = gt(z) for z ∈ U . It follows that
ft(z) = gt(z) for z ∈ U , so that t ∈ I.

Let t0 := sup I. Let δ > 0 be such that γ(s) ∈ Dt0 ∩ Et0 and

〈fs〉γ(s) = 〈ft0〉γ(s) and 〈gs〉γ(s) = 〈gt0〉γ(s)

for all s ∈ [0, 1] with |s− t|< δ. Since I is closed, we have t0 ∈ I and thus ft0(z) =
gt0(z) for all z in some neighbourhood V of γ(t0) contained in Dt0 ∩ Et0 . It follows
that 〈ft0〉γ(s) = 〈gt0〉γ(s) for all s ∈ [0, 1] such that γ(s) ∈ V . For δ > 0 sufficiently
small, we thus have 〈fs〉γ(s) = 〈gs〉γ(s) for any s ∈ [0, 1] with |s − t|< δ. It follows
that [0, 1] ∩ (t0 − δ, t0 + δ) ⊂ I. Since t0 = sup I, this means that t0 = 1, so that
I = [0, 1].
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Montel’s Theorem

Definition. Let S ⊂ RN . A family F of functions on S into RM is called equicontinuous
if, for each ǫ > 0, there exists δ > 0 such that |f(x)− f(y)|< ǫ for all f ∈ F and for
all x, y ∈ S such that |x− y|< δ.

Lemma 16.1. Let S ⊂ RN . Then S contains a countable dense subset.

Proof. Let {x1, x2, x3, . . .} be a dense, countable subset of RN , e.g., QN . For n,m ∈ N

with S ∩ B 1
m
(xn) 6= ∅, choose yn,m ∈ S ∩B 1

m
(xn). Then

{

yn,m : n,m ∈ N, S ∩ B 1
m
(xn) 6= ∅

}

⊂ S

is countable.
Let ǫ > 0 and x ∈ S. Choose m ∈ N so large that 1

m
< ǫ

2
. Since {x1, x2, x3, . . .} is

dense in RN , there exists n ∈ N such that |xn−x|< 1
m

and thus x ∈ S∩B 1
m
(xn) 6= ∅.

It follows that

|yn,m − x|≤ |yn,m − xn|+|xn − x|< 2

m
< ǫ

Theorem 16.1 (Arzelà–Ascoli Theorem). Let K ⊂ RN be compact, and let F be
an equicontinuous and uniformly bounded family of functions from K to RM . Then
every sequence in F has a subsequence that converges uniformly on K.

Proof. Let (fn)
∞
n=1 be a sequence in F , and let {x1, x2, x3, . . .} be a countable dense

subset of K.
Since (fn(x1))

∞
n=1 is a bounded sequence in RM , there exists a subsequence (fn,1)

∞
n=1

of (fn)
∞
n=1 such that (fn,1(x1))

∞
n=1 converges.

Since (fn,1(x2))
∞
n=1 is a bounded sequence in RM , there exists a subsequence

(fn,2)
∞
n=1 of (fn,1)

∞
n=1 such that (fn,2(x2))

∞
n=1 converges.

Continuing inductively in this fashion, we obtain, for each k ∈ N, a subsequence
(fn,k)

∞
n=1 of (fn)

∞
n=1 such that, for each k ∈ N,

107
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• (fn,k+1)
∞
n=1 is a subsequence of (fn,k)

∞
n=1, and

• (fn,k(xk))
∞
n=1 converges.

For n ∈ N, set gn := fn,n. Then (gn)
∞
n=1 is a subsequence of (fn)

∞
n=1, and

(gn(xk))
∞
n=1 converges for each k ∈ N.

We show that (gn)
∞
n=1 is a uniform Cauchy sequence on K (and thus convergent).

Let ǫ > 0. Choose δ > 0 such that |f(x) − f(y)|< ǫ
3
for all f ∈ F and for all

x, y ∈ K with |x − y|< δ. Since K is compact, there exist y1, . . . , yν ∈ K such that
K ⊂ ⋃ν

j=1B δ
2
(yj). Since {x1, x2, x3, . . .} is dense in K, there exist k1, . . . , kν ∈ N such

that xkj ∈ B δ
2
(yj). It follows that K ⊂

⋃ν
j=1Bδ(xkj).

By construction, (gn(xk))
∞
n=1 is a Cauchy sequence for each k ∈ N. Choose N ∈ N

such that

|gn(xkj )− gm(xkj )|<
ǫ

3

for n,m ≥ N and j = 1, . . . , ν. Let x ∈ K be arbitrary, and let n,m ≥ N . Choose
j ∈ {1, . . . , ν} such that x ∈ Bδ(xkj ), and note that

|gn(x)− gm(x)|≤ |gn(x)− gn(xkj )|
︸ ︷︷ ︸

< ǫ
3

+ |gn(xkj )− gm(xkj )|
︸ ︷︷ ︸

< ǫ
3

+ |gm(xkj )− gm(x)|
︸ ︷︷ ︸

< ǫ
3

< ǫ.

Hence, (gn)
∞
n=1 is a uniform Cauchy sequence on K.

Proposition 16.1. Let D ⊂ RN be open, and let F be a family of functions from D
to RM that is equicontinuous and uniformly bounded on compact subsets of D. Then
every sequence in F has a compactly convergent subsequence.

Proof. For each k ∈ N, define Kk := Bk[0] if D = RN and Kk := Bk[0] ∩ {x ∈ D :
dist(x, ∂D) ≥ 1

k
} if D 6= RN . Notice that

•
⋃∞

k=1Kk = D and

• Kk ⊂ intKk+1 for n ∈ N.

Let (fn)
∞
n=1 be a sequence in F . By the Arzelà–Ascoli Theorem, there exists a

subsequence (fn,1)
∞
n=1 of (fn)

∞
n=1 and a function g1 : K1 → RM such that fn,1|K1→ g1

uniformly onK1. Invoking the Arzelà–Ascoli Theorem again, we obtain a subsequence
(fn,2)

∞
n=1 of (fn,1)

∞
n=1 and a function g2 : K2 → RM such that fn,2|K2→ g2 uniformly

on K2. Inductively, we thus obtain, for each k ∈ N, a subsequence (fn,k)
∞
n=1 of (fn)

∞
n=1

and a function gk : Kk → RM such that, for each k ∈ N,

• (fn,k+1)
∞
n=1 is a subsequence of (fn,k)

∞
n=1, and

• fn,k|Kk
→ gk uniformly on Kk.
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Define g : D → RM as follows: for x ∈ D, let k be the smallest natural number
such that x ∈ Kk, set g(x) := gk(x). Then fn,n|Kk

→ g|Kk
uniformly on Kk.

Let K ⊂ D be compact. By the choices of K1, K2, . . ., we have K ⊂ D =
⋃∞

k=1 intKk, so that {intKk : k ∈ N} is an open cover for K. Since K is compact,
and since intKk ⊂ intKk+1 for k ∈ N, there exists k0 ∈ N such that K ⊂ intKk0 ⊂
Kk0. Since fn,n|Kk0

→ g|Kk0
uniformly on Kk0 , it follows that fn,n|K→ g|K uniformly

on K.

Theorem 16.2 (Montel’s Theorem). Let D ⊂ C be open, and let F be a family of
holomorphic functions on D that is uniformly bounded on compact subsets of D. Then
every sequence in F has a subsequence that converges compactly to a holomorphic
function on D.

Proof. In view of Proposition 16.1, we only need to show that F is equicontinuous
on compact subsets of D.

Let z0 ∈ D, and let r > 0 be such that B2r[z0] ⊂ D. There exists C > 0 such that
|f(ζ)|≤ C for all f ∈ F and all ζ ∈ ∂B2r(z0).

Let f ∈ F , and let z, w ∈ Br(z0). Then we have:

|f(z)− f(w)| = 1

2π

∣
∣
∣
∣

∫

∂B2r(z0)

(
f(ζ)

ζ − z
− f(ζ)

ζ − w

)

dζ

∣
∣
∣
∣

=
1

2π

∣
∣
∣
∣

∫

∂B2r(z0)

f(ζ)(ζ − w + z − ζ)

(ζ − z)(ζ − w)
dζ

∣
∣
∣
∣

=
|z − w|
2π

∣
∣
∣
∣

∫

∂B2r(z0)

f(ζ)

(ζ − z)(ζ − w)
dζ

∣
∣
∣
∣

≤ |z − w|
2π

4πr
C

r2

=
2C

r
|z − w|.

For ǫ > 0, choose δ :=
rǫ

2C
, so that |f(z) − f(w)|< ǫ for all z, w ∈ Br(z0) with

|z − w|< δ.
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The Riemann Mapping Theorem

Definition. Let D1, D2 ⊂ C be open and connected. We say that D1 and D2 are
biholomorphically equivalent if there is a biholomorphic map from D1 onto D2.

Examples.

1. Let z1, z2 ∈ C, and let r1, r2 > 0. Then Br1(z1) and Br2(z2) are biholomorphi-
cally equivalent because

Br1(z1) → Br2(z2), z 7→ r2
r1
(z − z1) + z2

is biholomorphic.

2. Consider the Cayley transform

f : H → C, z 7→ z − i

z + i
.

Let x, y ∈ R with y > 0, and let z = x+ iy. Then

|z − i|2 = |x+ i(y − 1)|2
= x2 + y2 − 2y + 1

< x2 + y2 + 2y + 1

= |x+ i(y + 1)|2

= |z + i|2

holds, so that |f(z)|< 1. Consequently, we have f(H) ⊂ D. Consider

g : D → C, z 7→ i
1 + z

1− z
,
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and note that

g(f(z)) = i
1 + z−i

z+i

1− z−i
z+i

= i
z + i+ z − i

z + i− z + i

= i
2z

2i
= z

for z ∈ H. Hence, f is injective. Let x2 + y2 < 1, and note that

g(x+ iy) = i
(1 + x) + iy

(1− x)− iy

= i
[(1 + x) + iy][(1− x) + iy]

(1− x)2 + y2

= − 2y

(1− x)2 + y2
+ i

1− (x2 + y2)

(1− x)2 + y2
︸ ︷︷ ︸

>0

∈ H.

For z ∈ D, we can thus evaluate

f(g(z)) =
i1+z
1−z

− i

i1+z
1−z

+ i

=
1 + z − 1 + z

1 + z + 1− z

=
2z

2
= z.

Hence, f is also surjective and thus bijective with inverse g. Since f and g
are obviously holomorphic, this means that D and H are biholomorphically
equivalent.

3. There is no biholomorphic map f : C → D because any holomorphic map from C

to D is bounded and thus constant by Liouville’s theorem. Hence, C and D are
not biholomorphically equivalent.
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Proposition 17.1. Let D1, D2 ⊂ C be open and connected such that D1 is simply
connected, and suppose that D1 and D2 are biholomorphically equivalent. Then D2 is
simply connected.

Proof. Let f : D1 → D2 be biholomorphic. Let g : D2 → C be holomorphic, and let γ
be a closed curve in D2. Since f−1 ◦ γ is a closed curve in the simply connected set
D1, we see that

∫

γ

g(ζ) dζ =

∫

f◦f−1◦γ

g(ζ) dζ =

∫

f−1◦γ

g(f(ζ))f ′(ζ) dζ = 0.

Example. Let r, R ∈ [0,∞] be such that r < R. Then Ar,R(0) is not biholomorphically
equivalent to D or C.

Biholomorphic maps have a very interesting geometric property.
Given and open set D ⊂ RN and curves γ1, γ2 : [0, 1] → D, suppose there exist

t1, t2 ∈ (0, 1) such that γ1(t1) = γ2(t2) = x0. In order to define the angle between γ1
and γ2 at x0, we further suppose that there exists ǫ > 0 such that γj is differentiable
on (tj − ǫ, tj + ǫ) for j = 1, 2 with γ′

j(tj) 6= 0. The angle is then defined to be the
unique θ ∈ [0, π] such that

cos θ =
γ′
1(t1) · γ′

2(t2)

|γ′
1(t1)||γ′

2(t2)|
.

Given two open sets D1, D2 ⊂ RN , a differentiable map f : D1 → D2 is called angle
preserving at x0 ∈ D1 if, for any two curves γ1 and γ2 in D1, the angle between f ◦ γ1
and f ◦ γ2 at f(x0) is the same between γ1 and γ2 at x0.

Recall that a real N × N matrix A is called orthogonal if it is invertible with
A−1 = At.

Lemma 17.1. Let D1, D2 ⊂ RN be open, let x0 ∈ D1, and let f : D1 → D2 be
differentiable such that Jf(x0) is orthogonal. Then f is angle preserving at x0.

Proof. Let γ1 and γ2 be two curves in D1 satisfying the necessary requirements, and
note that

cosine of the angle between f ◦ γ1 and f ◦ γ2 at f(x0)

=
(f ◦ γ1)′(t1) · (f ◦ γ2)′(t2)
|(f ◦ γ1)′(t1)||(f ◦ γ2)′(t2)|

=
Jf (x0)γ

′
1(t1) · Jf(x0)γ

′
2(t2)

|Jf(x0)γ
′
1(t1)||Jf(x0)γ

′
2(t2)|

, by the chain rule,

=
Jf(x0)

tJf(x0)γ
′
1(t1) · γ′

2(t2)

|Jf(x0)γ′
1(t1)||Jf(x0)γ′

2(t2)|

=
γ′
1(t1) · γ′

2(t2)

|γ′
1(t1)||γ′

2(t2)|
= cosine of the angle between γ1 and γ2 at x0.
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Example. Let z be a complex number. Then multiplication by z is a R-linear map
from C = R2 into itself and thus uniquely represented by a real 2× 2 matrix A of the
form [

a −b
b a

]

,

where a = Re z and b = Im z. It follows that At is the matrix representing z̄. Hence,
A is orthogonal if and only if |z|= 1.

Theorem 17.1 (Conformality at Nondegenerate Points). Let D1, D2 ⊂ C be open,
and let f : D1 → D2 be holomorphic. Then f is angle preserving at z0 ∈ D1 whenever
f ′(z0) 6= 0.

Proof. Let z0 ∈ D1 be such that f ′(z0) 6= 0. In view of Lemma 17.1 and the example
following it, the claim is clear if |f ′(z0)|= 1.

For the general case, let

1

|f ′(z0)|
D2 :=

{
z

|f ′(z0)|
: z ∈ D2

}

,

and define

g : D1 →
1

|f ′(z0)|
D2, z 7→ f(z)

|f ′(z0)|
and

h :
1

|f ′(z0)|
D2 → D2, z 7→ |f ′(z0)|z.

Then g is angle preserving at z0 because |g′(z0)|= 1, and it is easily seen that h is
angle preserving at g(z0). Consequently, f = h ◦ g is angle preserving at z0.

Corollary 17.1.1 (Conformality of Biholomorphic Maps). Let D1, D2 ⊂ C be open
and connected, and let f : D1 → D2 be biholomorphic. Then f is angle preserving at
every point of D1.

Theorem 17.2 (Holomorphic Inverses). Let D1, D2 ⊂ C be open and connected,
and let f : D1 → D2 be holomorphic and bijective. Then f is biholomorphic and
Z(f ′) = ∅.

Proof. We first show that f−1 is continuous.
Let w0 ∈ D2, and let ǫ > 0 be such that Bǫ(f

−1(w0)) ⊂ D1. By the Open
Mapping Theorem, f(Bǫ(f

−1(w0))) is open. Hence, there exists δ > 0 such that
Bδ(w0) ⊂ f(Bǫ(f

−1(w0))). Hence, if w ∈ Bδ(w0), then f−1(w) ∈ Bǫ(f
−1(w0)), That

is, f−1 is continuous at w0.
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Let z0 ∈ D1 and let w0 := f(z0). We see that f ′ is differentiable at z0 only if
f ′(z0) 6= 0: for w ∈ D2 \ {w0},

f−1(w)− f−1(w0)

w − w0
=

f−1(w)− f−1(w0)

f(f−1(w))− f(f−1(w0))
−→
w→w0

1

f ′(z0)
.

Since f is not constant, f ′ is not identically zero and thus Z(f ′) is discrete. We
claim that f(Z(f ′)) is also discrete. Assume that f(Z(f ′)) is not discrete. Then there
exist w0 ∈ D2 and a sequence (zn)

∞
n=1 in Z(f ′) such that w0 6= f(zn) for n ∈ N, but

w0 = lim
n→∞

f(zn). By the bijectivity and continuity of f−1, we have f−1(w0) 6= zn for

n ∈ N and f−1(w0) = lim
n→∞

zn. Hence, f−1(w0) is a cluster point of Z(f ′), which is
impossible.

Hence, f−1 is holomorphic on D2 \f(Z(f ′)). Since f−1 is continuous and f(Z(f ′))
is discrete, Riemann’s Removability Criterion then yields the holomorphy of f−1 on
all of D2. Thus Z(f

′) = ∅.

Corollary 17.2.1. Let D ⊂ C be open and connected, and let f : D → C be
holomorphic and injective. Then Z(f ′) = ∅.

Proof. If f is injective, it is not constant. By the Open Mapping Theorem, f(D) is
therefore open and connected. Apply Theorem 17.2 withD1 = D andD2 = f(D).

Theorem 17.3 (Riemann Mapping Theorem). Let D ( C be open and connected and
admit holomorphic square roots, and let z0 ∈ D. Then there is a unique biholomorphic
function f : D → D with f(z0) = 0 and f ′(z0) > 0.

Proof. Uniqueness : Let g : D → D be another such function. Then f ◦ g−1 : D → D is
biholomorphic with (f ◦ g−1)(0) = f(z0) = 0. By Corollary 7.4.1, there exists c ∈ C

with |c|= 1 such that
f(g−1(z)) = cz

for z ∈ D and thus
f(z) = f(g−1(g(z))) = c g(z)

for z ∈ D. Differentiation yields f ′(z) = c g′(z) for z ∈ D. Since |c|= 1 and both
f ′(z0) and g′(z0) are real and positive, we conclude that c = 1.

Existence: Let

F := {f : D → D : f is injective and holomorphic with f(z0) = 0 and f ′(z0) > 0}.

Claim 1. F 6= ∅.

Since D 6= C, there exists w ∈ C \D. Since D admits holomorphic square roots,
there is a holomorphic function g : D → C such that [g(z)]2 = z −w for z ∈ D. Note
for z1, z2 ∈ D that g(z1) = ±g(z2) ⇒ z1 = z2. In particular, this means that g is
injective and thus not constant.
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By the Open Mapping Theorem, there exists r > 0 with Br(g(z0)) ⊂ g(D).
Assume that there exists a point z ∈ D with g(z) ∈ Br(−g(z0)):

r > |g(z) + g(z0)|= |−g(z)− g(z0)|;

this means that −g(z) ∈ Br(g(z0)) ⊂ g(D). Hence, there exists z̃ ∈ D with g(z̃) =
−g(z) and thus z̃ = z, which in turn yields that 0 = [g(z)]2 = z−w. This contradicts
w /∈ D. Hence, g(D) ∩ Br(−g(z0)) = ∅ must hold.

Define
g̃ : D → D, z 7→ r

g(z) + g(z0)
,

Then g̃ : D → D is holomorphic and injective. Let a := g̃(z0). Then φa ◦ g̃ :
D → D is holomorphic and injective with (φa ◦ g̃)(z0) = 0 and (φa ◦ g̃)′(z0) 6= 0
by Corollary 17.2.1. Let c ∈ C with |c|= 1 be such that c (φa ◦ g̃)′(z0) > 0. Then
c (φa ◦ g̃) ∈ F , so that indeed F 6= ∅.

Claim 2. Let (fn)
∞
n=1 be a sequence in F converging compactly to f : D → C. Then

either f ≡ 0 or f ∈ F .

It is straightforward that f(z0) = 0, f ′(z0) ≥ 0, and f(D) ⊂ D. By Corol-
lary 13.4.1, f ≡ 0 or f is injective. If f is injective, then f ′(z0) 6= 0 must hold by
Corollary 17.2.1, so that f ′(z0) > 0. Also, since f(D) ⊂ D is open, we have f(D) ⊂ D,
and hence f ∈ F .

Claim 3. There exists f ∈ F such that f(D) = D.

Choose a sequence (fn)
∞
n=1 in F such that

lim
n→∞

f ′
n(z0) = sup{f̃ ′(z0) : f̃ ∈ F} ∈ (0,∞].

Notice that |fn(z)|≤ 1 for all z ∈ D. By Montel’s Theorem, there exists a subsequence
(fnk

)∞k=1 that converges compactly to some f : D → D. In particular,

f ′(z0) = sup{f̃ ′(z0) : f̃ ∈ F} > 0 (∗)

holds, so that f ∈ F by Claim 2.
Assume that there exists w ∈ D\f(D). Since D admits holomorphic square roots,

there is a holomorphic function h : D → C such that

[h(z)]2 = −(φw ◦ f)(z) = f(z)− w

1− w̄f(z)
.

for z ∈ D. In particular, h(D) ⊂ D, h is injective and hence h′(z0) 6= 0. We then
evaluate the derivative of each side of the above equation at z = z0, noting that
f(z0) = 0:

2h(z0)h
′(z0) = f ′(z0) + w̄f ′(z0)(−w) = (1− |w|2)f ′(z0).
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We also note that |h(z0)|2= |w| and define

g : D → C, z 7→ −|h′(z0)|
h′(z0)

(φh(z0) ◦ h)(z).

Then g is injective with g(D) ⊂ D and g(z0) = 0. Since φ′
a(a) = −1/(1− |a|2),

g′(z0) = −|h′(z0)|
h′(z0)

· φ′
h(z0)(h(z0))h

′(z0)

=
|h′(z0)|

1− |h(z0)|2

=
(1− |w|2)f ′(z0)

2
√

|w|(1− |w|)

=
1 + |w|
2
√

|w|
· f ′(z0) > f ′(z0) > 0,

so that g ∈ F and g′(z0) > f ′(z0). This contradicts (∗).

Theorem 17.4 (Simply Connected Domains). The following are equivalent for an
open and connected set D ⊂ C:

(i) D is simply connected;

(ii) D admits holomorphic logarithms;

(iii) D admits holomorphic roots;

(iv) D admits holomorphic square roots;

(v) D is all of C or biholomorphically equivalent to D;

(vi) every holomorphic function f : D → C has an antiderivative;

(vii)
∫

γ
f(ζ) dζ = 0 for each holomorphic function f : D → C and each closed curve

γ in D;

(viii) for every holomorphic function f : D → C, we have

ν(γ, z)f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ

for each closed curve γ in D and all z ∈ D \ {γ};

(ix) every harmonic function u : D → R has a harmonic conjugate.
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Proof. (i) =⇒ (ii) is Corollary 11.2.2, (ii) =⇒ (iii) is shown in the proof of Corol-
lary 11.2.3, (iii) =⇒ (iv) is trivial, (iv) =⇒ (v) follows from Theorem 17.3, and (v)
=⇒ (i) is implied by Proposition 17.1.

(i) ⇐⇒ (vi) is Corollary 11.2.1 and (vi) ⇐⇒ (vii) follows from Theorem 4.1.
(i) =⇒ (viii) follows from Theorem 11.1, and (viii) =⇒ (vii) is established in the

proof of Theorem 11.2.
(v) =⇒ (ix): Let u : D → R be harmonic. If D = C, the existence of a harmonic

conjugate is immediate by Theorem 14.1. So suppose that D 6= C. Hence, there is a
biholomorphic map f : D → D. It is easily seen that ũ := u◦f−1 : D → R is harmonic
and by Theorem 14.1 has a harmonic conjugate ṽ : D → R. Then v := ṽ ◦ f : D → R

is a harmonic conjugate of u.
(ix) =⇒ (ii): Let f : D → C be holomorphic such that Z(f) = ∅. Then u := log|f |

is harmonic and thus has a harmonic conjugate v : D → R so that g := u + i v is
holomorphic. On D we have

|exp g|= |exp(u+ i v)|= exp u = |f |,

so that

D → C, z 7→ f(z)

exp(g(z))

is a holomorphic function whose range lies on ∂D and therefore isn’t open. By the
Open Mapping Theorem, this means that there exists c ∈ ∂D such that f(z) =
c exp(g(z)) for z ∈ D. Choose θ ∈ R with exp(iθ) = c, and note that f(z) =
exp(g(z) + iθ) for z ∈ D.

Definition. Two (not necessarily piecewise smooth) closed curves γ1, γ2 : [0, 1] → D
with γ1(0) = γ2(0) and γ1(1) = γ2(1) are called path homotopic if there is a continuous
function Γ: [0, 1]× [0, 1] → D such that,

Γ(0, t) = γ1(t) and Γ(1, t) = γ2(t)

for t ∈ [0, 1] and
Γ(s, 0) = γ1(0) and Γ(s, 1) = γ1(1)

for all s ∈ [0, 1].

Definition. A closed curve γ is called homotopic to zero if γ and the constant curve
γ(0) are path homotopic.

Further Characterizations of Simply Connected Domains. There are further
conditions that characterize simply connected domains. We will only state them,
without giving proofs. Simple connectedness is also equivalent to:

(x) every (not necessarily smooth) curve in D is homotopic to zero;

(xi) D is homeomorphic to D.
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Condition (xi) makes no reference to holomorphic functions and is entirely topo-
logical in nature. It means that there is a bijective, continuous map f : D → D with
a continuous inverse. Since (x) is preserved under homeomorphisms, we see that (xi)
implies (x). For the converse, it is sufficient to show that C is homeomorphic to D

(for D 6= C, this is clear by Theorem 17.3). Since

C → D, z 7→ z

1 + |z|

and
D → C, z 7→ z

1− |z|
are continuous and inverse to each other, this is indeed the case.

The converse to Problem 11.1 states that the property

(xii) for every holomorphic function f : D → C, there exists a sequence of polynomials
converging to f compactly on D

always holds for a simply connected domain. The proof relies on Runge’s Approxi-
mation Theorem.

There is also an equivalent condition for simple connectedness involving the ex-
tended complex plane C∞:

(xiii) C∞ \D is connected.
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