RECREATIONAL MATHEMATICS

ON THE DISTRIBUTION OF FIRST DIGITS OF POWERS
By LEo MOSER AND NATHANIEL MACON

1t is clear that the last digit (to the right) of 2% is 2, 4, 6, or 8. Further
E. P. Starke [1]' has recently shown that given any integer m, there exists
an # such that 2" has only 1’s and 2’'s as its last s digits. If, however, we con-
sider the first digits of 2%, a simple machine computation reveals that already
for n = 100, 68 of the combination of digits 11, 12, ..., 99 appear.? In this
note, we will prove that every finite sequence of digits appears as the first digits
of some power of 2, and will generalize this result in several directions.

We first prove the following theorem:

THEOREM I. Leta > 1 and b > 1 be integers such that a¥ 2 b° with r and
5 positive integers. Let B be any positive real number. Then given any 5 > 0,
there extst integers # and p such that

la*/5* — B| < n. (1)
Proof. Since b is a continuous function for all real x, it is suffictent to make
[loge (a"/8") — logs B| <6, & = e(n). (@)
Letlogsa = 6 and logy B = «. Then we must make
[0 — p — a| <e 3

Now by Kronecker’s theorem (first proved by Jacobi) {3, p. 363}, (3) can be
satisfied provided that @ is irrational. Here § is irrational, since § = logs e =
s/r imdplies a” = b, which is contrary to hypothesis. Thus the theorem is
proved.

Let % be any integer expanded in the decimal system, and let ¢ be an integer
such that a” = 10°. Since 10 is not a perfect square or higher power, this is
equivalent to the statement that a is not a power of 10. To find a power of &
which starts with the digits of k, we have merely to satisfy (1) with & = 10,
B =k 4 s and g < /». Theorem I guarantees that this can be done.

For example, if we wish to find a power of 2 which has 65 as its first digits,
we solve |2%/10° — 65.5] < 1/,. We know that a solution exists. Actually
the smallest solution here is given by |2%/10° — 63.5| = 0.036, and 2%* =
65,536 starts with the digits 65. We also know that there exists a power of 3
which starts with the same digits, 65. Indeed, 3* = G561.

We next consider the following question: What is the probability P that
the first digits of @ will be the digits of 2? To put it more precisely, denote

! Boldface nuntbers in brackets refer to the references at the end of the paper.
* For n < B0, of. [2].
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:. by r(k, #) the number of elements of {a', a?, ..., a*} which begin with the

digitsof k. Weseek P, = lim [r(k, n)/n]. Theanswerisgiven by the theorem

#H—r

TuroreM 1I. If a is not a power of 10, and k is any inleger, the probability

" that the first digits of a® will be those of k is given by

P = logw [(k + 1)/k]. €}
Proof. In order for a” to begin with the digits of £, it is necessary and suffi-

: cient that the mantissa of logie a” lie between the mantissa of k and that of

k -+ 1. More exactly, we need
(logu k) = (1 logu @) < (logw [k + 1]), (3)
where here (x) denotes the fractional part of x. It follows from Wehl's theorem

. on the uniform distribution of (z8) [3, p. 378] that (# logw @) is uniformly dis-
| tributed on the interval (0, 1). From (5), (1 logw @) must lie on the subinterval
° of length

" (logw [k + 1]) — (loguw k) = (logw [k + 1] — logu k) = logw [(k + 1)/k].
. . Thus the proof is complete.

It is curious that Py is independent of . We have
logw [(k + 1)}/k] = logu e-log, (1 + 1/k) = 0.4343/k.

Thus Py is very nearly inversely proportional to k. It is interesting to note
" that although 100 has three digits and 99 only two, Py and Py differ only
. slightly.

The following question naturally arises: Given a set of integers ki, ko, .. .,

¢ k. and a set of integers @y, @z, ..., @, under what conditions does there exist
. a single integer # such that ¢ have the digits of & for their first digits (i =
1,2, ...,0? Forexample, is it possible to find an # such that 2" starts with
. the digits 20 and 3" with the digits 17? We prove the following theorem:

TueoreM 111, Lef i, aa, . .., 0r be a set of integers, each greater than 1 and

:1 such that logsa; (3 = 1, 2, ..., £) and I are linearly independent over the rational
L sutegers; and let By, Bs, . . ., B be any set of real numbers. Then there exists an
© integer n and integers p; such that for any n > 0, we have

lam/evt — B < m, i=1,2 ..., 1 (B)
Proof. Asin the proof of Theoretn 1, it suffices to make
|y — pe — ai| <, e=celp), =02 ...4 (7

where 8; = log, a; and a; = logy #. It follows from the ¢ dimensional case

. of Kronecket’s theorem [3, p. 370] that this is possible, since 61, 8, ..., & and
- 1 are linearly independent. ‘

Now let &, ks, ..., & be any set of integers, not necessarily distinct, and

" et ay, aa, ..., & be a set of integers satisfying the conditions of Theorem III
- with & = 10. In order to find an integer » such that a,", @", ..., &" have the

digits of &, ks, . .., ki, respectively, as first digits we have only to satisty ()

- with

181 = ki + l/2r (i = 1) 2! RS i) mldﬂ < 1/2.
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Thus for the example discussed earlier with ¢, = 2 and a3 = 3, the lip
independence of logiw 2, logye 3, and 1 follows from the fact that 10 t:(:'nt;ar
the factor 5, not contained in 2-3; and hence it is possible to find an 5 satlf y
fying the required condition. The smallest # here is 11, and 2" = 2048 whns .
3 = 177,147, ©

H. Weyl [4] has generalized Kronecker's ¢ dimensional theorem and hag

¢

proved that if 6, . .., 6 are linearly independent with 1, i. e, if 3 pg, = g
. . . i= 1

has no solution with #; and g integers, then (néy, s, ..., uf,) ié equidistrib.-

uted over the ¢ dimensional unit hypercube. From this a theorem analogous

to Theorem II can be shown to hold for sets of powers. We leave the exact

formulation and proof to the reader.
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245, A Humorous Proof of Euclid’s Postulate. In the Rewue Scientifigue, Ser. 4, v. 21,
1903, p. 215, we find an interesting note by Gaston Tarry, entitled “Demonstration humoris-
tique du postulatum d’Euclide.” It deals with Euclid’s famous Fifth Postulate, or rather
with one of its substitutes which is given by Heath (The Thirteen Books of Euclid’s Elements,
v. 1, Cambridge, 1908), in the following form: Through a given point only one paralict can
be drawn lo a given siraighl line or: Two straight lines which intersect one another cannol both
be parallel to the same straight line.

The following is an abridged statement of Tarry’s proof.

Let # be the number of points on a straight line. If at every point of the line a perpen-
dicular to it be drawn, there will be # points on each of the » perpendiculars. Hence there
are n? points in the plane.

Now let & denote the number of lines passing through a given point. On each of these
lines there are # points, or # — 1 if the given point is not counted. Hence the number of
points on ali of these lines is x(» — 1), if the common point is not counted. Hence on the
plane there are x{n — 1) <+ 1 points.

1f the above reasoning is correct we must have

i — 1D+ 1=n%orx(n—1) =u*—1,
Sx=n41

that is, through a given point pass # 4 1 lines.

Consider now a given point P with the # + 1 lines passing through it and a given line
L with its » points.

If every one of the # 4 1 lines passing through P would intersect L there would be » + 1
points of intersection. But the line L supposedly contains only # points. Hence there must
be one line passing through P that does not intersect L.

In the same volume (p. 373) there is a note by Cadenat claiming that this procedure is
not at all humorous. To show its merits he uses it to prove that in Riemannian Geometry
there are no parallel lines and that in Lobachevsky-Bolyai Geometry there are infinitely
many lines passing through a point and parallel to a given line.

DanIEL BLOCK
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246. Two Timely Problems. Problem 1. Write down any number from the square

: array of numbers given below, and cross out the row and column in which that oumber is
located, Now write down another number from the array, not yet crossed out, and again

cross out the row and column in which that number is located, Continue in this way until
all nuibers in the array have been crossed out. The problem is to carry out the above pro-
cess in stich a way that the sum of the numbers written down is 1951.

213 356 152 246 363 130
459 602 393 492 609 385
245 383 184 278 395 171
303 446 242 336 453 229
382 525 321 415 532 308
158 301 97 191 308 84

Problem 2. Place the digits 0, 1, 2, 8, 4, 5, 6, 7, 8, 9 in the ten blank spaces, in such an
order that the indicated division will have a remainder of 1951.

3168 [ 71— 543—2—085—2—856—8—17 836—7—39,967,

Solutions: Both of these problems are as easy as can be, for one has only to make an

" attempt and he will be successiul (barring, of course, errors in arithmetic). In the first

problem one can obtain 6! sets of numbers, each of which will total to 1951, while in the
second problem there are 10! ways of placing the digits, but again each of these will yield

the remainder 1951. .
Of course the real problem is to discover the principles used in the construction of these

problems, and this we leave to the reader.
Leo Moser
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247. “Proof” that2:-2 = 8.

cos?x = 1 — sin?x
(cos® x)/2 = cos®x = (1 — sin® x)*
cos?x + 3 = (1 — sin?x)*: 4+ 3
2[cos*x + 3] = 2{(1 — sin? )*/2 4 3.]

-~ Tor x = =2, this becomes 2-3 = 2-3. However, for x = = we get

2(-143) =2{1+3),

2:2 =24 =8,
A. SPILBERG in Revue Scientifique, v. 18, 1903

248. Equiareal Triangles. The following areas are common to three or four Pythago-
rean triangles of which two are primitive. The sides of the trianglesare (2 + ¥%)z, {xt — ¥%)z,
2xyz. If s = 1 the triangle is primitive.

¥ % z ¥ % z ¥ xr 5 ¥y % 3

1 341,880 55 &6 1 37 40 1 15 2 2 2 35 2
2 2,042,040 40 51 1 3 838 1 21 34 2

3 17,957,940 77 92 1 4 165 1 12 23 13 5 28 13
4 116,396,280 88 133 1 35 152 1 10 143 2 3¢ 99 2
5 352,173,360 560 561 1 119 176 1 204 209 2

6 1,071,572,040 156 232 1 40 301 1 11 2900 2 9 310 2
7 1,728,483,120 144 259 1 35 368 1 52 207 2 20 279 2
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