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A sequence of real numbers (xn) is Benford if the significands, i.e., the fraction parts in the floating-point
representation of (xn), are distributed logarithmically. Similarly, a discrete-time irreducible and aperiodic fi-
nite-state Markov chain with transition probability matrix P and limiting matrix P� is Benford if every com-
ponent of both sequences of matrices (Pn − P�) and (Pnþ1 − Pn) is Benford or eventually zero. Using recent
tools that established Benford behavior for finite-dimensional linear maps, via the classical theories of uniform
distribution modulo 1 and Perron–Frobenius, this paper derives a simple sufficient condition (“nonresonance”)
guaranteeing that P, or the Markov chain associated with it, is Benford. This result in turn is used to show that
almost all Markov chains are Benford, in the sense that if the transition probability matrix is chosen in an
absolutely continuous manner, then the resulting Markov chain is Benford with probability one. Concrete
examples illustrate the various cases that arise, and the theory is complemented with simulations and potential
applications.
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1. Introduction. Benford’s law (BL) is the widely known logarithmic probability
distribution on significant digits. Its most familiar form is the special case of leading
significant digits (base 10), namely,

PðD1 ¼ d1Þ ¼ log10

�
1þ 1

d1

�
∀d1 ∈ f1; 2; : : : ; 9g;ð1Þ

where for each x ∈ Rþ, the number D1ðxÞ is the first significant digit (base 10) of
x, i.e., the unique integer d ∈ f1; 2; : : : ; 9g satisfying 10kd ≤ x < 10kðdþ 1Þ for
some, necessarily unique, k ∈ Z. Thus, for example, D1ð30122Þ ¼ D1ð0.030122Þ ¼
D1ð3.0122Þ ¼ 3, and (1) implies that

PðD1 ¼ 1Þ ¼ log102 ≅ 0.301; PðD1 ¼ 2Þ ¼ log10ð3 ∕ 2Þ ≅ 0.176; etc:;

see also Table 1 below.
In a form more complete than (1), BL is a statement about joint distributions of the

first n significant digits (base 10) for any n ∈ N, namely,
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PððD1; D2; D3; : : : ; DnÞ ¼ ðd1; d2; d3; : : : ; dnÞÞ ¼ log10

�
1þ 1P

n
j¼1 10

n−jdj

�
;ð2Þ

where d1 ∈ f1; 2; : : : ; 9g and dj ∈ f0; 1; 2; : : : ; 9g for j ≥ 2, and D2, D3, etc., represent
the second, third, etc., significant digits (base 10). Thus, for example,
D2ð30122Þ ¼ D2ð0.030122Þ ¼ D2ð3.0122Þ ¼ 0, and a special case of (2) is

PððD1; D2; D3Þ ¼ ð3; 0; 1ÞÞ ¼ log10

�
1þ 1

301

�
≅ 0.00144:

Formally, for every n ∈ N, n ≥ 2, the number DnðxÞ, the nth significant digit (base 10)
of x ∈ Rþ, is defined inductively as the unique integer d ∈ f0; 1; 2; : : : ; 9g such that

10k
�
dþ

Xn−1

j¼1

10n−jDjðxÞ
�

≤ x < 10k
�
dþ 1þ

Xn−1

j¼1

10n−jDjðxÞ
�

for some (unique) k ∈ Z.
The formal probability framework for BL is described in [13], [14]. The sample space

isRþ, and the σ-algebra of events is generated by the (decimal) significand (ormantissa)
function S: Rþ → ½1; 10Þ, where SðxÞ is the unique number such that x ¼ 10kSðxÞ for
some k ∈ Z. Equivalently, the significand events are the sets in the σ-algebra generated
by the significant digit functionsD1,D2,D3, etc. The probability measure on this sample
space associated with BL is

PðS ≤ tÞ ¼ log10t ∀t ∈ ½1; 10Þ:

It is easy to see that the significant digit functions D1 and D2, D3, etc., are well defined
f1; 2; : : : ; 9g- and f0; 1; 2; : : : ; 9g-valued random variables, respectively, on this prob-
ability space with probability distributions as given in (1) and (2).

Note. Throughout this article, all results are restricted to decimal (base 10) signifi-
cant digits, and accordingly log always denotes the base 10 logarithm. For notational
convenience, Dnð0Þ ≔ 0 for all n ∈ N. The results carry over easily to arbitrary bases
b ∈ N \ f1g, as is evident from [2], where the essential difference is replacing log10 by logb
and the decimal significant digits by the base b significant digits.

TABLE 1
Empirical frequencies of D1 for the first 1000 terms of the sequences ð2nÞ, ðn!Þ and the Fibonacci numbers

ðFnÞ, as compared with the Benford probabilities given by (1).

D1 (2n) (n!) (Fn) Benford

1 0.301 0.293 0.301 0.30103
2 0.176 0.176 0.177 0.17609
3 0.125 0.124 0.125 0.12494
4 0.097 0.102 0.096 0.09691
5 0.079 0.069 0.080 0.07918
6 0.069 0.087 0.067 0.06695
7 0.056 0.051 0.056 0.05799
8 0.052 0.051 0.053 0.05115
9 0.045 0.047 0.045 0.04576
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BL is now known to hold in great generality, e.g., for classical integer sequences such
as (2n), (n!) and the Fibonacci numbers (Fn), iterations of linearly dominated or power-
like maps, solutions of ordinary differential equations, products of independent random
variables, random mixtures of data, and random maps (e.g., see [1], [4], [5], [9], [14]).
Table 1 compares the empirical frequencies ofD1 for the first 1000 terms of the sequences
(2n), (n!), and (Fn). This illustrates what it means to follow BL and also foreshadows the
discussion in section 5.

The main contribution of this article is to establish BL in finite-dimensional, time-
homogeneous Markov chains and to suggest several applications, including error ana-
lysis, in numerical simulations of n-step transition matrices. Concretely, given the
transition matrix P of a finite-state Markov chain (i.e., P is a row-stochastic matrix),
a common problem is to estimate the limit P� ¼ limn→∞Pn. The two main theoretical
results below, Theorems 12 and 17, respectively, show that under a natural condition
(“nonresonance”) every component of the sequence of matrices (Pn − P�) and
(Pnþ1 − Pn) obeys BL and that this behavior is typical, i.e., it occurs for almost all
Markov chains. Several potential applications of the results are discussed, including the
estimation of roundoff errors incurred when estimating P� from Pn and possible (partial,
negative) statistical tests to decide whether data comes from a finite-state Markov
process.

2. Benford Markov chains and main tools. The sets of natural, integer, ra-
tional, positive real, real, and complex numbers are symbolized by N, Z, Q, Rþ, R,
and C, respectively. The real part, imaginary part, complex conjugate, and absolute
value (modulus) of a number z ∈ C is denoted by Rez, Imz, z̄, and jzj, respectively.
For z ≠ 0, the argument arg z is the unique number in ð−π;π� that satisfies
z ¼ jzjeι arg z. For ease of notation, arg 0 ≔ 0 and log 0 ≔ 0. The cardinality of the finite
set A is #A. Throughout this article, the sequence ðað1Þ; að2Þ; að3Þ; : : : Þ is denoted by
ðaðnÞÞ. Thus, for example, ðαnÞ ¼ ðα1;α2;α3; : : : Þ and ðPnþ1 − PnÞ ¼ ðP2 − P1;
P3 − P2; P4 − P3; : : : Þ. Boldface symbols indicate random(ized) quantities; e.g., X de-
notes a random variable or vector and P a random transition probability matrix.

DEFINITION 1. A sequence ðxnÞ of real numbers is Benford (“follows BL”) if

limn→∞
#fj ≤ n: SðjxjjÞ ≤ tg

n
¼ log t ∀t ∈ ½1; 10Þ:

The central theme of this paper is the Benford behavior of finite-state Markov
chains. The theory uses three main tools: the classical theory of uniform distribution
modulo 1 (see, e.g., [18]), recent results for BL in one- and multidimensional dynamical
systems ([1], [2]), and the classical Perron–Frobenius theory for Markov chains; see,
e.g., [6], [24]. Here and throughout, the term uniformly distributed modulo 1 is abbre-
viated as u.d. mod 1. The relationship between uniform distribution and BL is clarified
by the following proposition.

PROPOSITION 2 (see [9]). A sequence ðxnÞ of real numbers is Benford if and only if
ðlog jxnjÞ is u.d. mod 1.

An immediate consequence of Proposition 2 is the following useful fact.
PROPOSITION 3 (see [1], [2]).

(i) Let a, b, α, β be real numbers with a ≠ 0 and jαj > jβj. Then ðaαn þ bβnÞ is
Benford if and only if log jαj is irrational.

(ii) If ðxnÞ is Benford, then, for all α ∈ R and k ∈ Z with αk ≠ 0, the sequence
ðαxknÞ is also Benford.
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Propositions 2 and 3 are fundamental tools for analyzing BL in the setting of multi-
dimensional dynamical systems. While the results in [2] do not apply directly to the
Markov chain setting, the first part of the theory established below nevertheless relies
heavily on those ideas, thereby adapting them to the case of row-stochastic matrices.

Example 4.
(i) The sequences (2n), (0.2n), (3n), (0.3n), (0.01 · 0.2n þ 0.2 · 0.01n) are

Benford, whereas (10n), (0.1n), (
ffiffiffiffiffi
10

p
n), (0.1 · 0.02n þ 0.02 · 0.1n) are not.

(ii) The sequence (0.2n þ ð−0.2Þn) is not Benford, since all odd terms are zero,
but (0.2n þ ð−0.2Þn þ 0.03n) is Benford—although this does not follow
directly from Proposition 3(i).

For every integer d > 1, denote the set of all row-stochastic matrices of size d× d by
Pd, and let P ∈ Pd be the transition probability matrix of a Markov chain. All Markov
chains (or their associated matrices P) considered hereafter are assumed to be finite-
state (with d > 1 states), irreducible, and aperiodic. Let λ1; : : : ; λs, s ≤ d, be the distinct
(possibly nonreal) eigenvalues of P, with corresponding spectrum σðPÞ ¼ fλ1; : : : ; λsg;
i.e., σðPÞ is the set of all distinct eigenvalues. Accordingly, the set σðPÞþ ¼
fλ ∈ σðPÞ: Imλ ≥ 0g forms the “upper half” of the spectrum. The usage of σðPÞþ refers
to the fact that nonreal eigenvalues of real matrices always occur in conjugate pairs, so
the set σðPÞþ includes only one of the conjugates. Without loss of generality, throughout
this work the eigenvalues in σðPÞ are labeled such that

jλ1j ≥ jλ2j ≥ · · ·≥ jλsj:

Furthermore, the column vectors u1; : : : ; us and v1; : : : ; vs denote associated sequences
of left and right eigenvectors, respectively. The third main tool in this paper is the
classical Perron–Frobenius theory of Markov chains, and the following proposition
summarizes some of the special properties of transition probability matrices for ease
of reference; see, e.g., [23] for details.

PROPOSITION 5. Suppose P ∈ Pd is irreducible and aperiodic. Then λ1 ¼ 1 > jλlj for
all l ¼ 2; : : : ; s, and there exists a P� ∈ Pd such that

(i) limn→∞Pn ¼ P�;
(ii) for every n ∈ N,

Pn − P� ¼ λn2C 2þ · · · þλnsCs;ð3Þ

where eachCl is a d× d-matrix whose componentsC ði;jÞ
l are polynomials in n

with complex coefficients and degrees k
ði;jÞ
l < d.

The analysis is especially straightforward if all eigenvalues are simple, i.e., if
#σðPÞ ¼ d. In this case, for every n ∈ N,

Pn − P� ¼
Xd
l¼2

λnlBl and Pnþ1 − Pn ¼
Xd
l¼2

λnlðλl − 1ÞBlð4Þ

holds with the d− 1 matrices Bl ¼ vlu
⊤
l ∕ v⊤l ul ∈ Cd×d. Next is the key definition of

this paper.
DEFINITION 6. A Markov chain, or its associated transition probability matrix P, is

Benford if each component of ðPn − P�Þ and ðPnþ1 − PnÞ is either Benford or eventually
zero.

Remark 7. The proof of Theorem 12 below will make it clear that requiring only the
components of (Pn − P�) to be either Benford or eventually zero would result in an
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equivalent definition. The more symmetric wording in Definition 6 merely reflects the
fact that (Pn − P�), although of obvious theoretical importance, may not always be
available in practice, whereas (Pnþ1 − Pn) is.

The following examples illustrate the notions of Benford and non-Benford Markov
chains. As will be observed later, the moduli of the eigenvalues as well as a specific ra-
tional relationship between them play a crucial role, similar to the results in [2].

Example 8 (a Benford Markov chain). Let

P ¼

2
64 0.9 0.0 0.1
0.6 0.3 0.1
0.1 0.0 0.9

3
75:

The eigenvalues of P are λ1 ¼ 1, λ2 ¼ 0.8, and λ3 ¼ 0.3, and

P� ¼

2
64 0.5 0 0.5
0.5 0 0.5
0.5 0 0.5

3
75.

The three eigenvalues are distinct, which leads to

Pn − P� ¼ 0.8n

2
64 0.5 0 −0.5

0.5 0 −0.5
−0.5 0 0.5

3
75þ 0.3n

2
64 0 0 0
−1 1 0
0 0 0

3
75

as well as

Pnþ1 − Pn ¼ 0.8n

2
64−0.1 0 0.1
−0.1 0 0.1
0.1 0 −0.1

3
75þ 0.3n

2
64 0 0 0
0.7 −0.7 0
0 0 0

3
75:

As can be seen directly, in both cases the components (1, 2) and (3, 2) are zero for all n,
whereas by Proposition 3(i) all other components follow BL. Hence, the Markov chain
defined by the transition probability matrix P is Benford.

Example 9 (a non-Benford Markov chain). Let

P ¼

2
64 0.0 0.1 0.9
0.1 0.3 0.6
0.1 0.1 0.8

3
75.

The eigenvalues of P are λ1 ¼ 1, λ2 ¼ 0.2, and λ3 ¼ −0.1. The three eigenvalues are dis-
tinct, and

Pn − P� ¼ 0.2n

8

2
64 0 −1 1
0 7 −7
0 −1 1

3
75þ ð−0.1Þn

11

2
64 10 0 −10
−1 0 1
−1 0 1

3
75

as well as
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Pnþ1 − Pn ¼ 0.2n

2
64 0 0.1 −0.1
0 −0.7 0.7
0 0.1 −0.1

3
75þ ð−0.1Þn

2
64−1 0 1
0.1 0 −0.1
0.1 0 −0.1

3
75:

The first column of B2 is zero; hence for that column the relevant eigenvalue is
λ3 ¼ −0.1. Since log 0.1 is rational, no component in the first column of either sequence
(Pn − P�) and (Pnþ1 − Pn) follows BL; i.e., P is not Benford.

3. Sufficient condition that a Markov chain is Benford. To analyze the be-
havior of the sequences (Pn − P�) and (Pnþ1 − Pn) associated with a Markov chain, a
nonresonance condition on P will be helpful. Recall that real numbers x1; : : : ; xk are
rationally independent (or Q-independent) if

P
k
j¼1 qjxj ¼ 0, where q1; : : : ; qk ∈ Q

implies that qj ¼ 0 for all j ¼ 1; : : : ; k; otherwise x1; : : : ; xk are rationally dependent.
DEFINITION 10. A stochastic matrix P is nonresonant if every nonempty subset Λ ¼

fλi1 ; : : : ; λikg of σðPÞþ \ fλ1g with jλi1 j ¼ · · ·¼ jλik j ¼ L satisfies #ðΛ ∩ RÞ ≤ 1, and the
numbers 1, log L and the elements of 1

2π arg Λ are rationally independent, where

1

2π
arg Λ ≔

�
1

2π
arg λi1 ; : : : ;

1

2π
arg λik

�
\
�
0;
1

2

�
:

A Markov chain is nonresonant whenever its transition probability matrix is. A stochas-
tic matrix or Markov chain is resonant if it is not nonresonant.

Notice that for P to be nonresonant, it is required specifically that the logarithm of
the modulus of every eigenvalue other than λ1 ¼ 1 is irrational; in particular, every non-
resonant P is invertible. The matrix in Example 8, for instance, is nonresonant.
Theorem 12 below asserts that nonresonance is sufficient for P to be Benford. There
is a close correspondence between Definition 10 of a nonresonant matrix and the notion
of a matrix not having 10-resonant spectrum, as introduced in [2]. The main difference is
that the eigenvalue λ1 ¼ 1 is excluded in Definition 10, whereas every stochastic matrix
has 10-resonant spectrum. Also, it is worth pointing out that prior to [2] solutions of
certain linear recurrence relations have been studied for their conformance with BL,
e.g., second-order relations with a pair of nonreal eigenvalues in [22] and relations with
integer coefficients and various restrictions on the eigenvalues in [19]. (See also [15] and
the references therein.) Note that none of these results apply to stochastic matrices,
i.e., in the setting of Definition 10.

Example 11 (examples of resonant matrices).
(i) Two real eigenvalues of opposite sign. Let

P ¼

2
64 0.6 0.4 0.0
0.8 0.0 0.2
0.0 0.6 0.4

3
75.

The eigenvalues of P are λ1 ¼ 1 and λ2;3 ¼ � ffiffiffiffiffiffiffi
0.2

p
. Notice that

log jλ2j ¼ log jλ3j ¼ − 1
2 log 5 is irrational. With Λ ¼ f ffiffiffiffiffiffiffi

0.2
p

;−
ffiffiffiffiffiffiffi
0.2

p g, clearly
#ðΛ ∩ RÞ ¼ 2; hence P is resonant. From

ðPn − P�Þð1;1Þ ¼ 0.2λn2 þ 0.2λn3 ¼
(
0.4ð ffiffiffiffiffiffiffi

0.2
p Þn if n is even;

0 if n is odd;

it is clear that P is not Benford either.
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(ii) Eigenvalues with rational logarithms. Let

P ¼

2
64 0.0 0.1 0.9
0.5 0.1 0.4
0.3 0.3 0.4

3
75.

The eigenvalues are λ1 ¼ 1 and λ2;3 ¼ −0.25� 0.05ı
ffiffiffiffiffi
15

p
. Since log jλ2;3j ¼

−0.5 is rational, the matrix P is resonant.
(iii) Eigenvalues with rational argument. Let

P ¼

2
64 0.3 0.3 0.4
0.3 0.5 0.2
0.1 0.7 0.2

3
75.

The eigenvalues are λ1 ¼ 1 and λ2;3 ¼ �0.2ı. Note that log j0.2ıj ¼
−1þ log 2 is irrational, but 1

2π argð0.2ıÞ ¼ 1
4 is rational. Thus P is resonant.

(iv) Eigenvalues leading to rational dependencies within f1; logLg ∪ 1
2π arg Λ.

Let

P ¼

2
6666666664

0.2 0.1 0.0 0.0 0.1 0.0 0.6
0.1 0.1 0.1 0.1 0.2 0.0 0.4
0.1 0.1 0.1 0.1 0.1 0.2 0.3
0.0 0.2 0.3 0.0 0.2 0.0 0.3
0.1 0.2 0.1 0.1 0.0 0.1 0.4
0.2 0.0 0.2 0.1 0.1 0.0 0.4
0.1 0.2 0.2 0.0 0.0 0.0 0.5

3
7777777775
:

The characteristic polynomial ψP of P factors as

ψPðλÞ ¼ ðλ− 1Þðλ2 þ 0.1λ− 0.01Þðλ2 − 0.01ð2− ıÞÞðλ2 − 0.01ð2þ ıÞÞ;

which implies that

σðPÞþ \ fλ1g ¼ 1

20
f−ð

ffiffiffi
5

p
þ 1Þ;

ffiffiffi
5

p
− 1;−2

ffiffiffiffiffiffiffiffiffiffi
2− ı

p
; 2

ffiffiffiffiffiffiffiffiffiffi
2þ ı

p g:

Clearly, the logarithms of the absolute values of the two real eigenvalues are irrational.
The four nonreal eigenvalues all have the same modulus L ¼ 1

10 5
1 ∕ 4 (different

from the two real eigenvalues), and log L ¼ −1þ 1
4 log 5 is irrational. Let Λ ¼

1
10 f−

ffiffiffiffiffiffiffiffiffiffi
2− ı

p
;

ffiffiffiffiffiffiffiffiffiffi
2þ ı

p g. Notice that argð2∓ιÞ ¼ ∓ arctan 1
2, so

1

2π
arg Λ ¼

�
1

2
−

1

4π
arctan

1

2
;
1

4π
arctan

1

2

�
≕ fx3; x4g:

Since

−1 · 1þ 0 · log Lþ 2 · x3 þ 2 · x4 ¼ 0;

the elements of f1; log Lg ∪ 1
2πΛ are Q-dependent, and hence P is resonant.
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The first main theoretical result of this paper is as follows.
THEOREM 12. Every nonresonant irreducible and aperiodic finite-state Markov

chain is Benford.
The proof of Theorem 12 makes use of the following lemma.
LEMMA 13. Let m ∈ N and assume that 1;ρ0;ρ1; : : : ;ρm are Q-independent, ðznÞ is

a convergent sequence in C, and at least one of the 2m numbers c1; : : : ; c2m ∈ C is non-
zero. Then, for every α ∈ R, the sequence

ðnρ0 þ α log nþ log jξnjÞð5Þ

is u.d. mod 1, where

ξn ≔ c1e
2πınρ1 þ c2e

−2πınρ1þ · · · þc2d−1e
2πınρm þ c2de

−2πınρm þ zn:

Proof. The proof follows directly as in the proof of [2, Lemma 2.9], which considers
log jReξnj in (5). ▯

Proof of Theorem 12. By Proposition 5(i), limn→∞Pn ¼ P� exists for the Markov
chain defined by P. Fix ði; jÞ ∈ f1; : : : ; dg2. As the analysis of ðPnþ1 − PnÞði;jÞ is com-
pletely analogous, only ðPn − P�Þði;jÞ will be considered here. For notational conveni-
ence, for every n ∈ N denote the component (i, j) of Pn − P� by pn. If pn as given
by (3) is not equal to zero for all but finitely many n, let σ ∈ f1; : : : ; sg be the minimal
index such that C ði;jÞ

σ ≠ 0. As in [2, p. 224], to analyze (3), distinguish two cases.
Case 1. jλσj > jλσþ1j. In this case λσ is a dominant eigenvalue, and it is real since

otherwise its conjugate would be an eigenvalue with the same modulus. Equation (3) can
be written as

pn ¼
X

λnl

d

l¼σ

C
ði;jÞ
l ¼ jλσjnnk

ði;jÞ
σ

Xd
l¼σ

�
λl
jλσj

�
n C

ði;jÞ
l

nk
ði;jÞ
σ

¼ jλσjnnk
ði;jÞ
σ

�
c
ði;jÞ
σ

�
λσ
jλσj

�
n

þ ζi;jðnÞ
�
;

where, since k
ði;jÞ
σ is the degree of C ði;jÞ

σ ,

c
ði;jÞ
σ ≔ limn→∞n−k

ði;jÞ
σ C

ði;jÞ
σ ≠ 0

and ζi;jðnÞ → 0 as n → ∞ because λσ is a dominant eigenvalue. Therefore,

log jpnj ¼ n log jλσj þ k
ði;jÞ
σ log nþ log jcði;jÞσ j þ ηn;

with ηn ¼ log j1þ ζi;jðnÞe−ın arg λσ ∕ cði;jÞσ j. Since ηn → 0 and log jλσj is irrational, the
sequence (pn) is Benford by Proposition 2 and the fact that (xn þ α log nþ β) is u.d.
mod 1 whenever (xn) is (e.g., [2, Lemma 2.8]).

Case 2. jλσj ¼ jλσþ1j ¼ · · ·¼ jλτj ≕ jλj for some τ > σ. Here several different eigen-
values of the same magnitude occur, such as, e.g., conjugate pairs of nonreal eigenvalues.
Let kði;jÞ be the maximal degree of the polynomials C ði;jÞ

l , l ¼ σ; : : : ; τ. As in Case 1,
express (3) as

pn ¼ jλjnnkði;jÞ
�
c
ði;jÞ
σ

�
λσ
jλj

�
n

þ · · · þc
ði;jÞ
τ

�
λτ
jλj

�
n

þ ζi;jðnÞ
�
;

where cði;jÞl ≔ limn→∞n−kði;jÞC
ði;jÞ
l ∈ C for l ¼ σ; : : : ; τ, with c

ði;jÞ
l ≠ 0 for at least one l,

and ζi;jðnÞ → 0 as n → ∞. Consequently,
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log jpnj ¼ n log jλj þ kði;jÞ log nþ log

����cði;jÞσ

�
λσ
jλj

�
n

þ · · · þc
ði;jÞ
τ

�
λτ
jλj

�
n

þ ζi;jðnÞ
����:

Write λl as λl ¼ jλjeι arg λl for l ¼ σ; : : : ; τ, and hence

log jpnj ¼ n log jλj þ kði;jÞ log nþ log jcði;jÞσ eιn arg λσþ · · · þc
ði;jÞ
τ eιn arg λτ þ ζi;jðnÞj:

Since P is nonresonant, Lemma 13 applies with m ¼ τ− σþ 1 and ρ0 ¼ log jλj,
ρ1 ¼ 1

2π arg λσ; : : : ;ρm ¼ 1
2π arg λτ. Thus (pn) is Benford. ▯

Example 14 (the general two-dimensional case). Let

P ¼
�
1− x

y

x

1− y

�

with x; y ∈ ð0; 1Þ. By Feller [12, p. 432],

Pn ¼ 1

xþ y

�
y x
y x

�
þ ð1− x− yÞn

xþ y

�
x −x
−y y

�
;ð6Þ

from which it is clear that λ1 ¼ 1, λ2 ¼ 1− x− y, and

P� ¼ 1

xþ y

�
y

y

x

x

�
.

It follows from (6) that each component of (Pn − P�) and (Pnþ1 − Pn) is a multiple of
(λn2 ). By Theorem 12, the Markov chain with transition probability matrix P is Benford
whenever log j1− x− yj is irrational. On the other hand, by Proposition 3(i) P is not
Benford if log j1− x− yj ∈ Q. Thus for d ¼ 2, nonresonance is (not only sufficient but
also) necessary for P to be Benford. For d ≥ 3, this is no longer true, as the next example
shows.

Example 15 (a resonant Benford Markov chain). Let

P ¼

2
64 0.4 0.5 0.1
0.4 0.3 0.3
0.6 0.1 0.3

3
75.

The eigenvalues are λ1 ¼ 1 and λ2;3 ¼ �0.2ı. With Λ ¼ f0.2ıg, therefore 1
2π arg Λ ¼

f14g ⊂ Q; hence P is resonant. However, spectral decomposition shows that B3 ¼ B̄2,
i.e., B2, B3 are conjugates, and each component of B2 has nonzero real and imaginary
part. Thus for every ði; jÞ ∈ f1; 2; 3g2,

jðPn − P�Þði;jÞj ¼ j2Reð0.2ıÞnBði;jÞ
2 j ¼

�
2× · 0:2njReB

ði;jÞ
2 j if n is even;

2× · 0:2njJmB
ði;jÞ
2 j if n is odd;

and ðPn − P�Þði;jÞ is Benford. Similarly, since each component of 5B2 − ıB2 has nonzero
real and imaginary part, ðPnþ1 − PnÞði;jÞ is Benford as well.

Remarks on general Markov chains.
(i) Theorem 12 cannot be applied to Markov chains that fail to be irreducible.

However, every finite-state Markov chain can be decomposed into classes of
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recurrent and transient states. Hence, the transition probability matrix P can
be block-partitioned as

P ¼

2
666664

P1 0 · · · 0 0
0 P2 0 0 0

..

. . .
. ..

.

0 0 Pr 0
Bð1Þ Bð2Þ · · · BðrÞ A

3
777775;

where P1; P2; : : : ; Pr are the transition probability matrices of the r disjoint
recurrent classes and Bð1Þ; Bð2Þ; : : : ; BðrÞ denote the transition probability
matrices from the collection of transient states into each recurrent class.
As n → ∞,

Pn ¼

2
6666664

Pn
1 0 · · · 0 0

0 Pn
2 0 0 0

..

. . .
. ..

.

0 0 Pn
r 0

L
ð1Þ
n L

ð2Þ
n · · · L

ðrÞ
n An

3
7777775

→

2
6666664

P�
1 0 · · · 0 0

0 P�
2 0 0 0

..

. . .
. ..

.

0 0 P�
r 0

SBð1ÞP�
1 SBð2ÞP�

2 · · · SBðrÞP�
r 0

3
7777775
;

where L
ðjÞ
n ¼ P

n−1
l¼0 A

lBðjÞPn−l−1
j for j ¼ 1; 2; : : : ; r and S ¼ P∞

k¼0 A
k.

Theorem 12 can be applied separately to the matrices Pj associated with
the recurrent classes. Consequently, if P1; P2; : : : ; Pr are Benford, then
the corresponding components of P are also Benford. Additionally, if A
is nonresonant, then that part follows BL as well. The only remaining parts
are formed by the sequences ðLðjÞ

n Þ and depend on the (nonautonomous) sum-
mation of the powers of A. Their Benford properties are beyond the scope of
this paper; see, e.g., [5].

(ii) For an irreducible Markov chain that is not aperiodic but rather periodic with
period p > 1, Definition 6 still makes sense, provided that P� is understood as
the unique row-stochastic matrix with P�P ¼ P�. However, such a chain can-
not be Benford since for every ði; jÞ ∈ f1; : : : ; dg2 one can choose
k ∈ f0; : : : ; p− 1g such that

jðPn − P�Þði;jÞj ¼ ðP�Þði;jÞ > 0 ∀n ∈ N \ ðkþ pNÞ:

Similarly, each component of ðPnþ1 − PnÞ equals zero at least ðp− 2Þ ∕ p of
the time and thus cannot be Benford either whenever p ≥ 3. The distribution
of significands of ðPnþ1 − PnÞði;jÞ observed in this situation is a convex com-
bination of BL and a pure point mass; see [5, Corollary 6]. Only in the case
p ¼ 2 is it possible for each component of (Pnþ1 − Pn) to be either Benford or
eventually zero.
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(iii) Although this paper deals with finite-state Markov chains only, it is worth
noting that chains with infinitelymany states may also obey BL in one way or
the other. For a very simple example, let 0 < ρ < 1 and consider the homo-
geneous random walk on Z with

Pði;jÞ ¼

8>><
>>:

ρ2 if j ¼ i− 1;
2ρð1− ρÞ if j ¼ i;
ð1− ρÞ2 if j ¼ iþ 1;
0 otherwise:

Clearly, this Markov chain is irreducible and aperiodic. It is (null-)recurrent if
ρ ¼ 1

2 and transient otherwise. For all ði; jÞ ∈ Z2 and n ∈ N,

ðPnÞði;jÞ ¼
�

2n
nþ i− j

�
ρnþi−jð1− ρÞn−iþj;

and an application of Stirling’s formula shows that ðPnÞði;jÞ is Benford if and
only if logð4ρð1− ρÞÞ is irrational. For all but countably many ρ, therefore,
ðPnÞði;jÞ is Benford for every (i, j). Note that one of the excluded values is
ρ ¼ 1

2, i.e., the recurrent case. For recurrent chains virtually every imaginable
behavior of significant digits or significands can be manufactured by means of
advanced ergodic theory tools; see [3] and the references therein.

4. Almost all Markov chains are Benford. The second main theoretical objec-
tive of this paper is to show that Benford behavior is typical in finite-state Markov
chains. Indeed, if the transition probabilities of the chain are chosen at random and
in an absolutely continuous (a.c.) manner, then the chain almost always, i.e., with prob-
ability one, obeys BL. To formulate this more precisely, the following terminology will
be used.

DEFINITION 16. A random (d-state) Markov chain is a random d× d-matrix P, de-
fined on some probability space ðΩ;F ;PÞ and taking values in Pd. A random Markov
chain P: Ω → Pd is a.c. if its distribution on Pd is a.c. w.r.t. Leb

Pd
, the normalized

dðd− 1Þ-dimensional volume on Pd ⊂ Rd×d, that is, if PðP ∈ AÞ ¼ 0 holds for A ⊂ Pd

whenever LebPd
ðAÞ ¼ 0.

With this terminology, it is the purpose of the present section to illustrate and prove
the following theorem.

THEOREM 17. Every a.c. random Markov chain is Benford with probability one.
Before giving a full proof for Theorem 17, the special case of a random two-state

chain will be examined to show how the absolute continuity of P allows the application
of Theorem 12. The case d ¼ 2 is especially transparent since the eigenvalues are ex-
plicitly given by simple expressions, unlike for the general case where the eigenvalues
are only known implicitly and the implicit function theorem has to be resorted to.

Example 18. Consider the random two-state Markov chain

P ¼
�
1− X X
Y 1− Y

�
;

and assume that the joint distribution of (X, Y) on ½0; 1�2 is a.c. (Equivalently, P is
a.c. on P2.) Each of the four entries of P is strictly positive with probability one, so
the chain is irreducible and aperiodic with probability one. Since P is random, the sec-
ond-largest eigenvalue is the random variable Z ¼ 1− X− Y, by Example 14. Since P is
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a.c., Z is a.c. as well, and hence the probability that Z is in any given countable set is
zero. But this implies that the probability of log jZj being rational is zero, which in turn
shows that with probability one, P is nonresonant and hence Benford by Theorem 12.

Similarly to the analysis of Newton’s method in [4], a key property in the present
Markov chain setting is the real-analyticity of certain functions, notably the eigenvalue
functions. Recall that a function f : U → C is real-analytic whenever it can, in the neigh-
borhood of every point in its domain U (a connected open subset of Rl for some l ≥ 1),
be written as a convergent power series. Clearly, every real-analytic function is C∞, i.e.,
has derivatives of all orders. An important property of real-analytic functions not shared
by arbitrary C-valued C∞-functions defined on U is that the zero-locus of f is a nullset
unless f vanishes identically on U . Although this is probably a well-known fact, no spe-
cific reference is known to the authors. Since this fact plays a crucial role in the proof of
Theorem 17 below, a proof is included for the reader’s convenience. With LebRl denoting
the l-dimensional volume on Rl, it reads as follows.

LEMMA 19. Let f : U → C be real-analytic and Nf ≔ fx ∈ U : fðxÞ ¼ 0g. Then
either Leb

Rl
ðNf Þ ¼ 0 or Nf ¼ U .

Proof. AssumeNf ≠ U . If l ¼ 1 , thenNf is at most countable [21, Theorem 10.18],
and hence LebR1ðNf Þ ¼ 0. For l ≥ 2, proceed by induction: Given any set C ⊂ Rl and
γ ∈ R, define Cγ ≔ fðx2; : : : ; xlÞ: ðγ; x2; : : : ; xlÞ ∈ Cg ⊂ Rl−1. By Fubini’s theorem,

LebRlðNf Þ ¼
Z
Nf

dx1dx2 : : : dxl ¼
Z
R

�Z
ðNf Þx1

dx2 : : : dxl

�
dx1

¼
Z
R
LebRl−1ððNf Þx1Þdx1:

Notice that ðNf Þx1 ¼ N ~f , where ~f : Ux1 → C is the real-analytic function with
~f ðx2; : : : ; xlÞ ¼ f ðx1; x2; : : : ; xlÞ. If LebRl−1ðN ~f Þ > 0, then, by the induction assump-
tion, ~f must vanish identically on some connected component V of Ux1 . (Note that
Ux1 may not be connected.) Fix any ðx2; : : : ; xlÞ ∈ V . Since Nf ≠ U , it can be assumed
that γ ↦ f ðγ; x2; : : : ; xlÞ does not vanish identically. It follows that LebRl−1ððNf Þx1Þ > 0
for at most countably many x1, and hence LebRlðNf Þ ¼ 0.. ▯

Remark 20. As the proof of Lemma 19 shows, LebRl can be replaced by any product
of l atomless measures on R (and LebRl then simply corresponds to the special case of
each factor being LebR1).

The proof of Theorem 17 will be based on several preliminary facts. First, given
a ¼ ða1; : : : ; adÞ ∈ Cd, let pa: C → C denote the polynomial

paðzÞ ¼ zd þ a1z
d−1þ · · · þad−1z þ ad:

By the fundamental theorem of algebra, pa has exactly d zeroes (counted with multi-
plicities). If pa has a multiple zero, then a universal polynomial relation must necessarily
be satisfied by a. For instance, if d ¼ 2 and pa has a double zero, then Q2ðaÞ ¼ 0, where
Q2ðaÞ ¼ −a21 þ 4a2. The generalization to arbitrary d is classical (see, e.g., [8,
Lemma 3.3.4]); for a proper formulation recall that the degree of a polynomialP

jcjx
n1;j

1 x
n2;j

2 : : : x
nd;j

d in d variables is defined as max fn1;j ×þ · · · þnd;j×: cj ≠ 0g.
PROPOSITION 21. For every integer d > 1, there exists a nontrivial polynomial Qd in

d variables, with integer coefficients and of degree 2d− 2, with the following property:
Whenever pa has a multiple zero, i.e., paðz0Þ ¼ pa

 0ðz0Þ ¼ 0 for some z0 ∈ C, then
QdðaÞ ≔ Qdða1; : : : ; adÞ ¼ 0.
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This fact will now be used to show that if a stochastic matrix P0 is invertible and has
distinct nonzero eigenvalues, then all stochastic matrices P sufficiently close to P0 also
are invertible and have distinct nonzero eigenvalues. In fact, these eigenvalues are
real-analytic functions of P. To formulate this efficiently, for every P0 ∈ Pd and
ε > 0, denote by BεðP0Þ the open ball with radius ε centered at P0; i.e., BεðP0Þ ¼
fP ∈ Pd: jPði;jÞ − P

ði;jÞ
0 j < ε for all 1 ≤ i; j ≤ dg. Note that with this topology, Pd is

compact.
LEMMA 22. Suppose P0 ∈ Pd is invertible and has d distinct nonzero eigenvalues.

Then there exist ε > 0 and d− 1 nonconstant real-analytic functions λ2; : : : ;
λd: BεðP0Þ → C such that, for every P ∈ BεðP0Þ,

(i) 1; λ2ðPÞ; · · · ; λdðPÞ are the eigenvalues of P, and λ2ðPÞ · · · · · λdðPÞ ≠ 0;
(ii) λiðPÞ ≠ λjðPÞ whenever i ≠ j, unless λi ¼ λ̄j on BεðP0Þ.

Proof. Note first that by the continuity of ðP; zÞ ↦ detðzI d×d − PÞ ¼ ψPðzÞ, there
exists δ > 0 such that every P ∈ BδðP0Þ is invertible and has distinct nonzero eigen-
values. Thus the characteristic polynomial ψP of P has d− 1 distinct nonzero roots
different from 1. Let z0 be one of those roots. Since z0 is a simple root, ψP0

 0ðz0Þ ≠ 0,
so by the implicit function theorem [17, Theorem 2.3.5], z0 depends real-analytically
on the coefficients of ψP which themselves are real-analytic (in fact polynomial) func-
tions of the entries of P. More formally, there exist ε ≤ δ and a real-analytic function
g: BεðP0Þ → C with gðP0Þ ¼ z0 such that ψPðgðPÞÞ ¼ 0 for all P ∈ BεðP0Þ. Overall,
there exist ε > 0 and d− 1 real-analytic functions λi: BεðP0Þ → C satisfying (i); note
that λ1 ≡ 1 by Proposition 5. To see that λ2; : : : ; λd are not constant on BεðP0Þ, suppose
by way of contradiction that λiðPÞ ¼ λiðP0Þ ≠ 1 for some 2 ≤ i ≤ d and all P ∈ BεðP0Þ.
In this case, the real-analytic function P ↦ ψPðλiðP0ÞÞ vanishes identically on BεðP0Þ,
and hence on all of Pd. Since I d×d ∈ Pd, this obviously contradicts ψI d×d

ðλiðP0ÞÞ ¼
ðλiðP0Þ− 1Þd ≠ 0. Consequently, none of the functions λ2; : : : ; λd: BεðP0Þ → C is
constant.

To show (ii), assume that λiðP1Þ ¼ λjðP1Þ for some i ≠ j and P1 ∈ BεðP0Þ. Thus
λiðP1Þ ∈ C \ R, since if λiðP1Þ were real, then λiðP1Þ ¼ λjðP1Þ, which is impossible be-
cause the eigenvalues are distinct. Since all matrices in Pd are real, their nonreal eigen-
values occur in conjugate pairs. Hence, for all P sufficiently close to P1, the number
λjðPÞ is an eigenvalue of P which, by continuity, can only be λiðPÞ. Consequently,
λi and ¯

λj coincide locally near P1 and therefore, by real-analyticity, on all of
BεðP0Þ. ▯

By means of the above auxiliary results, several almost sure properties of random
Markov chains can be identified.

LEMMA 23. If the random Markov chain P is a.c., then, with probability one,
(i) P is irreducible, aperiodic, and invertible;
(ii) P has d distinct nonzero eigenvalues; and
(iii) P is nonresonant.

Proof.
(i) Since P is a.c., with probability one Pði;jÞ ∈ ð0; 1Þ for all i and j, and P is

irreducible and aperiodic. To see that P is almost surely invertible, note
that P ↦ det P is real-analytic on Pd and clearly not constant, as Pd

contains both I d×d and the matrix whose components all equal 1
d. By

Lemma 19, LebPd
ðfP ∈ Pd: det P ¼ 0gÞ ¼ 0, and this in turn implies that

Pðdet P ¼ 0Þ ¼ 0.
(ii) There exist d nonconstant polynomial functions q1; : : : ; qd: Pd → R such

that

MARKOV CHAINS AND BENFORD’S LAW 677

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



ψPðzÞ ¼ det ðzI d×d − PÞ ¼ zd þ q1ðPÞzd−1þ · · · þqd−1ðPÞz þ qdðPÞ

holds for all P ∈ Pd and z ∈ C; for example, q1ðPÞ ¼ −
P

d
i¼1 P

ði;iÞ and
qdðPÞ ¼ ð−1Þd det P. Consequently, qðPÞ ≔ Qdðq1ðPÞ; : : : ; qdðPÞÞ defines
a nonconstant real-analytic (in fact, polynomial) map q: Pd → R, and
since z0 is a multiple eigenvalue of P if and only if ψPðz0Þ ¼ ψP

 0ðz0Þ ¼ 0,
Proposition 21 implies that

fP ∈ Pd: P has multiple eigenvaluesg ⊂ fP ∈ Pd: qðPÞ ¼ 0g:

As before, PðqðPÞ ¼ 0Þ ¼ 0 by Lemma 19, showing that with probability one
all eigenvalues of P are simple.

(iii) For every ρ ∈ Q define the real-analytic auxiliary function Φρ: R
2 → R by

ΦρðxÞ ≔ ðx21 þ x22 − 102ρÞ2, and also Θ: R4 → R as ΘðxÞ ≔ ðx21 þ x22 − x23−
x24Þ2. By (i) and (ii), P almost surely satisfies the hypotheses of Lemma 22,
so let P0, ε, and λ2; : : : ; λd be as in Lemma 22, and define real-analytic func-
tions Φρ;i and Θi;j on BεðP0Þ as

Φρ;iðPÞ ≔ ΦρðReλiðPÞ;ImλiðPÞÞ ¼ ðjλiðPÞj2 − 102ρÞ2 ∀i: 2 ≤ i ≤ d;

and, for all 2 ≤ i, j ≤ d,

Θi;jðPÞ ≔ ΘðReλiðPÞ;ImλiðPÞ;ReλjðPÞ;ImλjðPÞÞ
¼ ðjλiðPÞj2 − jλjðPÞj2Þ2:

Finally, let Fρ: BεðP0Þ → R be defined as

FρðPÞ ≔
Yd
i¼2

Φρ;iðPÞ ·
Y

2≤i<j: λi≠λ̄j

Θi;jðPÞ:

The definition of Fρ becomes transparent upon noticing that FρðPÞ ¼ 0 for
some ρ ∈ QwheneverP is invertible and resonant. Next, it will be shown that
Fρ does not vanish identically on BεðP0Þ. To see this, note first that if
P ∈ BεðP0Þ, then also ð1− δÞP þ δI d×d ∈ BεðP0Þ for all sufficiently small
δ > 0. Moreover, if Φρ;iðPÞ ¼ 0 for some i ¼ 2; : : : ; d, then

Φρ;iðð1−δÞP þ δI d×dÞ ¼ ððð1−δÞReλiðPÞþδÞ2þð1− δÞ2ImλiðPÞ2−102ρÞ2

¼ δ2

�
ð2− δÞðReλiðPÞ− jλiðPÞj2Þ þ δð1−ReλiðPÞÞ

�
2

> 0;

provided that δ > 0 is small enough. (Recall that 1−ReλiðPÞ > 0 whenever
P ∈ BεðP0Þ.) Similarly, ifΘi;jðPÞ ¼ 0 for some 2 ≤ i < j ≤ dwith λi ≠ λ̄j and
λiðPÞ ≠ 0, then a short calculation confirms that, for all δ > 0 sufficiently
small,

Θi;jðð1− δÞP þ δI d×dÞ ¼ δ2ð1− δÞ2 jλiðPÞ− λjðPÞj2jλiðPÞ− λjðPÞj2
jλiðPÞj2

> 0:

Overall, Fρ does not vanish identically on BεðP0Þ. As every P ∈ BεðP0Þ is
invertible,
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fP ∈ BεðP0Þ:P × is resonantg ⊂
[
ρ∈Q

fP ∈ BεðP0Þ: FρðPÞ ¼ 0g:

Since Fρ is real-analytic and nonconstant, fP ∈ BεðP0Þ:FρðPÞ ¼ 0g is a
LebPd

-nullset for every ρ ∈ Q, and so is
S

ρ∈QfP ∈ BεðP0Þ :FρðPÞ ¼ 0g.
Analogously to (i) and (ii), therefore, PðP is resonantÞ ¼ 0. ▯

Proof of Theorem 17. Let the random d× d-matrix P be a.c. By Lemma 23, P is
almost surely irreducible, aperiodic, and nonresonant. By Theorem 12, this implies that
P is Benford with probability one. ▯

COROLLARY 24. If the transition probabilities (i.e., the rows) of a random d-state
Markov chain P are independent and a.c. on the standard d-simplex, then P is Benford
with probability one.

Remark 25.
(i) It is clear that without absolute continuity, Lemma 23 and Theorem 17 may

fail. For example, for the conclusion of Lemma 23 to hold it is not enough to
assume that the distribution ofP onPd is atomless; i.e.,PðP ¼ PÞ ¼ 0 for every
P ∈ Pd. As very simple examples show, under this weaker assumption, Pmay,
with positive probability, be reducible and have multiple or zero eigenvalues.
Even if Lemma 23(i) and (ii) hold with probability one, Pmay still be resonant
and not Benford. To see this, consider the random three-state Markov chain

P ¼ 1

40

2
64Xþ 4 X 36− 2X
Y Y þ 4 36− 2Y
Zþ 2 Zþ 2 36− 2Z

3
75;

where X, Y, Z are independent and uniformly distributed on [0, 1]. With this,
the distribution of P on P3 is atomless yet concentrated on a LebP3

-nullset.
The eigenvalues of P are

λ1 ¼ 1; λ2 ¼ 0.1; λ3 ¼
1

40
ðXþ Y − 2ZÞ:

Note that jλ3j ≤ 0.05 < λ2. Clearly, P is resonant with probability one, and
Lemma 23(iii) fails. Even more important perhaps, Theorem 17 fails as well
since, as spectral decomposition shows,B2 ≠ 0with probability one, and hence
PðP is BenfordÞ ¼ 0.

(ii) A careful inspection of the above arguments shows that Lemma 23 and
Theorem 17 hold whenever the distribution of P on Pd ⊂ Rd×d ≡ Rd 2

is such
that Pðf ðPÞ ¼ 0Þ ¼ 0 for every real-analytic function f : Rd 2

→ C that does
not vanish identically on Pd. Evidently, this property of P holds automati-
cally if P is a.c.

(iii) With hardly any effort, the tools employed in the proof of Lemmas 22 and 23
also yield a topological analogue of Theorem 17: Within the compact metric
space Pd, the matrices that are irreducible, aperiodic, invertible, and nonre-
sonant form a residual set, that is, a set whose complement is the countable
union of nowhere dense sets. Being Benford, therefore, is a typical property
for P ∈ Pd not only under a probabilistic perspective but under a topological
perspective as well.

5. Some computational implications. For Markov chains with small state
space, i.e., for small values of d, the limiting matrix P� is easy to compute explicitly.
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In this case, an understanding of the behavior of significant digits in (Pn − P�) and
(Pnþ1 − Pn), however valuable in its own right, may be of limited practical use. On
the other hand, for important applications that involve a very large state space,
e.g., in computer science or theoretical biology [20], P� may be very costly or practically
impossible to determine explicitly. In this case, P� typically is approximated using a
variety of numerical algorithms. As detailed below, it is in situations like these that
a proper understanding of the typical behavior of significant digits may be crucial also
from a practical or computational point of view.

As a concrete example, a Markov chain Monte Carlo (MCMC) method will be con-
sidered. MCMC is a popular and powerful tool for generating samples from an arbitrary
distribution [6, Chapter 7]. One of the most important advantages of MCMC is that it
requires only specification of the target distribution up to a normalization constant, the
determination of which often constitutes a challenging problem in itself. Historically,
MCMC was motivated by computational problems in statistical physics that led to
the idea of generating a Markov chain whose limiting distribution is equal to the target
distribution. The most prominent MCMC algorithms are the Metropolis–Hastings and
the Gibbs sampling algorithms, which both originated from the following Metropolis
algorithm.

Assume that a random variable X is to be generated that takes values in
E ¼ f1; : : : ;mg, according to the target distribution fπig, where

πi ¼
bi
B
; i ¼ 1; : : : ;m;

with all bi positive, m large, and the normalization constant B ¼ P
m
i¼1 bi difficult to

calculate. The Metropolis algorithm constructs a Markov chain ðXnÞn∈N0
on

f1; : : : ;mg whose evolution relies on an appropriately chosen stochastic matrix
Q ¼ ðqijÞ in the following way:

(i) Given Xn ¼ i, generate a random variable Y which satisfies PðY ¼ jÞ ¼ qij
for all j ¼ 1; : : : ;m and is independent of X0; : : : ;Xn−1.

(ii) Given Y ¼ j, let αij ≔ min
n
bjqji
biqij

; 1
o

and choose

Xnþ1 ¼
�
j with probability αij;
i with probability 1− αij:

The Markov chain (Xn) thus defined has the transition probability matrix

Pði;jÞ ¼
�
qijαij if j ≠ i;
1−

P
k≠i qikαik if j ¼ i:

To illustrate this through a simple specific example, consider the case of the matrix Q
having identical rows, i.e., qij ¼ pj for all i; j ∈ E, where p ¼ ðpiÞi∈E is a strictly positive
probability distribution on E. With wi ≔ πi ∕ pi, the off-diagonal elements of P are

Pði;jÞ ¼ pj min

�
1;
wj

wi

�
∀i; j ∈ E: i ≠ j:

Assume that the states of E are labeled in such a way that w1 ≥ w2 ≥ · · ·≥ wm. In this
case, the eigenvalues of P are easily seen to be λ1 ¼ 1 and
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λj ¼
Xm
l¼j

πl

�
1

wl
−

1

wj−1

�
≥ 0; j ¼ 2; : : : ;m:

Consequently, if log λj is irrational for all j ¼ 2; : : : ;m, then the Markov chain (Xn) is
Benford, by Theorem 12, and so is the Metropolis algorithm.

Why is it important to know whether an algorithm often, or even typically, gen-
erates Benford distributed data? A most compelling reason has been put forth by Knuth
in his classic text The Art of Computer Programming [16, pp. 253–255]:

In order to analyze the average behavior of floating-point arithmetic algorithms (and in
particular to determine their average running time), we need some statistical informa-
tion that allows us to determine how often various cases arise : : : [If, for example, the]
leading digits tend to be small [that] makes the most obvious techniques of average error
estimation for floating-point calculations invalid. The relative error due to rounding is
usually : : : more than expected.

Thus for the problem of numerical estimation of P� from Pn, it is important to study the
distribution of significant digits of the components of (Pn − P�) and (Pnþ1 − Pn).
Theorem 17 above shows that these components typically exhibit exactly the type
of nonuniformity of significant digits alluded to by Knuth: Not only do the first few
significant digits of the differences between the components of the successive n-step
transition matrices Pn and the limiting distribution P� as well as the differences between
Pnþ1 and Pn tend to be small, but, much more specifically, they typically follow BL.

This prevalence of BL has important practical implications for estimating P� from
Pn using floating-point arithmetic. One type of error in scientific calculations is overflow
(or underflow), which occurs when the running calculations exceed the largest (or
smallest, in absolute value) floating-point number allowed by the computer. Feldstein
and Turner show that [11, p. 241], “[u]nder the assumption of the logarithmic distribu-
tion of numbers [i.e., BL] floating-point addition and subtraction can result in overflow
and underflow with alarming frequency : : : .” Together with Theorem 17, this suggests
that special attention should be given to overflow and underflow errors in any numerical
algorithm used to estimate P� from Pn.

Another important type of error in scientific computing is due to roundoff. In es-
timating P� from Pn, for example, every stopping rule, such as “stop when n ¼ 1000” or
“stop when all components in (Pnþ1 − Pn) are less than 10−10,” will result in some error,
and Theorem 17 shows that this difference is generally Benford. In fact, justified by
heuristics and by the extensive empirical evidence of BL in other numerical calculations,
the analysis of roundoff errors has often been carried out under the hypothesis of a loga-
rithmic statistical distribution (cf. [11, p. 326]). Therefore, as Knuth pointed out, a naive
assumption of uniformly distributed significands in the calculations tends to underes-
timate the average relative roundoff error in cases where the actual statistical distribu-
tion is skewed toward smaller leading significant digits, as is the case for BL. To obtain a
rough idea of the magnitude of this underestimate when the true statistical distribution
is BL, letX denote the absolute roundoff error at the time of stopping the algorithm, and
let Y denote the fraction part of the approximation at the time of stopping. Then the
relative error isX ∕ Y, and assuming thatX and Y are independent random variables, the
average (i.e., expected) relative error is simply EX · Eð1 ∕ YÞ. Thus if Y is assumed to
be uniformly distributed on ½1; 10Þ, ignoring the fact that Y is Benford creates an average
underestimation of the relative error by more than one third (cf. [4]).
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In view of the relevance of BL for large-scale computations involvingMarkov chains,
it is important to also note that the speed of convergence to BL can vary considerably.
This is apparent already from Table 1: The digit distributions of the sequences (2n) and
(Fn) converge to BL faster than (n!). A possible explanation for this is suggested in
[18, Chapter 2, Theorem 3.4], where explicit bounds for rates of convergence to unifor-
mity are found for (αnmod 1. These bounds depend on the continued fraction expansion
of the irrational number α—the smaller the coefficients in this expansion, the faster the
convergence. Both log 2 and log 1þ ffiffi

5
p
2 appear to have very few large coefficients in their

continued fraction expansion. Via Proposition 2, this translates into relatively fast
convergence to BL.

Similarly, the speed of convergence to BL for Markov chains may vary considerably,
and the result for (αn mod 1) mentioned in the previous paragraph suggests that this
speed is determined by the continued fraction expansion of the logarithm of the moduli
of the eigenvalues of P as well as of the elements of the sets 1

2π arg Λ. The next example
illustrates this. The reader should keep in mind that relatively little is known at present
about the precise speed of convergence to BL (or uniformity) in higher-dimensional
systems; see, e.g., [10].

Example 26 (different speeds of convergence to BL for Markov chains).
(i) Let

P ¼

2
64 0.25 0.35 0.40
0.30 0.45 0.25
0.65 0.15 0.20

3
75.

The eigenvalues of P are λ1 ¼ 1 and λ2;3 ¼ − 1
20∓

1
20

ffiffiffiffiffi
21

p
. Since log jλ2j and

log jλ3j are irrational and different, P is nonresonant, and Theorem 12 implies
that the Markov chain defined by P is Benford. Since jλ2j > jλ3j, for the speed
of convergence to BL it is important how well log jλ2j is approximated by
rational numbers. The first 50 coefficients of the continued fraction expansion
of log jλ2j,

log jλ2j ¼ ½−1; 2; 4; 8; 1; 5; 1; 6; 3; 1; 2; 2; 1; 1; 2; 1; 1; 2; 1; 66; 5; 1; 1; 2; 1; 3;

1; 2; 1; 1; 3; 1; 3; 2; 3; 2; 7; 3; 86; 1; 1; 1; 1; 1; 26; 3; 1; 5; 3; 1; 5; : : : �;
do not exceed 86 and are mostly small numbers not showing rapid growth at
all. A comparatively rapid initial approach to BL is therefore expected.
This is confirmed experimentally by Figure 1, which shows, as a function
of n, the L1-distance between the empirical frequencies for the significant di-
gits of ðPnþ1 − PnÞð2;1Þ and the Benford probabilities; the behavior of
ðPn − P�Þð2;1Þ is very similar, as is in fact the behavior of all other
components.

(ii) Let

P ¼

2
64 0.8 0.1 0.1
0.3 0.3 0.4
0.4 0.0 0.6

3
75;

with eigenvalues λ1 ¼ 1 and λ2;3 ¼ 7
20 � 1

20 ı
ffiffiffi
3

p
. The behavior of the significant

digits is governed by the two irrational numbers log jλ2j and 1
2π arg λ2. For

instance,
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1

2π
arg λ2 ¼ ½0; 25; 1; 9; 3; 168; 2; 1; 1; 32; 1; 6; 3; 1; 9; 1; 1; 92; 2; 13; 2; 1; 1; 10; 2;

5; 1; 3; 1; 1; 1; 1; 3; 1; 2; 7; 1; 5; 1; 1; 4; 1; 3; 14; 3; 10; 1; 1; 3; 1; 3; : : : �:

When compared with (i), the repeated early large coefficients in the contin-
ued fraction expansion of 1

2π arg λ2 suggest a somewhat slower initial
approach to BL. Again, this is confirmed experimentally by Figure 1.

Finally, observe that Theorems 12 and 17 should make it possible to adapt the cur-
rent plethora of BL-based goodness-of-fit statistical tests, e.g., for detecting fraud [7], to
the problem of detecting whether or not a sequence of realizations of a finite-state sto-
chastic process originates from a Markov chain, i.e., whether or not the process is
Markov. By Theorem 17, conformance with BL for the differences (Pnþ1 − Pn) is typical
in finite-state Markov chains, so a standard (e.g., chi-square) goodness-of-fit to BL of the
empirical estimates of the differences between Pnþ1 and Pn may help detect non-Markov
behavior.
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