Central Units of Integral Group Rings

C. Polcino Milies and Sudarshan K. Sehgal

Instituto de Matemática e Estatística
Universidade de São Paulo
Caixa Postal 66.281 - 05315-970
São Paulo, Brasil
polcino@ime.usp.br

Department of Mathematical Sciences
The University of Alberta
Edmonton, Alberta
T6G 2G1- Canada
s.sehgal@ualberta.ca

Abstract

In this note we give a description of the central units of an integral group ring \(\mathbb{Z}G \) for an arbitrary group \(G \). We also give a set of generators of a subgroup of finite index in the centre of the unit group when \(G \) is any group whose FC-centre is finitely generated. Jespers, Parmenter and Sehgal did the same for finitely generated nilpotent groups.

1 Introduction

There is a classical result of G. Higman [1] that if \(A \) is a finite abelian group then any torsion unit of \(\mathbb{Z}A \), the integral group ring of \(A \), is trivial (i.e., of the form \(\pm a, a \in A \)). This was extended by Sehgal [4, Theorem I.3.5] to prove that if \(A \) is arbitrary abelian, then any unit \(\mu \) of \(\mathbb{Z}A \) can be written as a product \(\alpha a \), with \(\alpha \in \mathbb{Z}T \), where \(T \) denotes the torsion subgroup of

*This work was supported by CNPq and FAPESP, Brazil and NSERC, Canada
AMS Subject Classification: Primary 20C05, 20C07, 16U60. Secondary 16S34, 20C10, 20C12.
A, and a ∈ A. Later it was proved by Sehgal [4, Theorem VI.3.22] that, under some stringent conditions, the last result extends to nilpotent groups. In another direction, one could ask if a similar description exists for central units in $\mathbb{Z}G$. Indeed, this was done by Jespers, Parmenter and Sehgal in [2] for finitely generated nilpotent groups. Using similar methods we extend this result to arbitrary groups. Recall that in a group G, the set

$$\Phi(G) = \{ g \in G \mid |G : C_G(g)| < \infty \}$$

is a characteristic subgroup of G, called the FC-centre (see [3, p. 115]).

Theorem 1 Let G be any group. Let $\Phi(G)$ denote the FC-centre of G and let $T = T\Phi(G)$ be the torsion subgroup of $\Phi(G)$. Then, every central unit μ of $\mathbb{Z}G$ can be written in the form $\mu = \omega g$, with $\omega \in \mathbb{Z}T$ and $g \in \Phi(G)$; moreover, ω and g commute.

Further, we are able to produce a finite set of generators for a subgroup of finite index in $Z(U(\mathbb{Z}G))$ when the FC-centre of G is finitely generated. We shall always use $Z(H)$ to denote the centre of a group H.

Theorem 2 Let G be a group such that its FC-centre $\Phi = \Phi(G)$ is finitely generated. Let $\{z_1, \ldots, z_d\}$ be a set of generators of the centre of G. Then $\langle z_1, \ldots, z_d, b_1, \ldots, b_r \rangle$ is a subgroup of finite index in $Z(U(\mathbb{Z}G))$.

The elements $\{\tilde{b}_1, \ldots, \tilde{b}_r\}$ will be described in section 2. They are related to a set $\{b_1, \ldots, b_r\}$ of generators of a subgroup of finite index in $Z(U(\mathbb{Z}T))$ which could be, for example, the one obtained by Ritter and Sehgal [5, section 29].

Since any subgroup of a finitely generated nilpotent group is finitely generated Theorem 2 is also an extension of the results in [2].

2 Central units

The form of a central unit in $\mathbb{Z}G$ has been described in [2, Proposition 3], in the case when G is a finitely generated nilpotent group. In this section, we shall prove that a similar result holds for arbitrary groups. To do so, we first consider the case where G is an FC group and then show how to reduce the general case to this one.

Proposition 2.1 Let G be an FC group. Then, every central unit μ of $\mathbb{Z}G$ can be written in the form $\mu = \omega g$, with $\omega \in \mathbb{Z}T$ and $g \in G$.
Proof. Given a central unit $\mu \in \mathbb{Z}G$, we can work in the integral group ring of the group generated by the elements in its support so, without loss of generality, we may assume that G is finitely generated and hence that T is finite. We can write QT as a direct sum of simple components:

$$QT = \bigoplus_{j=1}^{r} A_j.$$

The central idempotents of QT are not necessarily central in $\mathbb{Q}G$, so we let G act by conjugation on these idempotents. Adding the components corresponding to all the idempotents in each orbit under this action, we can write

$$QT = \bigoplus_{i=1}^{n} R_i,$$

where each R_i is a direct sum of simple rings and is invariant under conjugation by elements of G.

Now, set $F = G/T$. We can write $\mathbb{Q}G$ as a cross product:

$$\mathbb{Q}G = (QT) \ast F \cong \bigoplus_{i=1}^{n} (R_i \ast F).$$

Hence, the unit μ can be viewed as a tuple $\mu = (u_1, \ldots, u_n)$ where $u_i \in R_i \ast F$, $1 \leq i \leq n$, is of the form $u_i = \sum_h x_h f_h$, with $x_h \in R_h$, $f_h \in F$. Notice that we may assume that the elements in F have been chosen in such a way that $f_l T \neq f_k T$ if $l \neq k$.

Claim 1. With the notations above, each coefficient x_j is a unit in R_i.

Proof. Notice first that, since μ is also central in $\mathbb{Q}G$, for each element $f \in F$ we have that $f \mu = \mu f$. Hence, in a component of the form $R_i \ast F$ we can compute:

$$fu_i = \sum f_j x_j f_j = \sum x_j^{-1} f_j f_j = \sum x_j^{-1} \tau f_j f_j,$$

with $\tau \in U(R_i)$

and, taking into account the fact that $F = G/T$ is abelian, we also have

$$u_i f = \sum x_j f_j f_j = \sum x_j f f_j = \sum x_j f f_j.$$

So, we see that

$$x_j^{-1} = x_j,$$ (1)

Notice that if we write u_i as a tuple in the direct sum $A_1 \oplus \cdots \oplus A_n$, the definition of R_i implies that any two components can be switched by a conjugation by an element of G, so equation (1) actually means that $\mu = (a, \ldots, a)$ is a diagonal element.
Also, for an element \(t \in T \), we have that:

\[
\begin{align*}
tu_i &= \sum t \cdot x_j \overline{f}_j, \\
u_i t &= \sum x_j \overline{f}_j, t = \sum x_j t \overline{f}_j.
\end{align*}
\]

Because of the choice of the elements \(f_j \), since \(tu = ut \) we have that

\[
x_j t \overline{f}_j^{-1} = tx_j.
\]

Equation (2) shows that:

\[
x_j R_i = R_i x_j.
\]

so

\[
R_i x_j R_i = R_i x_j.
\]

Since \(R_i \) is a direct sum of simple components, it follows that, for each simple component \(A \) of \(R_i \), we have that \(Ax_j A = Ax_j \). Now, if \(x_j \neq 0 \) since \(x_j \) is diagonal, its projection in each simple component is non-zero, so \(Ax_j A \) is a non trivial two-sided ideal. Then, it follows that \(Ax_j A = A \); consequently \(Ax_j = A \) showing that \(x_j \) is invertible in each component. Hence, \(x_j \) is invertible in \(R_i \).

\textbf{Claim 2.} Each component \(u_i \) is actually of the form \(u_i = x_j \overline{f}_j \)

\textbf{Proof.} In fact, each component \(u_i \) is not a zero divisor and the group \(F \) is abelian, torsion free and thus ordered so, using the fact that the coefficients \(x_j \) are not zero divisors, a standard argument shows that \(u_i \) must be trivial in \(R_i \ast F \), as desired.

Now we are ready to prove our main statement. We can write \(\mu \) in the form

\[
\mu = \sum \alpha_i \overline{f}_i \in \oplus_i R_i \ast F, \quad \alpha_i \in R_i, \quad f_i \in F.
\]

Collecting together coefficients whenever \(f_i T = f_j T \) and changing notation we can write \(\mu \) in the form

\[
\mu = \sum \alpha_i' \overline{f}_i \in \oplus_i R_i \ast F, \quad \alpha_i' \in R_i, \quad f_i \in F, \quad f_i T \neq f_j T \text{ if } i \neq j.
\]

Since \(G \) is a finitely generated FC group, it is central-by-finite, so there exists a positive integer \(k \) such that \(g^k \in Z(G) \), for all \(g \in G \).

We compute:
\[\mu^k = \sum_i (\alpha_i \overline{f}_i)^k = \sum_i \beta_i \overline{f}_i^k \in \oplus_i R_i \ast F, \quad \beta_i \in R_i, \quad f_i \in F. \tag{3} \]

Notice that, since \(G/T \) is torsion-free abelian, we also have that \(f_i^{kT} \neq f_j^{kT} \) whenever \(i \neq j \).

Now, since each \(f_i^k \) is central, we have that:

\[
\begin{align*}
t_{\mu^k} &= \sum t\beta_i \overline{f}_i^k, \\
\mu^k t &= \sum \beta_i \overline{f}_i^k t = \sum \beta_i t \overline{f}_i^k
\end{align*}
\]

So \(\beta_t = t\beta_i \), for all \(t \in T \), showing that the ring \(R \) generated by all the coefficients \(\beta_i \) is commutative and, in fact, \(R \subset \mathbb{Z}(\mathbb{Z}^2T) \).

Let \(A \) be the central subgroup generated by all the elements of the form \(f_i^k \). Since \(R \) and \(A \) also commute, this shows that

\[u^k \in RA, \]

the commutative group ring of a finitely generated, torsion-free abelian group \(A \).

Set \(N = \text{rad}(R) \). Since idempotents of \(R/N \) can be lifted to idempotents of \(R \) and \(R \subset \mathbb{Z}T \) contains no nontrivial idempotents, it follows that \(R/N \) contains no nontrivial idempotents. So, it follows from [4, Theorem I.3.5] that \((R/N)A\) has only trivial units. Hence:

\[\mu^k = \beta f^k + \nu, \] where \(\nu \) is nilpotent.

Comparing with the expression of \(\mu^k \) given in equation (3) we see that \(\nu = 0 \). Hence, \(\mu^k = \beta f^k \) as required. \(\Box \)

We shall now show how to extend this result to the general case.

Proof of Theorem 1.

For each finite conjugacy class \(C \) of \(G \) consider the class sum \(\gamma = \sum_{x \in C} x \).
It is well-known that the set of all of these class sums forms a \(\mathbb{Z} \)-basis for the centre of the group ring [3, Lemma 4.1.1]. This means that \(\mu \) is also a central unit in \(\mathbb{Z}[\Phi(G)] \), so we can apply the proposition above and it follows immediately that \(\mu = \omega g \), with \(\omega \in \mathbb{Z}T \), where \(T = T(\Phi(G)) \) and \(g \in \Phi(G) \).

Since \(\mu \) is central, we have that \(\mu^g = \omega^g g = \omega g \) so \(\omega^g = g \) as stated. \(\Box \)

As an easy consequence, we can give an elementary proof of [4, I.1.7].
Corollary 2.2 Any central unit of finite order in \(\mathbb{Z}G \) is trivial.

Proof. Let \(\mu \) be a central unit of finite order \(n \). Writing \(\mu = \omega g \) as in Theorem 1, we have that

\[
\mu^n = \omega^ng^n.
\]

This means that \(g^n = \omega^{-n} \in \mathbb{Z}T \). This implies that \(g^n \in T \) and thus \(g \in T \). It follows that \(\mu \in \mathbb{Z}T \) where \(T \) is finite, so the result follows immediately from Higman's Theorem [5, I.1.7]. \(\square \)

We remark that, since finitely generated FC groups are residually finite, the same proof as in [2, Corollary 4] now gives the following.

Corollary 2.3 Let \(T \) be the torsion subgroup of the FC-centre of a group \(G \). If \(Z(U(\mathbb{Z}T)) \) is trivial then \(Z(U(\mathbb{Z}G)) \) is also trivial.

Lemma 2.4 Let \(G \) be a group and \(Z(G) \) its centre. If \(\gamma \in 1+\Delta(G)\Delta(Z(G)) \) is such that \(\gamma^n = 1 \) for some positive integer \(n \), then \(\gamma = 1 \).

Proof. Since \(\gamma \) can be written as finite sum of the form \(\gamma = 1 + \sum (1 - g)(1 - z) \), we can assume that \(\gamma \in 1 + \Delta(G)\Delta(A) \), where \(G \) is a finitely generated group and \(A \) is a finitely generated central subgroup.

If \(A = 1 \) there is nothing to prove. We use induction on the rank of \(A \) plus the order of its torsion subgroup to conclude that taking \(z \in A \) and putting \(\bar{G} = G/(z) \) we have that \(\bar{\gamma} = 1 \) in \(\bar{G} \).

It follows that \(\gamma = 1 + \delta, \delta \in \Delta(G', (z)) \). Thus, there is a central element in the support of \(\gamma \). Remembering that \(\gamma \) is a torsion element, it follows from [5, Proposition 47.3] that \(\gamma = z_0 \), \(z_0 \in Z(G) \). We conclude that

\[
z_0 - 1 \in \Delta(G)\Delta(Z(G))
\]

and thus \(z_0 \in 1 + \Delta(Z(G))^2 \) so \(z_0 \) belongs in the second dimension subgroup of \(Z(G) \). Hence \(z_0 = 1 \) and \(\gamma = 1 \). \(\square \)

Lemma 2.5 Let \(G \) be a group and let \(\mu \in \mathbb{Z}G \) be a central unit. If there exists a positive integer \(n \) such that \(\mu^n \) is trivial, then \(\mu \) itself is a trivial unit.

Proof. Since \(\mu^n \in Z(G) \) we have that \(\mu^n = 1 \) in \(\mathbb{Z}[G/Z(G)] \). Thus \(\mu \) is a central unit of finite order in this group ring, so it is trivial by(2.2).
Hence, there exists an element $g \in G$ such that $\overline{\mu} = \overline{g}$ in the quotient, so we can write

$$\mu \equiv g \mod(\Delta(G, Z(G)))$$

Using the Whitcomb argument (see [5, Theorem 30.5]), it can be easily shown that there exists an element g_1 of the form $g_1 = gz$ with $z \in Z(G)$ such that

$$\mu \equiv g_1 \mod(\Delta(G)\Delta(Z(G))).$$

Thus

$$\mu^n \equiv g_1^n \mod(\Delta(G)\Delta(Z(G))),$$

hence

$$(\mu g_1^{-1})^n \equiv 1 \mod(\Delta(G)\Delta(Z(G))).$$

Since by Lemma 2.4 the group of invertible elements in $1 + \Delta(G)\Delta(Z(G))$ is torsion free it follows that $\mu g_1^{-1} = 1$ and thus $\mu = g_1 \in G$, as desired. \(\square\)

Proposition 2.6 Let G be a group such that its FC-centre $\Phi = \Phi(G)$ is finitely generated and let $S = Z(U(ZG)) \cap Z(U(ZT))$. Then $SZ(G)$ is a subgroup of finite index in $Z(U(ZG))$ and $Z(U(ZG))$ itself is finitely generated.

Proof. Since T is finite, it follows that $Z(U(ZT))$ is finitely generated and thus, its subgroup S is also finitely generated.

We have that $Z(G) \subset Z(\Phi)$ and $Z(\Phi)$ is of finite index in Φ, which is finitely generated. Hence $Z(\Phi)$ is finitely generated and so is $Z(G)$.

We claim that $Z(U(ZG))$ is of bounded exponent over $SZ(G)$. In fact, given $\mu \in Z(U(ZG))$ we write it in the form $\mu = \omega g$ with $\omega \in U(ZT)$ and $g \in G$. Then $gT \in Z(G/T)$. If we set $k = |\text{Aut} T|$, we have that $(g^k, t) = 1$, $\forall t \in T$. Given any element $x \in G$, we have that:

$$(g^{k[T]}t)^x = (g^{kx}[T]) = (g^k t)[T], \text{ for some } t \in T.$$

Hence

$$(g^{k[T]}t)^x = g^{k[T]}t[T] = g^{k[T]}.$$

So, if we set $h = k[T]$ we have that $g^h \in Z(G)$.

Now $\mu^h = \omega^g g^h$ so $\omega^h = \mu^h g^{-h} \in Z(U(ZG)) \cap Z(ZT)$. Consequently, $\mu^h \in S Z(G)$.

Finally, we observe that $T(Z(U(ZG)))$ is trivial by (2.2), so it is finite. It follows that $Z(U(ZG))$ is finitely generated, as desired. \(\square\)
Let \(\{b_1, b_2, \ldots, b_r\} \) be any set of generators of a subgroup of finite index in \(Z(U(\mathbb{Z}T)) \). For example, this could be the set of generators explicitly constructed by Ritter-Sehgal (see [5, Theorem 29.2]). Let \(X \) be a transversal of the centralizer \(C_G(T) \). For each element \(b_i \) we define:

\[
\tilde{b}_i = \prod_{x \in X} b_i^x.
\]

Notice that this product is independent of the order of its factors since they belong to \(Z(U(\mathbb{Z}T)) \) which is commutative and is normalized by \(G \). Clearly \(\tilde{b}_i \in Z(U(\mathbb{Z}G)) \), \(1 \leq i \leq r \).

Let \(\{\alpha_1, \ldots, \alpha_s\} \) be a set of generators of \(S \). Since \(\langle b_1, \ldots, b_r \rangle \) is of finite index in \(Z(U(\mathbb{Z}T)) \), there exists a positive integer \(m \) such that:

\[
\alpha_i^m \in \langle b_1, \ldots, b_r \rangle, \quad 1 \leq i \leq s.
\]

Hence, each element \(\alpha_i^m \) can be written as a product:

\[
\alpha_i^m = \prod b_j.
\]

So,

\[
\alpha_i^m \prod_{x \in X} = \prod_{x \in X} (\alpha_i^m)^x = \prod_{x \in X} \tilde{b}_j.
\]

This shows that \(\alpha_i^m \prod_{x \in X} \in \langle \tilde{b}_1, \ldots, \tilde{b}_r \rangle, \quad 1 \leq i \leq s \). It follows that \(\langle \tilde{b}_1, \ldots, \tilde{b}_r \rangle \) is a subgroup of finite index in \(S \).

Since we have shown that \(|Z(U(\mathbb{Z}G)) : SZ(G)| \) is finite, the proof of Theorem 2 follows from the considerations above.

References

Received: July 1998