MATH 201—Final Examination

Date: April 26, 2014

Time: 2 hours

Surname:		Given name(s):	
	(Please print.)		

ID#: _____

Signature: _____

Please check your section/instructor!

Section	Instructor	\checkmark
Q1	P. Minev	
R1	H. van Roessel	
S1	C. Quigley	
T1	V. Yaskin	
U1	P. Minev	
V1	V. Bouchard	

	Multiple Choice	Lon	g Answe	r Questi	ons
		1	2	3	Total
Maximum	20	20	20	30	90
Mark					

Instructions

- 1. This is a closed book exam. *No books, notes, or calculators are allowed!*
- 2. There are *four multiple choice questions* and *three long answer questions*; for the long answer questions you must show all your work.
- 3. Do the multiple choice questions first; the answer sheet will be collected after 90 minutes.
- 4. A mark of zero will be given for multiple choice questions with more than one circled answer.
- 5. A Laplace Transform Table is attached.

Multiple Choice Questions

Mark your answers on the official answer sheet on the last page and detach it. It will be collected after 90 minutes.

1. Let f(t) be a periodic function with a period of 2 and let its windowed version be

$$f_2(t) = \begin{cases} 1, & 0 \le t < 1, \\ 0, & 1 \le t \le 2. \end{cases}$$

The Laplace transform of f(t) is

(a)
$$1/s$$
 (b) 0 (c) $\frac{1-e^{-s}}{s(1+e^{-2s})}$ (d) $\frac{1-e^{-s}}{s(1-e^{-2s})}$ (e) None of these.

2. The Laplace transform of $f(t) = t^2 \delta(t-3)$, where δ is the Dirac Delta function, is

(a)
$$9e^{-3s}$$
 (b) e^{-3s} (c) $2/s^3$ (d) $2e^{-3s}/s^3$ (e) None of these.

3. Consider the initial value problem

$$x^{2}y'' + xy' - y = 0, \quad y(1) = 1, \quad y'(1) = 0.$$

Then at x = 2, y equals

(a) 5/4 (b) 1/2 (c) 1 (d) 3/2 (e) 0.

4. If

$$f(x) = |x| + 1, \quad -1 \le x \le 1,$$

and f is expanded in a Fourier series

$$a_0/2 + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],$$

then a_0, a_2, b_5 are (in this order)

(a)
$$(1,0,1)$$
 (b) $(3,-1/\pi^2,0)$ (c) $(3,0,0)$ (d) $(1,-1/\pi^2,0)$ (e) None of these.

Long Answer Questions

You must show all your work.

1. Consider the following problem

$$y' + 4 \int_{0}^{t} y(v)dv = f(t), \qquad y(0) = 0,$$

where

$$f(t) = \begin{cases} 1, & 0 \le t < 1, \\ 0, & 1 \le t. \end{cases}$$

- (a) Write f(t) in terms of unit step functions.
- (b) Find the solution, y(t), of the problem.

20 marks 2. Find the first three nonzero coefficients of the power series expansion about $x_0 = 0$ for the solution of the initial value problem 20 marks

 $5y'' - (x - 1)y' = x^2 + x, \qquad y(0) = 1, \quad y'(0) = 0.$

marks

$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2} + x, \quad 0 < x < \pi, \quad t > 0$$
$$u(0,t) = 0, \quad u(\pi,t) = \pi^3/6, \quad t > 0,$$
$$u(x,0) = -x^3/6 + \pi^2 x/3 + 1, \quad 0 < x < \pi.$$

You must:

- (a) formulate and solve the corresponding eigenvalue problem,
- (b) find the series expansion for the solution,
- (c) compute the coefficients of the expansion.

Multiple Choice Answer Sheet

Given name(s):

ID#:_____

Signature: _____

Section	Instructor	\checkmark
Q1	P. Minev	
R1	H. van Roessel	
S1	C. Quigley	
T1	V. Yaskin	
U1	P. Minev	
V1	V. Bouchard	

Please, check your section/instructor!

This is the *official* answer sheet for multiple choice questions. A mark of *zero* will be given for questions with more than one circled answer.

Question	Answer				
1	a	b	с	d	е
2	a	b	с	d	е
3	a	b	с	d	е
4	a	b	С	d	е

Detach this page! It will be collected after 90 minutes.

<i>f</i> (<i>t</i>)	$F(s) = \mathscr{L}{f}(s)$	f(t)	$F(s) = \mathscr{L}{f}(s)$
			E
1. <i>f</i> (<i>at</i>)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	20. $\frac{1}{\sqrt{t}}$	$\frac{\sqrt{\pi}}{\sqrt{s}}$
2. $e^{at}f(t)$	F(s-a)	21. \sqrt{t}	$\frac{\sqrt{\pi}}{2s^{3/2}}$
3. <i>f</i> ′(<i>t</i>)	sF(s) - f(0)	22. $t^{n-(1/2)}, n=1,2,\ldots$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n s^{n+(1/2)}}$
4. $f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0)$	23. t' , $r > -1$	$\frac{\Gamma(r+1)}{s^{r+1}}$
	$-\cdots - sf^{(n-2)}(0) - f^{(n-1)}(0)$	24. sin bt	$\frac{b}{s^2+b^2}$
5. $t^{*}f(t)$	$(-1)^n F^{(n)}(s)$	25. cos bt	$\frac{s}{s^2+b^2}$
6. $\frac{1}{t}f(t)$	$\int_s^\infty F(u)du$	26. $e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}$
$7. \int_0^t f(v) dv$	$\frac{F(s)}{s}$	$27. e^{at} \cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
8. $(f * g)(t)$	F(s)G(s)	28. sinh bt	$\frac{b}{s^2-b^2}$
9. $f(t + T) = f(t)$	$\frac{\int_0^T e^{-st}f(t)dt}{1-e^{-sT}}$	29. cosh <i>bt</i>	$\frac{s}{s^2 - b^2}$
$0. f(t-a)u(t-a), a \ge 0$	$e^{-as}F(s)$	30. $\sin bt - bt \cos bt$	$\frac{2b^3}{(s^2+b^2)^2}$
$1. g(t)u(t-a), \qquad a \ge 0$	$e^{-as}\mathscr{L}{g(t+a)}(s)$	31. <i>t</i> sin <i>bt</i>	$\frac{2bs}{(s^2+b^2)^2}$
2. $u(t-a), a \ge 0$	$\frac{e^{-as}}{s}$	$32. \sin bt + bt \cos bt$	$\frac{2bs^2}{(s^2+b^2)^2}$
$3. \prod_{a,b}(t), \qquad 0 < a < b$	$\frac{e^{-sa}-e^{-sb}}{s}$	33. <i>t</i> cos <i>bt</i>	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$
$4. \delta(t-a), \qquad a \ge 0$	e ^{-as}	34. $\sin bt \cosh bt - \cos bt \sinh bt$	$\frac{4b^3}{s^4+4b^4}$
5. e^{at}	$\frac{1}{s-a}$	$35. \sin bt \sinh bt$	$\frac{2b^2s}{s^4+4b^4}$
6. t^n , $n = 1, 2,$	$\frac{n!}{s^{n+1}}$	$36. \sinh bt - \sin bt$	$\frac{2b^3}{s^4-b^4}$
7. $e^{at}t^n$, $n = 1, 2,$	$\frac{n!}{(s-a)^{n+1}}$	$37. \cosh bt - \cos bt$	$\frac{2b^2s}{s^4-b^4}$
$8. e^{at} - e^{bt}$	$\frac{(a-b)}{(s-a)(s-b)}$	38. $J_{v}(bt), v > -1$	$\frac{(\sqrt{s^2 + b^2} - s)^{v}}{b^{v}\sqrt{s^2 + b^2}}$
$b. \ ae^{at} - be^{bt}$	$\frac{(a-b)s}{(s-a)(s-b)}$		