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DISCONTINUOUS GALERKIN METHOD FOR MONOTONE

NONLINEAR ELLIPTIC PROBLEMS

CHUNJIA BI AND YANPING LIN

Abstract. In this paper, we consider the incomplete interior penalty method for a class of second
order monotone nonlinear elliptic problems. Using the theory of monotone operators, we show
that the corresponding discrete method has a unique solution. The a priori error estimate in an

energy norm is developed under the minimal regularity assumption on the exact solution, i.e.,
u ∈ H1(Ω). Moreover, we propose a residual-based a posteriori error estimator and derive the
computable upper and lower bounds on the error in an energy norm.

Key words. discontinuous Galerkin method, nonlinear elliptic problems, monotone, a priori
error estimate, a posteriori error estimate.

1. Introduction

The discontinuous Galerkin (DG) methods were introduced in the early 1970s to
solve first-order hyperbolic problems [17, 34, 38, 46]. Simultaneously, but quite in-
dependently, as non-standard schemes, they were proposed for the approximations
of second-order elliptic equations [1, 41, 56]. Since the DG methods are locally con-
servative, stable and high-order methods, which can easily handle irregular meshes
with hanging nodes and approximations that have polynomials of different degree
in different elements, they have been studied extensively in the past several decades.
We refer the reader to [2, 15, 16] for a comprehensive historical survey of this area
of research, to [1, 11, 12, 23, 29, 42, 44, 45, 47, 50, 55, 56] and [52, 58] for the a
priori error analysis of the DG methods for linear elliptic problems and optimal
control problems, respectively.

Except for linear elliptic problems, some researchers have studied the a priori
error estimates of the DG methods for the nonlinear elliptic problems. Houston,
Robson and Süli [30] considered a one parameter family of hp-DG methods for a
class of quasi-linear elliptic problems with mixed boundary conditions

−∇ · (λ(x, |∇u|)∇u) = f(x),(1.1)

where the function λ satisfies the following monotone condition, i.e., there exist
positive constants mλ and Mλ such that

mλ(t− s) ≤ λ(x, t)t − λ(x, s)s ≤Mλ(t− s), t ≥ s ≥ 0, x ∈ Ω.

Using a result from the theory of monotone operators, the authors shown that
the corresponding discrete method has a unique solution and derived the a priori
error estimate in a mesh-dependent energy norm for u ∈ C1(Ω) ∩ Hk(Ω), k ≥ 2,
which is optimal in the mesh size and mildly suboptimal in the polynomial degree.
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Gudi, Nataraj, and Pani [27], Gudi and Pani[28] studied the hp local DG method
and the hp-DG methods, respectively, for a class of quasilinear elliptic problems of
nonmonotone type

−∇ · (a(x, u)∇u) = f(x), in Ω,(1.2)

proved the existence and uniqueness of the discrete solution and derived the a
priori error estimates in a mesh-dependent energy norm and in the L2-norm under
the assumption u ∈ H2(Ω) ∩ W 1,∞(Ω). Bi and Ginting [4] considered the two-
grid algorithm of the h-version DG method for (1.2) and derived the convergence
estimates.

Recently, Gudi, Nataraj and Pani [26] analyzed a one parameter family of hp-DG
methods for the following second order nonlinear elliptic boundary value problems

−∇ · a(x, u,∇u) + a0(x, u,∇u) = f(x), in Ω,(1.3)

where the given functions a(x, y, z) and a0(x, y, z) are twice continuously differen-
tiable with all the derivatives through second order being bounded, and the matrix
az(x, y, z) is symmetric and there exist two positive constants λ1 and λ2 such that

λ1|ξ|
2 ≤ ξTaz(x, y, z)ξ ≤ λ2|ξ|

2, ∀x ∈ Ω, ∀y ∈ R, ∀z, ξ ∈ R
2.(1.4)

The authors developed the error estimate in the broken H1-norm, which is optimal
in h and suboptimal in p, using piecewise polynomials of degree p ≥ 2, when the
solution u ∈ H5/2(Ω). We note that, in order to prove the existence and uniqueness
of the DG solution, the assumptions u ∈ H5/2(Ω) and p ≥ 2 in [26] are necessary.

Additionally, we mention some related works in which the h-DG methods are
used to solve the other nonlinear problems. We refer to [8] and [9] for (1.1) and
monotone nonlinear fluid flow problems respectively, to [39] for nonlinear dispersive
problems, to [43] for the nonlinear second-order elliptic and hyperbolic systems, to
[48] for nonlinear non-Fickian diffusion problems and to [53] for nonlinear elasticity
problems.

On the other hand, the a posteriori error estimates of DG methods have attracted
many researchers’ attention and some important results have been achieved. For
the linear elliptic problems, we refer the reader to [3, 13, 19, 31, 32, 35, 36, 49] and
the references therein for details. However, there are considerably fewer papers that
are concerned with the nonlinear elliptic problems. To the best of our knowledge,
there are only [7] and [33] in this direction. Bustinza, Gatica and Cockburn [7]
used a Helmholtz decomposition of the error to derive a residual-based a posteriori
error estimates in an energy norm of h-version local DG method for the nonlinear
elliptic problems (1.2) in which the differential operators are strongly monotone.
Similar technique has been used in [3, 13] for linear elliptic problems. Houston,
Süli and Wihler [33] derived energy norm a posteriori error estimates of the hp-DG
methods for (1.1) using the technique of the approximation of discontinuous finite
element functions by conforming ones, which has been developed by some authors
in the context of the h-DG methods in [35, 36, 37] and has been extended to hp-DG
methods by [31, 33].

In this paper, we study the incomplete interior penalty method for the nonlinear
elliptic problems that have the form (1.3) and are monotonic (specific assumptions
on the functions ai, i = 0, 1, 2, where a = (a1, a2), will be given in subsection 2.1).
Our purpose in this paper is twofold. As a first task, we formulate the incomplete
interior penalty method to the monotone nonlinear elliptic problems and prove that
the form associated with this DG method is bounded, Lipschitz-continuous and
strongly monotone. Then, using a result from the theory of monotone operators,
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we show that this DG method has a unique solution. Using the technique proposed
in [25], in which the a priori error estimates in the energy norm of various DG
methods have been developed under the assumption u ∈ Hk(Ω) for the linear
elliptic problems of order 2k, k = 1, 2, we develop the a priori error estimate in
an energy norm under the minimal regularity assumption on the exact solution,
i.e., u ∈ H1(Ω). In contrast to [25], in this paper, we consider the DG method for
monotone nonlinear elliptic problems. A difficulty and a novel contribution is the
a posteriori error analysis.

The second task in this paper is to carry out the a posteriori error analysis. We
analyze the residual-based a posteriori error estimates of the incomplete interior
penalty method for the monotone nonlinear elliptic problems and derive the com-
putable upper bounds on the error in the broken H1-seminorm and in an energy
norm. The proof of our upper bound crucially relies on the approximation of discon-
tinuous finite element functions by conforming ones. In particular, by introducing
a function in H1

0 (Ω) and its conforming approximation, we give a representation
of the error, which plays a key role in the derivation of the upper bound for the
gradients of the error. Based on this representation of the error, with the help of
the approximation result, we show that our error estimator proposed in this paper
is reliable with respect to the broken H1-seminorm and an energy norm, respec-
tively. It should be pointed out that our upper bounds on the error in the broken
H1-seminorm and in an energy norm don’t contain the penalty parameter, which
appears in the analogous upper bound, see [35, 36] for Possion equation. In this
respect, our upper bounds on the error in the broken H1-seminorm and the energy
norm are stronger than those in [35, 36].

We remark that the DG method in this paper is the so-called incomplete interior
penalty method. This method was studied by [18, 43, 51]. Houston, Robson and
Süli [30], Gudi, Nataraj and Pani [26] analyzed a one parameter family hp-DG
method, in which the parameter θ = 0 corresponds to the incomplete interior
penalty method.

We point out that the classical finite element method of the monotone nonlin-
ear elliptic problems considered in this paper has been studied in [21, 22, 57], in
which the solvability of the discrete problems and the convergence of approximates
solutions to an exact weak solution u ∈ H1(Ω) are proved.

The outline of this paper is as follows. In Section 2, we introduce the continuous
problems and formulate the incomplete interior penalty method. In Section 3,
we prove the existence and uniqueness of the DG solution. Since a result, which is
similar to the discrete local efficiency estimate in the a posteriori error analysis, will
be used to derive the a priori error estimate in the energy norm, we first discuss the
a posteriori error estimates in Section 4. And Section 5 is devoted to the a priori
error estimate in the energy norm.

Throughout this paper, we use the following standard notation. For simplicity, in
this paper, we assume that Ω is a bounded polygonal domain in R

2 with boundary
∂Ω. For the domain Ω, we write Wm,p(Ω), 1 ≤ p ≤ ∞, to denote the usual Sobolev
spaces with norm || · ||m,p,Ω and seminorm | · |m,p,Ω [6, 14]. To simplify the notation,
we denote Wm,2(Ω) by Hm(Ω) and skip the index p = 2 and Ω whenever possible,
i.e., we use ||u||m,p,Ω = ||u||m,p, ||u||m,2,Ω = ||u||m and ||u||0 = ||u||. The same
convention is used for the seminorms as well. We define H1

0 (Ω) to be the subspace
of H1(Ω) in which the functions have zero trace on ∂Ω. In what follows, the symbol
(·, ·) denotes the L2(Ω) inner product. Moreover, C, with or without subscripts,
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denote positive constants independent of h and may take different values at different
occurrences.

2. Preliminaries

In this section, we first recall the continuous problems and introduce some as-
sumptions on the coefficients functions in the subsection 2.1. The triangulation
Th of the domain Ω and the discontinuous finite element space associated with Th
are given in the subsection 2.2. In the subsection 2.3, we formulate the incomplete
interior penalty method of the monotone nonlinear elliptic problems.

2.1. Continuous problems. In this subsection, we again recall the following
monotone nonlinear elliptic boundary value problem

−∇ · a(x, u,∇u) + a0(x, u,∇u) = f(x), in Ω,
(2.1)

u = 0, on ∂Ω,

where a = (a1, a2).
We assume that the given functions ai(x, ξ), i = 0, 1, 2, have the following prop-

erties:
(A). The derivatives ∂ai

∂ξj
(x, ξ), (i, j = 0, 1, 2) are continuous and bounded in

Ω× R
3, i.e., there exists a constant C0 > 0 such that

∣∣∣∣
∂ai
∂ξj

(x, ξ)

∣∣∣∣ ≤ C0, ∀x ∈ Ω, ∀ξ ∈ R
3.(2.2)

(B). The derivatives ∂ai/∂ξj(x, ξ)(i, j = 0, 1, 2) satisfy the following inequality

α

2∑

i=1

η2i ≤

2∑

i,j=0

∂ai
∂ξj

(x, ξ)ηiηj , ∀x ∈ Ω, ∀ξ, η ∈ R
3,

where α > 0 is a constant independent of x, ξ and η.
Remark 2.1. In contrast with the assumptions on the functions ai which are
given in [26], in this paper, we have (B) instead of (1.4), which guarantees (2.1) is
monotonic.

Examples of the functions ai(x, ξ). Let b(x, t) be a function defined on Ω ×
[0,+∞) with the following properties:
a). b(x, t) and the derivatives ∂b/∂xi, i = 1, 2, ∂b/∂t are continuous in Ω× [0,+∞).
b). There exist constants 0 < c1 < c2 such that

c1 ≤ b(x, t) ≤ c2, in Ω× [0,+∞),

∂b

∂xi
≤ c2, i = 1, 2; 0 ≤

∂b

∂t
≤ c2, ∀x ∈ Ω, t ≥ 0,

and
∂b

∂t
(x, τ2)|τ | ≤ c2,

∂b

∂t
(x, τ2)τ2 ≤ c2, ∀x ∈ Ω, ∀τ ∈ R.

Let us set

ai(x, ξ) = b(x, ξ20 + ξ21 + ξ22)ξi, i = 0, 1, 2,(2.3)

or

ai(x, ξ) = b(x, ξ21 + ξ22)ξi, i = 1, 2, a0 = b̃(x, ξ20)ξ0,(2.4)
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where b, b̃ are two functions with the properties introduced above. Functions (2.3)
and (2.4) satisfy the assumptions (A)-(B) and the problem (2.1) defined by means
of (2.3) and (2.4) has many important applications (cf. e.g. [20, 24]). In particular,
we note that the prescribed mean curvature presented in [26], also falls into the form
(2.1) with our assumptions:

a(x, u,∇u) =
(
1 + |∇u|2

)− 1
2 ∇u, a0(x, u∇u) = 0.

2.2. Discontinuous finite element space. In this paper, we consider shape-
regular meshes Th that partition Ω into open triangles or quadrilaterals, where
h = max{hK : K ∈ Th} and hK is the diameter of K. For a definition of shape
regularity, we refer to [14]. Each element K ∈ Th can be affinely mapped onto

the reference element K̂, which is either the open triangle {(x1, x2) : −1 < x1 <
1,−1 < x2 < −x1} or the open unit square (−1, 1)2 in R

2.
In this paper, we do not require Th to be conforming. In this case, we allow

the mesh Th to be one-irregular, i.e., each edge of any one element contains at
most one hanging node (which, for simplicity, we assume to be the midpoint of the
corresponding edge), see [33] for details.

Due to our assumption that the subdivision Th is shape-regular, we know that
it satisfies the bounded local variation condition, that is, if |∂Ki ∩ ∂Kj| > 0 for any
Ki,Kj ∈ Th, then there exists a constant ρ1 > 0 such that

ρ−1
1 ≤ hKi

/hKj
≤ ρ1.(2.5)

Moreover, if e ⊂ ∂K, there exist positive constants c1(ρ1) and c2(ρ1) independent
of h such that

c1(ρ1)hK ≤ he ≤ c2(ρ1)hK ,(2.6)

where he is the length of e.
For a positive integer k, we define the broken Sobolev space on Th,

Hk(Th) = {v ∈ L2(Ω) : v|K ∈ Hk(K), ∀K ∈ Th},

equipped with the broken Sobolev norm and seminorm, respectively,

||v||k,h =

(
∑

K∈Th

||v||2k,K

) 1
2

, |v|k,h =

(
∑

K∈Th

|v|2k,K

) 1
2

.

For a given Th, we define the discontinuous finite element space Vh by

Vh = {vh ∈ L2(Ω) : vh|K ∈ Zr(K), K ∈ Th},(2.7)

where Zr(K) is the space Pr(K) of polynomials of total degree ≤ r, if K is a
triangle, or the space Qr(K) of polynomials of degree ≤ r in each variable, if K is
a quadrilateral, 1 ≤ r.

Next, we define the average and jump operators that are required for the DG
method. To this end, we denote the set of interior edges of Th by ΓI and the set
of boundary edges by Γ∂ . Furthermore, we define Γ = ΓI ∪ Γ∂ . Let K

+ and K−

be two adjacent elements of Th which share a common edge e, e = ∂K+ ∩ ∂K−.
Furthermore, let v and q be scalar- and vector-valued functions, respectively, that
are smooth inside each element K±. v± and q± denote the traces of v and q on e
taken from within the interior of K±, respectively. Then, the averages and jumps
of v and q on e are given by, respectively,

{v} =
1

2
(v+ + v−), [v] = v+nK+ + v−nK− ;
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{q} =
1

2
(q+ + q−), [q] = q+ · nK+ + q− · nK− ,

where nK± denote the unit outward normal vector of ∂K±, respectively.
For the boundary edge e ⊂ ∂Ω, we set {v} = v, {q} = q and [v] = vn with n

denoting the unit outward normal vector on the boundary ∂Ω.
It is clear that the jump [v] of the scalar function v is a vector parallel to the

normal, and the jump [q] of the vector function q is a scalar quantity. The advantage
of these definitions is that they do not depend on assigning an ordering to the
elements K±.

We shall make use of the following trace inequality (see for example in [1]).
Lemma 2.1. Let ω ∈ H1(K) and e an edge of K ∈ Th. There exists a constant C
independent of he such that

||ω||20,e ≤ C(h−1
e ||ω||20,K + he||∇ω||

2
0,K).

From Lemma 2.1 and the inverse inequality [14], we have the following lemma.
Lemma 2.2. Let vh ∈ Zr(K). Then, there exists a positive constant C independent
of hK such that

||vh||0,e ≤ Ch
− 1

2

K ||vh||0,K , ||∇vh||0,e ≤ Ch
− 1

2

K |vh|1,K .

The following integral form of the Taylor’s formula for v ∈ R and p ∈ R
2 in

terms of u ∈ R and q ∈ R
2 will be used in the subsequent analysis:

ai(x, v,p) − ai(x, u,q) = ãi,u(x, u,q)(v − u)

+ãi,q(x, u,q)(p − q), i = 0, 1, 2,(2.8)

where

ãi,u(x, u,q) =

∫ 1

0

ai,u(x, v
t,pt)dt, ãi,q(x, u,q) =

∫ 1

0

ai,q(x, v
t,pt)dt,

vt = u+ t(v − u), pt = q+ t(p− q).

2.3. Discontinuous Galerkin method. The weak formulation of (2.1) is defined
as

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω),(2.9)

where

a(u, v) =

∫

Ω

(a(u,∇u) · ∇v + a0(u,∇u)v) dx, (f, v) =

∫

Ω

fvdx.

Here onwards we don’t specify the dependent of the functions a and a0 on x.
In order to present the incomplete interior penalty method, we introduce the

form ah(ωh, vh) for ωh, vh ∈ Vh

ah(ωh, vh) =
∑

K∈Th

∫

K

(a(ωh,∇ωh) · ∇vh + a0(ωh,∇ωh)vh) dx

−
∑

e∈Γ

∫

e

{a(ωh,∇ωh)} [vh]ds+
∑

e∈Γ

γ

he

∫

e

[ωh][vh]ds,(2.10)

where γ is the discontinuity penalization parameter independent of he.
The incomplete interior penalty method for (2.1) is: find uh ∈ Vh such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh.(2.11)

It will be shown that there is a parameter γ0 > 0 independent of he such that for
γ ≥ γ0, the incomplete interior penalty method (2.11) possesses a unique solution.
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We introduce the following so-called energy norms, see [30, 31] and [28], respec-
tively

|||v||| =

(
|v|21,h +

∑

e∈Γ

γ

he

∫

e

[v]2ds

) 1
2

, |||v|||− =

(
|v|21,h +

∑

e∈Γ

1

he

∫

e

[v]2ds

) 1
2

.

Note that the norm ||| · ||| depends on the parameter γ and the norm ||| · |||− is
independent of γ.

We state the Poincaré-type inequalities on H1(Th). For a proof, we refer to [5].
Lemma 2.3. ([5]) Let v ∈ H1(Th). Then there exists a constant C > 0 independent
of h and v such that

||v|| ≤ C|||v|||−.

From Lemma 2.3, we know that for γ ≥ 1

||v|| ≤ C|||v|||.(2.12)

3. Existence and uniqueness of DG solution

In this section, using a result from the theory of monotone operators, we will
show that the problem (2.11) has a unique solution. For this purpose, we first prove
the form ah(·, ·) is bounded, Lipschitz-continuous and strongly monotone.

The following lemma gives the boundedness of the form ah(·, ·).
Lemma 3.1. There is a constant C > 0 such that for any ωh, vh ∈ Vh and γ ≥ 1

|ah(ωh, vh)| ≤ C(1 + |||ωh|||)|||vh|||.(3.1)

Proof. From assumption (A), we know that there exists a constant c0 such that

|ai(x, ξ)| ≤ c0


1 +

2∑

j=0

|ξj |


 , ∀x ∈ Ω, ∀ξ ∈ R

3, i = 0, 1, 2.(3.2)

From the definition (2.10) of the form ah(·, ·), we see that it suffices to bound each
term on the left-hand side of (2.10) by the right-hand side of (3.1). In fact, by
Cauchy-Schwarz inequality, (3.2) and (2.12), we have

∣∣∣∣∣
∑

K∈Th

∫

K

(a(ωh,∇ωh) · ∇vh + a0(ωh,∇ωh)vh) dx

∣∣∣∣∣ ≤ C(1 + |||ωh|||)|||vh|||.(3.3)
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Applying Cauchy-Schwarz inequality, (3.2), Lemma 2.2 and (2.12) gives
∣∣∣∣∣
∑

e∈Γ

∫

e

{a(ωh,∇ωh)} [vh]ds

∣∣∣∣∣

≤
∑

e∈Γ

|| {a(ωh,∇ωh)} ||0,e||[vh]||0,e

≤

(
∑

e∈Γ

he
γ
|| {a(ωh,∇ωh)} ||

2
0,e

) 1
2
(
∑

e∈Γ

γ

he
||[vh]||

2
0,e

) 1
2

≤

(
∑

K∈Th

∑

e∈∂K

he
γ
||a(ωh,∇ωh)||

2
0,e

) 1
2

|||vh|||(3.4)

≤ C

(
∑

K∈Th

∑

e∈∂K

he(he + ||ωh||
2
0,e + ||∇ωh||

2
0,e)

) 1
2

|||vh|||

≤ C(1 + ||ωh||+ |ωh|1,h)|||vh|||

≤ C(1 + |||ωh|||)|||vh|||.

Using Cauchy-Schwarz inequality, we get

∣∣∣∣∣
∑

e∈Γ

γ

he

∫

e

[ωh][vh]ds

∣∣∣∣∣ ≤

(
∑

e∈Γ

γ

he
||[ωh]||

2
0,e

) 1
2
(
∑

e∈Γ

γ

he
||[vh]||

2
0,e

) 1
2

≤ |||ωh||| |||vh|||.(3.5)

Substituting (3.3), (3.4) and (3.5) into (2.10) completes the proof of this lemma. �
Lemma 3.2. The form ah(·, ·) is Lipschitz-continuous in its first argument for
γ ≥ 1

|ah(ω1, v)− ah(ω2, v)| ≤ C|||ω1 − ω2||| |||v|||, ∀ω1, ω2, v ∈ Vh.(3.6)

Proof. It follows from the definition of ah(·, ·) that

ah(ω1, v)− ah(ω2, v) =
∑

K∈Th

∫

K

(a(ω1,∇ω1)− a(ω2,∇ω2)) · ∇vdx

+
∑

K∈Th

∫

K

(a0(ω1,∇ω1)− a0(ω2,∇ω2)) vdx

−
∑

e∈Γ

∫

e

{a(ω1,∇ω1)− a(ω2,∇ω2)} [v]ds(3.7)

+
∑

e∈Γ

γ

he

∫

e

[ω1 − ω2][v]ds

= I1 + · · ·+ I4.

Applying Cauchy-Schwarz inequality, (2.8), assumption (A) and (2.12), we deduce
that

|I1| ≤ C(||ω1 − ω2||+ |ω1 − ω2|1,h)|v|1,h ≤ C|||ω1 − ω2||| |||v|||.(3.8)

Similarly, we have

|I2| ≤ C|||ω1 − ω2||| |||v|||.(3.9)
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Using Cauchy-Schwarz inequality, (2.8), Lemma 2.2 and (2.12), we can bound I3

|I3| ≤
∑

e∈Γ

(
he
γ

∫

e

{a(ω1,∇ω1)− a(ω2,∇ω2)}
2 ds

) 1
2
(
γ

he

∫

e

[v]2ds

) 1
2

≤

(
∑

e∈Γ

he
γ

∫

e

{a(ω1,∇ω1)− a(ω2,∇ω2)}
2 ds

) 1
2
(
∑

e∈Γ

γ

he

∫

e

[v]2ds

) 1
2

≤ C

(
∑

K∈Th

hK
γ

∫

∂K

(a(ω1,∇ω1)− a(ω2,∇ω2))
2
ds

) 1
2

|||v|||(3.10)

≤ C
1

γ
1
2

(
∑

K∈Th

hK(||ω1 − ω2||
2
0,∂K + ||∇(ω1 − ω2)||

2
0,∂K)

) 1
2

|||v|||

≤ C
1

γ
1
2

(||ω1 − ω2||+ |ω1 − ω2|1,h)|||v|||

≤ C′ 1

γ
1
2

|||ω1 − ω2||| |||v|||.

The estimation of the fourth term I4 on the right-hand side of (3.7) is easy

|I4| ≤

(
∑

e∈Γ

γ

he
||[ω1 − ω2]||

2
0,e

) 1
2
(
∑

e∈Γ

γ

he
||[v]||20,e

) 1
2

≤ C|||ω1 − ω2||| |||v|||.(3.11)

Combining (3.8)-(3.11) with (3.7) yields the desired result (3.6). �

Lemma 3.3. There exists a constant γ0 > 1 such that for γ ≥ γ0, ah(·, ·) is strongly
monotone in the sense that
1

2
min(α, 1)|||ω1 − ω2|||

2 ≤ ah(ω1, ω1 − ω2)− ah(ω2, ω1 − ω2), ∀ω1, ω2 ∈ Vh.

Proof. Setting ω = ω1 − ω2, from the definition of ah(·, ·), we have

ah(ω1, ω)− ah(ω2, ω) =
∑

K∈Th

∫

K

(a(ω1,∇ω1)− a(ω2,∇ω2)) · ∇ωdx

+
∑

K∈Th

∫

K

(a0(ω1,∇ω1)− a0(ω2,∇ω2))ωdx

−
∑

e∈Γ

∫

e

{a(ω1,∇ω1)− a(ω2,∇ω2)} [ω]ds(3.12)

+
∑

e∈Γ

γ

he

∫

e

[ω]2ds

= J1 + · · ·+ J4.

In order to formulate ai(ω1,∇ω1)− ai(ω2,∇ω2), i = 0, 1, 2, we introduce the nota-
tion ζ, η, τ ∈ R

3 and set

gi(t) = ai(ζ + t(η − ζ)), i = 0, 1, 2.

Obviously, we have

ai(ζ) = gi(0), ai(η) = gi(1), g′i(t) =
2∑

j=0

∂ai
∂ξj

(ζ + t(η − ζ))(ηj − ζj).
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Then

ai(η) − ai(ζ) =

∫ 1

0

g′i(t)dt =

2∑

j=0

∫ 1

0

∂ai
∂ξj

(ζ + t(η − ζ))(ηj − ζj)dt.(3.13)

Thus
2∑

i=0

(ai(η)− ai(ζ)) τi =

2∑

i,j=0

∫ 1

0

∂ai
∂ξj

(ζ + t(η − ζ))(ηj − ζj)τidt.(3.14)

Setting τ = η − ζ in (3.14) and using the assumption (B), we immediately obtain

α

2∑

i=1

(ηi − ζi)
2 ≤

2∑

i=0

(ai(η) − ai(ζ)) (ηi − ζi).(3.15)

Let η0 = ω1, η1 = ∂ω1

∂x1
, η2 = ∂ω1

∂x2
and ζ0 = ω2, ζ1 = ∂ω2

∂x1
, ζ2 = ∂ω2

∂x2
. Inserting them

into (3.15), we can get the lower bound on J1 + J2 on the right-hand side of (3.12)

α
∑

K∈Th

|ω1 − ω2|
2
1,K ≤ J1 + J2.(3.16)

Then, from (3.16), the definitions of ||| · ||| and J4 on the right-hand side of (3.12),
we know that

min(α, 1)|||ω1 − ω2|||
2 ≤ J1 + J2 + J4.(3.17)

From (3.10), we get the estimation of the third term on the right-hand side of (3.12)

|J3| ≤
C′

γ
1
2

|||ω1 − ω2|||
2.(3.18)

Combining (3.17), (3.18) with (3.12) yields
(
min(α, 1)−

C′

γ
1
2

)
|||ω1 − ω2|||

2 ≤ ah(ω1, ω)− ah(ω2, ω).(3.19)

Then, choosing γ0 such that C′/γ
1/2
0 ≤ 1

2 min(α, 1), we obtain the desired result.
�

We conclude this section by proving the existence and uniqueness of the solution
of (2.11) by means of a result from the theory of monotone operators. The proof
is the same as that of Theorem 2.5 in [30]. However, for sake of completeness, we
present the main steps.

we shall make use of the following result from the monotone operator theory (see
Theorem 3.2.23 in [40]).
Lemma 3.4. ([40]) Let H be a real Hilbert space with inner product (·, ·)H and norm
|| · ||H, and let L be an operator from H into itself. Suppose that L is Lipschitz-
continuous, i.e., there exists Λ > 0 such that

||L(w1)− L(w2)||H ≤ Λ||w1 − w2||H, w1, w2 ∈ H,

and strongly monotone, i.e., there exists ̺ > 0 such that

̺||w1 − w2||
2
H ≤ (L(w1)− L(w2), w1 − w2)H.

Then, L is a bijection of H onto itself, and the inverse L−1 of L is Lipschitz-
continuous on H :

||L−1f − L−1g||H ≤ (Λ/̺)||f − g||H, ∀f, g ∈ H.

Theorem 3.5. Suppose γ ≥ γ0. Then the problem (2.11) has a unique solution.
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Proof. Using the Riesz representation theorem from Hilbert space theory, we shall
first rewrite (2.11) as an equivalent nonlinear operator equation L(uh) = f on
H ≡ Vh. Then, applying Lemma 3.4, we deduce that this has a unique solution uh
in Vh.

We know that Vh is a finite dimensional Hilbert space with the norm ||| · |||
induced by the inner product 〈·, ·〉, where

〈ω, v〉 =
∑

K∈Th

∫

K

∇ω · ∇vdx+
∑

e∈Γ

γ

he

∫

e

[ω][v]ds.(3.20)

Note that (f, vh) is a bounded linear functional on Vh. In fact, by Cauchy-Schwarz
inequality and (2.12)

|(f, vh)| ≤ ||f || ||vh|| ≤ C1||f || |||vh||| ≤ C2|||vh|||, C2 = C1||f ||.

Hence, by the Riesz representation theorem, there exists f ∈ Vh such that

(f, vh) = 〈f , vh〉, ∀vh ∈ Vh.

Given any ωh ∈ Vh, we consider the following linear functional on Vh

Φωh
: Φωh

(vh) = ah(ωh, vh), ∀vh ∈ Vh.(3.21)

From Lemma 3.1, we see that the linear functional Φωh
is bounded on Vh, i.e.,

|Φωh
(vh)| ≤ C3(1 + |||ωh|||)|||vh||| ≤ C4|||vh|||, C4 = C3(1 + |||ωh|||).

Then, by virtue of the Riesz representation theorem, there exists L(ωh) ∈ Vh such
that

Φωh
(vh) = 〈L(ωh), vh〉, ∀vh ∈ Vh.(3.22)

As ωh passes through Vh, (3.22) defines the mapping of Vh onto itself

ωh ∈ Vh 7−→ L(ωh) ∈ Vh.

Thus, we rewrite (2.11) as a nonlinear equation: find uh ∈ Vh such that L(uh) = f .
From Lemma 3.2, we know that the mapping ωh 7−→ L(ωh) is Lipschitz-continuous

with respect to the norm ||| · |||,

|||L(ω1)− L(ω2)||| = sup
vh∈Vh

|〈L(ω1)− L(ω2), vh〉|

|||vh|||

= sup
vh∈Vh

|Φω1
(vh)− Φω2

(vh)|

|||vh|||

= sup
vh∈Vh

|ah(ω1, vh)− ah(ω2, vh)|

|||vh|||

≤ C5|||ω1 − ω2|||, ∀ω1, ω2 ∈ Vh.

From (3.22), (3.21) and Lemma 3.3, we see that the mapping L is strongly monotone

〈L(ω1)− L(ω2), ω1 − ω2〉 = Φω1
(ω1 − ω2)− Φω2

(ω1 − ω2)

= ah(ω1, (ω1 − ω2))− ah(ω2, (ω1 − ω2))

≥ C6|||ω1 − ω2|||
2.

Then, from Lemma 3.4, we know that L is a bijection of Vh onto itself. Hence, for
any f ∈ Vh, the equation L(uh) = f , which is equivalent to (2.11), has a unique
solution uh ∈ Vh. �
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4. A posteriori error estimates

In this section, we present the a posteriori error estimates on the error in the
energy norm ||| · |||− for the DG method.

4.1. A reliable a posteriori error bound. In this subsection, we propose
the residual-based a posteriori error estimators and derive the computable upper
bounds on the error (u − uh) in the broken H1-seminorm and in the energy norm
||| · |||−.

In our a posteriori error analysis, an important technique, which was employed in
[31, 33, 35, 36, 37], is the decomposition of the discontinuous finite element space
Vh into two orthogonal subspaces: a conforming part V c

h = Vh ∩ H1
0 (Ω), and a

nonconforming part V ⊥
h defined as the orthogonal complement of V c

h in Vh with
respect to the energy norm ||| · |||−, i.e.,

Vh = V c
h ⊕ V ⊥

h .

Based on this setting, the discontinuous Galerkin approximation uh may be split
accordingly,

uh = uch + u⊥h .(4.1)

The following lemma describes the approximations of discontinuous finite ele-
ment functions by conforming ones, which have been established in Theorem 2.2
and Theorem 2.3 in [35] for conforming and nonconforming meshes (see also The-
orem 2.1 in [36]).
Lemma 4.1. For each vh ∈ Vh, there is a constant C′

0 independent of h and vh
such that

|v⊥h |
2
1,h = |vh − vch|

2
1,h ≤ C′

0

∑

e∈Γ

h−1
e ||[vh]||

2
0,e,(4.2)

and

||vh − vch||
2 ≤ C′

0

∑

e∈Γ

he||[vh]||
2
0,e.(4.3)

From Lemma 4.1, we know that
∑

K∈Th

h−2
K ||vh − vch||

2
0,K + |vch|

2
1,h ≤ C||||vh|||−, ∀vh ∈ Vh.(4.4)

Houston, Süli and Wihler [33] obtained an approximation result in the hp-
discontinuous finite element space on the nonconforming mesh. Here we state it in
the case of h-discontinuous finite element space.
Lemma 4.2. For each v ∈ H1

0 (Ω), there exists a function vI ∈ Vh such that
∑

K∈Th

(h−2
K ||v − vI ||

2
0,K + |v − vI |

2
1,K + h−1

K ||v − vI ||
2
0,∂K) ≤ C|v|21.

The following approximation result will also be used in the a posteriori error
analysis.
Lemma 4.3. For each v ∈ H1

0 (Ω), there exists a constant C independent of h such
that

∑

K∈Th

(h−2
K ||v − vcI ||

2
0,K + |v − vcI |

2
1,K + h−1

K ||v − vcI ||
2
0,∂K) ≤ C|v|21,
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where vcI ∈ V c
h is the conforming part of vI and vI is given in Lemma 4.2.

Proof. Using Lemma 4.1, [v] = 0 and Lemma 4.2, we get

(4.5)

∑

K∈Th

(
h−2
K ||vI − vcI ||

2
0,K + |vI − vcI |

2
1,K

)
≤ C

∑

e∈Γ

h−1
e ||[vI ]||

2
0,e

= C
∑

e∈Γ

h−1
e ||[v − vI ]||

2
0,e

≤ C
∑

K∈Th

h−1
K ||v − vI ||

2
0,∂K

≤ C|v|21.

It follows from Lemma 2.2 and (4.5) that

(4.6)
∑

K∈Th

h−1
K ||vI − vcI ||

2
0,∂K ≤ C

∑

K∈Th

h−2
K ||vI − vcI ||

2
0,K ≤ C|v|21.

Then the proof is completed by combining (4.5) with (4.6). �

The following lemma gives a representation of the error (u− uh), which plays a
key role in the a posteriori error estimation. A novel contribution in Lemma 4.4 is
that, by introducing the functions v = u − uch and vcI which satisfy [v] = [vcI ] = 0,
the penalty parameter γ disappears from the representation of the error. This will
lead to the upper bound without γ for the error in the broken H1-seminorm.
Lemma 4.4. Assume that u ∈ H1(Ω) and uh ∈ Vh are the solutions of (2.1) and
(2.11), respectively. Then for the error u− uh and v = u− uch ∈ H1

0 (Ω), we have

Π =
∑

K∈Th

∫

K

(a(u,∇u)− a(uh,∇uh)) · ∇(u− uh)dx

+
∑

K∈Th

∫

K

(a0(u,∇u)− a0(uh,∇uh)) (u − uh)dx

=
∑

K∈Th

∫

K

(f +∇ · a(uh,∇uh)− a0(uh,∇uh)) (v − vcI)dx

−
∑

e∈ΓI

∫

e

[a(uh,∇uh)](v − vcI)ds(4.7)

−
∑

K∈Th

∫

K

(a(u,∇u)− a(uh,∇uh)) · ∇u
⊥
h dx

−
∑

K∈Th

∫

K

(a0(u,∇u)− a0(uh,∇uh))u
⊥
h dx

= K1 +K2 +K3 +K4.

where vcI ∈ V c
h is the conforming part of vI and vI is given in Lemma 4.2.

Proof. For v = u − uch ∈ H1
0 (Ω), we have vI ∈ Vh and vcI ∈ V c

h . Then, from (2.9)
and (2.11), we get

a(u, v)− ah(uh, v) = (f, v)− ah(uh, v) = (f, v − vcI)− ah(uh, v − vcI).(4.8)
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Since v − vcI ∈ H1
0 (Ω), we have [v − vcI ] = 0. Then, it follows from the definition

of ah(·, ·) and Green’s formula that

ah(uh, v − vcI)

=
∑

K∈Th

∫

K

a(uh,∇uh) · ∇(v − vcI)dx +
∑

K∈Th

∫

K

a0(uh,∇uh)(v − vcI)dx

= −
∑

K∈Th

∫

K

∇ · a(uh,∇uh)(v − vcI)dx+
∑

K∈Th

∫

∂K

a(uh,∇uh) · νK(v − vcI)ds

+
∑

K∈Th

∫

K

a0(uh,∇uh)(v − vcI)dx.

Using the following identity,

∑

K∈Th

∫

∂K

a(uh,∇uh) · νK(v − vcI)ds =
∑

e∈Γ

∫

e

{a(uh,∇uh)}[v − vcI ]ds

+
∑

e∈ΓI

∫

e

[a(uh,∇uh)]{v − vcI}ds,(4.9)

and the fact [v − vcI ] = 0, we have

∑

K∈Th

∫

∂K

a(uh,∇uh) · νK(v − vcI)ds =
∑

e∈ΓI

∫

e

[a(uh,∇uh)](v − vcI)ds.

Then

ah(uh, v − vcI) = −
∑

K∈Th

∫

K

∇ · a(uh,∇uh)(v − vcI)dx

+
∑

e∈ΓI

∫

e

[a(uh,∇uh)](v − vcI)ds(4.10)

+
∑

K∈Th

∫

K

a0(uh,∇uh)(v − vcI)dx.

Inserting (4.10) into (4.8) gives

a(u, v)− ah(uh, v) =
∑

K∈Th

∫

K

(f +∇ · a(uh,∇uh)− a0(uh,∇uh)) (v − vcI)dx

−
∑

e∈ΓI

∫

e

[a(uh,∇uh)](v − vcI)ds.(4.11)

On the other hand, by the decomposition uh = uch + u⊥h and v = u− uch, we know
that v = (u − uh) + u⊥h . Then, it follows from the definition of ah(·, ·) and [v] = 0
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that

a(u, v)− ah(uh, v) =
∑

K∈Th

∫

K

(a(u,∇u)− a(uh,∇uh)) · ∇vdx

+
∑

K∈Th

∫

K

(a0(u,∇u)− a0(uh,∇uh)) vdx

=
∑

K∈Th

∫

K

(a(u,∇u)− a(uh,∇uh)) · ∇(u − uh)dx

+
∑

K∈Th

∫

K

(a0(u,∇u)− a0(uh,∇uh)) (u− uh)dx(4.12)

+
∑

K∈Th

∫

K

(a(u,∇u)− a(uh,∇uh)) · ∇u
⊥
h dx

+
∑

K∈Th

∫

K

(a0(u,∇u)− a0(uh,∇uh))u
⊥
h dx.

Combining (4.11) with (4.12) completes the proof. �

Motivated by the above lemma, we introduce the following locally computable
quantities which will be used in the definition of the residual-based a posteriori
error estimators.
Definition 4.1. On each element K ∈ Th and e ∈ Γ, define the element residual
and the edge residuals by, respectively,

RK = f +∇ · a(uh,∇uh)− a0(uh,∇uh), Je,1 = [a(uh,∇uh)]e, Je,2 = [uh]e

and define the local error estimators η2K , η
2
e,1 and η2e,2 by

η2K = h2K ||RK ||20,K , η2e,1 = he||Je,1||
2
0,e, η2e,2 = h−1

e ||Je,2||
2
0,e.

Define the global error estimators by

ηR =

(
∑

K∈Th

η2K

) 1
2

, ηJ,1 =

(
∑

e∈ΓI

η2e,1

) 1
2

, ηJ,2 =

(
∑

e∈Γ

η2e,2

) 1
2

.

Remark 4.1. Our estimator ηJ,2 is independent of the parameter γ.
We are now in position to develop a reliable estimate for the error (u − uh) in

the broken H1-seminorm for the DG method.
Theorem 4.5. Assume that u and uh are the solutions of (2.1) and (2.11), re-
spectively. Then

|u− uh|1,h ≤ C (ηR + ηJ,1 + ηJ,2) .(4.13)

Proof. Similar to the derivation of (3.16), we can get the lower bound on the
left-hand side of (4.7)

α|u− uh|
2
1,h = α

∑

K∈Th

|u− uh|
2
1,K ≤ Π.(4.14)

Next, we will estimate the terms on the right-hand side of (4.7) separately. First,
since v = u− uch and uh = uch + u⊥h , we have by the triangle inequality

|v|1 = |(u− uch − u⊥h ) + u⊥h |1 ≤ |u− uh|1,h + |u⊥h |1,h.(4.15)
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Applying Cauchy-Schwarz inequality, Lemma 4.3 and (4.15) lead to

|K1| ≤

(
∑

K∈Th

h2K ||RK ||20,K

) 1
2
(
∑

K∈Th

h−2
K ||v − vcI ||

2
0,K

) 1
2

≤ C′
1ηR|v|1(4.16)

≤ C′
1ηR

(
|u− uh|1,h + |u⊥h |1,h

)
.

Then, using the following generalized arithmetic-geometric inequality

cab ≤
ǫ

2
a2 +

c2

2ǫ
b2, ∀ǫ > 0,(4.17)

and the arithmetic-geometric mean inequality to estimate the terms including |u−
uh|1,h and |u⊥h |1,h on the right-hand side of (4.16), respectively, we have

|K1| ≤
ǫ1
2
|u− uh|

2
1,h +

(
C′2

1

2ǫ1
+
C′

1

2

)
η2R +

C′
1

2
|u⊥h |

2
1,h.(4.18)

Using Cauchy-Schwarz inequality, Lemma 4.3, (2.6), (4.15), (4.17) and the arithmetic-
geometric mean inequality gives

|K2| ≤
∑

e∈ΓI

||[a(uh,∇uh)]||0,e · ||v − vcI ||0,e

≤ C

(
∑

e∈ΓI

he||[a(uh,∇uh)]||
2
0,e

) 1
2

·

(
∑

e∈Γ

1

he
||v − vcI ||

2
0,e

) 1
2

≤ C′
2ηJ,1|v|1(4.19)

≤ C′
2ηJ,1(|u− uh|1,h + |u⊥h |1,h),

≤
ǫ2
2
|u− uh|

2
1,h +

(
C′2

2

2ǫ2
+
C′

2

2

)
η2J,1 +

C′
2

2
|u⊥h |

2
1,h.

Applying Cauchy-Schwarz inequality, (2.8) and assumption (A), we have

|K3|+ |K4| ≤
∑

K∈Th

||u− uh||1,K ||u⊥h ||1,K ≤ C||u − uh||1,h||u
⊥
h ||1,h.(4.20)

Noting that [u] = 0, by virtue of Lemma 2.3 we have that

||u− uh||1,h ≤ |u− uh|1,h + ||u− uh||

≤ |u− uh|1,h + C|||u− uh|||−

≤ C|u− uh|1,h + C

(
∑

e∈Γ

1

he
||[u− uh]||

2
0,e

) 1
2

(4.21)

≤ C|u− uh|1,h + CηJ,2.

Since [uch] = 0, we have [u⊥h ] = [u⊥h + uch] = [uh]. Then, by Lemmas 2.3 and 4.1

||u⊥h ||1,h ≤ |u⊥h |1,h + ||u⊥h || ≤ |u⊥h |1,h + |||u⊥h |||−

≤ C|u⊥h |1,h + C

(
∑

e∈Γ

1

he
||[u⊥h ]||

2
0,e

) 1
2

≤ C|u⊥h |1,h + C

(
∑

e∈Γ

1

he
||[uh]||

2
0,e

) 1
2

(4.22)

≤ CηJ,2.
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Substituting (4.21) and (4.22) into (4.20) and using (4.17) gives

|K3|+ |K4| ≤ C′
3|u− uh|1,hηJ,2 + C′

3η
2
J,2

≤
ǫ3
2
|u− uh|

2
1,h +

C′2
3

2ǫ3
η2J,2 + C′

3η
2
J,2.(4.23)

From (4.14), (4.7), (4.18), (4.19), (4.23) and Lemma 4.1, we have

α|u − uh|
2
1,h ≤ Π ≤

ǫ1 + ǫ2 + ǫ3
2

|u− uh|
2
1,h +

(
C′2

1

2ǫ1
+
C′

1

2

)
η2R

+

(
C′2

2

2ǫ2
+
C′

2

2

)
η2J,1 +

(
C′

1 + C′
2

2
C′

0 +
C′2

3

2ǫ3
+ C′

3

)
η2J,2.(4.24)

Taking ǫi sufficiently small such that

ǫ1 + ǫ2 + ǫ3
2

≤
α

2
.(4.25)

Then, combining (4.25) with (4.24) yields

α

2
|u− uh|

2
1,h ≤

(
C′2

1

2ǫ1
+
C′

1

2

)
η2R +

(
C′2

2

2ǫ2
+
C′

2

2

)
η2J,1

+

(
C′

1 + C′
2

2
C′

0 +
C′2

3

2ǫ3
+ C′

3

)
η2J,2,

which completes the proof. �

Using Theorem 4.5, we immediately obtain the upper bound on the error in the
energy norm ||| · |||−.
Theorem 4.6. Assume that u and uh are the solutions of (2.1) and (2.11),
respectively. Then

|||u− uh|||− ≤ C (ηR + ηJ,1 + ηJ,2) .(4.26)

Proof. It follows from [u] = 0 that
∑

e∈Γ

h−1
e ||[u− uh]||

2
0,e =

∑

e∈Γ

h−1
e ||[uh]||

2
0,e = η2J,2.(4.27)

Then, the desired result (4.26) follows from the definition of |||·|||−, Theorem 4.5 and
(4.27). �

4.2. Efficiency. In this subsection, we derive the local lower bounds on the error
(u− uh).

To derive the bounds, we introduce the oscillations of the element residual RK

and the edge residual Je,1 as

osc2R,K(uh) = h2K ||RK −ΠKRK ||20,K , osc2J,e(uh) = he||Je,1 −ΠeJe,1||
2
0,e,

where ΠKRK is the element-wise L2-projection of RK onto the space Zr−1(K) and
ΠeJe,1 is the L2-projection of Je,1 onto the space Pr−1(e). We denote the total
oscillation by

osch(uh) =

(
∑

K∈Th

osc2R,K(uh) +
∑

e∈ΓI

osc2J,e(uh)

) 1
2

.

As auxiliary tools, we need the following bubble functions ([54]). For each tri-
angle K ∈ Th, denote by λK,1, λK,2, λK,3 the barycentric co-ordinates. Define the



1016 C. BI AND Y. LIN

triangle-bubble function bK by

bK =

{
27λK,1λK,2λK,3, on K,

0, on Ω\K.
(4.28)

Given an interior edge e = ∂K1∩∂K2 and ωe = K1∪K2, enumerate the vertices
of K1 and K2 such that the vertices of e are numbered first. We then define the
edge-bubble function be by

be =

{
4λKi,1λKi,2, on Ki, i = 1, 2,

0, on Ω\ωe.
(4.29)

It is easy to see that supp bK ⊂ K, 0 ≤ bK ≤ 1, supp be ⊂ ωe, 0 ≤ be ≤ 1.
Now, we give the lower bounds for the error indictors ηK , ηe,1 and ηe,2.

Theorem 4.7. Assume that u ∈ H1(Ω) and uh ∈ Vh are the solutions of (2.1) and
(2.11), respectively. Then, we have the following local lower bounds on the error
u− uh :

(i)for each element K ∈ Th,

ηK ≤ C (||u− uh||1,K + oscR,K(uh)) .(4.30)

(ii) for e = ∂Ki ∩ ∂Kj and ωe = K1 ∪K2,

ηe,1 ≤ C
(
||u− uh||1,h,ωe

+ (oscR,Ki
(uh) + oscR,Kj

(uh)) + oscJ,e(uh)
)
.

(iii) for e ∈ Γ,

ηe,2 = h
− 1

2
e ||[u − uh]||0,e.(4.31)

Proof. We present proof of the three assertions separately.
Assertion (i): By triangle inequality,

hK ||RK ||0,K ≤ hK ||ΠKRK ||0,K + hK ||RK −ΠKRK ||0,K

≤ hK ||ΠKRK ||0,K + oscR,K(uh).(4.32)

Thus, we only estimate hK ||ΠKRK ||0,K in the following. Since bK > 0 on int(K),

(
∫
K(·)2bKdx)1/2 defines a norm on L2(K), equivalent to the L2 norm on Pk(K) for

any fixed k. Thus, there exists a constant c′1 > 0 independent of hK such that

c′1||ΠKRK ||20,K ≤

∫

K

(ΠKRK)2bKdx.(4.33)
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From the definition of RK , (2.1), Green’s formula and supp(bKΠKRK) ⊂ K, we
get
∫

K

(ΠKRK)2bKdx =

∫

K

RK(bKΠKRK)dx +

∫

K

(ΠKRK −RK)(bKΠKRK)dx

=

∫

K

(f +∇ · a(uh,∇uh)− a0(uh,∇uh))(bKΠKRK)dx

+

∫

K

(ΠKRK −RK)(bKΠKRK)dx

=

∫

K

(−∇ · a(u,∇u) +∇ · a(uh,∇uh))(bKΠKRK)dx

+

∫

K

(a0(u,∇u)− a0(uh,∇uh))(bKΠKRK)dx(4.34)

+

∫

K

(ΠKRK −RK)(bKΠKRK)dx

=

∫

K

(a(u,∇u)− a(uh,∇uh)) · ∇(bKΠKRK)dx

+

∫

K

(a0(u,∇u)− a0(uh,∇uh))(bKΠKRK)dx

+

∫

K

(ΠKRK −RK)(bKΠKRK)dx

= Q1 +Q2 +Q3.

Using (2.8), Cauchy-Schwarz inequality, assumption (A) and the inverse inequality
[14], we get

|Q1|+ |Q2| ≤ C||u− uh||1,K ||bKΠKRK ||1,K

≤ Ch−1
K ||u− uh||1,K ||bKΠKRK ||0,K(4.35)

≤ Ch−1
K ||u− uh||1,K ||ΠKRK ||0,K .

Using Cauchy-Schwarz inequality and maxx∈K bK(x) = 1, we have

|Q3| ≤ ||RK −ΠKRK ||0,K ||bKΠKRK ||0,K

≤ ||RK −ΠKRK ||0,K ||ΠKRK ||0,K .(4.36)

Combining (4.34), (4.35), (4.36) with (4.33) yields

hK ||ΠKRK ||0,K ≤ C||u − uh||1,K + ChK ||RK −ΠKRK ||0,K .

The desired result follows from (4.32) and the above inequality.

Assertion (ii): Let e = ∂K1 ∩∂K2 and suppose that e is a full edge of both K1 and
K2. If e is not a full edge of one of the triangles, we can prove this assertion as in
[35]. By triangle inequality once more,

h
1
2
e ||Je,1||0,e ≤ h

1
2
e ||ΠeJe,1||0,e + h

1
2
e ||Je,1 − ΠeJe,1||0,e.(4.37)

Similar to (4.33), we have

c′2||ΠeJe,1||
2
0,e ≤

∫

e

(ΠeJe,1)
2beds = R.(4.38)

Extend ΠeJe,1 to a function ϕ defined over ωe by extending by constants along
lines normal to e. From the definition of be, we know that beϕ ∈ H1

0 (ωe). Then, by



1018 C. BI AND Y. LIN

Green’s formula and (2.1), we rewrite the term on the right-hand side of (4.38) as
follows

R=

∫

e

(Je,1)(beΠeJe,1)ds+

∫

e

(ΠeJe,1 − Je,1)(beΠeJe,1)ds

=

∫

ωe

a(uh,∇uh) · ∇(beϕ)dx +

∫

ωe

∇h · a(uh,∇uh)(beϕ)dx

+

∫

e

(ΠeJe,1 − Je,1)(beΠeJe,1)ds

=

∫

ωe

(a(uh,∇uh)− a(u,∇u)) · ∇(beϕ)dx+

∫

ωe

a(u,∇u) · ∇(beϕ)dx

+

∫

ωe

∇h · a(uh,∇uh)(beϕ)dx+

∫

e

(ΠeJe,1 − Je,1)(beΠeJe,1)ds

=

∫

ωe

(a(uh,∇uh)− a(u,∇u)) · ∇(beϕ)dx+

∫

ωe

(a0(uh,∇uh)− a0(u,∇u))(beϕ)dx

+

∫

ωe

(−∇ · a(u,∇u) + a0(u,∇u))(beϕ)dx

+

∫

ωe

(∇h · a(uh,∇uh)− a0(uh,∇uh))(beϕ)dx +

∫

e

(ΠeJe,1 − Je,1)(beΠeJe,1)ds

=

∫

ωe

(a(uh,∇uh)− a(u,∇u)) · ∇(beϕ)dx+

∫

ωe

(a0(uh,∇uh)− a0(u,∇u))(beϕ)dx

+

∫

ωe

(f +∇h · a(uh,∇uh)− a0(uh,∇uh))(beϕ)dx+

∫

e

(ΠeJe,1 − Je,1)(beΠeJe,1)ds

=R1 +R2 +R3 +R4,

where ∇hϕ is the function whose restriction to element K ∈ Th is equal to ∇ϕ.
From the definitions of be and ϕ, we know that

||beϕ||
2
0,ωe

≤ ||ϕ||20,ωe
=

∫

e

(ΠeJe,1)
2l(s)ds ≤ he||ΠeJe,1||

2
0,e,(4.39)

where l(s) is the length of line segment which is perpendicular to the edge e and
intersects the boundary of ωe. Using (2.8), Cauchy-Schwarz inequality, inverse in-
equality [14] and (4.39), we have

|R1|+ |R2| ≤ C||u− uh||1,h,ωe
||beϕ||1,ωe

≤ Ch−1
e ||u− uh||1,h,ωe

||beϕ||0,ωe
(4.40)

≤ Ch
− 1

2
e ||u− uh||1,h,ωe

||ΠeJe,1||0,e.

By Cauchy-Schwarz inequality and (4.39)

|R3| ≤ ||f +∇h · a(uh,∇uh)− a0(uh,∇uh)||0,ωe
||beϕ||0,ωe

≤ Ch
1
2
e ||f +∇h · a(uh,∇uh)− a0(uh,∇uh)||0,ωe

||ΠeJe,1||0,e.(4.41)

Applying Cauchy-Schwarz inequality gives

|R4| ≤ ||ΠeJe,1 − Je,1||0,e||beΠeJe,1||0,e ≤ ||ΠeJe,1 − Je,1||0,e||ΠeJe,1||0,e.(4.42)

Combining (4.38), the equality R = R1 +R2 +R3 +R4, (4.40)-(4.22), we have

||ΠeJe,1||0,e ≤ Ch
− 1

2
e ||u− uh||1,h,ωe

+ Ch
1
2
e ||f +∇h · a(uh,∇uh)− a0(uh,∇uh)||0,ωe

+ ||ΠeJe,1 − Je,1||0,e.(4.43)
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Multiplying h
1
2
e on both sides of (4.43), and applying (4.37) and assertion (i) yield

the result.
Assertion (iii): This is a simple consequence of the fact that [u] = 0, ∀e ∈ Γ. �

Using Theorems 4.7 and Lemma 2.3, we have
Theorem 4.8. Assume that u ∈ H1(Ω) and uh ∈ Vh are the solutions of (2.1) and
(2.11), respectively. Then, we have the following a posteriori lower bounds on the
error u− uh in the energy norms ||| · |||−

ηR + ηJ,1 + ηJ,2 ≤ C|||u− uh|||− + Cosch(uh).

Remark 4.2. Since osch(uh) is a higher order term, from Theorems 4.6 and 4.8,
we see that ηR + ηJ,1 + ηJ,2 is a reliable and efficient a posteriori error estimator of
|||u− uh|||−.

5. A priori error estimate

In this section, we derive the error estimate in the energy norm |||u − uh||| of
(2.11). We first prove an abstract lemma.
Lemma 5.1. Assume that u ∈ H1(Ω) and uh ∈ Vh are the solutions of (2.1) and
(2.11), respectively. Then, for γ ≥ γ0, there exists a positive constant C independent
of h and γ such that

|||u− uh||| ≤ C inf
vh∈Vh

(
|||u− vh|||+ sup

ϕh∈Vh\{0}

(f, ϕh − ϕc
h)− ah(vh, ϕh − ϕc

h)

|||ϕh|||

)
,

where ϕc
h is the conforming part of ϕh.

Proof. Choose vh ∈ Vh such that vh 6= uh. Let φh = uh − vh. From Lemma 3.3,
(2.11) and (2.9), we have

C|||uh − vh|||
2 ≤ ah(uh, φh)− ah(vh, φh)

= (f, φh)− ah(vh, φh)

= a(u, φch)− ah(vh, φ
c
h) + (f, φh − φch)− ah(vh, φh − φch),(5.1)

where φch ∈ V c
h is the conforming part of φh. Therefore,

|||uh − vh||| ≤ C

(
a(u, φch)− ah(vh, φ

c
h)

|||uh − vh|||
+

(f, φh − φch)− ah(vh, φh − φch)

|||uh − vh|||

)
.(5.2)

Since φch ∈ Vh ∩H1
0 (Ω), by the definitions of a(·, ·) and ah(·, ·), we have

a(u, φch)− ah(vh, φ
c
h) =

∑

K∈Th

∫

K

(a(u,∇u)− a(vh,∇vh)) · ∇φ
c
hdx

+
∑

K∈Th

∫

K

(a0(u,∇u)− a0(vh,∇vh))φ
c
hdx.(5.3)

Then, by (2.8), Cauchy-Schwarz inequality, (2.12) and Lemma 4.1

|a(u, φch)− ah(vh, φ
c
h)| ≤ C|||u− vh||| ||φ

c
h||1,h

≤ C|||u− vh||| (||φ
c
h + φ⊥h ||1,h + ||φ⊥h ||1,h)

≤ C|||u− vh||| |||φh|||(5.4)

≤ C|||u− vh||| |||uh − vh|||.

Obviously,

(f, φh − φch)− ah(vh, φh − φch)

|||φh|||
≤ sup

ϕh∈Vh\{0}

(f, ϕh − ϕc
h)− ah(vh, ϕh − ϕc

h)

|||ϕh|||
.(5.5)
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The desired result follows from (5.2), (5.4) and (5.5). �

The following lemma gives the upper bound on the term
(f,ϕh−ϕc

h)−ah(vh,ϕh−ϕc
h)

|||ϕh|||
.

Lemma 5.2. There exists a positive constant C independent of h and γ such that

(f, ϕh − ϕc
h)− ah(vh, ϕh − ϕc

h)

|||ϕh|||
≤ C(|||u− vh|||+ osch(vh)).(5.6)

Proof. Let ψh = ϕh − ϕc
h. From the definition of ah(·, ·), we have

(f, ψh)− ah(vh, ψh) = (f, ψh)−
∑

K∈Th

∫

K

a(vh,∇vh) · ∇ψhdx

−
∑

K∈Th

∫

K

a0(vh,∇vh)ψhdx(5.7)

+
∑

e∈Γ

∫

e

{a(vh,∇vh)}[ψh]ds−
∑

e∈Γ

γ

he

∫

e

[vh][ψh]ds.

It follows from Green’s formula and (4.9) that

∑

K∈Th

∫

K

a(vh,∇vh) · ∇ψhdx

= −
∑

K∈Th

∫

K

∇ · a(vh,∇vh)ψhdx+
∑

K∈Th

∫

∂K

a(vh,∇vh) · νKψhds

= −
∑

K∈Th

∫

K

∇ · a(vh,∇vh)ψhdx+
∑

e∈Γ

∫

e

{a(vh,∇vh)}[ψh]ds

+
∑

e∈ΓI

∫

e

[a(vh,∇vh)]{ψh}ds.

Then, (5.7) becomes

(f, ψh)− ah(vh, ψh) =
∑

K∈Th

∫

K

(f +∇ · a(vh,∇vh)− a0(vh,∇vh))ψhdx

−
∑

e∈ΓI

∫

e

[a(vh,∇vh)]{ψh}ds−
∑

e∈Γ

γ

he

∫

e

[vh][ψh]ds(5.8)

= T1 + T2 + T3.

From the proof of Theorem 4.7, we know that

∑

K∈Th

h2K ||f +∇ · a(vh,∇vh)− a0(vh,∇vh)||
2
0,K ≤ C||u − vh||

2
1,h + Cosc2h(vh),(5.9)

and

∑

e∈ΓI

he||[a(vh,∇vh)||
2
0,e ≤ C||u − vh||

2
1,h + Cosc2h(vh).(5.10)
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Applying Cauchy-Schwarz inequality, (5.9) and (4.4) gives

|T1| ≤
∑

K∈Th

||f +∇ · a(vh,∇vh)− a0(vh,∇vh)||0,K ||ψh||0,K

≤ C(||u − vh||1,h + osch(vh))

(
∑

K∈Th

h−2
K ||ϕh − ϕc

h||
2
0,K

) 1
2

(5.11)

≤ C(||u − vh||1,h + osch(vh))|||ϕh|||−

≤ C(||u − vh||1,h + osch(vh))|||ϕh|||.

The second term on the right-hand side of (5.8) can be estimated as T1 by using
(5.10), Lemma 2.2 and (4.4),

|T2| ≤

(
∑

e∈ΓI

he||[a(vh,∇vh)]||
2
0,e

) 1
2
(
∑

e∈ΓI

h−1
e ||{ψh}||

2
0,e

) 1
2

≤ C(||u − vh||1,h + osch(vh))

(
∑

K∈Th

h−1
K ||ψh||

2
0,∂K

) 1
2

≤ C(||u − vh||1,h + osch(vh))

(
∑

K∈Th

h−2
K ||ϕh − ϕc

h||
2
0,K

) 1
2

(5.12)

≤ C(||u − vh||1,h + osch(vh))|||ϕh|||−

≤ C(||u − vh||1,h + osch(vh))|||ϕh|||.

Since u ∈ H1
0 (Ω), we have [u]e = 0, ∀e ∈ Γ. Then, the third term on the right-hand

side of (5.8) becomes

T3 = −
∑

e∈Γ

γ

he

∫

e

[vh − u][ψh]ds.

Using Cauchy-Schwarz inequality, [ϕc
h] = 0 and Lemma 4.1, we get

|T3| ≤

(
∑

e∈Γ

γ

he
||[u − vh]||

2
0,e

) 1
2
(
∑

e∈Γ

γ

he
||[ψh]||

2
0,e

) 1
2

≤ C|||u− vh||| |||ψh|||(5.13)

= C|||u− vh||| |||ϕh − ϕc
h|||

= C|||u− vh|||

(
|ϕh − ϕc

h|
2
1,h +

∑

e∈Γ

γ

he

∫

e

[ϕh]
2ds

) 1
2

≤ C|||u− vh||| |||ϕh|||.

Then, the desired result follows from (5.8), (5.11)-(5.13) and (2.12). �

From Lemmas 5.1 and 5.2, we have
Theorem 5.3. Assume that u ∈ H1(Ω) and uh ∈ Vh are the solutions of (2.1) and
(2.11), respectively. Then, there exists a positive constant C independent of h and
γ such that

|||u− uh||| ≤ C inf
vh∈Vh

(|||u− vh|||+ osch(vh)) .(5.14)

If u ∈ H1+ε(Ω), 0 < ε ≤ 1, and using the discontinuous piecewise linear finite
element space V 1

h in (2.11), we have
Theorem 5.4. Assume that u ∈ H1+ε(Ω), 0 < ε ≤ 1, and uh ∈ V 1

h are the
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solutions of (2.1) and (2.11), respectively. Then, there exists a positive constant C
independent of h such that

|||u− uh||| ≤ Chε|u|1+ε,2 + o(h).(5.15)

Proof. It follows from Theorem 5.3 that

|||u − uh||| ≤ C|||u− uI |||+ Cosch(uI).(5.16)

Then, by the definition of the energy norm ||| · |||, Lemma 2.1 and the following
interpolation estimates

||u− uI ||0,K ≤ Ch1+ε|u|1+ε,2,K , |u− uI |1,K ≤ Chε|u|1+ε,2,K ,

we get

|||u− uI |||
2 = |u− uI |

2
1,h +

∑

e∈Γ

γ

he
||[u− uI ]||

2
0,e

≤ Ch2ε|u|21+ε,2 +
∑

K∈Th

γ

hK
||u− uI ||

2
0,∂K

≤ Ch2ε|u|21+ε,2 + C
∑

K∈Th

(h−2
K ||u− uI ||

2
0,K + |u− uI |

2
1,K)(5.17)

≤ Ch2ε|u|21+ε,2.

From the definition of the total oscillation, we know that osch(uI) is a higher or-
der term, which tends to zero faster that O(h), i.e., osch(uI) = o(h), see [10, 54] for
details. Then, the desired result follows from (5.16) and (5.17). �
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Springer, 1986.
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[22] M. Feistauer and A. Žeńı̌sek, Compactness method in the finite element theory of nonlinear
elliptic problems, Numer. Math., 52(1988)147-163.

[23] E. H. Georgoulis, hp-version interior penalty discontinuous Galerkin finite element methods
on anisotropic meshes, Int. J. Numer. Anal. Mod., 3(2006) 52-79.

[24] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, series in Comput.
Physics, Berlin, Heidelberg, New York, Tokyo, Springer, 1984.

[25] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic
problems, Math. Comp., 79(2010) 2169-2189.

[26] T. Gudi, N. Nataraj and A. K. Pani, hp-Discontinuous Galerkin methods for strongly non-
linear elliptic boundary value problems, Numer. Math., 109(2008) 233-268.

[27] T. Gudi, N. Nataraj, and A. K. Pani, An hp-local discontinuous Galerkin method for some
quasilinear elliptic boundary value problems of nonmonotone type, Math. Comp., 77(2008)
731-756.

[28] T. Gudi and A. K. Pani, Discontinuous Galerkin methods for quasi-linear elliptic problems
of nonmonotone type, SIAM J. Numer. Anal., 45(2007)163-192.
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[41] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwendung
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