SUPERCONVERGENCE AND A POSTERIORI ERROR ESTIMATES OF A LOCAL DISCONTINUOUS GALERKIN METHOD FOR THE FOURTH-ORDER INITIAL-BOUNDARY VALUE PROBLEMS ARISING IN BEAM THEORY

MAHBOUB BACCOURH

Abstract. In this paper, we investigate the superconvergence properties and a posteriori error estimates of a local discontinuous Galerkin (LDG) method for solving the one-dimensional linear fourth-order initial-boundary value problems arising in study of transverse vibrations of beams. We present a local error analysis to show that the leading terms of the local spatial discretization errors for the k-degree LDG solution and its spatial derivatives are proportional to (k + 1)-degree Radau polynomials. Thus, the k-degree LDG solution and its derivatives are \(\mathcal{O}(h^{k+2}) \) superconvergent at the roots of (k + 1)-degree Radau polynomials. Computational results indicate that global superconvergence holds for LDG solutions. We discuss how to apply our superconvergence results to construct efficient and asymptotically exact a posteriori error estimates in regions where solutions are smooth. Finally, we present several numerical examples to validate the superconvergence results and the asymptotic exactness of our a posteriori error estimates under mesh refinement. Our results are valid for arbitrary regular meshes and for \(P^k \) polynomials with \(k \geq 1 \), and for various types of boundary conditions.

Key words. Local discontinuous Galerkin method; fourth-order initial-boundary value problems; Euler-Bernoulli beam equation; superconvergence; a posteriori error estimates.

1. Introduction

The goal of this paper is to investigate the superconvergence properties and develop a simple procedure to compute a posteriori error estimates of the spatial errors for the local discontinuous Galerkin (LDG) method applied to the following linear fourth-order initial-boundary value problem in one space dimension:

\[
(1.1a) \quad u_{tt} + u_{xxxx} = f(x,t), \quad x \in [0,L], \quad t \in [0,T],
\]

subject to the initial conditions

\[
(1.1b) \quad u(x,0) = g(x), \quad u_t(x,0) = h(x), \quad x \in [0,L],
\]

and to one of the following four kinds of boundary conditions which are commonly encountered in practice \(t \in [0,T] \):

\[
(1.1c) \quad u(0,t) = u_1(t), \quad u_x(0,t) = u_2(t), \quad u_x(L,t) = u_3(t), \quad u_{xxx}(L,t) = u_4(t),
\]

\[
(1.1d) \quad u(0,t) = u_1(t), \quad u_x(0,t) = u_2(t), \quad u(L,t) = u_3(t), \quad u_{xxx}(L,t) = u_4(t),
\]

\[
(1.1e) \quad u(0,t) = u_1(t), \quad u_x(0,t) = u_2(t), \quad u(L,t) = u_3(t), \quad u_x(L,t) = u_4(t),
\]

\[
(1.1f) \quad u(0,t) = u(L,t), \quad u_x(0,t) = u_x(L,t), \quad u_{xxx}(0,t) = u_{xxx}(L,t), \quad u_{xxxx}(0,t) = u_{xxxx}(L,t).
\]

In our analysis we assume that the interval \([0,T]\) is a finite time interval, and select the side conditions and the source, \(f(x,t) \), such that the exact solution, \(u(x,t) \), is

Received by the editors January 16, 2014.

2000 Mathematics Subject Classification. 65M60, 65N30, 74K10.

This research was partially supported by the NASA Nebraska Space Grant Program and UCRCA at the University of Nebraska at Omaha. The author would also like to thank the two referees for their constructive comments and remarks which helped improve the quality and readability of the paper.
a smooth function on $[0, L] \times [0, T]$. Even though the analysis in this paper is restricted to (1.1a), the same results can be directly generalized to the well-known Euler-Bernoulli beam equation with constant and variable geometrical and physical properties

$$(E(x)I(x)u_{xx})_{xx} + \rho(x)A(x)u_{tt} = f(x, t),$$

where $u(x, t)$ is the deflection of the neutral axis of the beam, $E(x)$ is the Young’s modulus of elasticity, $I(x)$ is the area moment of inertia of the cross section with respect to its neutral midplane, $A(x)$ is the cross section in the yz-plane, $\rho(x)$ is the mass density per unit length, and $f(x, t)$ is the transverse load.

The fourth-order Euler-Bernoulli beam equation considered in this paper plays a very important role in both theory and applications. This is due to its use to describe a large number of physical and engineering phenomena such as the flexural vibrations of a slender isotropic beam within the framework of Euler-Bernoulli assumptions. Several numerical schemes are proposed in the literature for solving (1.1a). Consult [11, 12, 14, 35, 36, 37, 41, 42, 47] and the references cited therein for more details. In this paper, we develop, analyze and test a superconvergent LDG method for solving (1.1). The proposed scheme is based on the fourth-order Runge-Kutta method approximation in time and on the LDG approximation in the spatial discretization. Our proposed scheme for solving the beam equation extends our previous work [16, 23] in which we investigated the convergence properties and the error estimates of the LDG method applied to the second-order wave and convection-diffusion equations in one space dimension.

The main motivation for the LDG method proposed in this paper originates from the LDG techniques which have been developed for convection-diffusion equations. The LDG finite element method considered here is an extension of the discontinuous Galerkin (DG) method aimed at solving ordinary and partial differential equations (PDEs) containing higher than first-order spatial derivatives. The DG method is a class of finite element methods using completely discontinuous piecewise polynomials for the numerical solution and the test functions. With discontinuous finite element bases, they capture discontinuities in, e.g., hyperbolic systems with high accuracy and efficiency; simplify adaptive $h-$, $p-$, $r-$, refinements and produce efficient parallel solution procedures. The DG method was initially introduced by Reed and Hill in 1973 as a technique to solve neutron transport problems [44]. Lesaint and Raviart [40] presented the first numerical analysis of the method for a linear advection equation. Since then, DG methods have been used to solve ordinary and partial differential equations. Consult [32, 17] and the references cited therein for a detailed discussion of the history of DG method and a list of important citations on the DG method and its applications.

The LDG method for solving convection-diffusion problems was first introduced by Cockburn and Shu in [33]. They further studied the stability and error estimates for the LDG method. Castillo et al. [26] presented the first a priori error analysis for the LDG method for a model elliptic problem. They considered arbitrary meshes with hanging nodes and elements of various shapes and studied general numerical fluxes. They showed that, for smooth solutions, the L^2 errors in ∇u and in u are of order k and $k + 1/2$, respectively, when polynomials of total degree not exceeding k are used. Cockburn et al. [31] presented a superconvergence result for the LDG method for a model elliptic problem on Cartesian grids. They identified
a special numerical flux for which the L^2-norms of the gradient and the potential are of orders $k + 1/2$ and $k + 1$, respectively, when tensor product polynomials of degree at most k are used. Several LDG schemes have been developed for various high order PDEs including the convection-diffusion equations [33], second-order wave equations [16, 20], nonlinear KdV type equations [48, 50], and beam equation [18, 19]. More details about the LDG methods for high order time dependent equations can be found in the review paper [49] and the recent proceeding of Shu [46]. Furthermore, some LDG methods for other high order wave equations were developed by Yan and Shu [51], which were high order accurate and stable schemes.

The study of superconvergence and a posteriori error estimates of DG methods has been an area of active research in both mathematics and engineering, see e.g. [15]. A knowledge of superconvergence properties can be used to (i) construct simple and asymptotically exact a posteriori estimates of discretization errors and (ii) help detect discontinuities to find elements needing limiting, stabilization and/or refinement. Typically, a posteriori error estimators employ the known numerical solution to derive estimates of the actual solution errors. They are also used to steer adaptive schemes where either the mesh is locally refined (h-refinement) or the polynomial degree is raised (p-refinement). For an introduction to the subject of a posteriori error estimation see the monograph of Ainsworth and Oden [13]. Superconvergence properties for DG methods have been studied in [34, 40] for ordinary differential equations, [4, 16, 8, 9] for hyperbolic problems and [2, 3, 5, 9, 10, 24, 25, 27, 28] for diffusion and convection-diffusion problems. Several a posteriori DG error estimates are known for hyperbolic [29, 30, 38, 22, 7] and diffusive [39, 45] problems.

Adjerid and Baccouch [4] investigated the global convergence of the implicit residual-based a posteriori error estimates of Adjerid et al. [8]. They proved that, for smooth solutions, these a posteriori error estimates at a fixed time t converge to the true spatial error in the L^2-norm under mesh refinement. Recently, Adjerid and Baccouch [6, 5] showed that LDG solutions are superconvergent at Radau points for two-dimensional convection-diffusion problems. They used these results to construct asymptotically correct a posteriori error estimates. In [16], we presented new superconvergence results for the semi-discrete LDG method applied to the second-order scalar wave equation in one space dimension. We performed an error analysis on one element and showed that the k-degree LDG solution and its spatial derivative are $O(h^{k+2})$ superconvergent at the roots of $(k + 1)$-degree right and left Radau polynomials, respectively. Computational results showed that global superconvergence holds for LDG solutions. We used these results to construct asymptotically correct a posteriori error estimates by solving local steady problem with no boundary conditions on each element. However, we only presented several numerical results suggesting that the global spatial error estimates converge to the true errors under mesh refinement where temporal errors are assumed to be negligible. More recently, Baccouch [21, 20] analyzed the superconvergence properties of the LDG formulation applied to transient convection-diffusion and wave equations in one space dimension. The author proved that the leading error term on each element for the solution is proportional to a $(k + 1)$-degree right Radau polynomial while the leading error term for the solution’s derivative is proportional to a $(k + 1)$-degree left Radau polynomial, when polynomials of degree at most k are used. He further analyzed the convergence of a posteriori error estimates and proved that
these error estimates are globally asymptotically exact under mesh refinement.

The goals of this paper are to (i) design a superconvergent LDG method for solving the fourth-order initial-boundary value problems, (ii) investigate the superconvergence properties of LDG solutions, and (iii) develop computationally simple a posteriori error estimates. We show that the local discretization errors for the k-degree LDG solution and its derivatives up to third order converge as $O(h^{k+2})$ at the roots of Radau polynomials of degree $k + 1$ on each element. More precisely, a local error analysis reveals that the leading terms of the spatial discretization errors for the LDG solution and its derivatives, using k-degree polynomial approximations, are proportional to $(k + 1)$-degree (either right or left) Radau polynomials. We use these results to construct asymptotically exact a posteriori error estimates in regions where solutions are smooth. The leading terms of the discretization errors for the solution and its spatial derivatives are estimated by solving a local steady problem with no boundary conditions on each element. The four coefficients of the leading terms of the spatial discretization errors are functions of the time variable and obtained from a 4-by-4 linear algebraic system on each element. Several numerical simulations are performed to validate the theory.

This paper is organized as follows: In section 2 we define the LDG scheme and we introduce some notations and definitions which will be used in our error analysis. In section 3, we present the LDG error analysis and prove our main superconvergence results. In section 4, we discuss our error estimation procedure. In section 5, we present numerical results to confirm the global superconvergence results and the asymptotic exactness of our a posteriori error estimates under mesh refinement. We conclude and discuss our results in section 6.

2. The LDG scheme

In order to construct the LDG scheme, we first introduce three auxiliary variables $q = u_x, p = q_x, r = p_x$ and rewrite our model problem (1.1a) as a first-order system in space

\[u_{tt} + r_x = f, \quad r - p_x = 0, \quad p - q_x = 0, \quad q - u_x = 0. \] (2.1)

In order to obtain a weak LDG formulation we partition the interval $I = [0, L]$ into a quasi-uniform mesh, $\Delta_N = \{0 = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_N = L\}$, having N subintervals $I_i = [x_{i-1}, x_i], i = 1, \ldots, N$ with length $h_i = x_i - x_{i-1}$. The length of the largest subinterval is denoted by $h = \max_{1 \leq i \leq N} h_i$. Throughout this paper, v_i denotes the value of the function $v = v(x, t)$ at $x = x_i$. We also define v^{-}_i and v^{+}_i to be the left limit and the right limit of the function v at the discontinuity point x_i, i.e.,

\[v^{-}_i = v^{-}(x_i, t) = \lim_{s \to 0^-} v(x_i + s, t), \quad v^{+}_i = v^{+}(x_i, t) = \lim_{s \to 0^+} v(x_i + s, t). \]

We define a finite element space consisting of piecewise k^{th}-degree polynomial functions $V^k_h = \{ v : v|_{I_i} \in P^k(I_i) \}$, where $P^k(I_i)$ is the space of polynomials of degree not exceeding k on I_i. Note that polynomials in the space V^k_h are allowed to have discontinuities across element boundaries.

Let us multiply the four equations in (2.1) by test functions $v, w, s,$ and $z,$ respectively, integrate over an arbitrary subinterval I_i, and use integration by parts
to write

\((2.2a) \quad \int_{I_i} u_{tt} v dx - \int_{I_i} r v_x dx + rv|_{i} - rv|_{i-1} = \int_{I_i} f v dx, \)

\((2.2b) \quad \int_{I_i} r w dx + \int_{I_i} p w_x dx - pw|_{i} + pw|_{i-1} = 0, \)

\((2.2c) \quad \int_{I_i} p s dx + \int_{I_i} q s_x dx - qs|_{i} + qs|_{i-1} = 0, \)

\((2.2d) \quad \int_{I_i} q z dx + \int_{I_i} u z_x dx - uz|_{i} + uz|_{i-1} = 0. \)

Next, we approximate the exact solutions \(u(., t), q(., t), p(., t), \) and \(r(., t) \) by piecewise polynomials \(u_h(., t) \in V^k_h, q_h(., t) \in V^k_h, p_h(., t) \in V^k_h, \) and \(r_h(., t) \in V^k_h, \) respectively, whose restriction to \(I_i \) are in \(P^k(I_i) \). Here \(u_h, q_h, p_h, \) and \(r_h \) are not necessarily continuous at the endpoints of \(I_i \). The semi-discrete LDG method consists of finding \(u_h, q_h, p_h, r_h \in V^k_h \) such that \(\forall i = 1, \ldots, N, \)

\((2.3a) \quad \int_{I_i} (u_h)_{tt} v dx - \int_{I_i} r_h v_x dx + \hat{r}_h v^+|_{i} - \hat{r}_h v^-|_{i-1} = \int_{I_i} f v dx, \quad \forall v \in V^k_h, \)

\((2.3b) \quad \int_{I_i} r_h w dx + \int_{I_i} p_h w_x dx - \hat{p}_h w^+|_{i} + \hat{p}_h w^-|_{i-1} = 0, \quad \forall w \in V^k_h, \)

\((2.3c) \quad \int_{I_i} p_h s dx + \int_{I_i} q_h s_x dx - \hat{q}_h s^+|_{i} + \hat{q}_h s^-|_{i-1} = 0, \quad \forall s \in V^k_h, \)

\((2.3d) \quad \int_{I_i} q_h z dx + \int_{I_i} u_h z_x dx - \hat{u}_h z^+|_{i} + \hat{u}_h z^-|_{i-1} = 0, \quad \forall z \in V^k_h, \)

where the hatted terms, \(\hat{u}_h, \hat{q}_h, \hat{p}_h, \) and \(\hat{r}_h \) are the so-called numerical fluxes. These numerical fluxes are single-valued functions defined on the boundaries of \(I_i \) and should be designed to ensure numerical stability.

For the boundary conditions (1.1c), we choose the following alternating fluxes

\(\hat{u}_h|_i = \begin{cases} u_1(t), & i = 0, \\ u_h|_{i}, & i = 1, \ldots, N, \end{cases} \)

\(\hat{q}_h|_i = \begin{cases} q_h|_{i}, & i = 0, \ldots, N - 1, \\ q_3(t), & i = N, \end{cases} \)

\(\hat{p}_h|_i = \begin{cases} u_2(t), & i = 0, \\ p_h|_{i}, & i = 1, \ldots, N, \end{cases} \)

\(\hat{r}_h|_i = \begin{cases} r_h|_{i}, & i = 0, \ldots, N - 1, \\ r_4(t), & i = N. \end{cases} \)

If other boundary conditions are chosen, the numerical fluxes can be easily designed. For instance the numerical fluxes associated with the boundary conditions (1.1d) can be taken as

\(\hat{u}_h|_i = \begin{cases} u_1(t), & i = 0, \\ u_h|_{i}, & i = 1, \ldots, N - 1, \\ u_3(t), & i = N, \end{cases} \)

\(\hat{q}_h|_i = \begin{cases} q_h|_{i}, & i = 0, \ldots, N - 1, \\ q_3 - \delta_2(u_h - u_4)|_{i}, & i = N, \end{cases} \)

\(\hat{p}_h|_i = \begin{cases} u_2(t), & i = 0, \\ p_h|_{i}, & i = 1, \ldots, N - 1, \\ u_4(t), & i = N, \end{cases} \)

\(\hat{r}_h|_i = \begin{cases} r_h|_{i}, & i = 0, \ldots, N - 1, \\ (r_h - \delta_2(p_h - u_4))|_{i}, & i = N, \end{cases} \)

where the stabilization parameters \(\delta_1 \) and \(\delta_2 \) for the LDG method are given by

\(\delta_1 = \frac{1}{l_i}, \) and \(\delta_2 = \frac{1}{l_i}. \)
Similarly, the numerical fluxes associated with the boundary conditions (1.1e) can be taken as

\[
\begin{align*}
\hat{u}_h \big|_i &= \begin{cases}
 u_1(t), & i = 0, \\
 u_h^i, & i = 1, \ldots, N - 1, \\
 u_4(t), & i = N,
\end{cases} \\
\hat{q}_h \big|_i &= \begin{cases}
 q_1(t), & i = 0, \\
 q_h^i, & i = 1, \ldots, N - 1, \\
 u_4(t), & i = N,
\end{cases} \\
(2.3g) \hat{p}_h \big|_i &= \begin{cases}
 \left(p_h^i + \delta_1(q_h^i - u_2) \right), & i = 0, \\
 \left(p_h^i \right), & i = 1, \ldots, N,
\end{cases} \\
\hat{r}_h \big|_i &= \begin{cases}
 r_h^i, & i = 0, \ldots, N - 1, \\
 \left(r_h^i - \delta_2(u_h^i - u_3) \right), & i = N.
\end{cases}
\end{align*}
\]

where the stabilization parameters \(\delta_1 \) and \(\delta_2 \) for the LDG method are given by

\[
\delta_1 = \frac{h}{L_0} \quad \text{and} \quad \delta_2 = \frac{h}{L_0^2}.
\]

For the periodic boundary conditions (1.1f), we choose the following alternating fluxes (e.g., see [43])

\[
\begin{align*}
\hat{u}_h \big|_i &= \begin{cases}
 u_h^i, & i = 0, \ldots, N - 1, \\
 u_h^i, & i = N,
\end{cases} \\
\hat{q}_h \big|_i &= \begin{cases}
 q_h^i, & i = 0, \ldots, N - 1, \\
 q_h^i, & i = N,
\end{cases} \\
(2.3h) \hat{p}_h \big|_i &= \begin{cases}
 p_h^i, & i = 0, \ldots, N - 1, \\
 p_h^i, & i = N,
\end{cases} \\
\hat{r}_h \big|_i &= \begin{cases}
 r_h^i, & i = 0, \ldots, N - 1, \\
 r_h^i, & i = N.
\end{cases}
\end{align*}
\]

We note that this choice is not unique. For instance the following choice is also fine

\[
\begin{align*}
\hat{u}_h \big|_i &= \begin{cases}
 u_h^i, & i = 0, \ldots, N - 1, \\
 u_h^i, & i = N,
\end{cases} \\
\hat{q}_h \big|_i &= \begin{cases}
 q_h^i, & i = 0, \ldots, N - 1, \\
 q_h^i, & i = N,
\end{cases} \\
(2.3i) \hat{p}_h \big|_i &= \begin{cases}
 p_h^i, & i = 0, \ldots, N - 1, \\
 p_h^i, & i = N,
\end{cases} \\
\hat{r}_h \big|_i &= \begin{cases}
 r_h^i, & i = 0, \ldots, N - 1, \\
 r_h^i, & i = N.
\end{cases}
\end{align*}
\]

In order to complete the definition of the semi-discrete LDG method we need to design the initial conditions of our numerical scheme. In this paper, the initial conditions \(u_h(x, 0) \in V_h^k \) and \((u_h)_e(x, 0) \in V_h^k \) are obtained by interpolating the exact initial conditions \(u(x, 0) = g(x) \) and \(u_t(x, 0) = h(x) \) as

\[
(2.4) \quad u_h(x, 0) = \pi^+ g(x), \quad (u_h)_e(x, 0) = \pi^+ h(x), \quad x \in I_i, \quad i = 1, \ldots, N,
\]

where \(\pi^+ v \) is the \(k \)-degree polynomial that interpolates \(v \) at the roots of \((k+1)\)-degree right Radau polynomial which will be defined later.

Remark: In our numerical experiments we approximated the initial conditions of the numerical scheme by the polynomials that interpolate the exact initial conditions at the roots of the right Radau polynomial of degree \(k+1 \). However, numerical experiments suggest that if we use the standard \(L^2 \) projection of the initial conditions as our numerical initial conditions instead, the convergence and superconvergence rates do not converge to the desired \(k+1 \) and \(k+2 \) accuracy, respectively. We observed that the order of accuracy for the solution and the auxiliary variables is oscillating. Furthermore, we did not observe any pointwise superconvergence. We would like to emphasize that our special choice of initial conditions (2.4) is essential to obtain the desired superconvergence rate of the proposed LDG method.

In order to discretize in time, we first solve for the auxiliary variables \(q_h, p_h, \) and \(r_h \) in terms of \(u_h \) in an element-by-element fashion using (2.3b)-(2.3d). Substituting the resulting expressions for \(q_h, p_h, \) and \(r_h \) into (2.3a), then expressing \(u_h(x,t) = \sum_{j=0}^{k} c_{j,i}(t)L_{j,i}(x), x \in I_i, \) as a linear combination of orthogonal basis \(L_{j,i}(x), j = 0, \ldots, k, \) where \(L_{j,i} \) denotes the \(j^{th} \)-degree Legendre polynomial on \(I_i \), and choosing the test functions \(v = L_{j,i}, j = 0, \ldots, k \), we obtain the following linear second-order ordinary differential system:

\[
M_i \frac{d^2 C_{i}^0(t)}{dt^2} = A_i C_{i}(t) + b_i(t), \quad i = 1, \ldots, N,
\]
where $C_i(t) = [c_{0,i}(t), c_{1,i}(t), \ldots, c_{k,i}(t)]$ denotes the solution vector at time t, M_i denotes the mass matrix, A_i is a matrix, and $b_i(t)$ is a vector which depends on the source term and the boundary conditions but independent of solution. We introduced the superscript i to emphasize that these systems can be solved on each element I_i using e.g., the classical fourth-order Runge-Kutta method. As our interest is in the effect of the spatial discretization, we determine the time-step Δt

In our analysis we need the influence of the time discretization error in this paper. So that temporal errors are small relative to spatial errors. We do not discuss the

We also define the $(k+1)$-degree left Radau polynomial $R_{k+1}^-(\xi) = L_{k+1}(\xi) - L_k(\xi)$, $-1 \leq \xi \leq 1$, which has $k+1$ real distinct roots, $-1 < \xi_0^- < \cdots < \xi_k^- = 1$. We also define the $(k+1)$-degree right Radau polynomial $R_{k+1}^+(\xi) = L_{k+1}(\xi) + L_k(\xi)$, $-1 \leq \xi \leq 1$, which has $k+1$ real distinct roots, $-1 = \xi_0^+ < \cdots < \xi_k^+ < 1$. Merging the element $I_i = [x_{i-1}, x_i]$ into a reference element $[-1, 1]$ by the standard affine mapping

we obtain the shifted Radau polynomials $R_{k+1, i}^\pm(x) = R_{k+1}^\pm\left(\frac{2x-x_{i-1}}{h_i}.\right)$ on I_i.

In this paper, we define the L^2 inner product of two integrable functions, $u = u(x,t)$ and $v = v(x,t)$, depending on x and t on the intervals $I_i = [x_{i-1}, x_i]$ and $I = [0, L]$ as

$$(u(., t), v(., t))_i = \int_{I_i} u(x,t)v(x,t)dx,$$

and the subsequent induced norms are $\|u(., t)\|_i^2 = (u(., t), u(., t))$, and $\|u(., t)\|_i^2 = (u(., t), u(., t))$. In the remainder of this paper we will omit the notation $(., t)$ used in the subsequent induced norms unless needed for clarity. Thus we use $\|u\|$ instead of $\|u(., t)\|$ etc.

\section{Superconvergence error analysis}

In this section we investigate the superconvergence properties of the LDG method. We show that u_h and p_h are $O(h^{k+2})$ superconvergent at the $(k+1)$-degree right-Radau polynomial and q_h and r_h are $O(h^{k+2})$ superconvergent at the $(k+1)$-degree left-Radau polynomial. The local superconvergence results are proved and the global superconvergence results are confirmed numerically.

Throughout this paper, e_u, e_q, e_p, and e_r, respectively, denote the errors between the exact solutions of (2.1) and the numerical solutions defined in (2.3) i.e.,

$$e_u = u - u_h, \quad e_q = q - q_h, \quad e_p = p - p_h, \quad e_r = r - r_h.$$
We subtract (2.3) from (2.2) with \(v, w, s, z \in V_h^k \) to obtain the LDG orthogonality conditions for the errors \(e_u, \ e_q, \ e_p, \) and \(e_r \) on \(I_i \)

\[
\begin{align*}
(3.1a) & \quad \int_{I_i} (e_u)_x v dx - \int_{I_i} e_v x dx + \hat{e}_r v^- |_{i} - \hat{e}_r v^+ |_{i-1} = 0, \\
(3.1b) & \quad \int_{I_i} e_v w dx + \int_{I_i} e_p w x dx - \hat{e}_p w^- |_{i} + \hat{e}_p w^+ |_{i-1} = 0, \\
(3.1c) & \quad \int_{I_i} e_p s dx + \int_{I_i} e_q s x dx - \hat{e}_q s^- |_{i} + \hat{e}_q s^+ |_{i-1} = 0, \\
(3.1d) & \quad \int_{I_i} e_q z dx + \int_{I_i} e_u z x dx - \hat{e}_u z^- |_{i} + \hat{e}_u z^+ |_{i-1} = 0.
\end{align*}
\]

Using the mapping of \(I_i = [x_{i-1}, x_i] \) onto the canonical element \([-1,1]\) defined by (2.6) and denoting \(\tilde{e}_u(\xi, t, h_i) = e_u(x(\xi, h_i), t), \tilde{e}_q(\xi, t, h_i) = e_q(x(\xi, h_i), t), \tilde{e}_p(\xi, t, h_i) = e_p(x(\xi, h_i), t), \tilde{e}_r(\xi, t, h_i) = e_r(x(\xi, h_i), t) \), we obtain the LDG orthogonality condition (3.1) on the reference element \([-1,1]\)

\[
\begin{align*}
(3.2a) & \quad \frac{h_i}{2} \int_{-1}^{1} (\hat{e}_u)_{x} \tilde{v} d\xi - \int_{-1}^{1} \hat{e}_r \tilde{\xi} d\xi + \tilde{e}_r \tilde{v}^- |_{i} - \tilde{e}_r \tilde{v}^+ |_{i-1} = 0, \\
(3.2b) & \quad \frac{h_i}{2} \int_{-1}^{1} \hat{e}_v \tilde{w} d\xi + \int_{-1}^{1} \hat{e}_p \tilde{w} \xi d\xi - \tilde{e}_p \tilde{w}^- |_{i} + \tilde{e}_p \tilde{w}^+ |_{i-1} = 0, \\
(3.2c) & \quad \frac{h_i}{2} \int_{-1}^{1} \hat{e}_p \tilde{s} d\xi + \int_{-1}^{1} \hat{e}_q \tilde{s} \xi d\xi - \tilde{e}_q \tilde{s}^- |_{i} + \tilde{e}_q \tilde{s}^+ |_{i-1} = 0, \\
(3.2d) & \quad \frac{h_i}{2} \int_{-1}^{1} \hat{e}_q \tilde{z} d\xi + \int_{-1}^{1} \hat{e}_u \tilde{z} \xi d\xi - \tilde{e}_u \tilde{z}^- |_{i} + \tilde{e}_u \tilde{z}^+ |_{i-1} = 0.
\end{align*}
\]

If the exact solution \(u \) is analytic, the LDG solutions \((u_h, q_h, p_h, r_h) \) on \(I_i \) are also analytic with respect to \(x \) since they are polynomials in \(x \). We further note that \(\tilde{u}_h(\xi, t, h_i) = u_h(x(\xi, h_i), t), \tilde{q}_h(\xi, t, h_i) = q_h(x(\xi, h_i), t), \tilde{p}_h(\xi, t, h_i) = p_h(x(\xi, h_i), t), \) and \(\tilde{r}_h(\xi, t, h_i) = r_h(x(\xi, h_i), t) \) are analytic with respect to \(h_i \) by transforming the local LDG weak problem to the reference element and solving for the finite element coefficients which are analytic functions of \(h_i \). Thus, at fixed time \(t \), we can expand the local errors in Maclaurin series with respect to \(h_i \) as

\[
\begin{align*}
(3.3a) & \quad \tilde{e}_u(\xi, t, h_i) = \sum_{j=0}^{\infty} \tilde{U}_j(\xi, t) h_i^j, \quad \tilde{e}_q(\xi, t, h_i) = \sum_{j=0}^{\infty} \tilde{Q}_j(\xi, t) h_i^j, \\
(3.3b) & \quad \tilde{e}_p(\xi, t, h_i) = \sum_{j=0}^{\infty} \tilde{P}_j(\xi, t) h_i^j, \quad \tilde{e}_r(\xi, t, h_i) = \sum_{j=0}^{\infty} \tilde{R}_j(\xi, t) h_i^j,
\end{align*}
\]

where \(\tilde{U}_j(\cdot, t), \tilde{Q}_j(\cdot, t), \tilde{P}_j(\cdot, t), \) and \(\tilde{R}_j(\cdot, t) \in P^j([-1,1]) \) are polynomials of degree \(j \) in the variable \(\xi \) and are obtained by applying the chain rule as

\[
\begin{align*}
\frac{d^j}{dt^j} \tilde{U}_j(\xi, t, 0) = \frac{1}{j!} \sum_{l=0}^{j} \frac{\xi^l}{2} \partial^{l-j}_\xi \partial^j \tilde{e}_u(0, t, 0), \\
\frac{d^j}{dt^j} \tilde{Q}_j(\xi, t, 0) = \frac{1}{j!} \sum_{l=0}^{j} \frac{\xi^l}{2} \partial^{l-j}_\xi \partial^j \tilde{e}_q(0, t, 0), \\
\frac{d^j}{dt^j} \tilde{P}_j(\xi, t, 0) = \frac{1}{j!} \sum_{l=0}^{j} \frac{\xi^l}{2} \partial^{l-j}_\xi \partial^j \tilde{e}_p(0, t, 0), \\
\frac{d^j}{dt^j} \tilde{R}_j(\xi, t, 0) = \frac{1}{j!} \sum_{l=0}^{j} \frac{\xi^l}{2} \partial^{l-j}_\xi \partial^j \tilde{e}_r(0, t, 0).
\end{align*}
\]
Thus, the LDG orthogonality conditions (3.2) for the local errors can be simplified since we consider one element $[0, h]$. For this, we consider the problem (1.1a) on $[0, h]$ subject to the initial conditions (1.1b), where $x \in [0, h]$ and to either the boundary conditions (1.1c) or (1.1d). For each case, the proof is presented separately. Similar results hold when using the boundary conditions (1.1f) and (1.1e). The proofs are very similar to proofs provided for the first two cases, and are therefore omitted to save space. Several numerical examples are included to validate these results globally.

3.1. Case 1. In this subsection, we consider the problem (1.1a) in $[0, h]$ subject to the initial conditions (1.1b) and the boundary conditions (1.1c). In the next theorem, we state and prove the following pointwise superconvergence results.

Theorem 3.1. Let (u, q, p, r) and (u_h, q_h, p_h, r_h), respectively, be the solutions of (2.1) and (2.3) in $[0, h]$ with the numerical fluxes (2.3e) subject to (1.1b) and (1.1c). If we apply the mapping of $[0, h]$ onto the canonical element $[-1, 1]$ defined by (2.6), then, the local finite element errors can be written as

\begin{align*}
(3.4a) & \quad \tilde{e}_a(x, t, h) = \sum_{j=k+1}^{\infty} \tilde{U}_j(x, t)h^j, \quad \tilde{e}_q(x, t, h) = \sum_{j=k+1}^{\infty} \tilde{Q}_j(x, t)h^j, \\
(3.4b) & \quad \tilde{e}_p(x, t, h) = \sum_{j=k+1}^{\infty} \tilde{P}_j(x, t)h^j, \quad \tilde{e}_r(x, t, h) = \sum_{j=k+1}^{\infty} \tilde{R}_j(x, t)h^j,
\end{align*}

where the leading terms of the discretization errors are given by

\begin{align*}
(3.5c) & \quad \tilde{U}_{k+1}(x, t) = a_{k+1}(t)\tilde{R}_{k+1}^{-1}(x), \quad \tilde{Q}_{k+1}(x, t) = b_{k+1}(t)\tilde{R}_{k+1}^{-1}(x), \\
(3.5d) & \quad \tilde{P}_{k+1}(x, t) = c_{k+1}(t)\tilde{R}_{k+1}^{-1}(x), \quad \tilde{R}_{k+1}(x, t) = d_{k+1}(t)\tilde{R}_{k+1}^{-1}(x).
\end{align*}

In the remainder of this paper we will omit the $\tilde{\cdot}$ unless we feel it is needed for clarity. Since we consider one element, we will omit the \pm, for instance, $v^+(1) = v(-1)$ and $v^-(1) = v(1)$, etc.

Proof. Since we consider one element $[0, h]$, the numerical fluxes (2.3e) using the boundary conditions (1.1c) become

\begin{align*}
\hat{u}_h(-1, t, h) &= u_1(t), \quad \hat{u}_h(1, t, h) = u_h(1, t, h), \\
\hat{q}_h(-1, t, h) &= q_h(1, t, h), \quad \hat{q}_h(1, t, h) = q_3(t), \\\n\hat{p}_h(-1, t, h) &= u_2(t), \quad \hat{p}_h(1, t, h) = p_h(1, t, h), \\\n\hat{r}_h(-1, t, h) &= r_h(1, t, h), \quad \hat{r}_h(1, t, h) = u_4(t).
\end{align*}

Thus, the LDG orthogonality conditions (3.2) for the local errors can be simplified to

\begin{align*}
(3.5a) & \quad \frac{h}{2} \int_{-1}^{1} (e_a)_{x}xd\xi - \int_{-1}^{1} e_r \xi d\xi - e_r(-1, t, h)v(-1) = 0, \\
(3.5b) & \quad \frac{h}{2} \int_{-1}^{1} e_r wd\xi + \int_{-1}^{1} e_p \xi d\xi - e_p(1, t, h)w(1) = 0, \\
(3.5c) & \quad \frac{h}{2} \int_{-1}^{1} e_p sd\xi + \int_{-1}^{1} e_q \xi d\xi + e_q(-1, t, h)s(-1) = 0,
\end{align*}
Substituting (3.3) into (3.5) and collecting terms having the same powers of h lead to

$$
- \int_{-1}^{1} R_{0} v_{\xi} d\xi - R_{0} (-1, t) v(-1) + \sum_{j=1}^{k} h^{j} \left(\frac{1}{2} \int_{-1}^{1} (U_{j-1}) v d\xi - \int_{-1}^{1} R_{j} v_d \xi - R_{j} (-1, t) v(-1) \right)
$$

(3.6a)

$$
+ \sum_{j=k+1}^{\infty} h^{j} \left(\frac{1}{2} \int_{-1}^{1} (U_{j-1}) v d\xi - \int_{-1}^{1} R_{j} v_d \xi - R_{j} (-1, t) v(-1) \right) = 0,
$$

(3.6b)

$$
\int_{-1}^{1} P_{0} w_{\xi} d\xi - P_{0} (1, t) w(1) + \sum_{j=1}^{k} h^{j} \left(\frac{1}{2} \int_{-1}^{1} R_{j-1} w d\xi + \int_{-1}^{1} P_{j} w_{\xi} d\xi - P_{j} (1, t) w(1) \right) +
$$

(3.6c)

$$
\int_{-1}^{1} Q_{0} s_{\xi} d\xi + Q_{0} (-1, t) s(-1) + \sum_{j=1}^{k} h^{j} \left(\frac{1}{2} \int_{-1}^{1} P_{j-1} s d\xi + \int_{-1}^{1} Q_{j} s_{\xi} d\xi + Q_{j} (-1, t) s(-1) \right) +
$$

(3.6d)

$$
\int_{-1}^{1} U_{0} z_{\xi} d\xi - U_{0} (1, t) z(1) + \sum_{j=1}^{k} h^{j} \left(\frac{1}{2} \int_{-1}^{1} Q_{j-1} z d\xi + \int_{-1}^{1} U_{j} z_{\xi} d\xi - U_{j} (1, t) z(1) \right) +
$$

(3.6e)

$$
\sum_{j=k+1}^{\infty} h^{j} \left(\frac{1}{2} \int_{-1}^{1} Q_{j-1} z d\xi + \int_{-1}^{1} U_{j} z_{\xi} d\xi - U_{j} (1, t) z(1) \right) = 0.
$$

Setting each term of the power series zero, the polynomials $U_{j} \in P^j([-1, 1])$, $Q_{j} \in P^j([-1, 1])$, $P_{j} \in P^j([-1, 1])$ and $R_{j} \in P^j([-1, 1])$, $j = 0, \cdots, k$, satisfy the following conditions: $\forall v, w, s, z \in P^k([-1, 1])$,

(3.7a)

$$
- \int_{-1}^{1} R_{0} v_{\xi} d\xi - R_{0} (-1, t) v(-1) = 0,
$$

(3.7b)

$$
\frac{1}{2} \int_{-1}^{1} (U_{j-1}) v d\xi - \int_{-1}^{1} R_{j} v_{\xi} d\xi - R_{j} (-1, t) v(-1) = 0, \quad j = 1, \cdots, k,
$$

(3.7c)

$$
\int_{-1}^{1} P_{0} w_{\xi} d\xi - P_{0} (1, t) w(1) = 0,
$$

(3.7d)

$$
\frac{1}{2} \int_{-1}^{1} R_{j-1} w d\xi + \int_{-1}^{1} P_{j} w_{\xi} d\xi - P_{j} (1, t) w(1) = 0, \quad j = 1, \cdots, k,
$$

(3.7e)

$$
\int_{-1}^{1} Q_{0} s_{\xi} d\xi + Q_{0} (-1, t) s(-1) = 0,
$$

(3.7f)

$$
\frac{1}{2} \int_{-1}^{1} P_{j-1} s d\xi + \int_{-1}^{1} Q_{j} s_{\xi} d\xi + Q_{j} (-1, t) s(-1) = 0, \quad j = 1, \cdots, k,
$$

(3.7g)

$$
\int_{-1}^{1} U_{0} z_{\xi} d\xi - U_{0} (1, t) z(1) = 0,
$$

(3.7h)

$$
\frac{1}{2} \int_{-1}^{1} Q_{j-1} z d\xi + \int_{-1}^{1} U_{j} z_{\xi} d\xi - U_{j} (1, t) z(1) = 0, \quad j = 1, \cdots, k.
Next, we will use induction to prove

\begin{equation}
U_j(\xi, t) = Q_j(\xi, t) = P_j(\xi, t) = R_j(\xi, t) = 0, \quad 0 \leq j \leq k.
\end{equation}

Taking \(v = w = s = z = 1 \) in (3.7a), (3.7c), (3.7e), and (3.7g), respectively, gives

\[U_0(1, t) = Q_0(-1, t) = P_0(1, t) = R_0(-1, t) = 0. \]

Since \(U_0, Q_0, P_0, R_0 \in P^0([-1, 1]) \) are constant polynomials of degree 0, we have \(U_0(\xi, t) = Q_0(\xi, t) = P_0(\xi, t) = R_0(\xi, t) = 0 \). Thus, (3.8) is true for \(j = 0 \). Now we assume that \(U_j(\xi, t) = Q_j(\xi, t) = P_j(\xi, t) = R_j(\xi, t) = 0, \quad 0 \leq j \leq k - 1 \) and prove that \(U_k(\xi, t) = Q_k(\xi, t) = P_k(\xi, t) = R_k(\xi, t) = 0. \)

Next, we note that (3.7b), (3.7d), (3.7f), and (3.7h) for \(j \) prove that

\[U_0(1, t) = Q_0(-1, t) = P_0(1, t) = R_0(-1, t) = 0. \]

Setting \(v = w = s = z = 1 \) in (3.9a), (3.9b), (3.9c), and (3.9d), respectively, yields

\begin{equation}
U_k(1, t) = Q_k(-1, t) = P_k(1, t) = R_k(-1, t) = 0.
\end{equation}

Combining (3.9) and (3.10) we obtain: \(\forall v, w, s, z \in P^k([-1, 1]) \),

\begin{equation}
\int_{-1}^{1} R_k v d\xi = 0, \quad \int_{-1}^{1} P_k w d\xi = 0, \quad \int_{-1}^{1} Q_k s d\xi = 0, \quad \int_{-1}^{1} U_k z d\xi = 0.
\end{equation}

Writing \(U_k(\xi, t), Q_k(\xi, t), P_k(\xi, t), \) and \(R_k(\xi, t) \) as a linear combination of Legendre polynomials,

\[U_k(\xi, t) = \sum_{j=0}^{k} a_j(t) L_j(\xi), \quad Q_k(\xi, t) = \sum_{j=0}^{k} b_j(t) L_j(\xi), \]

\[P_k(\xi, t) = \sum_{j=0}^{k} c_j(t) L_j(\xi), \quad R_k(\xi, t) = \sum_{j=0}^{k} d_j(t) L_j(\xi), \]

and using (3.11) and the orthogonality relation (2.5), we arrive at

\[U_k(\xi, t) = a_k(t) L_k(\xi), \quad Q_k(\xi, t) = b_k(t) L_k(\xi), \]

\[P_k(\xi, t) = c_k(t) L_k(\xi), \quad R_k(\xi, t) = d_k(t) L_k(\xi). \]

Using (3.10) and the properties of Legendre polynomial \(L_k(1) = 1, L_k(-1) = (-1)^k \), we get

\[0 = U_k(1, t) = a_k(t) L_k(1) = a_k(t), \quad 0 = Q_k(-1, t) = b_k(t) L_k(-1) = (-1)^k b_k(t), \]

\[0 = P_k(1, t) = c_k(t) L_k(1) = c_k(t), \quad 0 = R_k(-1, t) = d_k(t) L_k(-1) = (-1)^k d_k(t). \]

Thus,

\begin{equation}
U_k(\xi, t) = Q_k(\xi, t) = P_k(\xi, t) = R_k(\xi, t) = 0.
\end{equation}
Next, after using (3.12), the $O(h^{k+1})$ terms in (3.6) yield

\begin{align}
&\text{(3.13a)} \quad - \int_{-1}^{1} R_{k+1} v_{\xi} d\xi - R_{k+1}(-1,t)v(-1) = 0, \quad \forall \ v \in P^k([-1,1]), \\
&\text{(3.13b)} \quad \int_{-1}^{1} P_{k+1} w_{\xi} d\xi - P_{k+1}(1,t)w(1) = 0, \quad \forall \ w \in P^k([-1,1]), \\
&\text{(3.13c)} \quad \int_{-1}^{1} Q_{k+1} s_{\xi} d\xi + Q_{k+1}(-1,t)s(-1) = 0, \quad \forall \ s \in P^k([-1,1]), \\
&\text{(3.13d)} \quad \int_{-1}^{1} U_{k+1} z_{\xi} d\xi - U_{k+1}(1,t)z(1) = 0, \quad \forall \ z \in P^k([-1,1]).
\end{align}

Taking $v = w = s = z = 1$ in (3.13a), (3.13b), (3.13c), and (3.13d), respectively, we get

\begin{align}
&\text{(3.14)} \quad U_{k+1}(1,t) = Q_{k+1}(-1,t) = P_{k+1}(1,t) = R_{k+1}(-1,t) = 0.
\end{align}

Therefore, (3.13) becomes: \(\forall \ v, w, s, z \in P^k([-1,1]), \)

\begin{align}
&\text{(3.15)} \quad \int_{-1}^{1} R_{k+1} v_{\xi} d\xi = 0, \quad \int_{-1}^{1} P_{k+1} w_{\xi} d\xi = 0, \\
&\int_{-1}^{1} Q_{k+1} s_{\xi} d\xi = 0, \quad \int_{-1}^{1} U_{k+1} z_{\xi} d\xi = 0.
\end{align}

Expanding $U_{k+1}, \ Q_{k+1}, \ P_{k+1}, \ R_{k+1} \in P^{k+1}([-1,1])$ in series of Legendre polynomials \textit{i.e.,}

\begin{align}
&\text{(3.16a)} \quad U_{k+1}(\xi,t) = \sum_{j=0}^{k+1} a_j(t)L_j(\xi), \quad Q_{k+1}(\xi,t) = \sum_{j=0}^{k+1} b_j(t)L_j(\xi), \\
&\text{(3.16b)} \quad P_{k+1}(\xi,t) = \sum_{j=0}^{k+1} c_j(t)L_j(\xi), \quad R_{k+1}(\xi,t) = \sum_{j=0}^{k+1} d_j(t)L_j(\xi),
\end{align}

and using the orthogonality relation (2.5), we obtain

\begin{align*}
U_{k+1}(\xi,t) &= a_k(t)L_k(\xi) + a_{k+1}(t)L_{k+1}(\xi), \\
Q_{k+1}(\xi,t) &= b_k(t)L_k(\xi) + b_{k+1}(t)L_{k+1}(\xi), \\
P_{k+1}(\xi,t) &= c_k(t)L_k(\xi) + c_{k+1}(t)L_{k+1}(\xi), \\
R_{k+1}(\xi,t) &= d_k(t)L_k(\xi) + d_{k+1}(t)L_{k+1}(\xi).
\end{align*}

Using (3.14) and the properties $L_k(1) = 1, \ L_k(-1) = (-1)^k$, we have

\begin{align*}
0 &= U_{k+1}(1,t) = a_k(t)L_k(1) + a_{k+1}(t)L_{k+1}(1) = a_k(t) + a_{k+1}(t), \\
0 &= Q_{k+1}(-1,t) = b_k(t)L_k(-1) + b_{k+1}(t)L_{k+1}(1) = (-1)^k b_k(t) + (-1)^{k+1} b_{k+1}(t), \\
0 &= P_{k+1}(1,t) = c_k(t)L_k(1) + c_{k+1}(t)L_{k+1}(1) = c_k(t) + c_{k+1}(t), \\
0 &= R_{k+1}(-1,t) = d_k(t)L_k(-1) + d_{k+1}(t)L_{k+1}(1) = (-1)^k d_k(t) + (-1)^{k+1} d_{k+1}(t),
\end{align*}

which give $a_{k+1}(t) = -a_k(t), \ b_{k+1}(t) = b_k(t), \ c_{k+1}(t) = -c_k(t), \ d_{k+1}(t) = d_k(t)$. Thus, the leading terms of the discretization errors can be written as

\begin{align*}
U_{k+1}(\xi,t) &= a_{k+1}(t)(L_{k+1}(\xi) - L_k(\xi)) = a_{k+1}(t)R_{k+1}^+(\xi), \\
Q_{k+1}(\xi,t) &= b_{k+1}(t)(L_{k+1}(\xi) + L_k(\xi)) = b_{k+1}(t)R_{k+1}^-(\xi), \\
P_{k+1}(\xi,t) &= c_{k+1}(t)(L_{k+1}(\xi) - L_k(\xi)) = c_{k+1}(t)R_{k+1}^-(\xi), \\
R_{k+1}(\xi,t) &= d_{k+1}(t)(L_{k+1}(\xi) + L_k(\xi)) = d_{k+1}(t)R_{k+1}^-(\xi),
\end{align*}

which complete the proof of the Theorem. \qed
3.2. Case 2. Here, we consider the problem (1.1a) in \([0, h]\) subject to the initial conditions (1.1b) and to the boundary conditions (1.1d). In the following theorem, we show that the results of Theorem 3.1 still hold.

Theorem 3.2. Let \((u, q, p, r)\) and \((u_h, q_h, p_h, r_h)\), respectively, be the solutions of (2.1) and (2.3) in \([0, h]\) subject to the initial conditions (1.1b) and the boundary conditions (1.1d). Let \(x(\xi) = \frac{\xi}{h}(\xi + 1)\) be the mapping of \([0, h]\) onto \([-1, 1]\). Then (3.4) holds.

Proof. Since we consider one element \([0, h]\), the numerical fluxes (2.3f) using the boundary conditions (1.1d) with \(\delta_1 = \frac{h}{2}\) and \(\delta_2 = \frac{h}{2}\) become

\[
\begin{align*}
\hat{u}_h(0, t) &= u_1(t), \quad \hat{u}_h(h, t) = u_3(t), \\
\hat{q}_h(0, t) &= q_0(0, t), \quad \hat{q}_h(h, t) = q_0(h, t) - \frac{k}{h}(u_h(h, t) - u_3(t)), \\
\hat{p}_h(0, t) &= u_2(0, t), \quad \hat{p}_h(h, t) = u_4(t), \\
\hat{r}_h(0, t) &= r_0(0, t), \quad \hat{r}_h(h, t) = r_0(h, t) - \frac{k}{h}(p_h(h, t) - u_4(t)),
\end{align*}
\]

where \(u_h, q_h, p_h\) and \(r_h\) are the LDG solutions on \([0, h]\). Thus,

\[
\begin{align*}
\hat{e}_u(0, t) &= u(0, t) - \hat{u}_h(0, t) = u_1(t) - u_4(t) = 0, \\
\hat{e}_u(h, t) &= u(h, t) - \hat{u}_h(h, t) = u_3(t) - u_4(t) = 0, \\
\hat{e}_q(0, t) &= q(0, t) - \hat{q}_h(0, t) = q(0, t) - q_0(0, t) = e_q(0, t), \\
\hat{e}_q(h, t) &= q(h, t) - \hat{q}_h(h, t) = q(h, t) - q_0(h, t) + \frac{k}{h}(u_h(h, t) - u_3(t)) \\
&= e_q(h, t) - \frac{k}{h}e_u(h, t), \\
\hat{e}_p(0, t) &= p(0, t) - \hat{p}_h(0, t) = u_2(0, t) - u_2(t) = 0, \\
\hat{e}_p(h, t) &= p(h, t) - \hat{p}_h(h, t) = u_4(t) - u_4(t) = 0, \\
\hat{e}_r(0, t) &= r(0, t) - \hat{r}_h(0, t) = r(0, t) - r_0(0, t) = e_r(0, t), \\
\hat{e}_r(h, t) &= r(h, t) - \hat{r}_h(h, t) = r(h, t) - r_0(h, t) + \frac{k}{h}(p_h(h, t) - u_4(t)) \\
&= e_r(h, t) - \frac{k}{h}e_p(h, t).
\end{align*}
\]

Using the mapping of \([0, h]\) onto \([-1, 1]\) given by (2.6), we have

\[
\begin{align*}
\hat{e}_u(-1, t, h) &= 0, \quad \hat{e}_u(1, t, h) = 0, \\
\hat{e}_q(-1, t, h) &= e_q(-1, t, h), \quad \hat{e}_q(1, t, h) = e_q(1, t, h) - \frac{k}{h}e_u(1, t, h), \\
\hat{e}_p(-1, t, h) &= 0, \quad \hat{e}_p(1, t, h) = 0, \\
\hat{e}_r(-1, t, h) &= e_r(-1, t, h), \quad \hat{e}_r(1, t, h) = e_r(1, t, h) - \frac{k}{h}e_p(1, t, h).
\end{align*}
\]

The LDG orthogonality conditions (3.2) with the boundary conditions (1.1d) and numerical fluxes (2.3f) become

\[
\begin{align*}
\frac{h}{2} \int_{-1}^{1} (e_u) w d\xi - \int_{-1}^{1} e_r v d\xi + \left(e_r(1, t, h) - \frac{k}{h}e_p(1, t, h) \right) v(1) &= 0, \\
- e_r(-1, t, h) v(-1) &= 0,
\end{align*}
\]

(3.17a)

\[
\begin{align*}
\frac{h}{2} \int_{-1}^{1} e_r w d\xi + \int_{-1}^{1} e_p w d\xi &= 0,
\end{align*}
\]

(3.17b)
\[
\frac{h}{2} \int_{-1}^{1} e_p s d\xi + \int_{-1}^{1} e_q s\xi d\xi - \left(e_q(1, t, h) - \frac{k}{h} e_u(1, t, h) \right) s(1) + e_q(-1, t, h) s(-1) = 0,
\]
(3.17c)
\[
\frac{h}{2} \int_{-1}^{1} e_q z d\xi + \int_{-1}^{1} e_u z\xi d\xi = 0.
\]
(3.17d)

Substituting the series (3.3) in the LDG orthogonality condition (3.17) and collecting terms having the same powers of \(h \) we get

\[
-kP_b(1, t)v(1) + \left(-\int_{-1}^{1} R_0 v\xi d\xi + (R_0(1, t) - kP_1(1, t)) v(1) - R_0(-1, t)v(-1) \right) h
\]
\[
+ \sum_{j=2}^{\infty} h^j \left(\frac{1}{2} \int_{-1}^{1} (U_{j-2})_{tt} v d\xi - \int_{-1}^{1} R_{j-1} v\xi d\xi + (R_{j-1}(1, t) - kP_j(1, t)) v(1) \right)
\]
\[
- R_{j-1}(-1, t)v(-1) = 0,
\]
\[
\int_{-1}^{1} P_0 w\xi d\xi + \sum_{j=1}^{\infty} h^j \left(\frac{1}{2} \int_{-1}^{1} R_{j-1} w d\xi + \int_{-1}^{1} P_j w\xi d\xi \right) = 0,
\]
\[
kU_0(1, t)s(1) + \left(\int_{-1}^{1} Q_0 s\xi d\xi - (Q_0(1, t) - kU_1(1, t)) s(1) + Q_0(-1, t)s(-1) \right) h + \sum_{j=1}^{\infty} h^j \left(\frac{1}{2} \int_{-1}^{1} P_{j-2} s d\xi + \int_{-1}^{1} Q_{j-1} s\xi d\xi - (Q_{j-1}(1, t) - kU_j(1, t)) s(1) \right)
\]
\[
+ Q_{j-1}(-1, t)s(-1) = 0,
\]
\[
\int_{-1}^{1} U_0 z\xi d\xi + \sum_{j=1}^{\infty} h^j \left(\frac{1}{2} \int_{-1}^{1} Q_{j-1} z d\xi + \int_{-1}^{1} U_j z\xi d\xi \right) = 0.
\]

Setting each term of the power series zero yields the orthogonality conditions: \(\forall v, w, s, z \in P^k([-1, 1]), \)

\[
-kP_b(1, t)v(1) = \int_{-1}^{1} P_0 w\xi d\xi = kU_0(1, t)s(1) = \int_{-1}^{1} U_0 z\xi d\xi = 0,
\]
(3.18a)
\[
-kP_b(1, t)v(1) + \left(-\int_{-1}^{1} R_0 v\xi d\xi + (R_0(1, t) - kP_1(1, t)) v(1) - R_0(-1, t)v(-1) \right) h = 0,
\]
(3.18b)
\[
\int_{-1}^{1} Q_0 s\xi d\xi - (Q_0(1, t) - kU_1(1, t)) s(1) + Q_0(-1, t)s(-1) = 0,
\]
(3.18c)
\[
\frac{1}{2} \int_{-1}^{1} (U_{j-2})_{tt} v d\xi - \int_{-1}^{1} R_{j-1} v\xi d\xi + (R_{j-1}(1, t) - kP_j(1, t)) v(1) + R_{j-1}(-1, t)v(-1) = 0, \quad j \geq 2,
\]
(3.18d)
\[
\frac{1}{2} \int_{-1}^{1} R_{j-1} w d\xi + \int_{-1}^{1} P_j w\xi d\xi = 0, \quad j \geq 1,
\]
(3.18e)
\[
\frac{1}{2} \int_{-1}^{1} P_{j-2} s d\xi + \int_{-1}^{1} Q_{j-1} s\xi d\xi - (Q_{j-1}(1, t) - kU_j(1, t)) s(1) + Q_{j-1}(-1, t)s(-1) = 0, \quad j \geq 2,
\]
(3.18f)
\[
\frac{1}{2} \int_{-1}^{1} Q_{j-1} z d\xi + \int_{-1}^{1} U_j z\xi d\xi = 0, \quad j \geq 1.
\]
(3.18g)
Again, by induction we will prove that

\[(3.19)\quad U_j(\xi, t) = Q_j(\xi, t) = P_j(\xi, t) = R_j(\xi, t) = 0, \quad 0 \leq j \leq k.\]

Taking \(v = 1\) and \(s = 1\) in (3.18a) and using the fact that \(U_0, P_0 \in P^0([-1, 1])\) yields \(U_0(\xi, t) = P_0(\xi, t) = 0\). Similarly, choosing \(w = z = 1\) in (3.18e) and (3.18g) for \(j = 1\) leads to \(Q_0(\xi, t) = R_0(\xi, t) = 0\).

Taking \(v = 1\) and \(s = 1\) in (3.18b) and (3.18c), respectively, and using the fact that \(Q_0(\xi, t) = R_0(\xi, t) = 0\), we obtain

\[(3.20)\quad U_1(1, t) = P_1(1, t) = 0.\]

Letting \(w = \xi\) in (3.18e) for \(j = 1\) and \(z = \xi\) in (3.18f) for \(j = 1\) and using \(Q_0(\xi, t) = R_0(\xi, t) = 0\), we obtain

\[(3.21)\quad \int_{-1}^{1} U_1 d\xi = \int_{-1}^{1} P_1 d\xi = 0.\]

Combining (3.20) with (3.21) we get \(U_1(\xi, t) = P_1(\xi, t) = 0\). Now, we assume that

\[(3.22)\quad U_j(\xi, t) = Q_j(\xi, t) = P_j(\xi, t) = R_j(\xi, t) = 0, \quad 0 \leq j \leq k - 1,\]

and use induction to show that \(U_k(\xi, t) = Q_k(\xi, t) = P_k(\xi, t) = R_k(\xi, t) = 0\). Next, we note that (3.22), (3.18d), (3.18e), (3.18f), and (3.18g) for \(j = k\) gives:

\[
\forall v, w, s, z \in P^k([-1, 1]),
\]

\[(3.23)\quad P_k(1, t)v(1) = \int_{-1}^{1} P_k w_\xi d\xi = U_k(1, t)s(1) = \int_{-1}^{1} U_k z_\xi d\xi = 0.\]

Letting \(v = s = 1\) in (3.23), we get

\[(3.24)\quad U_k(1, t) = P_k(1, t) = 0.\]

Writing \(U_k(\xi, t)\) and \(P_k(\xi, t)\) as a linear combination of Legendre polynomials, \(U_k(\xi, t) = \sum_{j=0}^{k} a_j(t)L_j(\xi)\), \(P_k(\xi, t) = \sum_{j=0}^{k} c_j(t)L_j(\xi)\), using (3.23), and the orthogonality (2.5), we obtain \(U_k(\xi, t) = a_k(t)L_k(\xi)\) and \(P_k(\xi, t) = c_k(t)L_k(\xi)\), which, after applying (3.24) and the fact that \(L_k(1) = 1\), give \(0 = U_k(1, t) = a_k(t)L_k(1) = a_k(t)\) and \(0 = P_k(1, t) = c_k(t)L_k(1) = c_k(t)\). Thus,

\[(3.25)\quad U_k(\xi, t) = P_k(\xi, t) = 0.\]

Combining (3.18d) and (3.18f) for \(j = k + 1\) with (3.22) and (3.25) yields \((\forall s \in P^k([-1, 1]))\)

\[(3.26)\quad \int_{-1}^{1} R_k v_\xi d\xi + (R_k(1, t) - kP_{k+1}(1, t))v(1) - R_k(-1, t)v(-1) = 0,
\]

\[(3.27)\quad \int_{-1}^{1} Q_k s_\xi d\xi - (Q_k(1, t) - kU_{k+1}(1, t))s(1) + Q_k(-1, t)s(-1) = 0.\]

Testing against \(w = z = 1\) in (3.18e) and (3.18g), respectively, for \(j = k + 1\) yield

\[(3.28)\quad \int_{-1}^{1} R_k d\xi = 0, \quad \int_{-1}^{1} Q_k d\xi = 0.\]

Testing against \(v = \xi - 1\) in (3.26) and \(s = \xi - 1\) in (3.27), we get

\[(3.29)\quad -\int_{-1}^{1} R_k d\xi + 2R_k(-1, t) = 0, \quad \int_{-1}^{1} Q_k d\xi - 2Q_k(-1, t) = 0.\]

Combining (3.29) with (3.28), we arrive at

\[(3.30)\quad R_k(-1, t) = Q_k(-1, t) = 0.\]
Now, (3.26) and (3.27) become
\[(3.31) \quad - \int_{-1}^{1} R_k v \xi d\xi + (R_k(1, t) - kP_{k+1}(1, t)) v(1) = 0,\]
\[(3.32) \quad \int_{-1}^{1} Q_k s \xi d\xi - (Q_k(1, t) - kU_{k+1}(1, t)) s(1) = 0.\]
Choosing \(v = s = (\xi - 1)^i, 1 \leq i \leq k\), the second terms in (3.31) and (3.32) vanish and
\[- \int_{-1}^{1} R_k(\xi - 1)^{i-1} d\xi = 0, \quad \int_{-1}^{1} Q_k(\xi - 1)^{i-1} d\xi = 0, \quad \forall 1 \leq i \leq k.\]
Expanding \(Q_k(\xi, t) = \sum_{j=0}^{k} b_j(t)L_j(\xi), R_k(\xi, t) = \sum_{j=0}^{k} d_j(t)L_j(\xi)\), and \((\xi - 1)^{i-1} = \sum_{j=0}^{i-1} c_j(t)L_j(\xi), 1 \leq i \leq k\), in series of Legendre polynomials and using the orthogonality relation (2.5), we arrive at
\[Q_k(\xi, t) = b_k(t)L_k(\xi), \quad R_k(\xi, t) = d_k(t)L_k(\xi).\]
Applying (3.30) and using the property \(L_k(-1) = (-1)^k\), we obtain
\[0 = Q_k(-1, t) = b_k(t)L_k(-1) = (-1)^k b_k(t),\]
\[0 = R_k(-1, t) = d_k(t)L_k(-1) = (-1)^k d_k(t),\]
which yield \(b_k = d_k = 0\). We conclude that \(Q_k(\xi, t) = R_k(\xi, t) = 0\), which complete the proofs of (3.4a) and (3.4b). Next we will show (3.4c) and (3.4d). On the one hand, since \(Q_k(\xi, t) = R_k(\xi, t) = 0, (3.26)\) and (3.27) give
\[(3.33) \quad U_{k+1}(1, t) = P_{k+1}(1, t) = 0.\]
On the other hand, (3.18e) and (3.18g) for \(j = k + 1\) yield
\[(3.34) \quad \int_{-1}^{1} P_{k+1} w \xi d\xi = 0, \quad \int_{-1}^{1} U_{k+1} z \xi d\xi = 0, \quad \forall w, z \in P^k([-1, 1]).\]
Expanding \(U_{k+1} \in P^{k+1}([-1, 1])\) and \(P_{k+1} \in P^{k+1}([-1, 1])\) in series of Legendre polynomials \(U_{k+1}(\xi, t) = \sum_{j=0}^{k+1} a_j(t)L_j(\xi), P_{k+1}(\xi, t) = \sum_{j=0}^{k+1} c_j(t)L_j(\xi)\), using (3.34) and the orthogonality relation (2.5), we arrive at
\[U_{k+1}(\xi, t) = a_k(t)L_k(\xi) + a_{k+1}(t)L_{k+1}(\xi),\]
\[P_{k+1}(\xi, t) = c_k(t)L_k(\xi) + c_{k+1}(t)L_{k+1}(\xi).\]
Applying (3.33) and the fact that \(L_k(1) = L_{k+1}(1) = 1\), we obtain
\[0 = U_{k+1}(1, t) = a_k(t)L_k(1) + a_{k+1}(t)L_{k+1}(1) = a_k(t) + a_{k+1}(t),\]
\[0 = P_{k+1}(1, t) = c_k(t)L_k(1) + c_{k+1}(t)L_{k+1}(1) = c_k(t) + c_{k+1}(t),\]
which give \(a_{k+1}(t) = -a_k(t)\) and \(c_{k+1}(t) = -c_k(t)\). Thus,
\[U_{k+1}(\xi, t) = a_{k+1}(t)(L_{k+1}(\xi) - L_k(\xi)), \quad P_{k+1}(\xi, t) = c_{k+1}(t)(L_{k+1}(\xi) - L_k(\xi)).\]
Next, (3.18d) and (3.18f) for \(j = k + 2\) become
\[- \int_{-1}^{1} R_{k+1} v \xi d\xi + (R_{k+1}(1, t) - kP_{k+2}(1, t)) v(1) - R_{k+1}(-1, t)v(-1) = 0,\]
\[(3.35a) \quad \forall v \in P^k([-1, 1]),\]
\[\int_{-1}^{1} Q_{k+1} s \xi d\xi - (Q_{k+1}(1, t) - kU_{k+2}(1, t)) s(1) + Q_{k+1}(-1, t)s(-1) = 0,\]
\[(3.35b) \quad \forall s \in P^k([-1, 1]).\]
Taking $v = s = \xi - 1$ gives
\begin{equation}
(3.36) \quad -\int_{-1}^{1} R_{k+1}^i d\xi + 2 R_{k+1}^{1}(-1, t) = 0, \quad \int_{-1}^{1} Q_{k+1}^i d\xi - 2 Q_{k+1}^{1}(-1, t) = 0.
\end{equation}

Testing against $w = z = 1$ in (3.18e) and (3.18g) for $j = k + 1$, we obtain
\begin{equation}
(3.37) \quad \int_{-1}^{1} R_{k+1}^i d\xi = 0, \quad \int_{-1}^{1} Q_{k+1}^i d\xi = 0.
\end{equation}

Combining (3.36) and (3.37), we get
\begin{equation}
(3.38) \quad Q_{k+1}^{1}(-1, t) = R_{k+1}^{1}(-1, t) = 0.
\end{equation}

Thus, (3.35) becomes
\begin{align}
(3.39a) \quad &-\int_{-1}^{1} R_{k+1}^{i} v_{\xi} d\xi + (R_{k+1}^{1}(-1, t) - k R_{k+2}^{1}(1, t)) v(1) = 0, \quad \forall v \in P^k([-1, 1]), \\
(3.39b) \quad &\int_{-1}^{1} Q_{k+1}^{i} s_{\xi} d\xi - (Q_{k+1}^{1}(-1, t) - k U_{k+2}^{1}(1, t)) s(1) = 0, \quad \forall s \in P^k([-1, 1]).
\end{align}

Testing against $v = s = (\xi - 1)^i, 1 \leq i \leq k$, the second terms in (3.39) are 0 and
\begin{equation}
(3.40) \quad -\int_{-1}^{1} R_{k+1}^{i} (\xi - 1)^i d\xi = 0, \quad \int_{-1}^{1} Q_{k+1}^{i} (\xi - 1)^i d\xi = 0, \quad \forall 1 \leq i \leq k.
\end{equation}

Expanding $Q_{k+1}^{i}(\xi, t) = \sum_{j=0}^{k+1} b_j(t) L_j(\xi), R_{k+1}^{i}(\xi, t) = \sum_{j=0}^{k+1} d_j(t) L_j(\xi)$, and $(\xi - 1)^i = \sum_{j=0}^{i-1} c_j(t) L_j(\xi), 1 \leq i \leq k$ in series of Legendre polynomials and using the orthogonality relation (2.5), (3.40) yields
\begin{equation}
(3.41) \quad Q_{k+1}^{i}(\xi, t) = b_k(t) L_k(\xi) + b_{k+1}(t) L_{k+1}(\xi), R_{k+1}^{i}(\xi, t) = d_k(t) L_k(\xi) + d_{k+1}(t) L_{k+1}(\xi).
\end{equation}

Combining (3.38) with (3.41) we conclude that $b_{k+1} = b_k$ and $d_{k+1} = d_k$, which complete the proof of the Theorem.

In the previous section, we proved that the k-degree LDG solutions u_h and p_h are $O(h^{k+2})$ superconvergent at the roots of the $(k+1)$-degree right Radau polynomial and q_h and r_h are $O(h^{k+2})$ superconvergent at the roots of the $(k+1)$-degree left Radau polynomial. Now, let us note that a global superconvergence error analysis is yet to be performed and will be investigated in the future. We expect that a similar superconvergence result of Shu et al. [52, 28, 43] will be needed.

4. A posteriori error estimation

In this section, we present a technique to compute asymptotically exact a posteriori estimates of the LDG errors. The LDG error estimates under investigation are computed by solving a local steady problem with no boundary conditions on each element. Our numerical examples show that the LDG discretization error estimates converge to the true spatial errors in the L^2-norm as $h \rightarrow 0$.

Before we present the weak finite element formulations to compute a posteriori error estimates for the beam equation (1.1a), we state and prove some results which will be needed in our a posteriori error analysis.

Lemma 4.1. The $(k+1)$-degree Radau polynomials on I_i, $R_{k+1,i}^r(x), x \in I_i$, satisfy
\begin{equation}
(4.1) \quad \int_{I_i} \frac{dR_{k+1,i}^r}{dx} R_{k+1,i}^r, dx = -2, \quad \int_{I_i} \frac{dR_{k+1,i}^l}{dx} R_{k+1,i}^l, dx = 2.
\end{equation}
Proof. Since \(L_k(1) = 1 \) and \(L_k(-1) = (-1)^k \), we have \(\bar{R}_{k+1}^+(1) = R_{k+1,i}^+(x_i) = 0 \) and \(\bar{R}_{k+1}^-(1) = R_{k+1,i}^-(x_i) = 2(-1)^{k+1} \). Thus,

\[
\int_{I_i} \frac{dR_{k+1,i}^+}{dx} R_{k+1,i}^+ dx = \frac{1}{2}(R_{k+1,i}^+)^2(x_i) - \frac{1}{2}(R_{k+1,i}^-)^2(x_i-1) - 2.
\]

Similarly, since \(\bar{R}_{k+1}^-(1) = R_{k+1,i}^-(x_i) = 2 \) and \(\bar{R}_{k+1}^+(1) = R_{k+1,i}^+(x_i) = 0 \), we have

\[
\int_{I_i} \frac{dR_{k+1,i}^-}{dx} R_{k+1,i}^- dx = \frac{1}{2}(R_{k+1,i}^-)^2(x_i) - \frac{1}{2}(R_{k+1,i}^+)^2(x_i-1) + 2.
\]

Thus, we have completed the proof the Lemma. \(\square \)

Next, we present the weak finite element formulations to compute a posteriori error estimates for the beam equation (1.1a). Multiplying the four equations in (2.1) by test functions and replacing \(u \) by \(u + e_u \), \(q \) by \(q + e_q \), \(p \) by \(p + e_p \), and \(r \) by \(r + e_r \), we get

\begin{align*}
(4.4a) & \quad \int_{I_i} (e_r) x v dx = \int_{I_i} (R_{h,1} - (e_u)_{tt}) v dx, \\
(4.4b) & \quad - \int_{I_i} (e_p) x w dx = \int_{I_i} (R_{h,2} - (e_r)) w dx, \\
(4.4c) & \quad - \int_{I_i} (e_q) x s dx = \int_{I_i} (R_{h,3} - (e_p)) s dx, \\
(4.4d) & \quad - \int_{I_i} (e_u) x z dx = \int_{I_i} (R_{h,4} - (e_q)) z dx,
\end{align*}

where

\[
R_{h,1} = f - (u_h)_{tt} - (r_h) X, \quad R_{h,2} = (p_h)_{x} - r_h, \quad R_{h,3} = (q_h)_{x} - p_h, \quad R_{h,4} = (u_h)_{x} - q_h.
\]

Since the true errors can be split into significant parts and less significant parts as shown in Theorem 3.1, our error estimate procedure consists of approximating the true errors on each element \(I_i \) by the leading terms as

\[
e_u \approx E_u = a_{k+1}(t) R_{k+1,i}^+ (x), \quad e_q \approx E_q = b_{k+1}(t) R_{k+1,i}^- (x), \quad x \in I_i, \quad t \in [0,T],
\]

\[
e_p \approx E_p = c_{k+1}(t) R_{k+1,i}^-(x), \quad e_r \approx E_r = d_{k+1}(t) R_{k+1,i}^+(x), \quad x \in I_i, \quad t \in [0,T],
\]

where the coefficients of the leading terms of the errors, \(a_{k+1}, b_{k+1}, c_{k+1}, d_{k+1} \) can be obtained from (4.4) as follows: (i) Neglecting the unknowns errors \((e_u)_{tt}, e_q, e_p \) and \(e_r \) which will be justified in Remark 1, (ii) replacing \(e_u \) by \(E_u \), \(e_q \) by \(E_q \), \(e_p \) by \(E_p \), and \(e_r \) by \(E_r \) in (4.4), and (iii) choosing \(v = s = R_{k+1,i}^+ (x), w = z = R_{k+1,i}^- (x), \)
we obtain the following equations for $a_{k+1}, b_{k+1}, c_{k+1}$, and d_{k+1}

\begin{align}
(4.5a) \quad d_{k+1} & \int_{I_i} \frac{dR_{k+1,i}^+}{dx} R_{k+1,i}^- dx = \int_{I_i} R_{h,1} R_{k+1,i}^- dx, \\
(4.5b) \quad -c_{k+1} & \int_{I_i} \frac{dR_{k+1,i}^+}{dx} R_{k+1,i}^+ dx = \int_{I_i} R_{h,2} R_{k+1,i}^+ dx, \\
(4.5c) \quad -b_{k+1} & \int_{I_i} \frac{dR_{k+1,i}^-}{dx} R_{k+1,i}^- dx = \int_{I_i} R_{h,3} R_{k+1,i}^- dx, \\
(4.5d) \quad -a_{k+1} & \int_{I_i} \frac{dR_{k+1,i}^-}{dx} R_{k+1,i}^+ dx = \int_{I_i} R_{h,4} R_{k+1,i}^+ dx.
\end{align}

Using the properties in (4.1) and solving for $a_{k+1}, b_{k+1}, c_{k+1}$, and d_{k+1}, we get

\begin{align}
(4.6a) \quad a_{k+1}(t) & = \frac{1}{2} \int_{I_i} R_{h,4} R_{k+1,i}^+ dx, \quad b_{k+1}(t) = -\frac{1}{2} \int_{I_i} R_{h,3} R_{k+1,i}^- dx, \\
(4.6b) \quad c_{k+1}(t) & = \frac{1}{2} \int_{I_i} R_{h,2} R_{k+1,i}^+ dx, \quad d_{k+1}(t) = \frac{1}{2} \int_{I_i} R_{h,1} R_{k+1,i}^- dx.
\end{align}

Remark 1. Numerical experiments show that neglecting the terms involving $(e_u)_{tt}$, $(e_q)_{tt}$, (e_p) and (e_r) does not affect the quality of the a posteriori error estimates for u, q, p and r. In fact, the terms involving $(e_u)_{tt}, (e_q), (e_p)$ and (e_r) on the right-hand side of (4.4) can be neglected since the terms on the left-hand side contain the derivative of the errors with respect to x.

An accepted efficiency measure of a posteriori error estimates is the effectivity index. In this paper, we use the global effectivity indices

\[\theta_u(t) = \frac{\|E_u\|}{\|e_u\|}, \quad \theta_q(t) = \frac{\|E_q\|}{\|e_q\|}, \quad \theta_p(t) = \frac{\|E_p\|}{\|e_p\|}, \quad \theta_r(t) = \frac{\|E_r\|}{\|e_r\|}. \]

Ideally, the global effectivity indices should stay close to one and should converge to one under mesh refinement.

5. **Numerical examples**

In this section, we provide some numerical examples to demonstrate the global superconvergence results and the asymptotic exactness of our a posteriori error estimates under mesh refinement. The initial conditions are determined using (2.4). Temporal integration is performed by the fourth-order classical explicit Runge-Kutta method. A time step Δt is chosen so that temporal errors are small relative to spatial errors. We do not discuss the influence of the time discretization error in this paper. We compute the maximum LDG errors $\|e_u\|^*$ and $\|e_p\|^*$ at shifted roots of $(k + 1)$-degree right-Radau polynomial on each element I_i and then take the maximum over all elements I_i, $i = 1, \cdots, N$. Similarly, the maximum LDG errors $\|e_q\|^*$ and $\|e_r\|^*$ are computed at shifted roots of $(k + 1)$-degree left-Radau polynomial on each element and by taking the maximum over all elements i.e.,

\[\|e_u\|^* = \max_{1 \leq i \leq N} \left(\max_{1 \leq j \leq k+1} |e_u(x_{j,i}^+, t)| \right), \quad \|e_q\|^* = \max_{1 \leq i \leq N} \left(\max_{1 \leq j \leq k+1} |e_q(x_{j,i}^+, t)| \right), \]
\[\|e_p\|^* = \max_{1 \leq i \leq N} \left(\max_{1 \leq j \leq k+1} |e_p(x_{j,i}^-, t)| \right), \quad \|e_r\|^* = \max_{1 \leq i \leq N} \left(\max_{1 \leq j \leq k+1} |e_r(x_{j,i}^-, t)| \right), \]
where $x_{j,i}^\pm$ are the shifted roots of $R_{k+1,i}^\pm$ on I_i.\]
Example 5.1. We consider the following problem with mixed boundary conditions

\[
\begin{aligned}
&u_{tt} + u_{xxxx} = 2e^{x+t}, \quad x \in [0,1], \ t \in [0,1], \\
u(x,0) = e^x, \quad u_t(x,0) = e^{x}, \quad x \in [0,1], \\
u(0,t) = e^t, \quad u_x(1,t) = e^{1+t}, \quad u_{xx}(0,t) = e^t, \quad u_{xxx}(0,t) = e^{1+t}, \quad t \in [0,1].
\end{aligned}
\]

This problem has the exact solution \(u(x,t) = e^{x+t} \). We implemented the proposed LDG method with the numerical fluxes (2.3e). We consider the case of uniform meshes having \(N = 4, 8, 12, 16, 20 \) elements and using the spaces \(P^k \) with \(k = 1, 2 \) and \(3 \). The \(L^2 \)-norm of the true errors \(e_u, e_q, e_p \) and \(e_r \) at final time \(T = 1 \) are presented in Table 1. This indicates that the order of convergence is \(k + 1 \) for \(P^k \) spaces. Next, we present the zero-level curves of the true errors \(e_u, e_q, e_p, \) and \(e_r \) in Figures 1-3 at time \(t = 1 \) and for \(k \) ranging from 1 to 3. The Radau points of degree \(k + 1 \) are shown on each element as \(\times \) signs. We observe that the zero-level curves pass close to the superconvergence points marked by \(\times \) and the roots of the true errors get closer to the roots of Radau polynomials with increasing \(k \) and \(N \). The maximum errors at the superconvergence points as well as their order of convergence shown in Table 2 indicate that the LDG errors \(e_u, e_q, e_p, \) and \(e_r \) at time \(t = 1 \) are \(O(h^{k+2}) \) superconvergent at Radau points. This example demonstrates that the local superconvergence results hold globally. On each element we apply the error estimation procedure (4.6) to compute error estimates for the LDG solution and its derivatives up to third order. The global effectivity indices at \(t = 1 \) shown in Table 3 indicate that, for smooth solutions, our \(a \) posteriori error estimates converge to the true errors under both \(h \)- and \(p \)-refinements. We repeated this experiment with all parameters kept unchanged except for the boundary conditions where we used

1. \(u(0,t) = e^t, \ u_x(0,t) = e^t, \ u(1,t) = e^{1+t}, \ u_x(1,t) = e^{1+t}, \ t \in [0,1], \)
2. \(u(0,t) = e^t, \ u_x(0,t) = e^t, \ u(1,t) = e^{1+t}, \ u_x(1,t) = e^{1+t}, \ t \in [0,1]. \)

The exact solution for both cases is given by \(u(x,t) = e^{x+t} \). Similar results have been observed. These results are not included to save space.

Example 5.2. In this example we consider the following problem subject to the periodic boundary conditions

\[
\begin{aligned}
&u_{tt} + u_{xxxx} = 2e^{t} \cos x, \quad x \in [0,2\pi], \ t \in [0,5], \\
u(x,0) = \cos x, \quad u_t(x,0) = \cos x, \quad x \in [0,2\pi],
\end{aligned}
\]

The exact solution is given by \(u(x,t) = e^t \cos x \). We solve this problem using the LDG method on uniform meshes having \(N = 4, 8, 12, 16, 20 \) elements and using the spaces \(P^k \) with \(k = 1, 2 \) and \(3 \). Table 4 shows that the true errors \(e_u, e_q, e_p \) and \(e_r \) at \(t = 5 \) are \(O(h^{k+1}) \) convergent in \(L^2 \) norm. We present the zero-level curves of the true errors \(e_u, e_q, e_p, \) and \(e_r \) in Figures 4-6 at time \(t = 5 \) and for \(k \) ranging from 1 to 3. The Radau points of degree \(k + 1 \) are shown on each element as \(\times \) signs. We observe that all errors vanish at points close to the Radau points for all solutions. The maximum errors at the superconvergence points as well as their order of convergence shown in Table 5 indicate that the LDG errors \(e_u, e_q, e_p, \) and \(e_r \) at time \(t = 5 \) are \(O(h^{k+2}) \) superconvergent at Radau points. This is in full agreement with the theory. On each element we apply the error estimation procedure (4.6) to compute error estimates for the LDG solution and its derivatives up to third order. The results shown in Table 6 indicate that the global effectivity indices at \(t = 5 \) converge to unity under \(h \)-refinement.

Table 1. $||e_u||$, $||e_q||$, $||e_p||$ and $||e_r||$ errors at $t = 1$ and orders of convergence for Example 5.1 on uniform meshes having $N = 4, 8, 12, 16, 20$ elements using P_k, $k = 1$ to 3.

<table>
<thead>
<tr>
<th>N</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td></td>
<td>e_u</td>
</tr>
<tr>
<td>4</td>
<td>1.8113e-2</td>
<td>3.6721e-4</td>
<td>5.6546e-6</td>
</tr>
<tr>
<td>8</td>
<td>4.5847e-3</td>
<td>1.9821</td>
<td>3.5901e-7</td>
</tr>
<tr>
<td>12</td>
<td>2.0440e-3</td>
<td>1.9923</td>
<td>7.0196e-8</td>
</tr>
<tr>
<td>16</td>
<td>7.3763e-4</td>
<td>1.9968</td>
<td>2.9980e-9</td>
</tr>
<tr>
<td>20</td>
<td>2.0440e-3</td>
<td>1.9923</td>
<td>7.0196e-8</td>
</tr>
</tbody>
</table>

6. Concluding remarks

In this paper, we investigated the superconvergence properties of the LDG method applied to the fourth-order initial-boundary value problems in one space dimension. We performed a local error analysis to show that the leading terms of the spatial discretization errors for the LDG solution and its spatial derivatives up to third order using k-degree polynomial approximations are proportional to $(k+1)$-degree Radau polynomials. As a consequence, the local discretization errors converge as $O(h^{k+2})$ at the roots of Radau polynomials of degree $k+1$ on each element. These results are used to construct simple, efficient, and asymptotically exact a posteriori error estimates. These LDG error estimates are computationally simple and are obtained by solving a local steady problem with no boundary conditions on each element. Our a posteriori error estimates are tested on several problems to show their efficiency and accuracy under mesh refinement. Even though the analysis in this paper is restricted to the classical Euler-Bernoulli beam equation with constant coefficients, the same superconvergence results can be directly generalized to the fourth-order Euler-Bernoulli beam equation with variable coefficients. Superconvergence properties of the LDG method applied to two-dimensional problems on rectangular meshes are currently under investigation and will be reported in a future paper. The generalization to nonlinear equations and to two space dimensions on triangular meshes involve several technical difficulties. These will be investigated in the future.
Figure 1. Zero-level curves of $e_u(\cdot, t = 1)$, $e_q(\cdot, t = 1)$, $e_p(\cdot, t = 1)$, $e_r(\cdot, t = 1)$ (from upper left to lower right) for Example 5.1 using P^k, $k = 1$ on uniform meshes having $N = 8$ elements.

Figure 2. Zero-level curves of $e_u(\cdot, t = 1)$, $e_q(\cdot, t = 1)$, $e_p(\cdot, t = 1)$, $e_r(\cdot, t = 1)$ (from upper left to lower right) for Example 5.1 using P^k, $k = 2$ on uniform meshes having $N = 8$ elements.

References
Figure 3. Zero-level curves of $e_u(\cdot, t = 1), e_q(\cdot, t = 1), e_p(\cdot, t = 1), e_r(\cdot, t = 1)$ (from upper left to lower right) for Example 5.1 using $P^k, k = 3$ on uniform meshes having $N = 8$ elements.

Figure 4. Zero-level curves of $e_u(\cdot, t = 5), e_q(\cdot, t = 5), e_p(\cdot, t = 5), e_r(\cdot, t = 5)$ (from upper left to lower right) for Example 5.2 using $P^k, k = 1$ on uniform meshes having $N = 12$ elements.

Table 2. Maximum errors and orders of convergence of e_u, e_q, e_p and e_r at Radau points and $t = 1$ for Example 5.1 on uniform meshes having $N = 4, 8, 12, 16, 20$ elements using P^k, $k = 1 - 3$.

<table>
<thead>
<tr>
<th>N</th>
<th>$k = 1$</th>
<th></th>
<th>$k = 2$</th>
<th></th>
<th>$k = 3$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td></td>
<td>e_u</td>
<td></td>
<td>^*$ order</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>1.9715e-3 9.3203e-6</td>
<td>7.8796e-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.5042e-4 2.9762</td>
<td>1.2793e-7 3.9377</td>
<td>3.4600e-10 4.9609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.1547e-5 2.9911</td>
<td>4.0970e-8 3.9572</td>
<td>8.2930e-11 4.9714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.6177e-5 2.9931</td>
<td>1.6907e-8 3.9675</td>
<td>2.7304e-11 4.9787</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.0226e-3 1.0128e-5</td>
<td>7.6217e-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.6055e-4 2.9566</td>
<td>6.0687e-7 3.9466</td>
<td>2.5101e-9 4.9243</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.7907e-5 2.9775</td>
<td>1.3106e-7 3.9753</td>
<td>3.3897e-10 4.9379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3.3930e-5 2.9828</td>
<td>4.1730e-8 3.9781</td>
<td>8.1569e-11 4.9515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.6958e-5 2.9877</td>
<td>1.7157e-8 3.9839</td>
<td>2.6974e-11 4.9590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.0667e-3 8.9319e-6</td>
<td>7.2285e-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.1965e-4 2.8259</td>
<td>6.0879e-7 3.8750</td>
<td>2.2931e-9 4.9783</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9.8371e-5 2.9067</td>
<td>1.2655e-7 3.8742</td>
<td>3.0420e-10 4.9819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.1887e-5 2.9877</td>
<td>1.7157e-8 3.9839</td>
<td>2.6974e-11 4.9590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.0595e-3 1.1301e-5</td>
<td>1.6181e-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.6030e-4 2.9674</td>
<td>7.1358e-7 3.9847</td>
<td>3.6693e-9 4.9668</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7.7720e-5 2.9811</td>
<td>1.4151e-7 3.9912</td>
<td>4.8364e-10 4.9941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3.2914e-5 2.9867</td>
<td>4.4861e-8 3.9933</td>
<td>1.1485e-10 4.9970</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.6891e-5 2.9896</td>
<td>1.8398e-8 3.9944</td>
<td>3.8549e-11 4.8924</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Global effectivity indices at $t = 1$ for Example 5.1 on uniform meshes having $N = 4, 8, 12, 16, 20$ elements using P^k, $k = 1$ to 3.

<table>
<thead>
<tr>
<th>N</th>
<th>$k = 1$</th>
<th></th>
<th>$k = 2$</th>
<th></th>
<th>$k = 3$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θ_u</td>
<td>θ_q</td>
<td>θ_u</td>
<td>θ_q</td>
<td>θ_u</td>
<td>θ_q</td>
</tr>
<tr>
<td>4</td>
<td>0.9738 1.0304</td>
<td>0.9794 1.0210</td>
<td>0.9845 1.0157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.9857 1.0154</td>
<td>0.9896 1.0105</td>
<td>0.9922 1.0078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.9902 1.0103</td>
<td>0.9931 1.0070</td>
<td>0.9948 1.0052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.9925 1.0077</td>
<td>0.9948 1.0052</td>
<td>0.9961 1.0039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.9940 1.0062</td>
<td>0.9958 1.0042</td>
<td>0.9969 1.0034</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9618 1.0408</td>
<td>0.9790 1.0457</td>
<td>0.9842 1.0267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.9823 1.0265</td>
<td>0.9895 1.0184</td>
<td>0.9923 0.9885</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.9887 1.0173</td>
<td>0.9930 1.0110</td>
<td>0.9946 1.0153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.9917 1.0124</td>
<td>0.9948 1.0088</td>
<td>0.9911 1.1962</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.9934 1.0104</td>
<td>0.9958 1.0065</td>
<td>0.9713 1.1550</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. $||e_u||$, $||e_q||$, $||e_p||$ and $||e_r||$ errors at $t = 5$ and orders of convergence for Example 5.2 on uniform meshes having $N=4$, 8, 12, 16, 20 elements using P^k, $k = 1$ to 3.

N	$k = 1$		$k = 2$		$k = 3$													
	$		e_u		$	order	$		e_u		$	order	$		e_u		$	order
4	4.0976e+1	4.9826	4.7344e-1	3.9839	5.9219e-3	3.9953												
8	9.9604	2.0405	6.2229e-1	3.0012	2.9922e-2	3.9839												
12	4.4054	2.0120	1.8431e-1	3.0010	5.9219e-3	3.9953												
16	2.4740	2.0057	7.7746e-2	3.0004	1.8750e-3	3.9976												
20	1.5821	2.0036	3.9803e-2	3.0003	7.6823e-4	3.9987												
	$		e_q		$	order	$		e_q		$	order	$		e_q		$	order
4	4.2341e+1	4.9377	4.7298e-1	3.9953	5.9219e-3	3.9976												
8	1.0101e+1	2.0676	6.2193e-1	3.0012	2.9922e-2	3.9839												
12	4.4352	2.0299	1.8429e-1	3.0010	5.9219e-3	3.9953												
16	2.4836	2.0156	7.7743e-2	3.0004	1.8750e-3	3.9976												
20	1.5861	2.0096	3.9803e-2	3.0003	7.6823e-4	3.9987												
	$		e_p		$	order	$		e_p		$	order	$		e_p		$	order
4	3.6719e+1	4.5895	4.5778e-1	3.9953	5.9219e-3	3.9976												
8	9.7350	1.9153	6.1020e-1	2.9110	2.9922e-2	3.9976												
12	4.3624	1.9797	1.8273e-1	2.9738	5.8996e-3	3.9936												
16	2.4605	1.9906	7.7372e-2	2.9873	1.8710e-3	3.9919												
20	1.5767	1.9944	3.9681e-2	2.9925	7.6719e-4	3.9952												
	$		e_r		$	order	$		e_r		$	order	$		e_r		$	order
4	3.4230e+1	4.8173	4.6899e-1	3.9953	5.9219e-3	3.9976												
8	9.5236	1.8457	6.1690e-1	2.9651	2.9834e-2	3.9936												
12	4.3188	1.9503	1.8353e-1	2.9900	5.9148e-3	3.9910												
16	2.4469	1.9749	7.7589e-2	2.9927	1.8736e-3	3.9961												
20	1.5710	1.9858	3.9746e-2	2.9977	7.6789e-4	3.9973												

Figure 5. Zero-level curves of $e_u(\cdot, t = 5), e_q(\cdot, t = 5), e_p(\cdot, t = 5), e_r(\cdot, t = 5)$ (from upper left to lower right) for Example 5.2 using P^k, $k = 2$ on uniform meshes having $N = 12$ elements.

Figure 6. Zero-level curves of $e_u(\cdot, t = 5), e_q(\cdot, t = 5), e_p(\cdot, t = 5), e_r(\cdot, t = 5)$ (from upper left to lower right) for Example 5.2 using P^k, $k = 2$ on uniform meshes having $N = 12$ elements.

Table 5. Maximum errors and orders of convergence of e_u, e_q, e_p and e_r at Radau points and $t = 5$ for Example 5.2 on uniform meshes having $N = 4, 8, 12, 16, 20$ elements using P^k, $k = 1 - 3$.

<table>
<thead>
<tr>
<th>N</th>
<th>$k = 1$</th>
<th></th>
<th>$k = 2$</th>
<th></th>
<th>$k = 3$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$|e_u|$</td>
<td>order</td>
<td>$|e_u|$</td>
<td>order</td>
<td>$|e_u|$</td>
<td>order</td>
</tr>
<tr>
<td>4</td>
<td>6.026</td>
<td>3.2547e-1</td>
<td>1.5898e-2</td>
<td>3.8582</td>
<td>5.4020e-4</td>
<td>4.8792</td>
</tr>
<tr>
<td>8</td>
<td>8.5198e-1</td>
<td>2.9424</td>
<td>4.0583</td>
<td>7.0849e-5</td>
<td>5.0100</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.0991e-1</td>
<td>2.9715</td>
<td>4.0414</td>
<td>1.6763e-5</td>
<td>5.0103</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.6185e-2</td>
<td>2.9832</td>
<td>5.5104e-4</td>
<td>4.838e-6</td>
<td>5.0074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$|e_q|$</td>
<td>order</td>
<td>$|e_q|$</td>
<td>order</td>
<td>$|e_q|$</td>
<td>order</td>
</tr>
<tr>
<td>4</td>
<td>7.4938</td>
<td>2.6504e-1</td>
<td>1.1768e-2</td>
<td>3.7093</td>
<td>4.8209e-4</td>
<td>4.6094</td>
</tr>
<tr>
<td>8</td>
<td>9.9104e-1</td>
<td>2.9187</td>
<td>2.9424</td>
<td>7.0849e-5</td>
<td>5.0100</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.6134e-1</td>
<td>2.9781</td>
<td>4.0414</td>
<td>1.6763e-5</td>
<td>5.0103</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6.3905e-2</td>
<td>2.9870</td>
<td>5.5104e-4</td>
<td>4.838e-6</td>
<td>5.0074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$|e_p|$</td>
<td>order</td>
<td>$|e_p|$</td>
<td>order</td>
<td>$|e_p|$</td>
<td>order</td>
</tr>
<tr>
<td>4</td>
<td>6.7028</td>
<td>3.1762e-1</td>
<td>1.9194e-2</td>
<td>3.7093</td>
<td>4.8209e-4</td>
<td>4.6094</td>
</tr>
<tr>
<td>8</td>
<td>8.7421e-1</td>
<td>2.9187</td>
<td>2.9187</td>
<td>7.0849e-5</td>
<td>5.0100</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.6134e-1</td>
<td>2.9781</td>
<td>4.0414</td>
<td>1.6763e-5</td>
<td>5.0103</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6.3905e-2</td>
<td>2.9870</td>
<td>5.5104e-4</td>
<td>4.838e-6</td>
<td>5.0074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$|e_r|$</td>
<td>order</td>
<td>$|e_r|$</td>
<td>order</td>
<td>$|e_r|$</td>
<td>order</td>
</tr>
<tr>
<td>4</td>
<td>8.9681</td>
<td>8.3742e-1</td>
<td>5.3038e-4</td>
<td>3.7093</td>
<td>4.8209e-4</td>
<td>4.6094</td>
</tr>
<tr>
<td>8</td>
<td>1.0251</td>
<td>3.1290</td>
<td>6.0824e-2</td>
<td>3.7382</td>
<td>2.0130e-3</td>
<td>4.7195</td>
</tr>
<tr>
<td>12</td>
<td>2.9913e-1</td>
<td>3.0377</td>
<td>4.0414</td>
<td>1.6763e-5</td>
<td>5.0103</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.2556e-1</td>
<td>3.0175</td>
<td>5.5104e-4</td>
<td>4.838e-6</td>
<td>5.0074</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6.4129e-2</td>
<td>3.0110</td>
<td>5.5104e-4</td>
<td>4.838e-6</td>
<td>5.0074</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Global effectivity indices at $t = 5$ for Example 5.2 on uniform meshes having $N = 4, 8, 12, 16, 20$ elements using P^k, $k = 1$ to 3.

<table>
<thead>
<tr>
<th>N</th>
<th>θ_u</th>
<th>θ_q</th>
<th>θ_p</th>
<th>θ_r</th>
<th>θ_u</th>
<th>θ_q</th>
<th>θ_p</th>
<th>θ_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.9475</td>
<td>0.9090</td>
<td>0.9797</td>
<td>0.9886</td>
<td>0.9894</td>
<td>0.9894</td>
<td>0.9894</td>
<td>0.9894</td>
</tr>
<tr>
<td>8</td>
<td>0.9905</td>
<td>0.9761</td>
<td>0.9930</td>
<td>0.9971</td>
<td>0.9971</td>
<td>0.9971</td>
<td>0.9971</td>
<td>0.9971</td>
</tr>
<tr>
<td>12</td>
<td>0.9961</td>
<td>0.9893</td>
<td>0.9969</td>
<td>0.9970</td>
<td>0.9970</td>
<td>0.9970</td>
<td>0.9970</td>
<td>0.9970</td>
</tr>
<tr>
<td>16</td>
<td>0.9979</td>
<td>0.9939</td>
<td>0.9983</td>
<td>0.9993</td>
<td>0.9993</td>
<td>0.9993</td>
<td>0.9993</td>
<td>0.9993</td>
</tr>
<tr>
<td>20</td>
<td>0.9987</td>
<td>0.9961</td>
<td>0.9989</td>
<td>0.9995</td>
<td>0.9995</td>
<td>0.9995</td>
<td>0.9995</td>
<td>0.9995</td>
</tr>
</tbody>
</table>

216 M. BACCOUCH

Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182, USA
E-mail: mbaccouch@unomaha.edu
URL: http://www.unomaha.edu/math/people/baccouch/