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1 NOTATION

a.e. almost everywhere with respect to Lebesgue measure
αb a function from P +

a.c. to R+, see Definition 11.2
b a real number bigger than one, called “the base”
βb a function from P +

a.c. to R+, see Definition 10.1
B(R) the set of Borel sets on R
fBLb the density function corresponding to Benford’s Law relative to base b.
FBLb the distribution function corresponding to Benford’s Law relative to base b
γb a Benford-distance from P +

a.c. to [0,2), see Definition 8.1
λ the Lebesgue measure on the measurable space

(
R,B(R

)

mb(x) the mantissa of x relative to base b

P the class of probability measures on the measurable space
(
R,B(R)

)

P + the subclass of P consisting of probability measures
that give measure zero to the set (−∞,0]

Pa.c. the subclass of P , such that the probability measures
are absolutely continuous with respect to Lebesgue measure

P +
a.c. the subclass of P +, such that the probability measures

are absolutely continuous with respect to Lebesgue measure
PX an element of P with corresponding random variable X
PBLb the probability measure called Benford’s Law relative to base b

P a probability measure on the measurable space
(

Ω,F
)

R+ all real numbers equal to or bigger than zero
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2 INTRODUCTION

At first sight it does not seem a task for mathematicians to investigate first digits of numbers, it has a
flavour of amateurism, because the first digit of a number depends on the numeral system being used to
represent the number. If one nevertheless investigates numbers obtained from the most various sources,
one sees to his surprise that in general the first digits do not follow the expected uniform distribution.
The first one to notice this was the mathematician and astronomer Simon Newcomb [NEW] who wrote
the following in 1881:

That the ten digits do not occur with equal frequency must be evident to any one making much
use of logarithmic tables, and noticing how much faster the first pages wear out than the last
ones. The first significant figure is oftener 1 than any other digit, and the frequency diminishes
up to 9.

Consulting logarithmic tables, which one could use to multiply numbers, Newcomb noticed the strange
tendency of numbers to start with a 1. After that he determined that the digits were distributed logarith-
mically, which enabled him to calculate the frequencies.
More than a half century later, in 1937, Frank Benford [BEN] rediscovered the same law after investigat-
ing more than 20000 numbers from various sources. The first digits of surfaces of rivers, street addresses
and populations turn out to be distributed approximately logarithmically. That means that more than
thirty percent of these numbers starts with a 1. For numbers gotten from front pages of newspapers,
numbers which find their origin in a lot of different sources, this approximation is even better. On the
contrary, for other numbers like IQ-test results this approximation is very bad.
Behind this strange phenomenon hides a law that appears the moment one writes down numbers in a
number system. To write down numbers we use a decimal number system. This predilection for ten is
not a coincidence, man has ten fingers. Of course it is possible to denote numbers using another base, for
example the Maya Indians were used to denote numbers in base 20 and computers calculate in a binary
system.
Benford already noticed on his final page that the phenomenon turns up not only using base 10, but also
when using other bases. He wrote:

...the logarithmic relationship is not a result of the particular numerical system, with its base
10, that we have elected to use. Any other base, such as 8, or 12, or 20, to select some of the
numbers that have been suggested at various times, would lead to similar relationships...

Inspired by Benford and also by present-day mathematicians as Ted Hill and Peter Schatte, in this masters
thesis Benford’s Law will be examined without clinging to base 10. Usually tests on the degree to which
numbers satisfy Benford’s Law are only done with respect to base 10. If the frequencies of numbers are
equal to the by Benford predicted values in this base, then the numbers are said to satisfy Benford’s Law.
We will see that statements about the degree to which numbers satisfy Benford’s Law should be made
with care. In some cases this degree depends on the base being used. It is possible that numbers of which
the first-digits are distributed logarithmically with respect to base 10, are not distributed logarithmically
with respect to base 20. In this case without mentioning the base a Dutchman, who is counting in base
10, will claim that these numbers follow Benford’s Law while a Maya, who is counting in base 20, would
never do this. The Dutchman should formulate his claim as: these numbers satisfy Benford’s Law with
respect to base 10. The same problem arises when only a finite number of significant digits are regarded,
in that case the distribution of the digits can depend on the measuring units being used. If for example
only the first significant digit is regarded, it is possible that a Dutchman and an American do not agree
whether or not their frequencies are equal to the by Benford predicted values.
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3 BENFORD’S LAW

Originally, investigating numbers concerning Benford’s Law is investigating frequencies of first signif-
icant digits of numbers. In this thesis Benford’s Law is studied by studying mantissae of numbers. Let
us give a definition of a mantissa of a real number:

Definition 3.1 Let b be a real number bigger than 1, which we will call a (real) base. For x ∈ R\{0}
define the mantissa of x relative to base b, denoted by mb(x), as the unique m∈ [1,b) such that m ·bk = |x|
with k ∈ Z and define mb(0) = 0. The function mb :R→R that assigns to x the mantissa mb(x) is called
the mantissa function relative to base b.

For example m10(π)= π = 3.14 . . . and m10(0.00123)= m10(123)= 1.23 and m√
2(π)= π√

2
3 = 1.11072 . . ..

Defined in this way the mantissa of a number unequal to zero lies in the interval [1,b). This interval is
exactly the interval where Benford’s Law lives, more formally: only to subsets of this interval can Ben-
ford’s Law give strictly positive measure. Let us give the definition of Benford’s Law:

Definition 3.2 Let b > 1 be a real base. Benford’s Law relative to base b is the probability measure
PBLb on

(
R,B(R)

)
determined by the following distribution function:

FBLb(x) :=





0 for x < 1,
logb(x) for x ∈ [1,b),
1 for x≥ b.

Important to notice is that for different bases the probability measures with the name Benford’s Law are
different. For every b > 1 Benford’s Law is a logarithmic distribution which assigns measure 1 to the
interval [1,b). If we take an interval [c,d]⊂ [1,b) we have

PBLb([c,d]) = logb(d)− logb(c).

If mantissae of numbers written down in base b = 10 follow Benford’s distribution, then the probability
that the first significant digit is i, where i ∈ {1,2, . . . ,9}, is

log10(i+1)− log10(i) = log10(1+
1
i
).

Mantissae of numbers do often follow Benford’s Law. How can we investigate this mathematically?
Instead of investigating numbers we will assume numbers to be distributed as some known distribution
on R and look how close the corresponding distribution of the mantissae is to Benford’s distribution. In
an article of Ted Hill entitled A Statistical Derivation of the Significant-Digit Law, published in 1995, is
written:

An interesting open problem is to determine which common distributions (or mixtures thereof)
satisfy Benford’s Law, i.e., are scale or base-invariant or which have mantissas with logarith-
mic distributions. For example, the standard Cauchy distribution is close to satisfying Ben-
ford’s Law (cf. Raimi (1976)), and the standard Gaussian is not, but perhaps certain natural
mixtures of some common distributions are.

This open problem gives rise to the following questions, to which we would like to give answers at the
end of the thesis:

1. How should we order distributions on the degree to which they satisfy Benford’s Law relative to all
bases b > 1?

2. What properties of a distribution do have great influence on this degree?

5



3. Why do mantissae of numbers often follow Benford’s Law?

In Definition 8.1 we will define a Benford-distance on probability distributions that measures how close
the corresponding mantissa distribution relative to one base is to Benford’s Law. This distance will be
zero if and only if the distribution satisfies Benford’s Law in this base.

In order to define a distance on probability distributions, we must first define the class of probability
distributions we will work with.

4 PROBABILITY DISTRIBUTIONS

Definition 4.1 Let P be the class of probability distributions P which are probability measures on the
measurable space

(
R,B(R)

)
. Let Pa.c. be the subclass in which the P are absolutely continuous with

respect to λ, the Lebesgue measure on
(
R,B(R)

)
.

Definition 4.2 Let P + be the subclass of P which consists of probability measures P which give mea-
sure 0 to the set (−∞,0]. Let P +

a.c. be the subclass of P + in which the P are absolutely continuous with
respect to λ, the Lebesgue measure on

(
R,B(R)

)
.

The classes P and Pa.c. are defined in such a way that they contain common distributions like the normal
distribution, the exponential distribution, the uniform distribution and Benford’s distribution. Later in
Section 6 we will see why we defined the classes P + and P +

a.c. and in Theorem 6.3 we will see how these
distributions can be adapted such that they become elements of P + and P +

a.c.. Let us determine more
exactly what kind of distributions are in our classes. A probability measure P ∈ P can be determined in
several ways. We follow the definitions of D.Williams [WIL].

Theorem 4.3

(I) Let X : Ω → R be a random variable defined on the probability space
(

Ω,F ,P
)

, i.e. a F -
measurable function. Then PX : B(R)→ [0,1], defined by

PX(B) = P(X−1(B)) = P({ω ∈Ω : X(ω) ∈ B}) for all B ∈ B(R),

is a probability measure in P .
The distribution function FX : R→ [0,1] of PX defined by

FX(x) = PX((−∞,x]) for all x ∈ R,

is non-decreasing, right-continuous and furthermore limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

(II) Let F : R→ [0,1] be a non-decreasing, right-continuous function with limx→−∞ F(x) = 0 and
limx→∞ F(x) = 1. Then P : B(R)→ [0,1] determined by

P((−∞,x]) = F(x) x ∈ R,

is a probability measure in P . Given this function F there exists a probability space
(

Ω′,F ′,P′
)

and a random variable X : Ω′→ R such that P is the probability measure defined by X as in (I)
of this theorem. We can write P = PX . Furthermore F is the distribution function of PX . We can
write F = FX .

(III) Let f : R→ R be a non-negative λ-integrable Borel function with
R
R f dλ = 1. Then P : B(R)→

[0,1] defined by

P(B) =
Z

B
f dλ, ∀B ∈ B(R)
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is a probability measure in Pa.c.. Furthermore, there exists a probability space
(

Ω′,F ′,P′
)

and a

random variable X : Ω′→R with corresponding probability measure PX = P. The function fX = f
is called the density function of PX and is unique almost everywhere.

We have seen that random variables, distribution functions and density functions can define probability
measures in P . Conversely, given a probability measure P ∈ P , there exists a random variable X defined
on some probability space such that PX = P. Furthermore, if PX ∈ Pa.c., then it has a density function fX .

Proof: See [WIL] page 33 to 35 and page 68.

5 THE MANTISSA DISTRIBUTION

We want to define what we mean by a (probability) distribution satisfying Benford’s Law in base b.
First we will define the mantissa distribution, the mantissa distribution function and the mantissa density
function. Let PX ∈ P be a probability distribution, with a corresponding random variable X . Then the
function mb(X) is also a random variable. Namely, X is a random variable from Ω to R and it is F -
measurable. The mantissa function mb(x) from R to R is a Borel function. Then the composition lemma
for measurable functions says that mb(X) is a F -measurable function from Ω to R. We conclude that it
is a random variable. Theorem 4.3 (I) enables us to define the mantissa distribution, Pmb(X), which is an
element of P .

Definition 5.1 Given a probability distribution PX ∈ P , the mantissa distribution (relative to base b) is
the probability measure Pmb(X) ∈ P . According to Theorem 4.3, it is defined as

Pmb(X)(B) = P((mb(X))−1(B)) = P({ω ∈Ω : mb(X(ω)) ∈ B}) for all B ∈ B(R).

The distribution function Fmb(X) is called the mantissa distribution function (relative to base b). Also
according to Theorem 4.3, it is defined as the following function from R to [0,1]

Fmb(X)(x) = Pmb(X)((−∞,x]) = P(mb(X)≤ x) = P({ω ∈Ω : mb(X(ω))≤ x}).
If Pmb(X) is absolutely continuous with respect to λ, then its density function fmb(X) is called the mantissa
density function (relative to base b). According to Theorem 4.3 this is a function from R to R such that

Pmb(X)(B) =
Z

B
fmb(X)dλ, ∀B ∈ B(R).

Remark that from this definition it follows that the mantissa density function is determined almost ev-
erywhere.

In Section 3 in the citation of T.Hill, has been written about distributions satisfying Benford’s Law. When
does a distribution satisfy Benford’s Law?

Definition 5.2 A probability distribution or probability measure PX ∈ P satisfies Benford’s Law in
base b if and only if

• the mantissa distribution relative to base b is equal to Benford’s Law relative to base b, that is

Pmb(X)(B) = PBLb(B) ∀B ∈ B(R),

or

• the mantissa distribution function relative to base b is equal to the distribution function determining
Benford’s Law relative to base b. We can write this as

Fmb(X)(x) =





0 for x < 1,
logb(x) for x ∈ [1,b),
1 for x≥ b.



 = FBLb(x).
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Benford’s Law is absolutely continuous with respect to λ, so equivalent is that

• there is a mantissa density function relative to base b such that

fmb(X)(x) =
{ 1

x·loge(b) for a.e. x ∈ [1,b),
0 for a.e. other x.

}
=: fBLb(x).

Observe that we always mention the base b. One can not talk about a distribution satisfying Benford’s
Law without mentioning a base. Later in some examples we will see distributions for which the degree
to which they satisfy Benford’s Law differs a lot by varying the base.

Let b > 1 be an integral base and let PX ∈ P . From the mantissa distribution Pmb(X) one can easily
derive the expected relative frequencies of the first significant digits of numbers that follow PX . Namely,
the expected frequency of the first significant digit i, where i ∈ {1,2, . . . ,b}, is given by

Pmb(X)([i, i+1)) = P
(
{ω ∈Ω : mb(X(ω)) ∈ [i, i+1)}

)
.

Usually one looks at the case that b is equal to 10, as we did after definition 3.2. Following Hill [HI2], if a
distribution PX ∈ P satisfies Benford’s Law in base 10, then the relative frequency of the first significant
digit i, where i ∈ {1, . . . ,9}, is given by:

Pm10(X)([i, i+1)) =
Z

[i,i+1)
fm10(X)dλ =

Z
[i,i+1)

1
x · loge(10)

dλ(x) =

log10(i+1)− log10(i) = log10(1+
1
i
).

If one only considers the second significant digit, then the relative frequency of the digit i ∈ {0,1, . . . ,9}
is equal to the following sum of integrals, which we also work out:

k=9

∑
k=1

Z k+ i+1
10

k+ i
10

1
x · loge(10)

dλ(x) =
9

∑
k=1

log10(k +
i+1
10

)− log10(k +
i

10
) =

9

∑
k=1

log10 (1+
1

10 · k + i
)

Finally, the relative frequency of numbers of the form d1.d2 . . .dn . . . is equal to the following integral,
which we also work out:Z d1.d2...dn+101−n

d1.d2...dn

1
x · loge(10)

dλ(x) = log10 (d1.d2 . . .dn +101−n)− log10 (d1.d2 . . .dn) =

log10

(
1+

( j=n

∑
j=1

d j ·10n− j
)−1)

.

For instance the relative frequency of mantissae starting with 1.2345 is equal to log10(1.2346)−log10(1.2345),
or log10(1+(12345)−1).

Already in 1880 Simon Newcomb [NEW] was the first to publish the frequencies of the first and second
significant digit, see Table 1.

Of course there is a relation between a given probability distribution and its corresponding mantissa
distributions. In the next section we will find an explicit formula which represents this relation.
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Dig. First Digit. Second Digit.
0 · · · · · · 0.1197
1 · · · 0.3010 0.1139
2 · · · 0.1761 0.1088
3 · · · 0.1249 0.1043
4 · · · 0.0969 0.1003
5 · · · 0.0792 0.0967
6 · · · 0.0669 0.0934
7 · · · 0.0580 0.0904
8 · · · 0.0512 0.0876
9 · · · 0.0458 0.0850

Table 1: Newcomb’s table: The relative frequencies of the first and second significant digit of numbers following a distribution
that satisfies Benford’s Law in base 10.

6 TAKE LOGARITHMS AND CALCULATE MODULO ONE

Given a probability distribution PX we are interested in Pmb(X). To find a formula relating these distribu-
tions it is important to know very well what the mantissa function is. It is difficult to find the formula
using Definition 3.1. Therefore, we will give another definition of a mantissa which is equivalent to
Definition 3.1, at least for strictly positive numbers. Lemma 6.2 below allows us to give the following
definition.

Definition 6.1 Define the mantissa of x ∈ R+\{0} relative to base b as blogb(x)(mod 1).

This definition is easier to use when calculating mantissae of numbers with the computer, and it helps us
finding our desired formula.

Lemma 6.2 Let x ∈ R+\{0}, then mb(x) = blogb(x)(mod 1)

Proof Since mb(x) ∈ [1,b) we have that logb(mb(x)) ∈ [0,1), so we can write:

blogb(x)(mod 1) = blogb(mb(x)·bk)(mod 1) = b(logb(mb(x))+logb(b
k))(mod 1) =

b(logb(mb(x))+k)(mod 1) = blogb(mb(x))(mod 1) =

blogb(mb(x)) = mb(x).

¤
This definition of a mantissa is only equivalent to Definition 3.1 for strictly positive real numbers, be-
cause the logarithm is not defined for negative numbers nor for zero. We want to use this definition
of a mantissa, so we will look at probability distributions of the class P +. We have to find a way of
converting a probability distribution from PX ∈ P to an element of this class.

Let us see how we can convert a probability distribution of P to a probability distribution of P +. The
easiest method is taking absolute values. Let PX ∈ P . If PX({0}) = 0, then the probability distribution
P|X | is in P +. From now on we will only consider distributions for which PX({0}) = 0. Furthermore,
without loss of generality, we assume that X(ω) 6= 0 for all ω ∈Ω. This enables us to take logarithms of
the absolute values of the random variables.

The goal of this chapter is to derive a formula which expresses the mantissa distribution function Fmb(X)
of a given probability distribution, which is in P +, in terms of the corresponding distribution function
FX . And even more important for this thesis we want to derive a formula which expresses the mantissa
density function fmb(X) of a probability measure in P +

a.c. in terms of fX . We will first look what happens

9



to the distribution function and density function of a given probability distribution PX ∈ P if we take
absolute values of X .

Theorem 6.3 Let PX ∈ P . Then P|X | ∈ P + and the distribution function of P|X | is given by:

F|X |(x) =
{

FX(x)−F−X (−x) for x > 0 and
0 for x≤ 0.

Let PX be in Pa.c., then P|X | ∈ P +
a.c. and a density function of P|X | is given by

f|X |(x) =
{

fX(x)+ fX(−x) for a.e. x > 0 and
0 for a.e. x≤ 0.

Further, the mantissa distribution of P|X | is equal to the mantissa distribution of PX .

Note that F−X (−x) is the left limit of FX in the point −x.

Proof Note that |X | is a random variable. Theorem 4.3 implies that P|X | defined by

P|X |(B) = P(|X | ∈ B) for all B ∈ B(R),

is a probability measure, that is P|X | ∈ P . The distribution function is F|X |(x) = P|X |((−∞,x]). If x > 0,
then

P(|X | ≤ x) = P(−x≤ X ≤ x) = FX(x)−F−X (−x)

and if x ≤ 0, then P|X |((−∞,x]) = 0, because |X | is positive. The positivity of |X | also implies that
P|X | ∈ P +.
Now let PX be in Pa.c.. Assume first that x > 0. Then

P|X |((−∞,x]) = P(|X | ≤ x) = P(−x≤ X ≤ x) =Z
[−x,x]

fX dλ =
Z

[0,x]
fX dλ+

Z
[−x,0]

fX dλ =
Z

[0,x]
fX dλ+

Z
[0,x]

f−X dλ =
Z

[0,x]
fX + f−X dλ =Z

(−∞,x]
1[0,∞) · ( fX + f−X)dλ =

Z
(−∞,x]

1[0,∞) · ( fX(x′)+ fX(−x′))dλ(x′).

If x≤ 0, then it is immediate that

P|X |((−∞,x]) = P(|X | ≤ x) = 0 =
Z

(−∞,x]
0 dλ.

We proved the equality of measures for all Borel sets of the form (−∞,x], so we proved it for all Borel
sets. Indeed P|X | ∈ P +

a.c.
The last statement of this theorem is a direct consequence of the definition of a mantissa, see Definition
3.1. The mantissa of a number x ∈ R is equal to the mantissa of |x|.

¤

Lemma 6.2 leads easily to the following lemma.

Lemma 6.4 Let PX ∈ P +, then Pmb(X) ∈ P +, and the mantissa distribution relative to base b is

Pmb(X) = Pblogb(X) (mod 1).
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Proof In the discussion just before Definition 5.1 we already saw that Pmb(X) ∈ P . We assumed X to
be a strictly positive random variable, so mb(X) is also strictly positive. We conclude Pmb(X) ∈ P +. To
finish the proof, we prove the second statement of the lemma. So, we have to prove that for all Borel sets
B ∈ B(R)

P({ω ∈Ω : mb(X(ω)) ∈ B}) = P
(
{ω ∈Ω : blogb(X(ω)) (mod 1) ∈ B}

)
.

Given is that P({ω ∈Ω : X(ω)≤ 0}) = 0, namely PX ∈ P +. Now

P({ω ∈Ω : mb(X(ω)) ∈ B}) =

P({ω ∈Ω : mb(X(ω)) ∈ B and X(ω) > 0})+P({ω ∈Ω : mb(X(ω)) ∈ B and X(ω)≤ 0}) =

P
(
{ω ∈Ω : blogb(X(ω)) (mod 1) ∈ B}

)
+0.

¤
The next theorem is the main theorem of this section.

Theorem 6.5 (Main Theorem) Let PX ∈ P +. Let b > 1 be a real base. Then the mantissa distribution
function Fmb(X) can be expressed in terms of the distribution function FX :

Fmb(X)(x) =





0 for x < 1,

∑∞
k=−∞

(
FX(x ·bk)−F−X (bk)

)
for x ∈ [1,b) and

1 for x≥ b.

Let PX ∈ P +
a.c. with density function fX . Then Pmb(X) ∈ P +

a.c. and the mantissa density function fmb(X) can
be expressed in terms of fX :

fmb(X)(x) =
{

∑∞
k=−∞ bk · fX(bk · x) for a.e. x ∈ [1,b) and

0 for a.e. other x.

Remark that F−X (bk) is the left limit of FX in the point bk. In case FX is left-continuous in bk, we surely
have F−X (bk) = FX(bk).

In order to prove this theorem, we need some lemmata. The proof is based on Lemma 6.4. Given
PX we will successively look at Plogb(X), Plogb(X)(mod 1) and Pblogb(X)(mod 1) = Pmb(X).

Lemma 6.6 Let PX ∈ P +. Let b > 1 be a real base. Then Plogb(X) ∈ P and its distribution function can
be expressed in terms of the distribution function FX :

Flogb(X)(x) = FX(bx) for x ∈ R.

Let PX ∈ P +
a.c. with density function fX . Then Plogb(X) ∈ Pa.c. and its density function can be expressed

in terms of fX :
flogb(X)(x) = loge(b) ·bx · fX(bx) for almost every x ∈ R.

Proof From PX ∈ P + we know that X is positive. The function logb(x) is a Borel function, so logb(X)
is a random variable. Theorem 4.3 implies that Plogb(X) is a probability measure. So, Plogb(X) ∈ P . For
the distribution function we can write

Flogb(X)(x) = Plogb(X)((−∞,x])) = PX((0,bx]) = FX(bx)−FX(0) = FX(bx).

Now assume that PX ∈ P +
a.c. and let B be a Borel set,

Plogb(X)(B) = PX({x ∈ R : logb(x) ∈ B}) =
Z
{x∈R:logb(x)∈B}

fX(x)dλ =
Z

B
fX(bx) · loge(b) ·bxdλ,

where the last step is obtained by a change of variables. So, indeed Plogb(X) ∈ Pa.c..

11



¤
In Lemma 6.8 we will encounter an infinite sum and an integral which we would like to interchange.
Therefore we will use the Monotone Convergence Theorem (see [WIL]), which we will state here.

Theorem 6.7 (Monotone-Convergence Theorem) Let (S,Σ,µ) be a measure space. If ( fn) is a se-
quence of non-negative Σ-measurable functions such that fn ↑ f , thenZ

S
fn(s)µ(ds) ↑

Z
S

f (s)µ(ds).

Now we are ready to give the next lemma.

Lemma 6.8 Let b > 1 be a real base. Let Plogb(X) ∈ P . Then Plogb(X)(mod 1) ∈ P and its distribution
function can be expressed in terms of the distribution function Flogb(X):

Flogb(X)(mod 1)(x) =





0 for x < 0,

∑∞
k=−∞(Flogb(X)(x+ k)−F−logb(X)(k)) for x ∈ [0,1),

1 for x≥ 1.

Let Plogb(X) ∈ Pa.c. . Then Plogb(X)(mod 1) ∈ Pa.c. and its density function can be expressed in terms of the
density function flogb(X),

flogb(X)(mod 1)(x) =
{

∑∞
k=−∞ flogb(X)(x+ k) for a.e. x ∈ [0,1),

0 for a.e. other x.

Proof Since Plogb(X) ∈ P , we know that logb(X) is a random variable. This implies that logb(X)(mod 1)
is a random variable. Theorem 4.3 implies that Plogb(X)(mod 1) is a probability measure on (R,B(R)) and
we write Plogb(X)(mod 1) ∈ P . The distribution function is

Flogb(X)(mod 1)(x) = Plogb(X)(mod 1)((−∞,x])) =





Plogb(X)( /0) if x < 0,
Plogb(X)(

S∞
k=−∞[k,k + x]) if x ∈ [0,1),

Plogb(X)(R) if x≥ 1.

Of course we have Plogb(X)( /0) = 0 and Plogb(X)(R) = 1. In the second case we have

Plogb(X)

( ∞[
k=−∞

[k,k + x]
)

=
∞

∑
k=−∞

Plogb(X)

(
[k,k + x]

)
=

∞

∑
k=−∞

Plogb(X)

(
(−∞,k + x]\(−∞,k)

)

Plogb(X) is a finite measure, so this is equal to

∞

∑
k=−∞

(
Plogb(X)((−∞,k + x])−Plogb(X)((−∞,k))

)
=

∞

∑
k=−∞

(
Flogb(X)(k + x)−F−logb(X)(k)

)

We have proved the formula for distribution functions. Let Plogb(X) ∈ Pa.c.. Let B ∈ B , then

Plogb(X)(mod 1)(B) = Plogb(X)

( ∞[
k=−∞

(B∩ [0+ k,1+ k))
)

=
ZS∞

k=−∞(B∩[0+k,1+k))
flogb(X)(x)dλ(x) =

∞

∑
k=−∞

Z
(B∩[0+k,1+k))

flogb(X)(x)dλ(x) =
∞

∑
k=−∞

Z
(B∩[0,1))

flogb(X)(x+ k)dλ(x) =

∞

∑
k=−∞

Z
1B∩[0,1) · flogb(X)(x+ k)dλ(x)

12



Now we would like to interchange sum and integral. Consider for every n≥ 0 the function

sumn(x) =
n

∑
k=−n

1B∩[0,1) · flogb(X)(x+ k).

This sequence of functions is growing to

sum(x) =
∞

∑
k=−∞

1B∩[0,1) · flogb(X)(x+ k).

Now we will use the Monotone-Convergence Theorem (6.7). Let in the theorem (S,Σ,µ) = (R,B(R),λ)
and let fn = sumn. This functions are finite sums of Borel functions, so they are Borel functions. Let
f = sum. Then according to the Monotone-Convergence Theorem, we haveZ

R
sumndλ ↑

Z
R

sumdλ,

what implies that

lim
n→∞

n

∑
k=−n

Z
R

1B∩[0,1) · flogb(X)(x+ k)dλ(x) = lim
n→∞

Z
R

n

∑
k=−n

1B∩[0,1) · flogb(X)(x+ k)dλ(x) =

lim
n→∞

Z
R

sumndλ =
Z
R

sumdλ =Z
R

∞

∑
k=−∞

1B∩[0,1) · flogb(X)(x+ k)dλ(x) =
Z

B
1[0,1) ·

∞

∑
k=−∞

flogb(X)(x+ k)dλ(x).

We obtained:

Plogb(X)(mod 1)(B) =
Z

B
1[0,1) ·

∞

∑
k=−∞

flogb(X)(x+ k)dλ(x) for B ∈ B.

We proved Plogb(X)(mod 1) ∈ Pa.c.. Remark that the function 1[0,1) ·∑∞
k=−∞ flogb(X)(x + k) may be infinity,

so according to our definition of a density function in 4.3 (III) it may possibly not be a density function.
But as long as Plogb(X)(mod 1)(R) =

R
R 1[0,1) ·∑∞

k=−∞ flogb(X)(x + k)dλ(x) = 1, the set where it is infinity
is a set with Lebesgue measure zero. We can define a density function of logb(X)(mod 1) as follows

flogb(X)(mod 1)(x) =
{

1[0,1) ·∑∞
k=−∞ flogb(X)(x+ k) for all x ∈ R where the sum is finite

0 otherwise.

¤

Lemma 6.9 Let Plogb(X)(mod 1) ∈ P . Then Pmb(X) ∈ P + and its distribution function can be expressed in
terms of the distribution function of Plogb(mb(X)) = Plogb(X)(mod 1) as follows:

Fmb(X)(x) =





0 for x < 1,
Flogb(X)(mod 1)(logb(x)) for x ∈ [1,b),
1 for x≥ b.

Let Plogb(X)(mod 1) ∈ Pa.c., then Pmb(X) ∈ P +
a.c. and its density function can be expressed in terms of the

density function of Plogb(X)(mod 1) as follows:

fmb(X)(x) =

{
flogb(X)(mod 1)(logb(x))

x·loge(b) for a.e x ∈ [1,b),
0 for a.e other x.

13



Proof We already know that Pmb(X) ∈ P . Let us look at the distribution function of Pmb(X). For x≥ 1 we
have

Fmb(X)(x) = Pmb(X)((−∞,x]) = Plogb(mb(X))((−∞, logb(x)]) =

Plogb(X)(mod 1)((−∞, logb(x)]) = Flogb(X)(mod 1)(logb(x)).

If x ≥ b, then logb(x) ≥ 1 and Lemma 6.8 implies that Flogb(X)(mod 1)(logb(x)) = 1. If x < 1, we have
Fmb(X)(x) = Pmb(X)((−∞,x]) = 0, because we know that x′ > 0⇒mb(x′) ∈ [1,b). We have Pmb(X) ∈ P +.

Concerning the density functions, we see that for a Borel set B, we have

Pmb(X)(B) = Plogb(mb(X))({x ∈ R : bx ∈ B}) = Plogb(X)(mod 1)({x ∈ R : bx ∈ B}) =Z
{x∈R:bx∈B}

flogb(X)(mod 1)(x)dλ(x) =
Z

B
flogb(X)(mod 1)(logb(x)) ·

1
x · loge(b)

dλ(x),

where the last step is obtained by applying a change of variables. So, indeed Plogb(X)(mod 1) ∈ Pa.c. ⇒
Pmb(X) ∈ Pa.c.. Further from Fmb(X)(x) = 0 for x < 1 it follows that fmb(X)(x) = 0 for almost every
x < 1and from Fmb(X)(x) = 1 for x ≥ b it follows that fmb(X)(x) = 0 for almost every x ≥ b. We have
Pmb(X) ∈ P +

a.c..

¤
Proof of Theorem 6.5 Let us look at the mantissa distribution function relative to base b. Let x ∈ [1,b),
then

Fmb(X)(x) = Flogb(X)(mod 1)(logb(x)) =
∞

∑
k=−∞

(Flogb(X)(logb(x)+ k)−F−logb(X)(k)) =

∞

∑
k=−∞

(FX(blogb(x)+k)−F−X (bk)) =
∞

∑
k=−∞

(FX(x ·bk)−F−X (bk)).

In Lemma 6.9 we already saw that Fmb(X)(x) = 0 for x < 1 and Fmb(X)(x) = 1 for x≥ b.

Now we will prove the statement about density functions. Let x ∈ [1,b), we derive

fmb(X)(x) =
flogb(X)(mod 1)(logb(x))

x · loge(b)
=

1
x · loge(b)

·
∞

∑
k=−∞

flogb(X)(logb(x)+ k) =

1
x · loge(b)

·
∞

∑
k=−∞

loge(b) ·blogb(x)+k · fX(blogb(x)+k) =
1

x · loge(b)
·

∞

∑
k=−∞

loge(b) · x ·bk · fX(x ·bk) =

∞

∑
k=−∞

bk · fX(x ·bk) almost surely.

The first equality follows from Lemma 6.9. The second equality follows from Lemma 6.8. The third
equality follows from Lemma 6.6. And the last two equalities follow by calculation. If x < 1 or x ≥ b,
then we know by Lemma 6.9 that fmb(X)(x) = 0 almost surely. Remark that for x ∈ [1,b) the sum
∑∞

k=−∞ bk · fX(x · bk) can be infinity. Fortunately this happens if and only if for y = logb(x) the sum
∑∞

k=−∞ flogb(X)(mod 1)(y+k) is infinity, which almost surely does not happen. So, we can define a density
function of Pmb(X) by

fmb(X)(x) =
{

∑∞
k=−∞ bk · fX(bk · x) for x ∈ [1,b) where the sum is finite,

0 otherwise.

Indeed Pmb(X) ∈ P +
a.c..

¤
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6.1 THE STANDARD NORMAL DISTRIBUTION

Example 6.10 Let PX be the standard normal distribution on R. We know that PX ∈ Pa.c.. We are in-
terested in the mantissa distribution of PX relative to base 10. As long as the standard normal distribution
is not in P +

a.c. we have to change it such that it becomes in P +
a.c.. Since PX is absolutely continuous with

respect to Lebesgue measure, PX({0}) = P(X = 0) = 0. So, without loss of generality we can assume
that X is a random variable that is never zero. Then according to Theorem 6.3, P|X | ∈ P +

a.c. and by the
same theorem the mantissa distribution of PX is equal to the mantissa distribution of P|X |. Now Lemma
6.4 tells us that

Pm10(X) = Pm10(|X |) = P10log10(|X |)(mod 1).

As long as PX has a density function fX , we can derive expressions for f|X |, flog10(|X |), flog10(|X |)(mod 1)
and f10log10(|X |)(mod 1) = fm10(|X |) = fm10(X). We know that

fX(x) =
1√
2 ·πe−x2/2, for a.e. x ∈ R,

so, by Theorem 6.3 we can express f|X | in terms of fX as follows

f|X |(x) =
1√
2 ·πe−x2/2 +

1√
2 ·πe−(−x)2/2 = 2 · 1√

2 ·πe−x2/2, for a.e. x > 0.

Look on the left side of Figure 1 for the graph of the density function of PX and on the right side for
the graph of the density function of P|X |. By Lemma 6.6 and Lemma 6.8 we can express the density
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Figure 1: The standard normal distribution: On the left the graph of the density function of PX and on the right the graph of
the density function of P|X |

functions flog10(|X |) and flog10(|X |)(mod 1) as follows:

flog10(|X |)(x) = loge(10) ·10x ·2 · 1√
2 ·πe−(10x)2/2, for a.e. x ∈ R

and

flog10(|X |)(mod 1)(x) =
∞

∑
k=−∞

loge(10) ·10x ·2 · 1√
2 ·πe−(10x+k)2/2, for a.e. x ∈ [0,1)

Look on the left side of Figure 2 for the graph of the density function of Plog10(|X |) and on the right side
for the graph of the density function of Plog10(|X |)(mod 1).

In Figure 2 on the right the function is zero for x < 0 and x≥ 1, this is not plotted.
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Figure 2: The standard normal distribution: On the left the graph of the density function of Plog10(|X |) and on the right the
graph of the density function of Plog10(|X |)(mod 1).

According to the main theorem of this section, Theorem 6.5, we can express the density function of the
mantissa distribution as follows:

fm10(X)(x) = fm10(|X |)(x) =
∞

∑
k=−∞

2 · 1√
2 ·π ·10k · e−(10k·x)2

/2, for a.e. x ∈ [1,10).

The computer helps us to draw the graph of this function, plotted in Figure 3.
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Figure 3: The standard normal distribution: The solid line is the graph of the mantissa density function relative to base 10
and the dotted line is the graph of fBL10

In the last image, Figure 3, the dotted line is the graph of the function 1
x·loge(10) . If the distribution

satisfies Benford’s Law in base 10, then the graph of fm10(X) coincides almost everywhere with this
line. We see that the mantissa density function of the standard normal distribution does not coincide
almost everywhere with the dotted line and thus we conclude that the mantissae do not follow Benford’s
distribution for base 10. For numbers that follow the standard normal distribution we expect that 100 ·R 2

1 fm10(X)(x)dλ(x) ≈ 35.95 percent has 1 as first significant digit. Let us calculate all the frequencies
and put them next to Benford’s frequencies in Table 2.

16



Table 2: The relative frequencies of the first digits of numbers that follow a the standard normal distribution compared with
Benford’s frequencies.

Digit Benford N(0,1)
1 · · · 0.3010 0.3595
2 · · · 0.1761 0.1290
3 · · · 0.1249 0.0865
4 · · · 0.0969 0.0810
5 · · · 0.0792 0.0774
6 · · · 0.0669 0.0734
7 · · · 0.0580 0.0691
8 · · · 0.0512 0.0644
9 · · · 0.0458 0.0596

6.2 THE BETA DISTRIBUTION

Example 6.11 Let PX be a beta distribution. We may assume that the random variable X is strictly
positive such that PX ∈ P +

a.c.. A density function of PX is

fX(x) =
Γ(α+β)

Γ(α) ·Γ(β)
· (1− x)(β−1) · x(α−1) ·1(0,1)

By doing computer experiments one finds that for small α combined with large β this distribution has a
mantissa distribution that is close to fBLb , where b > 1. We have to remark that the bigger the base, the
smaller one has to choose α to get close to fBLb . Let us choose α = 0.1 and β = 4. And let us plot the
mantissa density function in base 10. Here follows, in Figure 4, the graph of this density function fX ,
which is zero outside the interval (0,1).
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Figure 4: The beta distribution with α = 0.1 and β = 4: The graph of the density function of PX .

Look in Figure 5 on the left for the graph of the density function flog10(X) and on the right for the graph
of the density function flog10(X)(mod1). In figure 6 one can see the graph of the mantissa density function
fm10(X). The graph of fm10(X) almost coincides with the graph of the function 1

x·loge(10) . We conclude
that this beta distribution nearly satisfies Benford’s Law. Mantissae of numbers following this beta
distribution will nearly have relative frequencies as Benford’s Law prescribes. Let us calculate all the
frequencies and put them in Table 3. We see that the frequencies are indeed very close to the frequencies
corresponding to Benford’s Law. At the end of Section 11 we will shortly discuss the Beta distribution.
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Figure 5: The beta distribution with α = 0.1 and β = 4: On the left side the graph of the density function of Plog10(X) and on
the right side the graph of the density function of Plog10(X)(mod1).
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Figure 6: The beta distribution with α = 0.1 and β = 4: The graph of the mantissa density function relative to base 10.

Table 3: The relative frequencies of the first digits of numbers that follow a beta distribution with α = 0.1 and β = 4 compared
with Benford’s frequencies.

Digit Benford Beta(0.1,4)
1 · · · 0.3010 0.3030
2 · · · 0.1761 0.1778
3 · · · 0.1249 0.1252
4 · · · 0.0969 0.0963
5 · · · 0.0792 0.0783
6 · · · 0.0669 0.0660
7 · · · 0.0580 0.0572
8 · · · 0.0512 0.0507
9 · · · 0.0458 0.0455

7 SCALAR MULTIPLICATION

Raimi ([RAI] page 529) states:

If the first digits of all the tables in the universe obey some fixed distribution law, Stigler’s or
Benford’s or some other, that law must surely be independent of the system of units chosen,
since God is not known to favor either the metric system or the English system. In other
words, a universal first digit law, if it exists, must be scale-invariant.
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This is a good motivation to study scale-invariance. Let PX ∈ P +
a.c.. In this section we will examine

the distribution of PcX , where c ∈ R+\{0} is a scalar and X a random variable. It will be much easier
to examine the distribution Plogb(mb(cX)) or equivalently Plogb(cX)(mod 1) instead of the distribution Pmb(cX).

In the next theorem we will see that the distribution of Plogb(mb(X)) = Plogb(X)(mod 1) is uniform if and
only if the distribution satisfies Benford’s Law.

Theorem 7.1 (Uniform distribution on the circle) Let b > 1 and let PX ∈ P +
a.c.. Then

fmb(X)(x) =
1

x · loge(b)
, for a.e. x ∈ [1,b) ⇐⇒ flogb(mb(X))(x) = 1, for a.e. x ∈ [0,1).

Proof According to Lemma 6.9 we have for almost every x ∈ [1,b) that

fmb(X)(x) =
flogb(X) (mod 1)(logb(x))

x · loge(b)

Consider the next equivalencies:

fmb(X)(x)=
1

x · loge(b)
for a.e. x∈ [1,b) ⇐⇒ flogb(X) (mod 1)(logb(x))

x · loge(b)
=

1
x · loge(b)

for a.e. x∈ [1,b) ⇐⇒

flogb(X) (mod 1)(logb(x)) = 1 for a.e. x ∈ [1,b) ⇐⇒ flogb(X) (mod 1)(x) = 1 for a.e. x ∈ [0,1)

¤

Question: Why is this last theorem called Uniform distribution on the circle? Hint: what is the title of
Section 6?

Let us examine the consequences of a multiplication with a scalar of the numbers of which we cal-
culate the mantissae. The property that the logarithm of a product is a sum of logarithms will give us the
solution to this problem. Let c∈R+\{0} and let fX be the density function of PX , then one easily checks
that the density function of PcX is equal to 1

c · f (1
c · x). The next theorem will show the consequences of

a scalar multiplication for the density function of a logarithm of the mantissae.

Theorem 7.2 (Scalar multiplication) Let b > 1 and let PX ∈ P +
a.c. with density function fX . Let c ∈

R+\{0}. Now,

1. flogb(mb(cX))(x) = flogb(mb(X))

(
(x− logb(c)) (mod 1)

)
for almost every x ∈ [0,1) and

2. flogb(cX)(x) = flogb(X)(x− logb(c)) for almost every x ∈ R.

Proof First we prove the second statement. According to Lemma 6.6 we have

flogb(cX)(x) = loge(b) ·bx · fcX(bx) for a.e. x ∈ R.

The last expression is equal to

loge(b) ·bx · 1
c
· fX(

1
c
·bx) = loge(b) ·b(x−logb(c)) · fX(b(x−logb(c))),

which is again by Lemma 6.6 almost surely equal to

flogb(X)(x− logb(c)).
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Now the first statement can be deduced as follows. Let x ∈ [0,1) and let a = (x− logb(c)) (mod 1) then
x− logb(c) = a+ l with a ∈ [0,1) and l ∈ Z. Lemma 6.2 implies that logb(mb(cX)) = logb(cX)(mod 1).
So, we have for almost every x ∈ [0,1):

flogb(mb(cX))(x) = flogb(cX)(mod 1)(x).

This is by Lemma 6.8 for almost every x ∈ [0,1) equal to
∞

∑
k=−∞

flogb(cX)(x+ k).

This is by the second statement of this theorem for almost every x ∈ [0,1) equal to
∞

∑
k=−∞

flogb(X)((x+ k)− logb(c)) =
∞

∑
k=−∞

flogb(X)((x− logb(c))+ k) =

∞

∑
k=−∞

flogb(X)((a+ l)+ k) =
∞

∑
k=−∞

flogb(X)(a+(l + k))

∞

∑
j=−∞

flogb(X)(a+ j).

The last step is true, because only the order in which the terms are added has been changed. The terms
are all positive, so the order in which the terms are added does not matter. Which means that the sums
are equal. The last expression is according to Lemma 6.8 for almost every a ∈ [0,1) equal to

flogb(X) (mod 1)(a) = flogb(X) (mod 1)((x− logb(c))(mod 1)) = flogb(mb(X))((x− logb(c))(mod 1)).

Where the last equality is by Lemma 6.2 true for almost every x ∈ [0,1).

¤

Example 7.3 In Example 6.10 we have determined the mantissa density function relative to base 10 of
the standard normal distribution. Let PX again be the standard normal distribution, where X is a random
variable that is never zero. Here, in Figure 7, we plot again on the left the density function flog10(m10(X))
of Pm10(X), and on the right the mantissa density function relative to base 10, fm10(X).
In Figure 8 we can see the consequence for flog10(m10(X)) and fm10(X) of a scalar multiplication of c =
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Figure 7: The standard normal distribution: On the left the graph of the density function of Plog10(X) (mod 1) and on the right
the graph of the density function of Pm10(X) (solid line) and the graph of fBL10 (dotted line).

10(1/3) ≈ 2.2 on X . According to Theorem 7.2 the graph of flog10(m10(X)) will rotate one third to the
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Figure 8: The standard normal distribution: On the left the graph of the density function flog10(m10(cX)) and on the right the
graph of the density function fm10(cX), with c = 10(1/3), (solid line) and the graph of fBL10 (dotted line).

right, while calculating modulo 1. Let PcX be the distribution which has corresponding random variable
cX = 10(1/3) ·X . On the left we see the graph of the density function flog10(m10(cX)) and on the right the
graph of the density function fm10(cX). Next we will show the consequences of a scalar multiplication
of c̃ = 10(2/3) ≈ 4.6. For flog10(m10(X)) this yields a rotation of two third to the right. Let Pc̃X be the
distribution determined by c̃X = 10(2/3) ·X . In Figure 9 we see on the left the graph of the density
function flog10(m10(c̃X)) and on the right the graph of the density function fm10(c̃X)
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Figure 9: The standard normal distribution: On the left the graph of the density function flog10(m10(c̃X)) and on the right the
graph of the density function fm10(c̃X), with c̃ = 10(2/3), (solid line) and the graph of fBL10 (dotted line).

Multiplication with 103/3 = 10 comes down to a rotation of 1 and so the mantissa density function will
not change. This is evident, a multiplication of 10 comes down to shifting of the decimal point and will
not change the mantissae. In the three figures on the left one can clearly see that the mean discrepancy
of the dotted right line does not change, as a consequence of Theorem 8.6 of the next section this implies
that also in the right figures the discrepancy between the mantissa density functions and the dotted line
does not change. That means that the degree to which the mantissae are distributed logarithmically is
invariant under scalar multiplication.
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8 A BENFORD-DISTANCE ON DISTRIBUTIONS

To determine the degree to which a distribution satisfies Benford’s Law, for integral bases one can calcu-
late the frequencies of the significant digits and compare them with the frequencies given by Benford. It
is also possible to define a distance on distributions which assigns to a distribution a value that indicates
the degree in which it satisfies Benford’s Law, this is possible for all real bases b > 1. Let us define the
γb-distance of a distribution as follows.

Definition 8.1 Let PX ∈ P +
a.c. be a distribution with a mantissa density function fmb(X). For every real

base b > 1 the γb-distance, γb : P +
a.c. → [0,2), is defined by

γb(PX) =
Z
R
| fmb(X)− fBLb|dλ,

where fBLb is the density function corresponding to Benford’s Law relative to base b, which is defined
in Definition 5.2.

We see that the γb-distance is a L1-norm, we can write

γb(PX) = E(| fmb(X)− fBLb |) = || fmb(X)− fBLb||.
The integral can be interpreted as the area between the mantissa density function of PX and the density
function of PBLb . It is a L1-norm, so the following theorem follows immediately.

Theorem 8.2 Let PX ∈ P +
a.c.. Then PX satisfies Benford’s Law in base b if and only its γb-distance is 0.

If we say that a distribution is close to Benford’s Law in a base b, we mean that the γb-distance is
small. Using the triangle inequality one can show that the γb-distance of a combination of distributions
is smaller or equal to the mean γb-distance of the separate distributions, see Section 8.3 on page 29. For
all distributions PX for which the γb-distance is defined holds γb(PX) ∈ [0,2), see Theorem 8.11 on page
25.

Example 8.3 The normal distribution treated in Example 6.10 has γ10-distance 0.2116. For the first sig-
nificant digits this means that the total absolute difference between their frequencies and the frequencies
in the table given by Newcomb, Table 1, lies between 0 and 0.2116, in fact the total difference is 0.2064.
It can be the case that a distribution has a γ10-distance not equal to zero, but has nevertheless the same
percentages of first digits as in Newcomb’s table. Of course, the first digits do not determine the mantissa
distribution.

Example 8.4 The beta distribution treated in Example 6.11, where α = 0.1 and β = 4, has γ10-distance
0.0080.

The γb-distance can be calculated for all real bases bigger than 1. For positive integral bases it gives a
bound for the maximum discrepancy between the frequencies of the significant digits and those given by
Benford. In particular for base 10 we have the following theorem.

Theorem 8.5 Let b = 10 and let PX be a distribution with mantissa density function fm10(X), then the
total absolute difference between the first significant digit frequencies of PX and those given by Benford
is bounded by the γ10-distance of PX . This means

9

∑
i=1

∣∣∣
Z

[i,i+1]
fm10(X)dλ− log10(1+ i−1)

∣∣∣≤ γ10(PX).
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Proof
9

∑
i=1

∣∣∣
Z

[i,i+1]
fm10(X)dλ− log10(1+ i−1)

∣∣∣ =
9

∑
i=1

∣∣∣
Z

[i,i+1]
fm10(X)dλ−

Z
[i,i+1]

fBL10dλ
∣∣∣ =

9

∑
i=1

∣∣∣
Z

[i,i+1]
( fm10(X)− fBL10)dλ

∣∣∣≤
9

∑
i=1

Z
[i,i+1]

∣∣∣ fm10(X)− fBL10

∣∣∣dλ =Z
[1,10]

∣∣∣ fm10(X)− fBL10

∣∣∣dλ = γ10(PX).

The inequality is a consequence of the known fact that if f is Lebesgue integrable, then |RB f dλ| ≤R
B | f |dλ, with B a Borel set.

¤
The next theorem states that the mean absolute discrepancy between flogb(mb(X)) and 1 is equal to the
mean absolute discrepancy between fmb(X) and fBLb .

Theorem 8.6 Let PX ∈ P +
a.c.. We have

γb(PX) =
Z
R
|1[0,1)− flogb(mb(X))|dλ

Proof Let u = logb(v) then v = bu and u will run through the interval [0,1) if v runs through the interval
[1,b). If we differentiate v with respect to u we get dv

du = bu · logb(u). We have:

γb(PX) =
Z

[1,b)
| 1
v · loge(b)

− fmb(X)(v)|dλ(v).

Which is by the substitution rule for Lebesgue integrals equal toZ
[0,1)

| 1
bu · loge(b)

− fmb(X)(b
u)| ·bu · loge(b)dλ(u).

This is by Lemma 6.9 (and Lemma 6.2) equal toZ
[0,1)

| 1
bu · loge(b)

− flogb(mb(X))(logb(b
u))

bu · loge(b)
| ·bu · loge(b)dλ(u).

We derive that this is equal toZ
[0,1)

|1− flogb(mb(X))(u)|dλ(u) =
Z
|1[0,1)(u)− flogb(mb(X))(u)|dλ(u)

¤

Remark that in general we seeZ
R
|Fmb(X)−FBLb|dλ 6=

Z
R
|(x ·1[0,1) +1[1,∞))−Flogb(mb(X))(x)|dλ(x).

We can use Theorem 8.6 to prove Theorem 8.8.

Definition 8.7 A function f : P +
a.c. → R is called scale-invariant if

f(PcX) = f(PX)

for all distributions PX ∈ P +
a.c. and all scalars c ∈ R+\{0}.
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Theorem 8.8 (Invariance under scalar multiplication) The γb-distance is scale-invariant, that is

γb(PcX) = γb(PX),

for all distributions PX ∈ P +
a.c. and all scalars c ∈ R+\{0}.

Proof By Theorem 8.6 we have

γb(PcX) =
Z
R
|1[0,1)− flogb(mb(cX))(x)|dλ(x) =

Z
[0,1)

|1− flogb(mb(cX))(x)|dλ(x).

This is by Theorem 7.2 equal toZ
[0,1)

∣∣∣1− flogb(mb(X))((x− logb(c))(mod 1))
∣∣∣dλ(x)

Let a = logb(c). Then, for x ∈ [0,1), Ta(x) = (x−a) (mod 1) is λ-invariant . We can write the integral
of the last display as Z

[0,1)

∣∣∣1− flogb(mb(X))

∣∣∣◦Ta(x)dλ(x)

The function flogb(mb(X)) is in L1 and so is
∣∣∣1− flogb(mb(X))

∣∣∣. Translation invariance mod 1 of Lebesgue
measure on [0,1), implies that the integral is equal toZ

[0,1)
|1− flogb(mb(X))(x

′)|dλ(x′) = γb(PX).

¤

Definition 8.9 A distribution PX ∈ P is called invariant under scalar multiplication if Pc·X = PX for all
c > 0.

Theorem 8.10 (Invariance under scalar multiplication ⇐⇒ Benford) Let PX ∈ P +
a.c.. The mantissa

distribution of PX in base b is invariant under scalar multiplication if and only if PX satisfies Benford’s
Law in base b

Proof “⇒” We have
Pmb(cX) = Pmb(X) ∀c > 0.

Then also
Plogb(mb(cX)) = Plogb(mb(X)) ∀c > 0.

We conclude that for all c > 0:

flogb(mb(cX))(x) = flogb(mb(X))(x) for a.e. x ∈ [0,1) (1)

According to Theorem 7.2 we have for all c > 0:

flogb(mb(cX))(x) = flogb(mb(X))((x− logb(c)(mod 1)) = flogb(mb(X))(x) for a.e. x ∈ [0,1). (2)

Now let x,x′ ∈ [0,1) be arbitrary. There is a c ∈R+\{0} such that x′ = (x− logb(c)) (mod 1). Then with
probability one

flogb(mb(X))(x
′) = flogb(mb(cX))(x) = flogb(mb(X))(x),

where the first equality follows from (2) and the second from (1). We conclude that flogb(mb(X)) is a.e.
constant. For the density function flogb(mb(X)) we have

R
[0,1) flogb(mb(X))dλ = 1, so the constant must be

1. Now Theorem 7.1 implies that

fmb(X)(x) =
1

x · loge(b)
for a.e x ∈ [1,b).
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This means that
fmb(X)(x) = fBLb(x) for a.e. x ∈ R.

“⇐” We have
fmb(x) =

1
x · loge(b)

for a.e. x ∈ [1,b).

Then according to Theorem 7.1 we have

flogb(mb(X))(x) = 1 for a.e. x ∈ [0,1).

Now flogb(mb(cX))(x) = flogb(mb(X))(x− logb(c) (mod 1)) = 1 = flogb(mb(X))(x) for almost all x ∈ [0,1).
This means that

fmb(cX) = fmb(X) a.e.

Density functions determine probability distributions totally. So, this implies that

Pmb(cX) = Pmb(X) for all c > 0.

A scalar invariance holds.

¤
Remark that Theorem 8.10 is always true, even without the assumption of absolute continuity, see [HI1].

Theorem 8.11 For all PX ∈ P +
a.c. the γb-distance is smaller than 2 and tends to 2 as b tends to. infinity.

Proof First we prove that
lim
b→∞

γb(PX) = 2

Recall that according to Theorem 8.6 we have

γb(PX) =
Z
R
|1[0,1)− flogb(mb(X))|dλ.

The distribution Plogb(mb(X)) tends to the dirac measure δ0 as b tends to infinity, for the following reason.
For every x ∈ (0,1): the measure that PX assigns to [ 1

bx ,bx] tends to one as b tends to infinity. This means
that the measure that Plogb(X) assigns to [−x,x] tends to 1 as b tends to infinity. This means that the
measure that Plogb(mb(X)) assigns to [0,x]∪ [1− x,1) tends to 1 as b tends to infinity. Since we can make
x as close to 0 as we want, we conclude that Plogb(mb(X) tends to the dirac measure δ0.

We have for all 0 < x < 1/2 that

lim
b→∞

Plogb(mb(X))

(
[0,x]∪ [1− x,1)

)
= 1.

Then we also have that for all 0 < x < 1/2:

lim
b→∞

Z
(x,1−x)

flogb(mb(X))dλ = 0 (3)

and
lim
b→∞

Z
[0,x]∪[1−x,1)

flogb(mb(X))dλ = 1 (4)

From (3) and the fact that flogb(mb(X)) is nonnegative we derive that for all 0 < x < 1/2:

lim
b→∞

Z
(x,1−x)

flogb(mb(X)) ·1{ flogb(mb(X))≤1}dλ = 0 (5)
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and
lim
b→∞

Z
(x,1−x)

flogb(mb(X)) ·1{ flogb(mb(X))>1}dλ = 0 (6)

and from (4) we derive

lim
b→∞

Z
[0,x]∪[1−x,1)

flogb(mb(X)) ·1{ flogb(mb(X))>1}dλ+ lim
b→∞

Z
[0,x]∪[1−x,1)

flogb(mb(X)) ·1{ flogb(mb(X))≤1}dλ = 1

For the right term we have

0≤ lim
b→∞

Z
[0,x]∪[1−x,1)

flogb(mb(X)) ·1{ flogb(mb(X))≤1}dλ≤ 2x (7)

and conclude that

1−2x≤ lim
b→∞

Z
[0,x]∪[1−x,1)

flogb(mb(X)) ·1{ flogb(mb(X))>1}dλ≤ 1. (8)

From (5) and (6) we will derive that for all 0 < x < 1/2:

lim
b→∞

Z
(x,1−x)

|1− flogb(mb(X))|dλ = 1−2x (9)

We derive it as follows:

lim
b→∞

Z
(x,1−x)

|1− flogb(mb(X))|dλ = lim
b→∞

Z
(x,1−x)

(1− flogb(mb(X))) ·1 flogb(mb(X))≤1dλ+

lim
b→∞

Z
(x,1−x)

( flogb(mb(X))−1) ·1 flogb(mb(X))>1dλ =

lim
b→∞

Z
(x,1−x)

1 flogb(mb(X))≤1dλ− lim
b→∞

Z
(x,1−x)

flogb(mb(X)) ·1 flogb(mb(X))≤1dλ+

lim
b→∞

Z
(x,1−x)

flogb(mb(X)) ·1 flogb(mb(X))>1dλ− lim
b→∞

Z
(x,1−x)

1 flogb(mb(X))>1dλ.

The second and third limits are both zero according to (5) and (6). And as long as limb→∞ λ({ flogb(mb(X)) >
1}) = 0 and limb→∞ λ({ flogb(mb(X))≤ 1}) = 1, it follows that the first limit is equal to 1−2x and the fourth
limit is equal to zero.

Using (8) we will see that

1−4x≤ lim
b→∞

Z
[0,x]∪[1−x,1)

|1− flogb(mb(X))|dλ≤ 1+2x (10)

First observe that
lim
b→∞

Z
[0,x]∪[1−x,1)

|1− flogb(mb(X))|dλ =

lim
b→∞

Z
[0,x]∪[1−x,1)

(1− flogb(mb(X)))·1{ flogb(mb(X))≤1}dλ+ lim
b→∞

Z
[0,x]∪[1−x,1)

( flogb(mb(X))−1)·1{ flogb(mb(X))>1}dλ

We have
0≤ lim

b→∞

Z
[0,x]∪[1−x,1)

(1− flogb(mb(X))) ·1{ flogb(mb(X))≤1}dλ =

lim
b→∞

Z
[0,x]∪[1−x,1)

1{ flogb(mb(X))≤1}dλ− lim
b→∞

Z
[0,x]∪[1−x,1)

flogb(mb(X)) ·1{ flogb(mb(X))≤1}dλ≤ 2x

26



for the first limit and

lim
b→∞

Z
[0,x]∪[1−x,1)

( flogb(mb(X))−1) ·1{ flogb(mb(X))>1}dλ =

lim
b→∞

Z
[0,x]∪[1−x,1)

flogb(mb(X)) ·1{ flogb(mb(X))>1}dλ− lim
b→∞

Z
[0,x]∪[1−x,1)

1{ flogb(mb(X))>1}dλ,

for the second limit, which according to (8) lies between 1−4x and 1.

Now (10) combined with (9) implies that

2−6x≤ lim
b→∞

Z
[0,1]

|1− flogb(mb(X))|dλ≤ 2.

This holds for all 0 < x < 1/2 and we conclude that limb→∞ γb(PX) = limb→∞
R
[0,1] |1− flogb(mb(X))|dλ =

2.

The value 2 is also a bound for the γb-distance. For the density function flogb(mb(X)) holdsZ
[0,1)

flogb(mb(X))dλ = 1.

From this follows thatZ
[0,1)

(1− flogb(mb(X))) ·1{ flogb(mb(X))<1}dλ =
Z

[0,1)
( flogb(mb(X))−1) ·1{ flogb(mb(X))≥1}dλ.

We derive Z
[0,1)

|1− flogb(mb(X))|dλ =
Z

[0,1)
|(1− flogb(mb(X))) ·1{ flogb(mb(X))<1}|dλ+Z

[0,1)
|(1− flogb(mb(X))) ·1{ flogb(mb(X))≥1}|dλ = 2 ·

Z
[0,1)

|(1− flogb(mb(X))) ·1{ flogb(mb(X))<1}|dλ≤ 2.

The γb-distance cannot be 2, because then we would have
R
[0,1) |(1− flogb(mb(X))) ·1{ flogb(mb(X))<1}|dλ = 1,

which means that λ({x ∈ [0,1) : flogb(mb(X))(x) = 0}) = 1. This cannot be true because flogb(mb(X)) is a
density function, which is 0 outside the interval [0,1). We conclude γb(PX) < 2.

¤

8.1 THE NORMAL DISTRIBUTION

Example 8.12 Let us examine the frequencies of digits of numbers that follow a normal distribution
with mean µ and standard deviation σ. What happens for example if σ tends to infinity? Let PX be a
normal distribution with mean µ and standard deviation σ. Let fX be a corresponding density function,

fX(x) =
1

σ
√

2π
· e−(x−µ)2/2σ2

.

Here follows a theorem about the γb-degree to which a normal distribution satisfies Benford’s Law.

Theorem 8.13 The γb-distance of a normal distribution is determined by the absolute value of the pro-
portion between the mean and the standard deviation. For all b > 1:

|µ/σ|= |µ′/σ′|=⇒ γb(N(µ,σ2)) = γb(N(µ′,σ′2)),

where N(µ,σ2) and N(µ′,σ′2) are two normal distributions.
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Proof Let PX = N(µ,σ) and let us look at the distribution PX/σ. Its density function is

fX/σ(x) = σ · fX(σ · x) =
σ

σ
√

2π
· e−(σ·x−µ)2/2σ2

=

1√
2π
· e−(x−µ/σ)2/2.

Then according to Theorem 8.8 we have γb(PX/σ) = γb(PX). Theorem 6.3 implies that Pmb(X) is equal to
Pmb(|X |), so only the absolute value of the quotient matters: |µ/σ|.

¤

This means for example that one can expect that the mantissae of numbers that follow a normal distribu-
tion with mean 100 and standard deviation 10 are distributed logarithmically in the same degree as the
mantissae of numbers that follow a normal distribution with mean 1000 and standard deviation 100.
If we fix µ, then letting σ tend to infinity is the same as letting the quotient µ/σ tend to zero. So, the
theorem has the following corollary.

Corollary 8.14

lim
σ→∞

γb(N(µ,σ2)) = γb(N(0,1)).

This means that for all µ the mantissa distribution of a normal distribution with σ tending to infinity
gets as logarithmic as the mantissa distribution of a standard normal distribution, which is definitely not
logarithmic.

In the next image, Figure 10, the γ-distance is plotted against the quotient µ/σ for base 10.
We can conclude that there does not exist a normal distribution with a logarithmic mantissa distribution.
One can see easily that a normal distribution with quotient µ/σ = 0 has no logarithmic distribution
and the discrepancy increases if the quotient |µ/σ| increases. So, the standard normal distribution has
the most logarithmic mantissa distribution of all normal distribution, accompanied by all other normal
distributions with µ = 0. We have the following conjecture:

Conjecture 8.15 With respect to the γb-distance, no normal distribution will satisfy Benford’s Law
better than the standard normal distribution N(0,1). Moreover, for all real bases b > 1,

|µ1/σ1|< |µ2/σ2| =⇒ γb(N(µ1,σ1)) < γb(N(µ2,σ2))

8.2 THE GAMMA DISTRIBUTION

Example 8.16 Let PX = Γ(α,λ) be a gamma distribution and such that X is a strictly positive random
variable. Then PX ∈ P +

a.c.. It has parameters α > 0 and λ > 0 and a density function fX , given by

fX(x) =
λα

Γ(α)
· xα−1 · e−λx ·1x>0.

Theorem 8.17 The scalar λ does not have influence on the γb-distance of the distribution.

Proof: Consider PλX . The density function of PλX is fλX(x) = 1
λ · fX( 1

λ · x) or

fλX(x) =
xα−1

Γ(α)
· e−x.

Theorem 8.8 implies that γb(PλX) = γb(P).
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Figure 10: The γ10-distance of a normal distribution with quotient µ/σ.

¤
The exponential distribution is a gamma distribution with α = 1. We have the following corollary of the
theorem.

Corollary 8.18 For all b > 1, every exponential distribution has the same γb-distance, that is, does not
depend on the mean of the distribution.

In Figure 11 the γ10-distance of the gamma distribution is plotted against α.
What I cannot prove but did see while calculating mantissa distributions is that the γb-distance tends to
0 if α tends to 0, that it increases if α increases.

Conjecture 8.19 Let Γ(α,λ) be a a gamma distribution with parameters α and λ. For every b the γb-
distance tends to zero if α tends to zero:

lim
α↓0

γb(Γ(α,λ)) = 0

and the γb-distance increases as α increases

α1 < α2 ⇒ γb(Γ(α1,λ))) < γb(Γ(α2,λ))).

8.3 COMBINATIONS OF DISTRIBUTIONS

How could we explain that mantissae of numbers obtained from various sources, as in newspapers, of-
ten follow a logarithmic distribution. Ted Hill explained in his article A Statistical Derivation of the
Significant-Digit Law [HI2] that the examining of numbers obtained from various sources can be simu-
lated by looking at distributions that are a combination of various distributions. In newspapers numbers
that follow a normal distribution stand next to numbers that follow uniform distributions, numbers that
follow exponential distributions, etcetera.
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Figure 11: The γ10-distance of a gamma distribution plotted against α.

Theorem 8.20 Let PX ∈ P +
a.c.. Further, let PXk ∈ P +

a.c. for 1≤ k ≤ n and such that

fX =
1
n
·

n

∑
k=1

fXk .

Then, the γb-distance of the combination distribution is smaller or equal to the average γ-distance of the
separate distributions:

γb(PX)≤ 1
n
·

n

∑
k=1

γb(PXk).

Proof Given is that fX = 1
n ·∑n

k=1 fXk . This implies that

flogb(X) (mod 1) =
1
n
·

n

∑
k=1

flogb(Xk) (mod 1)

Look at the probability space
(
[0,1),B([0,1)),λ

)
, and observe that Y = 1− flogb(X) (mod 1) and Yk =

1− flogb(Xk) (mod 1) are random variables on this probability space (with expectation zero). According
to Theorem 8.6 the γ-distances of PX and PXk are E(|Y |) and E(|Yk|), respectively. We use the triangle
inequality to see that

E(|Y1 +Y2 + · · ·+Yn|)≤ E(|Y1|)+E(|Y2|)+ · · ·+E(|Yn|).
From this follows that

E(|Y |) = E(|1
n
·

n

∑
k=1

Yk|)≤ 1
n
·

n

∑
k=1
E(|Yk|).

30



¤

For an example concerning a combination of distributions see Example 11.5. Also compare Figure 22
with Figure 23.

9 MANTISSA DISTRIBUTION IN SEVERAL BASES

In 1981 P.Schatte wrote an article titled On Random Variables with Logarithmic mantissa Distrution
Relative to Several Bases, see [SC1]. This article gives enough motivation to examine Benford’s Law for
several bases. The first thing I did in my research was examining the populations of 440 municipalities
in The Netherlands. Of these 440 natural numbers, smallest 988 and biggest 739459 I calculated the
mantissae for several bases and drew the empirical cumulative distribution functions (for a definition
see for example page 346 of [RIC] ). After that I calculated density functions of the logarithms of the
mantissae, with respect to the same bases. I used a so called “kernel probability density estimate”, where
I used a standard normal function as weight function (for a definition see for example page 359 of [RIC]).
Let us draw in figure 12 on the left the graphs of the empirical cumulative distribution functions of
the mantissae and on the right the density functions of the logarithms of the mantissae with respect to
base b = 800000, b = 80000, b = 8000, b = 800 and in figure 13 with respect to base b = 80, b = 10,
b = 8, b = 2 and finally in figure 14 with respect to the real base b = 1.8. So, on the left we see an
approximation of Fmb(X) and on the right an approximation of flogb(mb(X)).

Of course the mantissae of these numbers with respect to base b = 800000 are exactly the same as the
numbers itself (first image in figure 12). In the first image of figure 12 on the right we see that the
populations follow a log normal distribution, that means that the logarithms of the populations follow
a normal distribution. For this base the discrepancy between the distribution of the mantissae and the
logarithmic distribution is exactly the same as the discrepancy between the distribution of the numbers
and the logarithmic distribution.
From the images on the left in figures 12, 13 and 14 we cannot get much information about the degree
in which the mantissae are distributed logarithmically, but fortunately from the images on the right we
can. We see that the top of the function moves to the right. This moving does not influence the degree.
Interesting is that the top of the function decreases and the bell-shaped form stretches out, which makes
the discrepancy between the graph of the function and the dotted straight line smaller, which means
that the discrepancy between the distribution of the mantissae and the logarithmic distribution becomes
smaller. If the base decreases, the two endpoints get together and the graph of the function starts to
interfere with itself, what speeds up the process of convergence to the uniform distribution (see Figure
13). On the images on the right side for the bases smaller than 80 (see figure 13) the bell-shaped form is
not recognizable, only if you knew it had that origin, you could see it. In the case b = 10 the distribution
of the mantissae is close to logarithmic and in for b = 2 even more. For the small real base b = 1.8 we
see in Figure 14 that the mantissae are distributed nearly logarithmically.
In this example we already saw that the distribution of the mantissae can dependent on the base in which
you calculate in a very strong way. In this case the γb-distance appears to decrease as one lowers the
base and tends to 0 if b tends to 1. A computer specialist who calculates in base 2 will claim that this
numbers satisfy Benford’s Law while a Maya-Indian who calculates in base 20 will claim the opposite:
in this case they will never agree with each other. Before proving the convergence to the logarithmic
distribution we need to develop some theory, sampling functions will appear to be a nice tool.
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Figure 12: The Dutch municipalities: On the left the cumulative distribution functions of the mantissae (solid line) and FBLb

(dotted line) and on the right the density functions of the logarithms of the mantissae relative to base 800000, 80000, 8000
and 800, respectively.
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Figure 13: The Dutch municipalities: On the left the cumulative distribution functions of the mantissae (solid line) and
FBLb (dotted line) and on the right the density functions of the logarithms of the mantissae relative to base 80, 10, 8 and 2,
respectively.
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Figure 14: The Dutch municipalities: On the left the cumulative distribution functions of the mantissae (solid line) and FBL1.8

(dotted line) and on the right the density functions of the logarithms of the mantissae relative to the real base 1.8.

9.1 SAMPLING FUNCTIONS

Let PX ∈ P +
a.c.. We have seen in Lemma 6.8 that flogb(X) (mod 1) is for almost all x ∈ [0,1) a sum of

functions:

flogb(X) (mod 1)(x) =
∞

∑
k=−∞

flogb(X)(x+ k).

Let us define the function sampling1(x,z) : R→ R, with x ∈ [0,1) fixed, as

sampling1(x,z) =
∞

∑
k=−∞

flogb(X)(x+ k) ·1{z∈[x+k,x+(k+1))}.

The subscript 1 in sampling1(x,z) indicates that the steps, the intervals where the function is constant,
have length 1. For flogb(X) (mod 1)(x) one can write:

flogb(X) (mod 1)(x) =
Z
R

sampling1(x,z)dλ(z).

We see that flogb(X) (mod 1)(x) is an approximation of the Lebesgue integral of flogb(X), which is equal
to 1, by the Lebesgue integral of sampling1. From this one can conclude that a distribution satisfies
Benford’s Law in base b if and only if for almost all x ∈ [0,1) these approximations are perfect orZ

R
sampling1(x,z)dλ(z) = 1 for a.e. x ∈ [0,1).

The next theorem describes what happens if the base in which one calculates the mantissae changes.

Theorem 9.1 (A change of base) Let PX ∈ P +
a.c.. Let c be a strictly positive real number. We have

flogbc(X) (mod 1)(x) =
∞

∑
k=−∞

flogbc(X)(x+ k) =
∞

∑
k=−∞

c · flogb(X)(c · (x+ k)) for a.e. x ∈ [0,1)

Proof The first equality follows from Lemma 6.8. Furthermore, we have according to Lemma 6.6 that

flogbc(X)(x) = loge(b
c) · (bc)x · fX((bc)x) =

c · loge(b) ·bc·x · fX(bc·x) = c · flogb(X)(c · x) for a.e. x ∈ R.

From this follows the second equality.
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Figure 15: On the left flog10(X)(z) and sampling1(0.5,z) and on the right flog10(X) (mod 1)(x), with flog10(X) (mod 1)(0.5) indicated
by a dot.

¤
With the help of the last theorem we see that flogbc(X) (mod 1)(x) is an approximation of the Lebesgue
integral

R
R flogb(X)(z)dλ(z), which is equal to 1, by the Lebesgue integral of the sampling function

samplingc(x,z) : R→ R defined by

samplingc(x,z) =
∞

∑
k=−∞

flogb(X)(c · (x+ k)) ·1{z∈[c·(x+k),c·(x+(k+1))}

where the subscript c in samplingc(x,z) indicates that the steps have length c. For a.e. x ∈ [0,1) we can
write:

flogbc(X) (mod 1)(x) =
Z
R

samplingc(x,z)dλ(z).

We see that a distribution satisfies Benford’s Law in base bc if and only if for a.e. x ∈ [0,1) the Lebesgue
integral of the sampling function samplingc(x,z) gives a perfect approximation of the Lebesgue integral
of flogb(X)(z)dz, or Z

R
samplingc(x,z)dλ(z) = 1 for a.e. x ∈ [0,1).

From this we conclude the following: The degree to which the sampling functions with step lengths c
approximate the area under the graph of floge(X) determines the degree to which distribution PX satisfies
Benford’s Law in base ec. As one expects that the area under the graph of the function floge(X) will
be approximated better by sampling functions as the steps get smaller, one expects that the distribution
satisfies Benford’s Law better as the base gets smaller.

Example 9.2 Let us look at a distribution with density function given by

fX(x) =
1
2
· 1

σ1 ·
√

2π · x · e
−(loge(x)−µ1)2/(2·σ1

2) +
1
2
· 1

σ2 ·
√

2π · x · e
−(loge(x)−µ2)2/(2·σ2

2)

where µ1 = 1, σ1 = 0.5 , µ2 = 4 and σ2 = 1. The distribution is the average of two logarithmic normal
distributions. So, we observe that PX ∈ P +

a.c.. In the next two images, Figure 15, we see on the left
flog10(X)(z) and sampling1(0.5,z) and on the right flog10(X) (mod 1)(x).
We calculate

flog10(X) (mod 1)(0.5) =
Z
R

sampling1(0.5,z)dλ(z)≈ 1.38,

the area under the sampling function is bigger than 1, namely 1.38 . In the image on the right, of Figure
15 we see that the area under the sampling function sampling1(0.8,z) is smaller than 1. sampling func-
tions with steps of length 1 approximate the area under the graph of flog10(X)(z) very badly and therefore
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Figure 16: On the left flog10(X)(z) and sampling 1
2
(0.5,z) and on the right flog√10(X) (mod 1)(x), with flog√10(X) (mod 1)(0.5)

indicated by a dot.
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Figure 17: On the left flog10(X)(z) and sampling 1
10

(0.5,z) and on the right flog 10√10
(X) (mod 1)(x), with flog 10√10

(X) (mod 1)(0.5)
indicated by a dot.

flog10(X) (mod 1)(x) approximates 1 very badly. Therefore the distribution PX does totally not satisfy Ben-
ford’s Law in base 10.

Let us now look what happens if we decrease the base to b =
√

10 ≈ 3.16, and plot graphs in Figure
16 analogous to the graphs plotted in Figure 15
Now we have

flog√10(X) (mod 1)(0.5) =
Z
R

sampling 1
2
(0.5,z)dλ(z)≈ 0.984.

The areas under the graphs of the sampling functions with steps of length 1
2 approximate the area under

the graph of flog10(X)(z) very well. If one calculates in base
√

10, then one can expect that the mantissae
of numbers that follow a distribution with density function fX will nearly follow a

√
10-logaritmic dis-

tribution.

Let us finally lower the base to b = 10
√

10≈ 1.26.
The length of the steps that approximate the area under the graph is 10 times smaller then the length of

the steps belonging to base 10. In Figure 17 we see a nearly perfect approximation.

If the base decreases continuously, we see in the three images above on the right that the dot flogb(X) (mod 1)(0.5)
converges to 1 while fluctuating continuously around it. This observation induces us to examine the con-
tinuity of flogb(X) (mod 1)(x) in b and the convergence to 1 if b decreases to 1.
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9.2 CONTINUITY OF THE DISTRIBUTION OF THE LOGARITHMS OF THE MANTISSAE

We know that a density function of Plogb(X) (mod 1) can be written as an infinite sum (Lemma 6.8). So,
we will need a lemma about the continuity of a limit of functions.

Lemma 9.3 Suppose fn → f uniformly on a set E in a metric space. Let x be a limit point of E, and
suppose that

lim
t→x

fn(t) = An (n = 1,2,3, . . .).

Then {An} converges, and
lim
t→x

f (t) = lim
n→∞

An.

If fn(t) is continuous in t = x for all n, then f is continuous in x:

lim
t→x

f (t) = lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t) = lim
n→∞

fn(x) = f (x)

Proof See the book Principles of Mathematical Analysis [RUD], page 149.

¤
Now we are ready to give the theorem about continuity.

Theorem 9.4 (Continuity) Let PX ∈ P +
a.c. and such that fX is a continuous function on (0,∞). Let b > 1

and suppose that
n

∑
k=−n

flogb(X)(x+ k)

converges uniformly in x on R. Then there is a density function flogb(X)(mod 1)(x) which is continuous
in x on (0,1) and right-continuous in x = 0 and left-continuous in x = 1. Suppose additionally that the
sum converges uniformly in b on [r,s]. Then, the density function is also continuous in b on (r,s) and
right-continuous in r and left-continuous in s. Furthermore,

lim
b′→b

γb′(PX) = γb(PX)

Proof The function fX is continuous on (0,∞), so also flogb(X) is continuous on R. Since ∀k ∈ Z the
function flogb(X)(x+k) is continuous in x, also the finite sum ∑n

k=−n flogb(X)(x+k) is continuous in x for
all n. Since we claimed uniform convergence of ∑n

k=−n flogb(X)(x + k), we can use Lemma 9.3 and see
that ∑∞

k=−∞ flogb(X)(x + k) is continuous in x on R. According to Lemma 6.8, there is a density function
flogb(X)(mod 1)(x) of Plogb(X) (mod 1) that is on [0,1) a.e. equal to this infinite sum. From the continuity
follows that there is a density function of Plogb(X) (mod 1) that is on [0,1] equal to this infinite sum, and
thus continuous on (0,1) and right-continuous in 0 and left-continuous in 1.

Let us now prove
lim
b′→b

flogb′(X)(mod1)(x) = flogb(X)(mod 1)(x).

We will prove
lim
c→1

flogbc(X)(mod 1)(x) = flogb(X)(mod 1)(x).

We have that ∑n
k=−n flogbc(X)(x+ k) converges uniformly to flogbc(X)(mod 1)(x) for bc ∈ [r,s]. So, we only

have to show that the terms are continuous:

lim
c→1

flogbc(X)(x+ k) = flogb(X)(x+ k) with k ∈ Z

In the proof of Theorem 9.1 we saw that

flogbc(X)(x) = c · flogb(X)(c · x)
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so

lim
c→1

flogbc(X)(x+ k) = lim
c→1

c · flogb(X)(c · (x+ k)) = lim
c→1

flogb(X)(c · (x+ k)) = flogb(X)((x+ k)).

The last equality holds because flogb(X)(x) is continuous in x∈R. This proves limc→1 flogbc(X)(mod 1)(x)=
flogb(X)(mod 1)(x) and therefore limb′→b flogb′(X)(mod1)(x) = flogb(X)(mod 1)(x).

We now prove that
lim
b′→b

γb′(PX) = γb(PX).

Let kb(x) = |1− flogb(X)(mod 1)(x)|, then kb(x) is continuous in b on [r,s] and continuous in x on [0,1].
This is true because flogb(X)(mod 1)(x) is continuous in b and x and therefore also 1− flogb(X)(mod 1)(x) and
|1− flogb(X)(mod 1)(x)| are continuous in b and x. Because [0,1]× [r,s] is a compact set, kb(x) is uniform
continuous in both variables. Let us take a sequence {b1,b2, . . .} that converges to b, where bi ∈ [r,s]
for all i ∈ N. Let ε > 0. From the uniform continuity of kb(x) in x ∈ [0,1] for all b ∈ [r,s] follows that
there is a δ > 0 such that |b′− b| < δ ⇒ |kb′(x)− kb(x)| < ε. There is a N ∈ N such that |bN − b| < δ
and thereby |kbN (x)−kb(x)|< ε. We conclude that kbn(x)→ kb(x) uniformly on [0,1]. There is a N′ ∈N
such that for all n ≥ N′ the functions kbn are dominated by kb + 1, which is Lebesgue integrable on the
interval [0,1]. By Lebesgue’s Dominated Convergence Theorem

lim
n→∞

Z 1

0
kbn(x)dx =

Z 1

0
kb(x)dλ(x).

Because {b1,b2, . . .} was an arbitrary sequence that converges to b, we can conclude

lim
b′→b

Z 1

0
kb′(x)dx =

Z 1

0
kb(x)dλ(x).

¤

In Example 9.7 we will see that the γb-distance of log normal distributions is continuous in b. See also
Figure 22 and Figure 23 for continuous graphs of γb.

9.3 BENFORD TOWARDS BASE 1

From our experiment with population numbers one could get the idea that the γb-distance can get as
small as one wants by lowering the base b. Also in Example 9.2 we have seen that by lowering the base
the approximation by sampling functions got better. Let us make a more formal statement about this:

Theorem 9.5 (Benford towards base 1) Let PX ∈ P +
a.c. and such that flogb(X) is continuous and assume

that there is a Lebesgue integrable function g and a C > 0 such that samplingc(x,z)≤ g(z) for 0 < c < C.
Then

lim
b↓1

γb(PX) = 0

Proof By definition

samplingc(x,z) =
∞

∑
k=−∞

flogb(X)(c · (x+ k)) ·1{z∈[c·(x+k),c·(x+(k+1)))}.

If x and z are fixed, then k depends only on c:

c · (x+ k)≤ z < c · (x+ k +1)
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This implies that z/c− x−1 < k ≤ z/c− x. Since k is an integer, k = bz/c− xc. This implies that

samplingc(x,z) = flogb(X)(c · (x+ bz/c− xc)).
Notice that

lim
c→0

c · (x+ bz/c− xc) = z.

Since flogb(X) is continuous

lim
c→0

samplingc(x,z) = lim
c→0

flogb(X)(c · (x+ bz/c− xc)) = flogb(X)(z)

Now we have

lim
b↓1

flogb(X) (mod 1)(x) = lim
c→0

flogbc(X) (mod 1)(x) = lim
c→0

Z
R

samplingc(x,z)dλ(z) for a.e. x ∈ [0,1)

By Lebesgue’s Dominated Convergence Theorem this is equal toZ
R

lim
c→0

samplingc(x,z)dλ(z) =
Z
R

flogb(X)(z)dλ(z) = 1

Now again by Lebesgue’s Dominated Convergence Theorem applied to the probability measure λ on
[0,1), we obtain

lim
b↓1

γb(PX) = lim
b↓1

Z
[0,1)

|1− flogb(X) (mod 1)(x)|dλ(x) =
Z

[0,1)
lim
b↓1
|1− flogb(X) (mod 1)(x)|dλ(x) = 0

¤

We would like to give an example in which we apply Theorem 9.4 and Theorem 9.5. In Theorem 9.4
there is a condition about uniform convergence. We first need a lemma about uniform convergence.

Lemma 9.6 Let PX ∈ P +
a.c.. Assume that there is a M ∈ N such that flogb(X)(x) is non-decreasing for

x≤−M and non-increasing for x≥M. Then the sequence of functions

n

∑
k=−n

flogb(X)(x+ k)

converges uniformly on [0,1].
If additionally the function flogb(X)(x) is continuous, then the conditions of Theorem 9.5 are satisfied.

Proof The function flogb(X)(x) is a density function, so we have
R ∞
−∞ flogb(X)(x)dx = 1. For all ε > 0 there

is a M′ ∈ N such that Z −M′

−∞
flogb(X)(x)dx+

Z ∞

M′
flogb(X)(x)dx < ε.

Next, because flogb(X)(x) is decreasing for x≥M, we have for all k≥M and all x∈ [0,1) that flogb(X)(x+
k)≤ flogb(X)(0+ k) and so

∞

∑
k=M

flogb(X)(x+ k)≤
∞

∑
k=M

flogb(X)(0+ k).

Also, because flogb(X)(x) is decreasing for x≥M, we have that

k ≥M +1⇒ flogb(X)(0+ k)≤
Z k

k−1
flogb(X)(x)dλ(x).
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Therefore,
∞

∑
k=M+1

flogb(X)(0+ k)≤
Z ∞

M
flogb(X)(x)dλ(x).

In the same way, because flogb(X)(x) is increasing for x ≤ −M, we have for all k ≤ −M− 1 and all
x ∈ [0,1) that flogb(X)(x+ k)≤ flogb(X)(1+ k) and so

−M−1

∑
k=−∞

flogb(X)(x+ k)≤
−M−1

∑
k=−∞

flogb(X)(1+ k).

Also, we have that

k ≤−M−2⇒ flogb(X)(1+ k)≤
Z k+2

k+1
flogb(X)(x)dx.

Therefore,
−M−2

∑
k=−∞

flogb(X)(1+ k)≤
Z −M

−∞
flogb(X)(x)dx.

Let now ε > 0. There is a M′ ∈ N such that
R −M′
−∞ flogb(X)(x)dx +

R ∞
M′ flogb(X)(x)dx < ε. Let N =

max{M,M′}+2. Let x ∈ [0,1) and let n≥ N, then

∣∣∣ ∑
|k|≥n

flogb(X)(x+ k)
∣∣∣ = ∑

|k|≥n
flogb(X)(x+ k) =

−n

∑
k=−∞

flogb(X)(x+ k)+
∞

∑
k=n

flogb(X)(x+ k)≤

−n

∑
k=−∞

flogb(X)(1+ k)+
∞

∑
k=n

flogb(X)(0+ k)≤Z −N+2

−∞
flogb(X)(x)dλ(x)+

Z ∞

N−1
flogb(X)(x)dλ(x)≤

Z −M′

−∞
flogb(X)(x)dλ(x)+

Z ∞

M′
flogb(X)(x)dλ(x) < ε

Let us prove the second statement. We have to prove that there is a Lebesgue measurable function g and
a C > 0 such that samplingc(x,z)≤ g(z) for a.e. z for a.e. x ∈ [0,1) and 0 < c < C.
Define g(z) as:

g(z) =





flogb(X)(z) for z <−M−1
max{ flogb(X)} for z ∈ [−M−1,M +1]
flogb(X)(z−1) for z > M +1.

This function is Lebesgue integrable. Now samplingc(x,z) ≤ g(z) for a.e. z for a.e. x ∈ [0,1) and
0 < c < 1.

¤

Example 9.7 Consider a log normal distribution with a density function given by

fX(x) =
1

σ ·√2π · x · e
−(loge(x)−µ)2/(2·σ2) ·1{x>0}

Let us verify the conditions of Theorem 9.4 and Theorem 9.5. The function f is continuous on (0,∞).
The function flogb(X)(x) has a bell-shaped graph, so we can use Lemma 9.6 to conclude that ∑n

k=−n flogb(X)(x+
k) converges uniformly in x on [0,1], where b > 1. Now we have to prove that ∑n

k=−n flogb(X)(x+k) con-
verges uniformly in b on [r,s], where s > r > 1. Let b ∈ [r,s], then there is a c≥ 1 such that

∑
|k|>n

flogb(X)(x+ k) = ∑
|k|>n

flogrc(X)(x+ k) = ∑
|k|>n

c · flogr(X)(c · (x+ k))
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This last equality follows from Theorem 9.1. Now we will prove that for |x| big enough we have that
c ∈ [1,

loge(s)
loge(r)

]⇒ c · flogr(X)(c · x)≤ flogr(X)(x).

c · flogr(X)(c · x) = c · 1
σ ·√2π

· e−(c·x·loge(r)−µ)2/(2·σ2) =

1
σ ·√2π

· e(−(c·x·loge(r))
2+2c·x·loge(r)·µ−µ2+loge(c)·2·σ2)/2·σ2 ≤

1
σ ·√2π

· e(−(x·loge(r))
2+2·x·loge(r)·µ−µ2)/2·σ2

= flogr(X)(x)

The last inequality is true because for big |x| the term −(x · loge(r))
2 is the dominating term in the

exponent. This |x| does not depend on c. Now we can conclude that for big enough n we have for all
loge(s)
loge(r)

≥ c≥ 1

∑
|k|>n

c · flogr(X)(c · (x+ k))≤ ∑
|k|>n

flogr(X)(x+ k).

Since we know that ∑n
k=−n flogr(X)(x + k) converges, we can conclude that ∑n

k=−n flogr(X)(x + k) con-
verges uniformly in b on [r,s]. The conditions of Theorem 9.4 are verified. The conditions of Theorem
9.5 are also satisfied: the continuity of fX implies the continuity of flogb(X), now it follows from Theorem
9.6. We conclude that the γb(PX) varies continuously and goes to 0 if b goes to 1.

Let us examine a log normal distribution with µ = 0 and σ = 0.5. For several bases we calculate the
γb-distance and plot the graph in Figure 18. Attention: the γb-distance is plotted against the natural
logarithm of the base, so n means b = en. The horizontal axis indicates the length of the steps of the
sampling function that approximates flogb(X). If we want to know the γb-distance for base 10, then we
look in the graph at loge(10) ≈ 2.3, and we read that γ10(PX) ≈ 0.5. We see that in base 10 the steps
the length of 2.3 do not approximate very well and that the total difference between the percentages for
the first significant digits and the percentages in the table given by Newcomb lies between 0 and 50.
Further we derive from this graph that the discrepancy of the logarithmic distribution is very small for
bases smaller than e, increases strictly if the base increases and according to Theorem 8.11 tends to 2
as the base tends to infinity. The discrepancy for base 10 is in this case big, here the variable σ is of
importance: if we multiply σ with loge(10), then the discrepancy of the logarithmic distribution is very
small for bases smaller than 10 . A multiplication of the variable σ is in this case, as is a change of
base, a scalar multiplication applied to flogb(X). If we for example first duplicate σ, what decreases the
discrepancy, and then square the base in which you calculate, what increases the discrepancy, the degree
to which the distribution satisfies Benford’s Law does not change. The variable µ, which is a scalar, has
no influence at the degree to which the distribution satisfies Benford’s Law.

Remark further that in accordance with Theorem 9.4 and Theorem 9.5 we see that the γb-distance changes
continuously with respect to b and goes to 1 if b goes to 1.

Example 9.8 Let us look at a logarithmic distribution PX with density function

fX(x) =
1

x · loge(10)
·1{x∈[1,10)}

By Definition 3.2 we have that PX = PBL10 . The mantissa density function in base 10 is fBLb a.e. So, the
distribution satisfies Benford’s Law in base 10. Here follows a graph in which the γb-distance is plotted
against the natural logarithm of the base, so the γe-distance can be found at 1. On the horizontal axis we
see thus the length of the steps of the sampling function that approximates floge(X).
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Figure 18: The γb-distance of a log normal distribution with µ = 0 and σ = 0.5 plotted against the natural logarithm of the
base b, so the γ-distance relative to base b can be found at loge(b).
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Figure 19: The γb-distance of Benford’s Law relative to base 10, notation: γb(PBL10), plotted against the natural logarithm of
the base b, so the γb-distance can be found at loge(b).
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We see that the discrepancy at loge(10) ≈ 2.3 is zero, which means that γb(PX) = 0 for b = 10. We
conclude that Benford’s Law relative to base 10 satisfies Benford’s Law in base 10. Furthermore the
discrepancy is zero at 1

n · loge(10), where n ∈ N, this means that the γ-distance is also zero for bases
that are a n-the root of 10. However, we see that γb(PX) is non-zero between these roots, which means
that Benford’s Law relative to base 10 does not satisfy Benford’s Law in these bases. This shows that
one cannot say: this distribution satisfies Benford’s Law. One can only say: this distribution satisfies
Benford’s Law in base b. That is why we defined satisfying Benford’s Law relative to a base (Definition
5.2)

Next, it seems that in the image the γb-distance decreases linearly as the base tends to 1, which means
that the γb-distance decreases logarithmically since the horizontal axes is scaled logarithmically. Maybe
this linear decrease in the image is not very strange: if the length of the approximating steps gets c times
smaller, then the discrepancy gets c times smaller. Finally of course the γb-distance goes to 2 if b goes
to infinity. What about continuity? The conditions of Theorem 9.4 are not satisfied totally, the density
function is not continuous in x = 1 and x = 10. Neither the conditions of Theorem 9.5 are fulfilled.
Nevertheless we see that the γb-distance decreases continuously to 1.

From Example 9.7 and Example 9.8 it follows that by changing the base in which you calculate the
γb-distance, the γb-degree to which the distribution satisfies Benford’s Law can change a lot. If one
wants to say something about the degree to which a distribution satisfies Benford’s Law, then one has to
take in account all bases b > 1. If one calculates the mantissa of numbers that follow the distribution of
example 9.7 in base 10 then one expects a discrepancy of 50% of Simon Newcomb’s table. For numbers
that follow the distribution of Example 9.8 the discrepancy is 0%. It is tempting to suppose that the
numbers if the second distribution do satisfy Benford’s Law and the numbers of the first distribution do
not. However, if one considers the first digits in another base, for example base e, then one concludes
exactly the opposite. We conclude that statements about the degree to which numbers satisfy Benford’s
Law should be made with care. Also we showed that the γb-distance is not a good distance to order
distributions on the degree to which they satisfy Benford’s Law relative to all bases b > 1. The γb-
distance only takes in account one base.

10 A FUNCTION ON DISTRIBUTIONS

If one asks oneself the question which functions are approximated well by sampling functions, one
could answer that that is the case when this function does not vary too much. Let us define a function
that assigns to a distribution in P +

a.c the total variation of flogb(X). We hope that this function gives a good
indication about the γb-degree to which a distribution satisfies Benford’s Law.

Definition 10.1 Define the function βb : P +
a.c. → R+ such that it assigns to a distribution PX ∈ P +

a.c. the
total variation of flogb(X) on R, that is

βb(PX) = lim
N→∞

sup
W∈W

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)|,

where the supremum is taken over the set W =
{

W is a partition of [−N,N] formed by{x0,x1, . . .xnW }
}

,
where the elements xi of {x0,x1, . . .xnW } are such that

∀ε > 0 ∃δ > 0 : λ
(
{x ∈ R : |x− xi|< δ & | f (x)− f (xi)|< ε}

)
> 0. (11)
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Defined in this way, βb of PX is uniquely determined. The distribution Plogb(X) does not have a unique
density function, that is why the elements of {x0,x1, . . .xnW } have to satisfy (11).

The following Lemma is generally known:

Lemma 10.2 Let PX ∈ P +
a.c. and assume that flogb(X) is differentiable, that its derivative is integrable and

that flogb(X) is of bounded variation. Then,

βb(PX) =
Z ∞

−∞

∣∣∣
d flogb(X)(x)

dx

∣∣∣dλ(x).

Lemma 10.3 Let PX ∈ P +
a.c.. We have the following properties.

1. The function βb is scale-invariant: for all c > 0

βb(PX) = βb(PcX)

2. For all c > 0:
βbc(PX) = c ·βb(PX)

3. In addition let PXk ∈ P +
a.c. with 1≤ k ≤ n such that they have continuous density functions flogb(Xk).

Furthermore assume fX = 1
n ·∑n

k=1 fXk . The β-value of the combination distribution PX is smaller
or equal to the mean β-value of the separate distributions:

βb(PX)≤ 1
n
·

n

∑
k=1

βb(PXk).

Proof Property 1.: According to Theorem 7.2 (2) by applying a scalar multiplication on X , a density
function of Plogb(X) will shift horizontally. This means that the vertical distances do not change.

Property 2.: In the proof of Theorem 9.1, we saw

flogbc(X)(x) = c · flogb(X)(c · x) for a.e. x ∈ R.

Observe that the total variation of flogb(X)(x) on R is the same as the total variation of flogb(X)(c · x) on
R. This is true because the total variation does not change if one stretches out a function in horizontal
direction. If one multiplies a function by c > 0, then the total variation is multiplied by c. So, the total
variation of c · flogb(X)(c · x) is c times larger than the total variation of flogb(X)(x). This means that the
total variation of flogbc(X)(x) is c times larger than the total variation of flogb(X)(x).

Property 3.: Let N ∈ R and W ∈ W be arbitrary. Consider arbitrary x j and x j+1 as in the definition
of the β-distance. Then

| flogb(X)(x j+1)− flogb(X)(x j)|= |1
n
·

n

∑
k=1

flogb(Xk)(x j+1)− 1
n
·

n

∑
k=1

flogb(Xk)(x j)|=

1
n
· |

n

∑
k=1

(
flogb(Xk)(x j+1)− flogb(Xk)(x j)

)
| ≤ 1

n
·

n

∑
k=1

∣∣∣ flogb(Xk)(x j+1)− flogb(Xk)(x j)
∣∣∣

Now we also have

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)| ≤
nW−1

∑
j=0

1
n
·

n

∑
k=1

∣∣∣ flogb(Xk)(x j+1)− flogb(Xk)(x j)
∣∣∣ =
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1
n
·

n

∑
k=1

nW−1

∑
j=0

∣∣∣ flogb(Xk)(x j+1)− flogb(Xk)(x j)
∣∣∣.

We chose W arbitrarily, so we have

sup
W∈W

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)| ≤ sup
W∈W

1
n
·

n

∑
k=1

nW−1

∑
j=0

∣∣∣ flogb(Xk)(x j+1)− flogb(Xk)(x j)
∣∣∣ =

1
n
·

n

∑
k=1

sup
W∈W

nW−1

∑
j=0

∣∣∣ flogb(Xk)(x j+1)− flogb(Xk)(x j)
∣∣∣

Now we let N tend to infinity to obtain:

lim
N→∞

sup
W∈W

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)| ≤ lim
N→∞

1
n
·

n

∑
k=1

sup
W∈W

nW−1

∑
j=0

∣∣∣ flogb(Xk)(x j+1)− flogb(Xk)(x j)
∣∣∣ =

1
n
·

n

∑
k=1

lim
N→∞

sup
W∈W

nW−1

∑
j=0

∣∣∣ flogb(Xk)(x j+1)− flogb(Xk)(x j)
∣∣∣

¤

The first property states that βb is scale-invariant. As long as the γ-distance is scale-invariant, every func-
tion used to give an indication about the degree to which a distribution satisfies Benford’s Law should
satisfy this property.

According to the second property, if one uses βb to order distributions, then also the base in which
you calculate is taken into account. Squaring the base will duplicate the βb-value, what corresponds to
the duplicating of the length of the steps that approximate the area under flogb(X)(x). We already saw in
figures in which the γ-distance was plotted against the base, that the base can have a big influence on the
degree to which a distribution satisfies Benford’s Law, see Example 10.6. However, from βe(PX) one
can easily calculate βb(PX) for all other bases b > 1. If one fixes a base and uses this Benford-function
to order, the order will be the same for every base b. So, in the next examples we will chose b = e.

Example 10.4 Let us again examine log normal distributions. Let PX be a distribution with correspond-
ing density function given by

fX(x) =
1

σ ·√2π · x · e
−(loge(x)−µ)2/(2·σ2)

where σ is the standard deviation and µ the mean of the normal distribution Ploge(X). The total variation
of floge(X) is in this case exactly two times the maximum of Ploge(X), which is 2

σ·√2π
(see Theorem 11.3).

This predicts that, for a given base, this distribution will satisfy Benford’s Law better as the standard
deviation gets larger. If one calculates the γ-distance for several bases, then this seems to be a good
prediction. We can see this in the next image: in Figure 20 the γ-distance is plotted against σ where
b = 10.

Example 10.5 In Table 4 on page 56 and page 57, we consider 9 different distributions. The function
βb has been used to order them. For each distribution we see the graphs of the distribution functions of
the mantissa distributions relative to base 10, 2 and 60. The dotted lines indicate FBL10 , FBL2 and FBL60 .
And for each of the bases the γ-distance has been calculated.
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Figure 20: The γ10-distance of a log normal distribution is plotted against σ.

In Table 5 on page 58 we list 19 distributions ordered by βe- of which the γb-distance has been calculated
in base 10, 2 and 60.

What do we see in Table 5 on page 58? First we notice that the γb-distance is generally increasing if we
increase the base from 2 to 10 to 60. We see that βe gives a good indication of the γb-distances. We see
that βe and γ2 do not place the log-normal with σ = 1 at the same place in the ordering, but γ60 does
places it at the same place. Concerning the three Benford-distributions: we see that the β-value of P60 is
the lowest. So, βe predicts that in general P60 is closer to Benford’s Law than P10 and P2. It can be seen
in the table that this is a good prediction. It looks as if we found the Benford-distance we were talking
about at the end of Section 3. However...
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Figure 21: The graphs of the density functions of Ploge(X) and Ploge(X̃) corresponding to Example 10.6
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Figure 22: The γb-distance of a log normal distribution, µ = 0, σ = 1/8, plotted against the natural logarithm of the base b on
the horizontal axis, b = e at 1.

Example 10.6 In this example we shall see that the total variation of floge(X) does not always give a
good indication about the γb-degree to which it satisfies Benford’s Law. Let us compare a log normal
distribution, of which the density function is given in Example 10.4 where µ = 0 and σ = 1/8, with a
combination of five log normal distributions, which are equal modulo scalar multiplications, a distribu-
tion PX̃ with a density function given by

fX̃(x) =
1
5
·

5

∑
i=1

1
σ ·√2π · x · e

−(loge(x)−µi)2/(2·σ2) for a.e. x > 0,

where σ = 1/8 and µ1 = 0 , µ2 = 1, µ3 = 2, µ4 = 3 and µ5 = 4. Consider first in Figure 21 the graphs of
the density functions Ploge(X) on the left and Ploge(X̃) on the right. In Figure 22 and 23 the γb-distances of
PX and PX̃ are plotted against the natural logarithm of the base, with e at 1. So, on the horizontal axes
one reads the length of the sampling functions which approximated the area under the graph of floge(X)
and floge(X̃). Firstly remark that in both figures one sees that the γ-distance is continuous in b and tends
to 0 if b tends to 1, as predicted by Theorem 9.4 and Theorem 9.5. In Figure 23 one can clearly see
that the γ-distance varies a lot if the base changes. For example the distribution of the mantissae differs
a lot from the logarithmic distribution in base e, where the steps are of length 1, while in base e1.25,
where the steps are of length 1.25, the mantissa distribution is nearly logarithmic. Further one can see
that the γb-distance of PX is for almost every base much bigger than the γb-distance of PX̃ , while the
total variation of floge(X) is almost the same as the total deviation of floge(X̃). For this, β is not suitable
to order distributions on the degree to which they satisfy Benford’s Law. It would be desirable that a
Benford-distance attributes a much smaller value to this combination distribution. In the next section we
will see a better way to order distributions. We will see that the total variation is useful if the density
function has only one maximum. Finally remark that the γb-distance for b = e, where steps have length
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Figure 23: The γb-distance of a combination of several log normal distributions, plotted against the natural logarithm of the
base b on the horizontal axis, b = e at 1.

1, is the same for the log normal distribution and the combination distribution: this is the case because
the distance between the peaks in the combination distribution is 1 and so the sampling functions do not
notice the dales and think that they are dealing with one big peak.

11 ANOTHER FUNCTION ON DISTRIBUTIONS

Let us examine a function that ascribes to a distribution the essential supremum of flogb(X). Let us first
give the definition of an essential supremum of a function.

Definition 11.1 Let f : R→ R. The essential supremum of f , with respect to Lebesgue measure, is
defined as

esssup f = inf{a ∈ R : λ({x ∈ R : f (x) > a}) = 0}
Now we can give the definition.

Definition 11.2 Let PX ∈ P +
a.c.. The function αb : P +

a.c. → R+ is defined by:

αb(PX) = esssup flogb(X).

Given PX ∈ P +
a.c., there is always a density function flogb(X) such that its supremum is equal to the αb-

value. So, from now on we will see the αb-value of PX as the supremum of this density function. So, we
write

αb(PX) = sup
x∈R

flogb(X)(x)
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Theorem 11.3 Let PX ∈ P +
a.c and such that flogb(X)(x) is unimodal. Then,

αb(PX) =
1
2
·βb(PX)

Proof The function is unimodal, so there exist a y for which the function is non-decreasing for all
x ≤ y and non-increasing for all x ≥ y. The function obtains its maximum in y and therefore we have
αb(PX) = flogb(X)(y). Let N > 0 and let W be a partition of [−N,y] formed by {−N = x0,x1, . . .xnW = y}.
Then,

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)|=
nW−1

∑
j=0

flogb(X)(x j+1)− flogb(X)(x j),

because flogb(X)(x) is increasing. This is a telescopic sum and thus equal to

flogb(X)(y)− flogb(X)(−N).

This does not depend on W , so we can conclude

sup
M∈M

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)|= flogb(X)(y)− flogb(X)(−N).

If we take the limit of N to infinity, we get

lim
N→∞

sup
M∈M

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)|= lim
N→∞

flogb(X)(y)− lim
N→∞

flogb(X)(−N) =

flogb(X)(y)−0 = flogb(X)(y).

In the same way we can find

lim
N→∞

sup
M∈M

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)|= flogb(X)(y),

where the supremum is taken over partitions of [y,N]. This implies that

lim
N→∞

sup
M∈M

nW−1

∑
j=0

| flogb(X)(x j+1)− flogb(X)(x j)|= 2 · flogb(X)(y),

where the supremum is taken over partitions of [−N,N]. So,

β(PX) = 2 ·α(PX),

what implies the statement.

¤

This theorem can be applied to all distributions listed in Example 10.5. So, αb orders them in the same
way as βb. It also satisfies the same properties as βb in Theorem 10.3. Let us state them and give the
proofs.

Lemma 11.4 Let PX ∈ P +
a.c.. We have the following properties.

1. The function αb is scale-invariant: for all c > 0

αb(PX) = αb(PcX)
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2. For all c > 0:
αbc(PX) = c ·αb(PX)

3. In addition let PXk ∈ P +
a.c. with 1≤ k≤ n and let fX = 1

n ·∑n
k=1 fXk . The αb-value of the combination

distribution PX is smaller or equal to the mean αb-value of the separate distributions PXk

αb(PX)≤ 1
n
·

n

∑
k=1

αb(PXk).

Proof We will first prove property (1). We have to prove that

sup
x∈R

flogb(c·X)(x) = sup
x∈R

flogb(X)(x).

According to Theorem 7.2 (2) by applying a scalar multiplication on X , a density function of Plogb(X)
will shift. This means that the supremum does not change.
Now we will prove property (2). We have to prove that

sup
x∈R

flogbc(X)(x) = c · sup
x∈R

flogb(X)(x).

In the proof of Theorem 9.1 we saw that

flogbc(X)(x) = c · flogb(X)(c · x).
Observe that supx∈R flogb(X)(x) is equal to supx∈R flogb(X)(c · x). This is true because the supremum does
not change if one stretches out a function in horizontal direction. If one multiplies a function by c > 0,
then the supremum is multiplied by c.

We still have to prove (3). It is immediate that

sup
x∈R

flogb(X)(x) = sup
x∈R

1
n
·

n

∑
k=1

flogb(Xk)(x)≤
1
n
·

n

∑
k=1

sup
x∈R

flogb(Xk)(x).

¤

Example 11.5 Let us look at a combination of three distributions, the combination is the average of the
three distribution in the same way as in Theorem 8.20.

Distribution αe(PX) γ10(PX)
· · · · · · · · ·
Gamma(1,0.1) 0.0755 0.003
Log Normal(-6,1) 0.3989 0.142
Normal(0,1) 0.4839 0.210
· · · · · · · · ·
Combination 0.1744 0.064

We read in the table that αe-value of the combination is 0.1744, what is much lower than the mean
of the three αe-values of the separate distributions 0.3194. Also the γ10-distance of the combination
distribution 0.064 is smaller than the mean of the γ10-distances of the three separate distributions: 0.118.
Remark that in this case we looked at a combination of 3 distribution, while in newspapers the combina-
tion exists of dozens of distributions.

In the extreme case where a distribution is the combination of two distributions PX and PX̃ in P +
a.c. that

have mass on disjoint sets and are a scalar multiplication of each other such that supx∈R{ flogb(X)(x)} =
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supx∈R{ flogb(X̃)(x)} the supremum halves. This is the case in Example 10.6 in which the supremum
of the combination of the five distributions was five times smaller than the supremum of the separate
distributions. So, in this example the αb-value becomes 5 times smaller. Recall that the βb-value did not,
or nearly, change. This is the great advantage of αb over βb.

The supremum of flogb(X) can often give a good indication of the degree to which the distribution satis-
fies Benford’s Law in base b. If you order distributions that are all normal distributions, all log normal
distributions, all Pareto distributions, all Weibull Distributions, or all beta distributions, etc, this distance
will give the right order. If for example the supremum of flogb(X) of a log normal distribution LogN(µ,σ)
is lower than the supremum of flogb(X̃) of another log normal distribution LogN(µ′,σ′), then you will see
that γb(PX) ≤ γb(PX̃) for all real b > 1. Also compare Examples 6.10 and 6.11: the supremum of the
density function of the standard normal distribution is more than five times bigger than the supremum
of the density function of the beta distribution and indeed the latter distribution is much closer to Ben-
ford’s Law. However, the supremum of flogb(X) is not the only factor that determines the degree to which
the mantissae follow a logarithmic distribution: if you consider a log normal distribution of which the
supremum of flogb(X) is equal to the supremum of flogb(X̃) of a gamma distribution, then the mantissae
of the log normal distribution will be distributed more logarithmically than the mantissae of the gamma
distribution, because flogb(X) is more symmetric than flogb(X̃) and therefore also easier to approximate
by sampling functions. In case flogb(X) is small nearly everywhere and very big on a small set, then the
αb-value does not give a good indication of the degree to which the distribution satisfies Benford’s Law.
So, the function αb, can often, but surely not always, give a good indication of the degree to which the
distributions satisfy Benford’s Law.

The next theorem states that the supremum of floge(X)(x) is equal to the supremum of x · fX(x).

Theorem 11.6 Let PX ∈ P +
a.c. Then,

αe(PX) = sup
x>0
{x · fX(x)}

Proof It follows easily from Lemma 6.6:

αe(PX) = sup
x∈R

floge(X)(x) = sup
x∈R
{ex · fX(ex)}= sup

x>0
{x · fX(x)}

¤
So, given a distribution in P +

a.c., if the product of x and fX(x) is small everywhere one can expect that the
γb-distance is small or at least smaller than the γb-distance of a distribution for which the supremum of
the product is very big. This characterization is in agreement with the main result of the article Survival
Distributions satisfying Benford’s Law [LSE], where it is found that survival distributions satisfy Ben-
ford’s Law. A survival function is a function of the form 1−FX , with FX a distribution function (for a
definition see [RIC] page 348). Indeed, for this kind of functions the product x · fX(x) is often small.

Finally note that a Beta distribution with a small α and a large β has a density function for which
maxx>0{x · fX(x)} is small. We saw in Example 6.11 that this distribution, with small α and large β, is
close to Benford’s Law.

12 CONCLUSION

We will try to give answers to the questions formulated on page 5. We will do this in a rather intuitive
way, though with the help of some theorems of the thesis.
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How should we order distributions on the degree to which they satisfy Benford’s Law?
It is difficult to order probability distributions on the degree to which they satisfy Benford’s Law relative
to all bases b > 1. The reason is that the γb-degree to which a distribution satisfies Benford’s Law can
change a lot while changing the base. For distributions in Pa.c. the γb-distance orders them correctly with
respect to only one base, but the order can change if the base changes. See Example 10.6. If one wants
to check if a given distribution satisfies Benford’s Law, one should not check it for only one base. One
can better draw a base-γb-distance graph. If the distribution is close to Benford’s Law for all the bases
around for example 10, then the statement that it satisfies Benford’s Law in base 10 is more rigid.

What properties of a distribution do have great influence on the degree to which a distribution sat-
isfy Benford’s Law?
For PX ∈ P +

a.c. the αe-distance or equivalent: supx>0{x · fX(x)}, gives a good indication of how close to
Benford’s Law the distribution will be relative to all bases b > 1 (see Example 10.5 and Example 10.6).

Why do mantissae of numbers often follow Benford’s Law?
It all is a consequence of the fact that by writing down mantissas of numbers in base b you are averaging
the logarithms of the mantissae on the circle [0,1). If one looks at distributions in P +

a.c. one can see that
the the function flogb(X) (mod1) is a sum of functions on [0,1) (see Lemma 6.8), summing functions can
be interpreted as averaging functions.

• The lower the base, the more functions are used to sum up to flogb(X) (mod1). In the proof of Theorem
9.1 we have seen that

flogbc(X)(x) = c · flogb(X)(c · x).
So, by lowering the base, which means that c gets smaller, the function flogbc(X)(x) spreads out
over the real line. The more flogbc(X)(x) spreads out, the more functions are used to sum up to
flogbc(X) (mod1).

• Also the more distributions you mix, the more functions are used to sum up to flogb(X) (mod1).

By averaging functions on [0,1) the average of the functions gets closer to the uniform distribution, see
Theorem 8.20. And if flogb(X) (mod1) is closer to 1, then fmb(X) is closer to Benford’s density function
fBLb , see Theorem 8.6.
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13 DANKWOORD (WORDS OF THANKS IN DUTCH)

In juni 2004 kreeg ik van Karma het onderwerp voor mijn kleine scriptie: de wet van Benford. Dertig
procent van de getallen zou met het cijfer 1 beginnen. In Rome, waar ik het daaropvolgende studiejaar
zat, zou ik eens precies gaan uitzoeken hoe dat nou mogelijk was. Toen ik in Rome aankwam met een
rugzakje met daarin wat artikelen over de wet van Benford, wist ik niet goed wat ik ermee aanmoest.
Waar moest ik in hemelsnaam beginnen? Moest ik naar de kelders van het Vaticaan om daar in tabellen-
boekjes cijfers te gaan tellen? Dat leek mij onzin. Zo gek als Benford zelf was ik natuurlijk niet. En dus
heb ik mij bezig gehouden met pizza’s eten, wijn drinken en in de zon wandelen. Als ik af en toe een
getal tegenkwam dat met een 1 begon, dacht ik wel: “verrek, alweer een 1!”, maar echte ontdekkingen
deed ik niet. Een jaar later bij terugkeer in Nederland was ik die hele wet van Benford natuurlijk straal
vergeten en liep nietsvermoedend weer door het wiskundegebouw in Utrecht. Daar zag ik Karma rond-
lopen en dus dook ik snel een kamer in om geen verslag te hoeven doen van mijn ontdekkingen op het
gebied van cijfers. Later verdween die angst en ben gewoon weer een vak gaan volgen bij Karma en in
de laatste les kwam tersprake: de wet van Benford! Ik hoopte dat Karma allang vergeten was dat ik daar
aan zou gaan werken, maar ze keek me aan alsof ik de grote specialist was...Thuis ben ik meteen aan
het werk gegaan. Nu wist ik wel waar ik moest beginnen, ik had data nodig, wat voor een data maakte
helemaal niks uit. Op internet bij een site van de overheid vond ik gegevens over het aantal inwoners
van vierhonderdveertig Nederlandse gemeentes. Die begon ik ijverig één voor één over te tikken om ze
in een computerprogramma te zetten. Na drie uur tikken was ik al bijna op de helft, gelukkig kwam mijn
huisgenoot Bastian thuis en gaf mij de tip de kopieerfunctie te gebruiken: één minuut later waren we
klaar. Hierbij zijn we aangekomen bij de eerste persoon die ik van harte wil bedanken: Bastian, bedankt!
Niet alleen bedankt voor deze tip, maar ook voor het uren aan moeten horen van mijn gebrabbel over
cijfers, over mijn ontdekkingen. In de weken na het binnenkomen van de eerste data viel er met mij
eigenlijk niet te leven, apathisch zat ik achter mijn computer of gewoon in een stoel recht voor mij uit te
staren. Na twee maanden vierentwintig uur per dag zeven dagen per week over cijfers te hebben gedacht,
heeft Bastian mij meegenomen naar Italië. Na twee dagen vroeg hij of ik al een beetje ontstresst was,
waarna ik een zeer vreemde schokkende beweging met mijn hoofd maakte en zei dat het wel weer ging.
De pizza’s wisten mij ditmaal niet te beroeren, de cijfers bleven door mijn hoofd dwalen. Weer thuis
werd het tijd eens bij Karma langs te gaan. Zij ontving mij aardig in haar werkkamer en was enthousi-
ast over mijn ideeën. Elke twee weken zou ik bij haar langskomen. Ze liet me uren op haar krijtbord
krabbelen en luisterde erg goed naar alles wat ik te melden had. En dat zeker voor een paar maanden
lang! Wat een geduld en wat een interesse! Mijn beste ideeën kreeg ik dan ook altijd tijdens de terugreis
in de trein op de dagen dat ik bij haar was langs geweest. Zij is de tweede persoon: Karma, mag ik u
zeer hartelijk bedanken voor al uw geduld en aanmoedigingen om door te gaan. Het uitschrijven van
mijn ontdekkingen bleek erg moeilijk te zijn, omdat ik eigenlijk niks van kansrekening bleek te weten.
Ik schreef alles in een soort zelfverzonnen wiskunde op. Na een jaar was het toch zo opgeschreven dat ik
het durfde op te sturen naar experts op het gebied van de wet van Benford. Karma raadde me aan contact
op te nemen met Ted Hill, een emeritus professor uit Atlanta in Georgia (VS): de grootste expert op dit
gebied. Deze reageerde meteen erg aardig en was zelfs bereid om in zijn vakantie die hij in Nederland
doorbracht samen met mij uren door mijn scriptie te ploegen. Dwars door mijn zelfbedachte wiskunde
heen zag hij toch mijn ideeën en leerde me hoe een echte wiskundige het zou opschrijven. Beetje bij
beetje werd mijn scriptie begrijpelijk. En toen Ted na een jaar weer terug in Nederland kwam, was hij
tevreden over het resultaat. Hij is de derde persoon: dank u Ted voor al die uren die u mij heeft geholpen,
mijn scriptie is nu leesbaar! (Voor een wiskundige althans.)

Verder dank ik de wiskundigen: Arno Berger (Canada), Laurence Leemis (VS) en Peter Schatte (Duits-
land).
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Ten slotte dank ik mijn vader voor alle aanmoedigingen, maar ook voor het meedenken, je had goede
ideeën pappa! En niet te vergeten mijn moeder en Kirsten (voor het er altijd voor me zijn), Rutger (voor
het aansporen tot studeren), Jet en Rien (voor het altijd beschikbaar stellen van hun huis om in te stu-
deren) en alle andere mensen.

Dan nog een scriptiespreuk: “kijk om je heen en vind de 1”.

Ik groet u allen,

Jesse Dorrestijn

PS: U heeft vast opgemaakt uit het aantal bladzijden van deze sciptie dat zij van een kleine is opge-
waardeerd tot een grote scriptie (Masterscriptie).
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U(0,1.5) βe: 2
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Table 4: Example 10.5: The mantissa distribution functions relative to base b = 10, b = 2 and b = 60 and the γb-distances
relative to base b = 10, b = 2 and b = 60 of distributions which are ordered by βe.
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Distribution βe γ10 γ2 γ60
Gamma(0.01,λ) 0.0191 2.70 ·10−4 8.80 ·10−9 2.34 ·10−3

Weibull(0.5,λ > 0) 0.368 1.41 ·10−3 5.83 ·10−12 4.51 ·10−2

LogNormal(µ,22) 0.399 5.94 ·10−7 1.58 ·10−16 1.15 ·10−2

Gamma(0.5,λ) 0.484 2.48 ·10−2 1.18 ·10−6 1.62 ·10−1

Benford60 0.488 1.94 ·10−1 2.86 ·10−2 0
Weibull(0.8,λ > 0) 0.589 2.78 ·10−2 2.00 ·10−7 2.17 ·10−1

Exp(λ) 0.736 7.25 ·10−2 6.29 ·10−6 3.56 ·10−1

LogNormal(µ,12) 0.798 3.08 ·10−2 1.74 ·10−11 3.92 ·10−1

Benford10 0.869 0 1.31 ·10−1 8.75 ·10−1

N(0,σ2) 0.968 2.12 ·10−1 1.45 ·10−3 5.57 ·10−1

N(10,1002) 0.968 2.12 ·10−1 1.46 ·10−3 5.57 ·10−1

Weibull(2.1,λ > 0) 1.55 4.79 ·10−1 7.53 ·10−3 9.31 ·10−1

LogNormal(µ,0.52) 1.60 5.03 ·10−1 4.41 ·10−5 1.00
U(0,1.5) 2 5.38 ·10−1 1.72 ·10−1 8.47 ·10−1

Benford2 2.89 1.40 0 1.66
Gamma(20,λ) 3.55 1.16 1.66 ·10−1 1.47

U(1,2) 4 1.40 1.72 ·10−1 1.66
LogNormal(µ,0.12) 7.98 1.56 8.69 ·10−1 1.73

N(5,0.52) 8.02 1.56 8.68 ·10−1 1.73

Table 5: Example 10.5: γb-distances relative to base b = 10, b = 2 and b = 60 of distributions which are ordered by βe.
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