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FINITE-STATE MARKOV CHAINS OBEY BENFORD’S LAW"
ARNO BERGER!, THEODORE P. HILL!, BAHAR KAYNAR', axp AD RIDDER?

A sequence of real numbers (z,,) is Benford if the significands, i.e., the fraction parts in the floating-point
representation of (z,,), are distributed logarithmically. Similarly, a discrete-time irreducible and aperiodic fi-
nite-state Markov chain with transition probability matrix P and limiting matrix P* is Benford if every com-
ponent of both sequences of matrices (P" — P*) and (P"*! — P") is Benford or eventually zero. Using recent
tools that established Benford behavior for finite-dimensional linear maps, via the classical theories of uniform
distribution modulo 1 and Perron-Frobenius, this paper derives a simple sufficient condition (“nonresonance”)
guaranteeing that P, or the Markov chain associated with it, is Benford. This result in turn is used to show that
almost all Markov chains are Benford, in the sense that if the transition probability matrix is chosen in an
absolutely continuous manner, then the resulting Markov chain is Benford with probability one. Concrete
examples illustrate the various cases that arise, and the theory is complemented with simulations and potential
applications.
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1. Introduction. Benford’s law (BL) is the widely known logarithmic probability
distribution on significant digits. Its most familiar form is the special case of leading
significant digits (base 10), namely,

1
(1) IP(DI = dl) = logw (1 +d—) le S {1,2, e ,9},
1

where for each z € R, the number D, (z) is the first significant digit (base 10) of
z, ie., the unique integer d € {1,2,...,9} satisfying 10¥d <z < 10%(d+ 1) for
some, necessarily unique, k€ Z. Thus, for example, D;(30122) = D,(0.030122) =
D;(3.0122) = 3, and (1) implies that

P(D; = 1) = logyy2 = 0.301, P(D;, = 2) = log1y(3/2) 2 0.176, etc.;

see also Table 1 below.
In a form more complete than (1), BL is a statement about joint distributions of the
first n significant digits (base 10) for any n € N, namely,
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666 A. BERGER, T.P. HILL, B. KAYNAR, AND A. RIDDER

TABLE 1
Empirical frequencies of Dy for the first 1000 terms of the sequences (2"), (n!) and the Fibonacci numbers
(F,), as compared with the Benford probabilities given by (1).

D, (2m) (n!) (F,) Benford
1 0.301 0.293 0.301 0.30103
2 0.176 0.176 0.177 0.17609
3 0.125 0.124 0.125 0.12494
4 0.097 0.102 0.096 0.09691
5 0.079 0.069 0.080 0.07918
6 0.069 0.087 0.067 0.06695
7 0.056 0.051 0.056 0.05799
8 0.052 0.051 0.053 0.05115
9 0.045 0.047 0.045 0.04576
1
(2) P((DI,DZ,Dg, ,Dn) = (dl,dQ,dg, ,d,n)) :10g10(1 +W>,
J=1 J

where d; € {1,2, ...,9} and d; € {0,1,2, ...,9} for j > 2, and D,, Dj, etc., represent
the second, third, etc., significant digits (base 10). Thus, for example,
D,(30122) = D,(0.030122) = D,(3.0122) = 0, and a special case of (2) is

1
P((Dy. Dy. Dy) = (3,0,1)) = logy (1 + ﬁ> =~ 0.00144.
Formally, for every n € N, n > 2, the number D, (z), the nth significant digit (base 10)
of € R, is defined inductively as the unique integer d € {0,1,2, ...,9} such that

n—1 n—1
10* <d +y° 10"—-7‘Dj(z)) <z <10k <d +1+ 10"—ij(1~))
J=1

j Jj=1

for some (unique) k € Z.

The formal probability framework for BL is described in [13], [14]. The sample space
is Rt and the o-algebra of events is generated by the (decimal) significand (or mantissa)
function S: RT — [1,10), where S(z) is the unique number such that x = 10*S(x) for
some k € Z. Equivalently, the significand events are the sets in the o-algebra generated
by the significant digit functions Dy, D, Ds, etc. The probability measure on this sample
space associated with BL is

It is easy to see that the significant digit functions D, and D,, Dy, etc., are well defined
{1,2,...,9}- and {0,1,2, ...,9}-valued random variables, respectively, on this prob-
ability space with probability distributions as given in (1) and (2).

Note. Throughout this article, all results are restricted to decimal (base 10) signifi-
cant digits, and accordingly log always denotes the base 10 logarithm. For notational
convenience, D, (0) :== 0 for all n € N. The results carry over easily to arbitrary bases
b € N\ {1}, as is evident from [2], where the essential difference is replacing log;, by log;
and the decimal significant digits by the base b significant digits.
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MARKOV CHAINS AND BENFORD’S LAW 667

BL is now known to hold in great generality, e.g., for classical integer sequences such
as (2"), (n!) and the Fibonacci numbers (F',,), iterations of linearly dominated or power-
like maps, solutions of ordinary differential equations, products of independent random
variables, random mixtures of data, and random maps (e.g., see [1], [4], [5], [9], [14]).
Table 1 compares the empirical frequencies of D; for the first 1000 terms of the sequences
(2™), (n!), and (F,). This illustrates what it means to follow BL and also foreshadows the
discussion in section 5.

The main contribution of this article is to establish BL in finite-dimensional, time-
homogeneous Markov chains and to suggest several applications, including error ana-
lysis, in numerical simulations of m-step transition matrices. Concretely, given the
transition matrix P of a finite-state Markov chain (i.e., P is a row-stochastic matrix),
a common problem is to estimate the limit P* = lim,_, ., P". The two main theoretical
results below, Theorems 12 and 17, respectively, show that under a natural condition
(“nonresonance”) every component of the sequence of matrices (P" — P*) and
(P! — P") obeys BL and that this behavior is typical, i.e., it occurs for almost all
Markov chains. Several potential applications of the results are discussed, including the
estimation of roundoff errors incurred when estimating P* from P™ and possible (partial,
negative) statistical tests to decide whether data comes from a finite-state Markov
process.

2. Benford Markov chains and main tools. The sets of natural, integer, ra-
tional, positive real, real, and complex numbers are symbolized by N, Z, Q, R, R,
and C, respectively. The real part, imaginary part, complex conjugate, and absolute
value (modulus) of a number z € C is denoted by Rez, Imz, z, and |z|, respectively.
For z#0, the argument arg z is the unique number in (—m,n] that satisfies
z = |z|e' ™8 #. For ease of notation, arg 0 := 0 and log 0 := 0. The cardinality of the finite
set A is #A. Throughout this article, the sequence (a(1), a(2), a(3), ...) is denoted by
(a(n)). Thus, for example, (a")= (a',a?a? ...) and (P"*!— P") = (P?- P!,
P3 — P2, P*— P3, ...). Boldface symbols indicate random(ized) quantities; e.g., X de-
notes a random variable or vector and P a random transition probability matrix.

DErNiTION 1. A sequence (x,,) of real numbers is Benford (“follows BL”) if

< n: S(|lz;]) <t
lim,_ TUST n(w) S et Vit € [1,10).

The central theme of this paper is the Benford behavior of finite-state Markov
chains. The theory uses three main tools: the classical theory of uniform distribution
modulo 1 (see, e.g., [18]), recent results for BL in one- and multidimensional dynamical
systems ([1], [2]), and the classical Perron—Frobenius theory for Markov chains; see,
e.g., [6], [24]. Here and throughout, the term uniformly distributed modulo 1 is abbre-
viated as u.d. mod 1. The relationship between uniform distribution and BL is clarified
by the following proposition.

ProposITION 2 (see [9]). A sequence (x,) of real numbers is Benford if and only if
(log |z,]) is u.d. mod 1.

An immediate consequence of Proposition 2 is the following useful fact.

ProprosiTION 3 (see [1], [2]).

(i) Leta, b, o, B be real numbers with a # 0 and |a| > |B|. Then (ax™ 4+ bB™) is
Benford if and only if log |a| is irrational.
(ii) If (z,) is Benford, then, for all@ € R and k € Z with ak # 0, the sequence

(axk) is also Benford.
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Propositions 2 and 3 are fundamental tools for analyzing BL in the setting of multi-
dimensional dynamical systems. While the results in [2] do not apply directly to the
Markov chain setting, the first part of the theory established below nevertheless relies
heavily on those ideas, thereby adapting them to the case of row-stochastic matrices.

Example 4.

(i) The sequences (27), (0.2"), (3"), (0.3"), (0.01-0.2"4+0.2-0.01") are
Benford, whereas (10™), (0.1"), (+v/10™), (0.1 - 0.02" 4 0.02 - 0.1") are not.

(ii) The sequence (0.2" 4+ (—0.2)") is not Benford, since all odd terms are zero,
but (0.2" 4+ (—0.2)" 4+ 0.03") is Benford—although this does not follow
directly from Proposition 3(i).

For every integer d > 1, denote the set of all row-stochastic matrices of size d x d by
Pg, and let P € P, be the transition probability matrix of a Markov chain. All Markov
chains (or their associated matrices P) considered hereafter are assumed to be finite-
state (with d > 1 states), irreducible, and aperiodic. Let 4y, ..., 4,, s < d, be the distinct
(possibly nonreal) eigenvalues of P, with corresponding spectrum o(P) = {4;, ..., 4,};
ie., o(P) is the set of all distinct eigenvalues. Accordingly, the set o(P)" =
{4 € 6(P): Imi > 0} forms the “upper half’ of the spectrum. The usage of ¢(P)" refers
to the fact that nonreal eigenvalues of real matrices always occur in conjugate pairs, so
the set o(P)™" includes only one of the conjugates. Without loss of generality, throughout
this work the eigenvalues in o(P) are labeled such that

A1 > Ao =+ > |44

Furthermore, the column vectors g, ..., u, and vy, ..., v, denote associated sequences
of left and right eigenvectors, respectively. The third main tool in this paper is the
classical Perron—Frobenius theory of Markov chains, and the following proposition
summarizes some of the special properties of transition probability matrices for ease
of reference; see, e.g., [23] for details.

ProprosITION 5. Suppose P € Py is irreducible and aperiodic. Then Ay =1 > |4,| for
all? =2, ...,s, and there exists a P* € P, such that

(i) for every m € N,

(3) P — Pt =2 Cot - +A7C,,

where each Cy is a d x d-matriz whose cor _?onem‘s C’g’j) are polynomials inn
with complex coefficients and degrees k(;d < d.
The analysis is especially straightforward if all eigenvalues are simple, i.e., if

#0(P) = d. In this case, for every n € N,

d d
(4) P — P =>"JB, and P"™l—Pr=>%" 11l —1)B,
=2 =2

holds with the d — 1 matrices B, = vyu} /v}u, € C?%. Next is the key definition of
this paper.

DermiTioN 6. A Markov chain, or its associated transition probability matriz P, is
Benford if each component of (P" — P*) and (P! — P") is either Benford or eventually
zero.

Remark 7. The proof of Theorem 12 below will make it clear that requiring only the
components of (P" — P*) to be either Benford or eventually zero would result in an
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MARKOV CHAINS AND BENFORD’S LAW 669

equivalent definition. The more symmetric wording in Definition 6 merely reflects the
fact that (P™ — P*), although of obvious theoretical importance, may not always be
available in practice, whereas (P"*! — P") is.

The following examples illustrate the notions of Benford and non-Benford Markov
chains. As will be observed later, the moduli of the eigenvalues as well as a specific ra-
tional relationship between them play a crucial role, similar to the results in [2].

Ezample 8 (a Benford Markov chain). Let

0.9 0.0 0.1
P=1{06 03 01
0.1 0.0 0.9

The eigenvalues of P are 4; =1, 1o = 0.8, and 13 = 0.3, and

05 0 05
P*=105 0 05
05 0 0.5

The three eigenvalues are distinct, which leads to

0.5 0 —-0.5 0 0 O
P —pP*=08"| 05 0 —-05|403"{—-1 1 0
-05 0 05 0 00
as well as
-0.1 0 0.1 0 O 0
prtl _pr—08"|—-0.1 0 0.1 |+03"[07 —0.7 0
01 0 -0.1 0 0 0

As can be seen directly, in both cases the components (1, 2) and (3, 2) are zero for all n,
whereas by Proposition 3(i) all other components follow BL. Hence, the Markov chain
defined by the transition probability matrix P is Benford.

FEzxample 9 (a non-Benford Markov chain). Let

0.0 01 09
P=101 03 06
0.1 0.1 08

The eigenvalues of P are 1; = 1, 1, = 0.2, and 43 = —0.1. The three eigenvalues are dis-
tinct, and

10 =1 1 »| 10 0 =10
.27L .1 n
P”—P*:O 0o 7 =7 —l—( (1)1) -1 0 1
0 -1 1 -1 0 1

as well as
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0 01 —01 ~1 0 1
prl—pr=02"0 —0.7 0.7 | +(-=0.)"|01 0 —0.1
0 01 -01 01 0 —0.1

The first column of B, is zero; hence for that column the relevant eigenvalue is
A3 = —0.1. Since log 0.1 is rational, no component in the first column of either sequence
(P" — P*) and (P""' — P") follows BL; i.e., P is not Benford.

3. Sufficient condition that a Markov chain is Benford. To analyze the be-
havior of the sequences (P" — P*) and (P""! — P") associated with a Markov chain, a
nonresonance condition on P will be helpful. Recall that real numbers z;, ..., z; are
rationally independent (or Q-independent) if Z;?:l qjz; =0, where ¢, ...,q, €Q
implies that ¢; =0 for all j =1, ..., k; otherwise zy, ..., z; are rationally dependent.

DeriNtTION 10. A stochastic matrixz P is nonresonant if every nonempty subset A =
{Aiys o A} of o(P)Y \{A } with |A; | = - - -= |4;,| = L satisfies #(A N R) < 1, and the
numbers 1, log L and the elements of% arg A are rationally independent, where

1 1 1 1
%argA:: %argﬂil,...,% arg 4;, \ 0,5 .

A Markov chain is nonresonant whenever its transition probability matriz is. A stochas-
tic matriz or Markov chain is resonant if it is not nonresonant.

Notice that for P to be nonresonant, it is required specifically that the logarithm of
the modulus of every eigenvalue other than 4; = 1 is irrational; in particular, every non-
resonant P is invertible. The matrix in Example 8, for instance, is nonresonant.
Theorem 12 below asserts that nonresonance is sufficient for P to be Benford. There
is a close correspondence between Definition 10 of a nonresonant matrix and the notion
of a matrix not having 10-resonant spectrum, as introduced in [2]. The main difference is
that the eigenvalue 4; = 1 is excluded in Definition 10, whereas every stochastic matrix
has 10-resonant spectrum. Also, it is worth pointing out that prior to [2] solutions of
certain linear recurrence relations have been studied for their conformance with BL,
e.g., second-order relations with a pair of nonreal eigenvalues in [22] and relations with
integer coefficients and various restrictions on the eigenvalues in [19]. (See also [15] and
the references therein.) Note that none of these results apply to stochastic matrices,
i.e., in the setting of Definition 10.

Ezample 11 (examples of resonant matrices).

(i) Two real eigenvalues of opposite sign. Let

06 04 00
P=1{08 00 02
00 06 04

The eigenvalues of P are Ay =1 and A1y,3==£+v0.2. Notice that
log 49| = log|43] = —1 log 5 is irrational. With A = {/0.2, —v/0.2}, clearly
#(A NR) = 2; hence P is resonant. From

0.4(1/0.2)" if nis even,

pr— P = 0.247 4 0.217 =
( ) 2+ 3 {0 if nis odd,

it is clear that P is not Benford either.
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(ii) Eigenvalues with rational logarithms. Let

0.0 01 0.9
P=105 01 04
0.3 03 04

The eigenvalues are 4y =1 and 153 = —0.25 £ 0.0521/15. Since log |y 5| =
—0.5 is rational, the matrix P is resonant.
(iii) Eigenvalues with rational argument. Let

0.3 03 04
P=103 05 02
0.1 0.7 0.2

The eigenvalues are 4 =1 and A3 = £0.22. Note that log|0.2:] =
—1 +log 2 is irrational, but % arg(0.22) = i is rational. Thus P is resonant.

(iv) Eigenvalues leading to rational dependencies within {1,log L} U= arg A.
Let

02 01 00 00 01 0.0 06
0.1 01 01 01 02 0.0 04
01 01 01 01 01 02 03
P=|00 02 03 00 02 00 0.3
01 02 01 01 00 01 04
02 00 02 01 01 0.0 04
01 02 02 00 0.0 0.0 0.5

The characteristic polynomial ¥ p of P factors as
Vp(d) = (A —1)(2%2 +0.11 — 0.01)(42 — 0.01(2 — 1)) (4> — 0.01(2 + 1)),
which implies that

o(P)"\ {4} = %{—(\/SJr 1).,vV5 —1,-2v2 — 1,22+ 1}.

Clearly, the logarithms of the absolute values of the two real eigenvalues are irrational.
The four nonreal eigenvalues all have the same modulus L =55/ (different

from the two real eigenvalues), and log L = —1 +i log 5 is irrational. Let A =
+{—=v2 —1,v/2 +1}. Notice that arg(2F:) = Farctan 3, so

1 Ac Ll etan L aretan L) (o)
— a. = — — —— arcta —,—— arcta - = .
or 8 9 qm MO oy Al g T3> T4

Since
—1-1+0-logL+2 -23+2-24=0,

the elements of {1,log L} U ﬁA are (Q-dependent, and hence P is resonant.
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The first main theoretical result of this paper is as follows.

THEOREM 12. Fvery nonresonant irreducible and aperiodic finite-state Markov
chain is Benford.

The proof of Theorem 12 makes use of the following lemma.

Levma 13. Let m € N and assume that 1, pg, p1, ..., o are Q-independent, (z,) is
a convergent sequence in C, and at least one of the 2m numbers ¢y, ..., ¢y, € C is non-
zero. Then, for every a € R, the sequence

(5) (npg +a log n+logl|&,|)

is u.d. mod 1, where
En = eanpl + o 6727tmp1+ L. +02d71 627rmpm + c2d672nmpm + 2.

Proof. The proof follows directly as in the proof of [2, Lemma 2.9], which considers
log |Nek,| in (5). O

Proof of Theorem 12. By Proposition 5(i), lim,,_,., P" = P* exists for the Markov
chain defined by P. Fix (4, ) € {1, ..., d}?. As the analysis of (P""* — P")(%)) is com-
pletely analogous, only (P — P*)(%)) will be considered here. For notational conveni-
ence, for every n € N denote the component (i, j) of P" — P* by p,. If p, as given
by (3) is not equal to zero for all but finitely many n, let o € {1, ..., s} be the minimal
index such that C5 # 0. As in [2, p. 224], to analyze (3), distinguish two cases.

Case 1. |A;| > |Ag41]- In this case 4, is a dominant eigenvalue, and it is real since
otherwise its conjugate would be an eigenvalue with the same modulus. Equation (3) can
be written as

d d (i.d) ,
7,7 n (i) /1 n C . (i.d) i /1 n
=S O =t Y (S5 ) S = e () C) ).
=0 = s | nks |4y |

where, since k5 s the degree of C((jvf),

(i.9)

. )]
co? =1lim,_, n

C5 #0
and {; ;(n) — 0 as n — oo because 4, is a dominant eigenvalue. Therefore,
1 = n log |2,| + k&1 log | c5"”
og [p,| = n log |4;| + ks log n +log|co ™| + 1,
with 7, =log|1 4 ¢; ;(n)e " ae 4 /cgi’j)|. Since 1, — 0 and log|4,| is irrational, the
sequence (p,,) is Benford by Proposition 2 and the fact that (z, + « log n+ ) is u.d.
mod 1 whenever (z,,) is (e.g., [2, Lemma 2.8]).
Case 2. |As| = |Ags1] = - - -=|A;| = |A] for some T > o. Here several different eigen-

values of the same magnitude occur, such as, e.g., conj u%ate palrs of nonreal eigenvalues.
Let k(7)) be the maximal degree of the polynomials cy ,T. As in Case 1,

express (3) as
i () (A \" (i) (A"
Pn = M‘?’Lnk( ) (CU <_> + - +CT < ) + Z:?l, (TL)) )
|| z !
(i.5)

where ¢?) = lim,,_,,,n " CE}’” eCfor?=o, ..., 1, with cf ) % 0 for at least one 2,
and {; ;(n) — 0 as n — oco. Consequently,
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@) (Ao \" G (A"
@ (w) o e <|z|) uilm)

Write 1, as 1, = |A]e' &% for £ =0, ..., 7, and hence

log |p,| = n log|A| + k“)) log n + log

log |pn| =n log |/1| + k(”) log n+ 10g ‘C((”i.j) elh arg /1(,+ . +C§M> elh arg A + Cw(n”

Since P is nonresonant, Lemma 13 applies with m=t—0+1 and p, = log|4|,

p1 =5 arg dg, ....p, = 5= arg A,. Thus (p,) is Benford. 0

Ezample 14 (the general two-dimensional case). Let

P:[l—w z ]
y 1l-y

with 2, y € (0,1). By Feller [12, p. 432],

(6) g [@/ x%u{x —1']’

Szt yly =z T+y -y Y

from which it is clear that 4y =1, 4y =1—2z— gy, and

pr=_1! [y z] :
r+yly
It follows from (6) that each component of (P" — P*) and (P™"! — P") is a multiple of
(4%). By Theorem 12, the Markov chain with transition probability matrix P is Benford
whenever log |1 — z — y| is irrational. On the other hand, by Proposition 3(i) P is not
Benford if log |1 — z — y| € Q. Thus for d = 2, nonresonance is (not only sufficient but
also) necessary for P to be Benford. For d > 3, this is no longer true, as the next example

shows.
Ezample 15 (a resonant Benford Markov chain). Let

04 05 0.1
P=104 03 03
0.6 0.1 0.3

The eigenvalues are 4; = 1 and Ay 3 = £0.20. With A = {0.2:}, therefore 5 arg A =
{i} C @Q; hence P is resonant. However, spectral decomposition shows that B; = By,
i.e., By, By are conjugates, and each component of B, has nonzero real and imaginary
part. Thus for every (i,7) € {1,2,3}?,

2X - 0.2"\ﬂ%eBgi’j)| if nis even,

P — pY(id)| = |28t e(0.20)" B | = { .
I S = 2RQ2)" BN = 0.2"|JmBS | if nis odd,

and (P" — P*)("9) is Benford. Similarly, since each component of 5B, — 2B, has nonzero
real and imaginary part, (P"t! — P")()) is Benford as well.

Remarks on general Markov chains.
(i) Theorem 12 cannot be applied to Markov chains that fail to be irreducible.
However, every finite-state Markov chain can be decomposed into classes of
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recurrent and transient states. Hence, the transition probability matrix P can
be block-partitioned as

P, 0 0 O
0 P, 0 0 O
P = . s
0 0 P, 0
B B® ... BN 4
where P;, P, ..., P, are the transition probability matrices of the r disjoint
recurrent classes and BY, B® .. B" denote the transition probability

matrices from the collection of transient states into each recurrent class.
As n — oo,

pr0 - 0 0
0 P 0 0 O
pr=1: :
0 0 P 0
oLy e Ly oA
P; 0 0 0
0 P 0 0 0
- | . b
0 0 p; 0
spwpr SpApy ... SBUIP: 0

where LY = Soah /VB(»j)P;“”L1 for j=1,2,....,r and S=3Y 3 A~
Theorem 12 can be applied separately to the matrices P; associated with
the recurrent classes. Consequently, if Py, P,, ..., P, are Benford, then
the corresponding components of P are also Benford. Additionally, if A
is nonresonant, then that part follows BL as well. The only remaining parts
are formed by the sequences (Lg;,’ )) and depend on the (nonautonomous) sum-
mation of the powers of A. Their Benford properties are beyond the scope of
this paper; see, e.g., [5].

For an irreducible Markov chain that is not aperiodic but rather periodic with
period p > 1, Definition 6 still makes sense, provided that P* is understood as
the unique row-stochastic matrix with P*P = P*. However, such a chain can-
not be Benford since for every (i,j)€ {l,...,d}* one can choose
ke {0,...,p— 1} such that

|(P" — P*)9)| = (P*)+) >0 Vn e N\ (k+ pN).

Similarly, each component of (P"*! — P") equals zero at least (p —2) /p of
the time and thus cannot be Benford either whenever p > 3. The distribution
of significands of (P"*! — P™)(") observed in this situation is a convex com-
bination of BL and a pure point mass; see [5, Corollary 6]. Only in the case
p = 2is it possible for each component of (P"*! — P") to be either Benford or
eventually zero.
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(iii) Although this paper deals with finite-state Markov chains only, it is worth
noting that chains with infinitely many states may also obey BL in one way or
the other. For a very simple example, let 0 < p < 1 and consider the homo-
geneous random walk on Z with

p? if j=i—1
plig) — 20(1—p) if j=1i,

(1—p)? if j=i4+1,

0 otherwise.

Clearly, this Markov chain is irreducible and aperiodic. It is (null-)recurrent if
o :% and transient otherwise. For all (4, j) € Z? and n € N,
(Pn)(i,j) _ 2n pnﬂ;j(l — p)nit
n+i—j ’
and an application of Stirling’s formula shows that (P")() is Benford if and
only if log(4p(1 — p)) is irrational. For all but countably many p, therefore,
(P™)(%3) is Benford for every (i, j). Note that one of the excluded values is
p = %, i.e., the recurrent case. For recurrent chains virtually every imaginable

behavior of significant digits or significands can be manufactured by means of
advanced ergodic theory tools; see [3] and the references therein.

4. Almost all Markov chains are Benford. The second main theoretical objec-
tive of this paper is to show that Benford behavior is typical in finite-state Markov
chains. Indeed, if the transition probabilities of the chain are chosen at random and
in an absolutely continuous (a.c.) manner, then the chain almost always, i.e., with prob-
ability one, obeys BL. To formulate this more precisely, the following terminology will
be used.

DEermiTION 16. A random (d-state) Markov chain is a random d x d-matriz P, de-
fined on some probability space (Q,F,P) and taking values in Py. A random Markov
chain P: Q — P, is a.c. if its distribution on P, is a.c. w.r.t. Lebpl, the normalized
d(d — 1)-dimensional volume on P, C R4, that is, if P(P € A) = 0 holds for A C P,
whenever Lebp (A) = 0.

With this terminology, it is the purpose of the present section to illustrate and prove
the following theorem.

THEOREM 17. Ewery a.c. random Markov chain is Benford with probability one.

Before giving a full proof for Theorem 17, the special case of a random two-state
chain will be examined to show how the absolute continuity of P allows the application
of Theorem 12. The case d = 2 is especially transparent since the eigenvalues are ex-
plicitly given by simple expressions, unlike for the general case where the eigenvalues
are only known implicitly and the implicit function theorem has to be resorted to.

FEzxample 18. Consider the random two-state Markov chain

1-X X
P:{ Y 1—Y}

and assume that the joint distribution of (X, ¥) on [0,1]% is a.c. (Equivalently, P is
a.c. on Py.) Each of the four entries of P is strictly positive with probability one, so
the chain is irreducible and aperiodic with probability one. Since P is random, the sec-
ond-largest eigenvalue is the random variable Z = 1 — X — Y, by Example 14. Since P is
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a.c., Z is a.c. as well, and hence the probability that Z is in any given countable set is
zero. But this implies that the probability of log |Z| being rational is zero, which in turn
shows that with probability one, P is nonresonant and hence Benford by Theorem 12.

Similarly to the analysis of Newton’s method in [4], a key property in the present
Markov chain setting is the real-analyticity of certain functions, notably the eigenvalue
functions. Recall that a function f: U — C is real-analytic whenever it can, in the neigh-
borhood of every point in its domain U (a connected open subset of R? for some £ > 1),
be written as a convergent power series. Clearly, every real-analytic function is C*, i.e.,
has derivatives of all orders. An important property of real-analytic functions not shared
by arbitrary C-valued C*°-functions defined on U is that the zero-locus of f is a nullset
unless f vanishes identically on U. Although this is probably a well-known fact, no spe-
cific reference is known to the authors. Since this fact plays a crucial role in the proof of
Theorem 17 below, a proof is included for the reader’s convenience. With Lebgs denoting
the #-dimensional volume on R?, it reads as follows.

Lemma 19. Let f: U — C be real-analytic and Ny = {z € U: f(x) =0}. Then
either Leb ,(Ny) =0 or Ny = U.

Proof. Assume Ny # U.If# =1, then N is at most countable [21, Theorem 10.18],
and hence Lebgi (N;) = 0. For # > 2, proceed by induction: Given any set C' C R? and
y € R, define C) == {(zy, ....2.): (¥, 29, ..., 77) € C} C R“"'. By Fubini’s theorem,

Lebge(Ny) = / dxydzy . ..dz, = / </ dz, . .. dxf) day
Ny R \J(V)),,
= ALeme ((Ny),, )dzy.

Notice that (Ny), = Nj, where f: U, — C is the real-analytic function with
f(xo, . xp) = f(o, 29, ..o 2p). IF Leme(Nj;) > 0, then, by the induction assump-
tion, f must vanish identically on some connected component V of U, . (Note that
U,, may not be connected.) Fix any (z,, ...,2,) € V. Since N; # U, it can be assumed
that y = f(y, 2, ..., z,) does not vanish identically. It follows that Lebgs1 ((Ny), ) > 0
for at most countably many z;, and hence Lebgs(Ny) = 0.. O

Remark 20. As the proof of Lemma 19 shows, Lebgs can be replaced by any product
of Z atomless measures on R (and Lebgs then simply corresponds to the special case of
each factor being Lebg:).

The proof of Theorem 17 will be based on several preliminary facts. First, given
a=(ay, ...,ay) € CY let p,: C — C denote the polynomial

pa(2) = 20+ a2+ - tagz+ ag.

By the fundamental theorem of algebra, p, has exactly d zeroes (counted with multi-
plicities). If p, has a multiple zero, then a universal polynomial relation must necessarily
be satisfied by a. For instance, if d = 2 and p, has a double zero, then Q,(a) = 0, where
@:(a) = —a? + 4ay. The generalization to arbitrary d is classical (see, e.g., [8,
Lemma 3.3.4]); for a proper formulation recall that the degree of a polynomial
jemy P ay? L al in d variables is defined as max {n; ; X + -+ +ng 5 ¢; # 0}

Prorosition 21. For every integer d > 1, there exists a nontrivial polynomial Qg in
d variables, with integer coefficients and of degree 2d — 2, with the following property:
Whenever p, has a multiple zero, i.e., p,(z)) = p,/(29) =0 for some 2z, € C, then

Q4(a) == Qu(ay, ..., a,) = 0.

d.j
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This fact will now be used to show that if a stochastic matrix P is invertible and has
distinct nonzero eigenvalues, then all stochastic matrices P sufficiently close to P, also
are invertible and have distinct nonzero eigenvalues. In fact, these eigenvalues are
real-analytic functions of P. To formulate this efficiently, for every P, € P; and
€ > 0, denote by B,(P,) the open ball with radius & centered at Py; i.e., B,(Py) =
{PePy |PUI) — Péz’]>| < gfor alll <i,j < d}. Note that with this topology, P, is
compact.

Lemma 22. Suppose Py € Py is invertible and has d distinct nonzero eigenvalues.
Then there exist ¢ >0 and d—1 nonconstant real-analytic functions 2q, ...,
Ag: Be(Py) — C such that, for every P € B.(Py),

(1) 1,49(P), - - -, 44(P) are the eigenvalues of P, and Ao(P) ----- Aq(P) #0;
(ii) A:(P) # A;(P) whenever i # j, unless A; = 4; on B,(Py).

Proof. Note first that by the continuity of (P, z) + det(zl jxq — P) = ¥ p(2), there
exists § > 0 such that every P € Bs(P,) is invertible and has distinct nonzero eigen-
values. Thus the characteristic polynomial ¥ p of P has d — 1 distinct nonzero roots
different from 1. Let 2, be one of those roots. Since z, is a simple root, ¥ p '(2)) # 0,
so by the implicit function theorem [17, Theorem 2.3.5|, z, depends real-analytically
on the coefficients of ¥ p which themselves are real-analytic (in fact polynomial) func-
tions of the entries of P. More formally, there exist ¢ < § and a real-analytic function
g: B.(Py) — C with ¢g(P,) = z, such that ¥ p(g(P)) =0 for all P € B,(Py). Overall,
there exist ¢ > 0 and d — 1 real-analytic functions 4;: B,(Py) — C satisfying (i); note
that 4; = 1 by Proposition 5. To see that A,, ..., 1, are not constant on B, (P), suppose
by way of contradiction that 4,(P) = 4;(Py) # 1 for some 2 < i < dand all P € B,(P,).
In this case, the real-analytic function P + v p(1;(Py)) vanishes identically on B, (Py),
and hence on all of P,. Since I, € P, this obviously contradicts v, (4,(Py)) =
(4;(Py) — 1) # 0. Consequently, none of the functions Ay, ..., 144 B,(Py) — C is
constant.

To show (ii), assume that 1;(P;) = 4;(P;) for some i # j and P; € B,(P). Thus
4i(Py) € C\R, since if 1;(P;) were real, then A;(P;) = 4;(P;), which is impossible be-
cause the eigenvalues are distinct. Since all matrices in P, are real, their nonreal eigen-
values occur in conjugate pairs. Hence, for all P sufficiently close to P;, the number
2;(P) is an eigenvalue of P which, by continuity, can only be 4;(P). Consequently,
A; and A; coincide locally near P; and therefore, by real-analyticity, on all of
BE(‘PU)' a

By means of the above auxiliary results, several almost sure properties of random
Markov chains can be identified.

Lemma 23. If the random Markov chain P is a.c., then, with probability one,

(i) P is irreducible, aperiodic, and invertible;
(ii) P has d distinct nonzero eigenvalues; and
(iii) P is nonresonant.

Proof.

(i) Since P is a.c., with probability one P("/) € (0,1) for all i and j, and P is
irreducible and aperiodic. To see that P is almost surely invertible, note
that P~ det P is real-analytic on P, and clearly not constant, as P,
contains both [;., and the matrix whose components all equal %. By
Lemma 19, Lebp,({P € Py: det P =0}) = 0, and this in turn implies that
P(det P =0) = 0.

(ii) There exist d nonconstant polynomial functions ¢, ..., ¢;: P4 — R such
that
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Vp(z) =det (20 4qg — P) = 2%+ qi(P)z" '+ -+ +q4-1(P)z+ qq4(P)

holds for all P € P, and z € C; for example, ¢;(P)=—>%, P49 and
q4(P) = (—=1)%det P. Consequently, q(P):= Qu(q:(P), ..., qq(P)) defines
a nonconstant real-analytic (in fact, polynomial) map ¢ P, — R, and
since zy is a multiple eigenvalue of P if and only if ¥p(zy) = ¥p'(29) =0,
Proposition 21 implies that

{P € P;: Phas multiple eigenvalues} C {P € Py: q(P) =0}.

As before, P(g(P) = 0) = 0 by Lemma 19, showing that with probability one
all eigenvalues of P are simple.

For every p € Q define the real-analytic auxiliary function ®,,: R? — R by
@, (z) = (a1 + 23 — 10%)?, and also ©: R* — R as O(z) := (2] + 23 — 25—
77)%. By (i) and (ii), P almost surely satisfies the hypotheses of Lemma 22,
so let Py, &, and 4y, ..., 44 be as in Lemma 22, and define real-analytic func-
tions @, ; and ©, ; on B,(P) as

@, (P):=®,(Red;(P),3mA;(P)) = (|4:(P)|* —10%)* Vi:2 <i<d,
and, for all 2 <1, j < d,
0, ;(P) == 0(Rei;,(P),3mi;(P), Red;(P),3mi;(P))
= (IL(P)IP = 14;(P))*.

ij

Finally, let F,: B.(P;) — R be defined as

d
F,(P)=]]®,.(P)- [ (P

i=2 2<i<ji A

The definition of F', becomes transparent upon noticing that F,(P) = 0 for
some p € Q whenever P is invertible and resonant. Next, it will be shown that
F, does not vanish identically on B,(P,). To see this, note first that if
P € B,(Py), then also (1 — 8)P + 61,4,.4 € B.(Py) for all sufficiently small
8 > 0. Moreover, if ®, ;(P) = 0 for some i =2, ..., d, then

Dy i(1=0)P + 814yq) = (1= 8)Fedi(P) +6)* + (1 — 6)*ImA;(P)? —10%)*
= 5 ((2 — 8)(Red(P) — [2,(P)?) + 6(1 — S}teﬂi(P))>2 > 0,

provided that 6 > 0 is small enough. (Recall that 1 — 3tel;(P) > 0 whenever
P € B,(Py).) Similarly, if @, ;(P) = 0 forsome 2 < i < j < dwith 4, # 1; and
2;(P) # 0, then a short calculation confirms that, for all 6 > 0 sufficiently
small,

) 12(P) = 2;(P)PP12:(P) — 2,(P)?

Gi,j((lfé)P+5Id><rl):52(1*5) |/1'(P)|2

> 0.

Overall, F', does not vanish identically on B, (Py). As every P € B,(P,) is
invertible,
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{P € B,(Py): P x is resonant} C U{P € B.(Py): F,(P) =0}.
peQ
Since F, is real-analytic and nonconstant, {P € B,(P,): F,(P) =0} is a
Lebp, -nullset for every p € Q, and so is ,eq{P € B:(Py): F,(P) = 0}.
Analogously to (i) and (ii), therefore, P(Pis resonant) = 0. |

Proof of Theorem 17. Let the random d X d-matrix P be a.c. By Lemma 23, P is
almost surely irreducible, aperiodic, and nonresonant. By Theorem 12, this implies that
P is Benford with probability one. 0

CoroLLARY 24. If the transition probabilities (i.e., the rows) of a random d-state
Markov chain P are independent and a.c. on the standard d-simplez, then P is Benford
with probability one.

Remark 25.

(i)

(iii)

It is clear that without absolute continuity, Lemma 23 and Theorem 17 may
fail. For example, for the conclusion of Lemma 23 to hold it is not enough to
assume that the distribution of P on P, is atomless;i.e., P(P = P) = 0 for every
P € P,. Asvery simple examples show, under this weaker assumption, P may,
with positive probability, be reducible and have multiple or zero eigenvalues.
Even if Lemma 23(i) and (ii) hold with probability one, P may still be resonant
and not Benford. To see this, consider the random three-state Markov chain

X+4 X 36 — 2X
Y Y+4 36-2Y |,
Z+2 Z+2 36-2Z

1

P=—
40

where X, Y, Z are independent and uniformly distributed on [0, 1]. With this,
the distribution of P on P; is atomless yet concentrated on a Lebp -nullset.
The eigenvalues of P are

=1 1,=01, i :%0(X+Y_2Z)'

Note that |13] < 0.05 < A,. Clearly, P is resonant with probability one, and
Lemma 23(iii) fails. Even more important perhaps, Theorem 17 fails as well
since, as spectral decomposition shows, By # 0 with probability one, and hence
P(Pis Benford) = 0.

A careful inspection of the above arguments shows that Lemma 23 and
Theorem 17 hold whenever the distribution of P on P; C R¥*? = R4 is such
that P(f(P) = 0) = 0 for every real-analytic function f: R% — C that does
not vanish identically on P,;. Evidently, this property of P holds automati-
cally if P is a.c.

With hardly any effort, the tools employed in the proof of Lemmas 22 and 23
also yield a topological analogue of Theorem 17: Within the compact metric
space P, the matrices that are irreducible, aperiodic, invertible, and nonre-
sonant form a residual set, that is, a set whose complement is the countable
union of nowhere dense sets. Being Benford, therefore, is a typical property
for P € P, not only under a probabilistic perspective but under a topological
perspective as well.

5. Some computational implications. For Markov chains with small state

space, i.e.

, for small values of d, the limiting matrix P* is easy to compute explicitly.
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In this case, an understanding of the behavior of significant digits in (P" — P*) and
(P! — P"), however valuable in its own right, may be of limited practical use. On
the other hand, for important applications that involve a very large state space,
e.g., in computer science or theoretical biology [20], P* may be very costly or practically
impossible to determine explicitly. In this case, P* typically is approximated using a
variety of numerical algorithms. As detailed below, it is in situations like these that
a proper understanding of the typical behavior of significant digits may be crucial also
from a practical or computational point of view.

As a concrete example, a Markov chain Monte Carlo (MCMC) method will be con-
sidered. MCMC is a popular and powerful tool for generating samples from an arbitrary
distribution [6, Chapter 7]. One of the most important advantages of MCMC is that it
requires only specification of the target distribution up to a normalization constant, the
determination of which often constitutes a challenging problem in itself. Historically,
MCMC was motivated by computational problems in statistical physics that led to
the idea of generating a Markov chain whose limiting distribution is equal to the target
distribution. The most prominent MCMC algorithms are the Metropolis—Hastings and
the Gibbs sampling algorithms, which both originated from the following Metropolis
algorithm.

Assume that a random variable X is to be generated that takes values in
E=1{1, ..., m}, according to the target distribution {7,}, where

with all b; positive, m large, and the normalization constant B =) ", b; difficult to
calculate. The Metropolis algorithm constructs a Markov chain (X,),cy, on
{1, ...,m} whose evolution relies on an appropriately chosen stochastic matrix
@ = (g;;) in the following way:
(i) Given X, = i, generate a random variable ¥ which satisfies P(Y = j) = ¢;;
for all j =1, ..., m and is independent of X, ..., X, _;.

(ii) Given ¥ = j, let a;; == min {gjgﬂ, 1} and choose
i4ij

X . — Ji with probability a;;,
"t i with probability 1 — a;.

The Markov chain (X,,) thus defined has the transition probability matrix

plig) — ] 4% %f J# i
1- Zk#i 4. %k if j=1.
To illustrate this through a simple specific example, consider the case of the matrix @
having identical rows, i.e., ¢;; = p; forall i, j € E, where p = (p;);cp is a strictly positive
probability distribution on E. With w; = m; /p;, the off-diagonal elements of P are

Pl) = p,min {1,—1} Vi,j€ E:i#j.

w;

Assume that the states of F are labeled in such a way that w; > wy >---> w,,. In this
case, the eigenvalues of P are easily seen to be 4, =1 and
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& 1 1
ﬂ]:zn’bp _ 20, ]:2,,m
= (0 'LU]',I

Consequently, if log 4, is irrational for all j = 2, ..., m, then the Markov chain (X,) is
Benford, by Theorem 12, and so is the Metropolis algorithm.

Why is it important to know whether an algorithm often, or even typically, gen-
erates Benford distributed data? A most compelling reason has been put forth by Knuth
in his classic text The Art of Computer Programming [16, pp. 253-255]:

In order to analyze the average behavior of floating-point arithmetic algorithms (and in
particular to determine their average running time), we need some statistical informa-
tion that allows us to determine how often various cases arise ... [If, for example, the]
leading digits tend to be small [that] makes the most obvious techniques of average error
estimation for floating-point calculations invalid. The relative error due to rounding is
usually ... more than expected.

Thus for the problem of numerical estimation of P* from P", it is important to study the
distribution of significant digits of the components of (P" — P*) and (P""' — Pm").
Theorem 17 above shows that these components typically exhibit exactly the type
of nonuniformity of significant digits alluded to by Knuth: Not only do the first few
significant digits of the differences between the components of the successive n-step
transition matrices P" and the limiting distribution P* as well as the differences between
P 1 and P" tend to be small, but, much more specifically, they typically follow BL.

This prevalence of BL has important practical implications for estimating P* from
P using floating-point arithmetic. One type of error in scientific calculations is overflow
(or underflow), which occurs when the running calculations exceed the largest (or
smallest, in absolute value) floating-point number allowed by the computer. Feldstein
and Turner show that [11, p. 241], “[u]nder the assumption of the logarithmic distribu-
tion of numbers [i.e., BL] floating-point addition and subtraction can result in overflow
and underflow with alarming frequency ... .” Together with Theorem 17, this suggests
that special attention should be given to overflow and underflow errors in any numerical
algorithm used to estimate P* from P™.

Another important type of error in scientific computing is due to roundoff. In es-
timating P* from P", for example, every stopping rule, such as “stop when n = 1000” or
“stop when all components in (P"*! — P") are less than 10~1°” will result in some error,
and Theorem 17 shows that this difference is generally Benford. In fact, justified by
heuristics and by the extensive empirical evidence of BL in other numerical calculations,
the analysis of roundoff errors has often been carried out under the hypothesis of a loga-
rithmic statistical distribution (cf. [11, p. 326]). Therefore, as Knuth pointed out, a naive
assumption of uniformly distributed significands in the calculations tends to underes-
timate the average relative roundoff error in cases where the actual statistical distribu-
tion is skewed toward smaller leading significant digits, as is the case for BL. To obtain a
rough idea of the magnitude of this underestimate when the true statistical distribution
is BL, let X denote the absolute roundoff error at the time of stopping the algorithm, and
let Y denote the fraction part of the approximation at the time of stopping. Then the
relative error is X /Y, and assuming that X and Y are independent random variables, the
average (i.e., expected) relative error is simply EX - E(1/Y). Thus if Y is assumed to
be uniformly distributed on [1, 10), ignoring the fact that ¥ is Benford creates an average
underestimation of the relative error by more than one third (cf. [4]).
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In view of the relevance of BL for large-scale computations involving Markov chains,
it is important to also note that the speed of convergence to BL can vary considerably.
This is apparent already from Table 1: The digit distributions of the sequences (2") and
(F,) converge to BL faster than (n!). A possible explanation for this is suggested in
[18, Chapter 2, Theorem 3.4], where explicit bounds for rates of convergence to unifor-
mity are found for (¢n mod 1. These bounds depend on the continued fraction expansion
of the irrational number a—the smaller the coefficients in this expansion, the faster the
convergence. Both log 2 and log # appear to have very few large coefficients in their
continued fraction expansion. Via Proposition 2, this translates into relatively fast
convergence to BL.

Similarly, the speed of convergence to BL for Markov chains may vary considerably,
and the result for (@n mod 1) mentioned in the previous paragraph suggests that this
speed is determined by the continued fraction expansion of the logarithm of the moduli
of the eigenvalues of P as well as of the elements of the sets % arg A. The next example
illustrates this. The reader should keep in mind that relatively little is known at present
about the precise speed of convergence to BL (or uniformity) in higher-dimensional
systems; see, e.g., [10].

Ezample 26 (different speeds of convergence to BL for Markov chains).

(i) Let

0.25 0.35 0.40
P=1{030 045 0.25
0.65 0.15 0.20

The eigenvalues of P are A; =1 and A3 = —%¥2—10\/ﬁ. Since log |4,] and
log |43] are irrational and different, P is nonresonant, and Theorem 12 implies
that the Markov chain defined by P is Benford. Since |45] > |43], for the speed
of convergence to BL it is important how well log|4,| is approximated by
rational numbers. The first 50 coefficients of the continued fraction expansion
of log |,

log|4e| = [-1;2,4,8,1,5,1,6,3,1,2,2,1,1,2,1,1,2,1,66,5,1,1,2,1, 3,
1,2,1,1,3,1,3,2,3,2,7,3,86,1,1,1,1,1,26,3,1,5,3,1,5, ...],

do not exceed 86 and are mostly small numbers not showing rapid growth at
all. A comparatively rapid initial approach to BL is therefore expected.
This is confirmed experimentally by Figure 1, which shows, as a function
of n, the L;-distance between the empirical frequencies for the significant di-
gits of (P"*' — P")21) and the Benford probabilities; the behavior of
(P* — P*)21 is very similar, as is in fact the behavior of all other

components.
(ii) Let
0.8 0.1 0.1
P=103 03 04],
0.4 0.0 0.6

with eigenvalues 4y = 1 and 453 = % + 2—10 1v/3. The behavior of the significant
digits is governed by the two irrational numbers log |As| and -t arg A,. For

) 2
instance,
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Fic. 1. Plotting the L, -distance A, between the empirical frequencies and the Benford probabilities for the
first significant digits of (P! — P™)1) with the transition probability matrices P from Evample 26(i) and (ii),
respectively.

1
o arg A, = [0;25,1,9,3,168,2,1,1,32,1,6,3,1,9,1,1,92,2,13,2,1, 1, 10, 2,
b4

51,3,1,1,1,1,3,1,2,7,1,5,1,1,4,1,3,14,3,10,1,1, 3,1, 3, ...].

When compared with (i), the repeated early large coefficients in the contin-
ued fraction expansion of % arg Ao suggest a somewhat slower initial
approach to BL. Again, this is confirmed experimentally by Figure 1.
Finally, observe that Theorems 12 and 17 should make it possible to adapt the cur-
rent plethora of BL-based goodness-of-fit statistical tests, e.g., for detecting fraud [7], to
the problem of detecting whether or not a sequence of realizations of a finite-state sto-
chastic process originates from a Markov chain, i.e., whether or not the process is
Markov. By Theorem 17, conformance with BL for the differences (P! — P") is typical
in finite-state Markov chains, so a standard (e.g., chi-square) goodness-of-fit to BL of the
empirical estimates of the differences between P"*! and P" may help detect non-Markov
behavior.
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