Multiple Choice Questions

Mark your answers on the official answer sheet on the last page and detach it. It will be collected after 60 minutes.

1. For which value of k is the equation

$$x^2 \sin(y^k) dx + x^3 y^2 \cos(y^k) dy = 0$$

exact?

- (a) k = 0
- **(b)** k = 1

K=3

- (c) k = 2
- (d) None of these.
- 2. Consider the non-homogeneous linear equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = x^2e^x$. A particular solution to this equation can be obtained:
 - (a) only by the method of undetermined coefficients;
 - (b) only by the method of variation of parameters;
 - (c) by both, the method of undetermined coefficients, and method of variation of parameters;
 - (d) by neither of these methods.
- 3. The mass-spring system described by

$$y'' + by + 4y = 0$$
, $y(0) = 1, y'(0) = 0$

is in the state of underdamped motion if

- (a) b > 4
- **(b)** 0 < b < 4
- (c) b = 4
- (d) Any real value of b.

4. The mass-spring system described by

$$y'' + ky = \cos 5t$$
, $y(0) = 1$, $y'(0) = 0$

would be in the state of resonant motion if

S=12

- (a) k < 5
- **(b)** k = 0
- (c) k = 25
- (d) None of these.
- 5. The minimum value of the radius of convergence ρ of the power series expansion about $x_0 = 1$ for the solution of the equation:

$$(x^2 + 1)y'' + \frac{1}{x+1}y = 0$$

is:

- (a) $\rho = 0$
- (b) $\rho = 1$
- (c) $\rho = 2$
- (d) None of these.

Long Answer Questions

You must show all your work.

1. Solve the initial-value problem:

$$\frac{dy}{dx} = \frac{y^2 + x\sqrt{x^2 + y^2}}{xy}, \quad y(1) = 1.$$
Homogeneous equation.

$$u + x \frac{du}{dx} = \frac{dy}{dx} + \sqrt{\frac{dy}{dx}} = \frac{dy}{dx}$$

$$u + x \frac{du}{dx} = \frac{dy}{dx} + \sqrt{\frac{dy}{dx}} = \frac{dy}{dx}$$

$$u + x \frac{du}{dx} = \frac{dy}{dx} + \sqrt{\frac{dy}{dx}} = \frac{dy}{dx}$$

$$u + x \frac{du}{dx} = \frac{dy}{dx} + \sqrt{\frac{dy}{dx}} = \frac{dy}{dx}$$

$$u + x \frac{du}{dx} = \frac{dy}{dx} + \sqrt{\frac{dy}{dx}} = \frac{dy}{dx}$$

$$u + x \frac{du}{dx} = \frac{dy}{dx} + \sqrt{\frac{dy}{dx}} = \frac{dy}{dx}$$

$$v + x \frac{du}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$$

$$v + x \frac{du}{dx} = \frac{dy}{dx}$$

$$v + x \frac{dx}{dx} = \frac{dx}{dx}$$

$$v + x \frac{du}{dx} = \frac{dx}{dx}$$

$$v + x \frac{du}{dx}$$

$$v + x \frac{du}{dx} = \frac{dx}{dx}$$

$$v + x \frac{du}{dx}$$

$$v + x$$

2. Find the general solution of the equation

The solution to the homogeneous equation is:
$$J_{1}(x) = C_{1}e^{4t} + C_{2}te^{4t} = C_{1}J_{1}+C_{2}J_{2}$$

Then $J_{1}(x) = C_{1}e^{4t} + C_{2}te^{4t} = C_{1}J_{1}+C_{2}J_{2}$

Then $J_{1}(x) = V_{1}V_{1} + V_{2}V_{2}$ is a particular solution and:

(1) $V_{1}e^{4t} + V_{2}te^{4t} = 0$

(2) $4V_{1}e^{4t} + V_{2}(e^{4t} + 4te^{4t}) = \frac{t^{-3}e^{4t}}{2}$

From $(1) = V_{1} = -\frac{1}{2}t^{-2}$ or $V_{1} = \frac{1}{2}t^{-2}$

Then $J_{1}(t) = (C_{1} + C_{2}t + \frac{1}{4}t^{-1})e^{4t}$ is the general solution.

3. Consider a power series solution of the form $\sum_{n=0}^{\infty} a_n x^n$ for the equation

$$(1-x)y'' + xy' - y = 0.$$

- (a) Find the recurrence relation for the a_n 's.
- (b) Find the first 5 coefficients a_n .

(c) Find the general formula for the
$$a_n$$
's as a function of n .

$$\begin{cases}
|x| = \sum_{n=0}^{\infty} a_n x^n | y'(x)|^2 \sum_{n=1}^{\infty} a_n | n | x^n |$$

(6)
$$a_0, a_1, a_2 = \frac{3}{2}$$
,
$$a_3 = \frac{3}{3}a_2 = \frac{1}{6}a_0$$

$$a_4 = \frac{3}{4}a_3 - \frac{1}{12}a_2 = \frac{1}{12}a_0 - \frac{1}{24}a_0 = \frac{1}{24}a_0$$

$$a_5 = \frac{3}{2}\frac{1}{4}a_0 - \frac{1}{10}\frac{1}{6}a_0 = \frac{1}{120}a_0$$

$$a_5 = \frac{3}{2}\frac{1}{4}a_0 - \frac{1}{10}\frac{1}{6}a_0 = \frac{1}{120}a_0$$

$$a_5 = \frac{3}{2}\frac{1}{4}a_0 - \frac{1}{10}\frac{1}{6}a_0 = \frac{1}{120}a_0$$

$$a_5 = \frac{3}{2}\frac{1}{4}a_0 - \frac{1}{10}\frac{1}{6}a_0 = \frac{1}{120}a_0$$