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MIXED SPECTRAL METHOD FOR NAVIER-STOKES

EQUATIONS IN AN INFINITE STRIP BY USING

GENERALIZED LAGUERRE FUNCTIONS

JIAO YUJIAN AND GUO BENYU

Abstract. In this paper, we propose a mixed spectral method for the Navier-Stokes equations
in an infinite strip by using generalized Laguerre functions. We establish some results on mixed
generalized Laguerre-Legendre approximation, which play important roles in spectral method for
fourth order differential equations. A mixed spectral scheme is provided for stream function
form of the Navier-Stokes equations. Its stability and convergence are proved. Numeric results
demonstrate the efficiency of suggested algorithm.

Key words. Mixed generalized Laguerre-Legendre spectral method, stream function form of
Navier-Stokes equations in an infinite strip.

1. Introduction

The Navier-Stokes equations play an important role in incompressible fluid dy-
namics. We often used finite difference method and finite element method for
their numerical simulations, see, e.g., [6, 9, 24, 28]. As it is well known, spectral
method possesses high accuracy, see [2, 3, 4, 5, 7, 10] and the references therein.
Some spectral schemes were proposed for the Navier-Stokes equations, see, e.g.,
[2, 8, 13, 22, 25]. We usually constructed spectral schemes based on the primitive
form of the Navier-Stokes equations. But, it is difficult to deal with the incompress-
ibility and the boundary condition of the pressure. Thus, some authors provided
certain spectral schemes based on the stream function form of the Navier-Stokes
equations, see [11] and the references therein. However, those algorithms are only
available for periodic problems and problems defined on bounded rectangular do-
mains.

It is interesting to consider the motion of incompressible fluid flows in unbounded
domains. Guo and Xu [19], and Xu and Guo [29] studied spectral and pseu-
dospectral methods using Laguerre polynomials, for the stream function form of the
Navier-Stokes equations in an infinite strip. Latter, some authors developed spec-
tral method for the Navier-Stokes equations outside a disc or a ball, see [12, 14, 30].
Recently, Azaiez, Shen, Xu and Zhuang [1] investigated spectral method for the
primitive form of the Stokes equation in an infinite strip, by using Laguerre func-
tions as in [27]. We also refer to the work for spectral method using generalized
Laguerre functions, see [15, 21]. Generally speaking, the spectral method using
Laguerre or generalized Laguerre functions, gives better numerical results, if the
exact solutions decay fast.

In this paper, we develop a mixed spectral method for the stream function form
of the Navier-Stokes equations in an infinite strip, by using the generalized Laguerre
functions. This approach has several merits:
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• It only needs to evaluate the stream function. Moreover, the incompressibility
of numerical solution is fulfilled automatically.

• It does not require any approximation of boundary condition on the wall.
• Benefiting from the orthogonality of generalized Laguerre functions, we derive

a sparse system with the unknown coefficients of expansion of the stream function.
In addition, the numerical solution possesses the spectral accuracy in space.

• For solution decaying fast, our new algorithm oftentimes provides better nu-
merical result than spectral method using Laguerre or generalized Laguerre poly-
nomials.

The paper is organized as follows. In the next section, we recall and renew some
results on the orthogonal approximation by using generalized Laguerre functions,
which are very applicable to spectral method for fourth order problems defined on
unbounded domains. In Section 3, we construct the mixed generalized Laguerre-
Legendre spectral scheme for the stream function form of the Navier-Stokes equa-
tions in an infinite strip, and present the main results on its stability and conver-
gence. In section 4, we give some numerical results demonstrating the efficiency of
suggested algorithm. In section 5, we first investigate two useful mixed orthogonal
projections, and then prove the stability and the spectral accuracy in space of our
new method. The final section is for some concluding remarks. The techniques
developed in this paper are also applicable to other fourth order problems defined
on unbounded domains.

2. Preliminary

We first consider the orthogonal approximation by using generalized Laguerre
functions. Let Λ = { x | 0 < x < ∞} and χ(x) be a certain weight function. We
define the weighted space

L2
χ(Λ) = { v | v is measurable on Λ and ‖v‖χ,Λ <∞ },

with the following inner product and norm,

(u, v)χ,Λ =

∫

Λ

u(x)v(x)χ(x)dx, ‖v‖χ,Λ = (v, v)
1
2

χ,Λ.

For any integer r ≥ 0,

Hr
χ(Λ) = { v | ∂kxv ∈ L2

χ(Λ), 0 ≤ k ≤ r },
equipped with the following inner product, semi-norm and norm,

(u, v)r,χ,Λ =
∑

0≤k≤r

(∂kxu, ∂
k
xv)χ,Λ, |v|r,χ,Λ = ‖∂rxv‖χ,Λ, ‖v‖r,χ,Λ = (v, v)

1
2

r,χ,Λ.

For simplicity of statements, we omit the subscript χ in notations, whenever χ(x) ≡
1.

Let ωα,β(x) = xαe−βx, α > −1 and β > 0. Especially, ωβ(x) = ω0,β(x) = e−βx.
The generalized Laguerre polynomial of degree l is defined by (cf. [20])

L
(α,β)
l (x) =

1

l!
x−αeβx∂lx(x

l+αe−βx), l = 0, 1, 2, · · ·.

The generalized Laguerre functions are given by (cf. [21])

(1) L̃
(α,β)
l (x) = e−

1
2βxL

(α,β)
l (x), l = 0, 1, 2, · · ·.

They fulfill the following recurrence relations:

(2) L̃
(α,β)
l (x) = L̃

(α+1,β)
l (x)− L̃

(α+1,β)
l−1 (x), l ≥ 1,
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(3) ∂xL̃
(α,β)
l (x) = −βL̃

(α+1,β)
l−1 (x)− 1

2
βL̃

(α,β)
l (x), l ≥ 1,

(4) (l+1)L̃
(α,β)
l+1 (x)+ (βx− 2l−α− 1)L̃

(α,β)
l (x)+ (l+α)L̃

(α,β)
l−1 (x) = 0, l ≥ 1,

(5)
−x∂xL̃

(α,β)
l (x) =

1

2
(l + α)L̃

(α,β)
l−1 (x) +

1

2
(α+ 1)L̃

(α,β)
l (x)

− 1
2 (l + 1)L̃

(α,β)
l+1 (x), l ≥ 1.

The relation (2) can be proved by using (2.1) and (2.3) of [20], while the relations
(3)-(5) come from (3.1)-(3.3) of [21].

The set of all L̃
(α,β)
l (x) is a complete L2

xα(Λ)−orthogonal system, namely,

(6) (L̃
(α,β)
l , L̃ (α,β)

m )xα,Λ =

{

γ
(α,β)
l , l = m,

0, l 6= m,

where γ
(α,β)
l =

Γ(l + α+ 1)

βα+1l!
. Thus, for any v ∈ L2

xα(Λ),

v(x) =

∞
∑

l=0

ṽ
(α,β)
l L̃

(α,β)
l (x), ṽ

(α,β)
l =

1

γ
(α,β)
l

(v, L̃
(α,β)
l )xα,Λ.

We now consider two useful orthogonal approximations. Let

0H
m
ωβ

(Λ) = { v ∈ Hm
ωβ

(Λ) | ∂kxv(0) = 0, 0 ≤ k ≤ m− 1 },

F(Λ) = { v ∈ H1(Λ) | there exists finite trace of ∂xv at x = 0 },
0F(Λ) = {v ∈ F(Λ) | v(0) = ∂xv(0) = 0 }.

The space F(Λ) is meaningful. For instance, if v ∈ L2(Λ) and v is continuous near
the point x = 0, then v ∈ F(Λ). Next, for any positive integer N , PN (Λ) stands
for the set of all algebraic polynomials of degree at most N , while 0PN (Λ) = { φ ∈
PN (Λ) | φ(0) = ∂xφ(0) = 0 }. Moreover,

QN,β(Λ) = { e− 1
2βxφ | φ ∈ PN (Λ) },

0QN,β(Λ) = { φ ∈ QN,β(Λ) | φ(0) = ∂xφ(0) = 0 }.
Throughout this paper, we denote by c a generic positive constant independent

of β, N and any function.
The orthogonal projection 0Π

1
N,β,Λ : 0F(Λ) → 0QN,β(Λ) is defined by

(∂x(v − 0Π
1
N,β,Λv), ∂xφ)Λ = 0, ∀ φ ∈ 0QN,β(Λ).

As it was shown in the proof of Lemma 2.1 of [16], if v ∈ 0F(Λ), ∂rx(e
1
2βxv) ∈

L2
ωr−2,β

(Λ) and integers 2 ≤ r ≤ N + 1, then

(7) ‖∂µx (v − 0Π
1
N,β,Λv)‖2Λ ≤ c(1 +

1

β2
)(βN)2−r‖∂rx(e

1
2βxv)‖2ωr−2,β ,Λ

, µ = 0, 1.

In the forthcoming discussions, we need also another orthogonal projection. For
this purpose, we introduce the auxiliary orthogonal projection 0P

2
N,β,Λ : 0H

2
ωβ

(Λ) →
0PN (Λ), defined by

(∂2x(v − 0P
2
N,β,Λv), ∂

2
xφ)ωβ ,Λ = 0, ∀ φ ∈ 0PN (Λ).

If v ∈ 0H
2
ωβ

(Λ), ∂rxv ∈ L2
ωr−2,β

(Λ) and integers 2 ≤ r ≤ N + 1, then by Lemma 2.4

of [12],

(8) ||∂µx (0P 2
N,β,Λv − v)||2ωβ ,Λ

≤ c(1 +
1

β4
)(βN)2−r‖∂rxv‖2ωr−2,β ,Λ

, µ = 0, 1, 2.



MIXED SPECTRAL METHOD FOR NAVIER-STOKES EQUATIONS 985

The orthogonal projection 0Π
2
N,β,Λ : 0H

2(Λ) → 0QN,β(Λ) is defined by

(9) (∂2x(v − 0Π
2
N,β,Λv), ∂

2
xφ)Λ + (v − 0Π

2
N,β,Λv, φ)Λ = 0, ∀ φ ∈ 0QN,β(Λ).

Lemma 2.1. If v ∈ 0H
2(Λ), ∂rx(e

1
2βxv) ∈ L2

ωr−2,β
(Λ) and integers 2 ≤ r ≤ N+1,

then

(10) ‖∂µx (0Π2
N,β,Λv−v)‖2Λ ≤ c(β4+

1

β4
)(βN)2−r‖∂rx(e

1
2βxv)‖2ωr−2,β ,Λ

, µ = 0, 1, 2.

Proof. Let 0Π̂
2
N,β,Λv = e−

1
2βx0P

2
N,β,Λ(e

1
2βxv) ∈ 0QN,β(Λ). By projection theo-

rem,
(11)
‖∂2x(0Π2

N,β,Λv − v)‖2Λ +‖0Π2
N,β,Λv − v‖2Λ = inf

φ∈0QN,β(Λ)
(‖∂2x(φ− v)‖2Λ + ‖φ− v‖2Λ)

≤ ‖∂2x(0Π̂2
N,β,Λv − v)‖2Λ + ‖0Π̂2

N,β,Λv − v‖2Λ.
According to the result (i) of Lemma 2.2 of [20], for any v ∈ 0H

1
ωβ

(Λ),

(12) ‖v‖2ωβ,Λ ≤ c‖∂xv‖2ωβ ,Λ.

A direct calculation, along with (8) and (12), yields

‖∂2x(0Π̂2
N,βv − v)‖2Λ =

∫

Λ

(∂2x(e
− 1

2βx0P
2
N,β,Λ(e

1
2βxv)− e

1
2βxv))2dx

=

∫

Λ

(
β2

4
e−

1
2βx(0P

2
N,β,Λ(e

1
2βxv)− e

1
2βxv)

− 1
2βe

− 1
2βx∂x(0P

2
N,β,Λ(e

1
2βxv)− e

1
2βxv)

+e−
1
2βx∂2x(0P

2
N,β,Λ(e

1
2βxv)− e

1
2βxv))2dx

≤ c(1 + β4)

∫

Λ

e−βx(∂2x(0P
2
N,β,Λ(e

1
2βxv)− e

1
2βxv))2dx.

We can use (8) and (12) to estimate ‖0Π̂2
N,βv − v‖2Λ similarly. Then, the desired

result (10) with µ = 0, 2 follows from (11) and the previous statements. Finally, the
result (10) with µ = 1 comes from the embedding theory. �

We now turn to the Legendre approximation on the interval I = { y | |y| < 1}.
For any integer r ≥ 0, we define the space Hr

χ(I) and its norm ‖v‖r,χ,I as usual. In

particular, H2
χ,0(I) = { v ∈ H2

χ(I) | v(±1) = ∂yv(±1) = 0 }. The inner product and
norm of the weighted space L2

χ(I) are denoted by (u, v)χ,I and ||v||χ,I , respectively.
We omit the subscript χ in notations, whenever χ(x) ≡ 1.

Let

F(I) = { v ∈ H1(I) | there exist finite traces of ∂xv at x = ±1 },
0F(I) = { v ∈ F(I) | v(±1) = ∂xv(±1) = 0 }.

For any positive integer M , PM (I) stands for the set of all polynomials of degree
at most M . Especially, P0

M (I) = PM (I) ∩H2
0 (I).

The orthogonal projection Π1,0
M,I : 0F(I) → P

0
M (I) is defined by

(13) (∂y(Π
1,0
M,Iv − v), ∂yφ)I = 0, ∀φ ∈ P

0
M (I).

Let χ(α,β)(y) = (1−y)α(1+y)β. We have from Lemma 2.3 of [16] that if v ∈ 0F(I),
∂syv ∈ L2

χ(s−2,s−2)(I) and integers 2 ≤ s ≤M + 1, then

(14) ‖∂µy (Π1,0
M,Iv − v)‖2I ≤ cM2−2s‖∂syv‖2χ(s−2,s−2),I

, µ = 0, 1.

The orthogonal projection Π2,0
M,I : H2

0 (I) → P0
M (I) is defined by

(15) (∂2y(Π
2,0
M,Iv − v), ∂2yφ)I = 0, ∀φ ∈ P

0
M (I).
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By virtue of Theorem 2.5 of [17], we assert that if v ∈ H2
0 (I), ∂

s
yv ∈ L2

χ(s−2,s−2)(I)

and integers 2 ≤ s ≤M + 1, then

(16) ‖∂µy (Π2,0
M,Iv − v)‖2I ≤ cM2µ−2s‖∂syv‖2χ(s−2,s−2),I , µ = 0, 1, 2.

3. Mixed Generalized Laguerre-Legendre Spectral Method

In this section, we propose the mixed spectral method for the stream function
form of the Navier-Stokes equations in the strip Ω = {(x, y) | 0 < x <∞, |y| < 1},
with the boundary ∂Ω = { (x, y) | x = 0 or |y| = 1}. We define the Sobolev spaces
Hr(Ω) in the usual way, with the semi-norm |v|r,Ω and norm ||v||r,Ω. Furthermore,

H1
0 (Ω) = { v ∈ H1(Ω) | v = 0 on ∂Ω }, H2

0 (Ω) = { v ∈ H2(Ω) | ∂v
∂n

= v = 0 on ∂Ω }.

The inner product and norm of L2(Ω) are denoted by (u, v)Ω and ||v||Ω, respectively.
We shall use the following notations,

∇v(x, y) = (∂xv(x, y), ∂yv(x, y))
T , ∆v(x, y) = ∂2xv(x, y) + ∂2yv(x, y).

Due to (2.2) of [18], for any v ∈ H2
0 (Ω),

(17) |v|2,Ω = ||∆v||2Ω.
For any v ∈ H1(Ω) with v(x,−1) = 0,

(18) ||v||2Ω ≤ 2||∂yv||2Ω.
We also introduce the operators:

G(u(x, y), v(x, y)) = ∂yu(x, y)∂x∆v(x, y) − ∂xu(x, y)∂y∆v(x, y),

J(u, v, w) = (∆v, ∂yu∂xw − ∂xu∂yw)Ω.

Clearly,

(19) J(u, v, w) + J(w, v, u) = 0, J(u, v, u) = 0.

Moreover, by integration by parts, we observe that for any v ∈ H2(Ω) and u ∈
H2

0 (Ω),

(20) J(u, u, v) = −(G(u, u), v)Ω.

Let u,w ∈ H2(Ω) and v ∈ H2
0 (Ω). If, in addition, ∂xu(x,−1) = ∂yu(x,−1) =

∂xw(x,−1) = ∂yw(x,−1) = 0, then by the result (ii) of Lemma 2.3 and Remark
2.1 of [18],

(21) |J(u, u, v)| ≤ 2|u|1,Ω|u|2,Ω|v|2,Ω.

(22) |J(u, v, w)| ≤ 2‖u‖2,Ω‖v‖2,Ω‖w‖2,Ω.
Let T > 0. U(x, y, t) and U0(x, y) are the stream function and its initial state,

respectively. f(x, y, t) and µ > 0 are the source term and the kinetic viscosity,
respectively. For simplicity, we focus on the case with fixed non-slip boundary ∂Ω.
Also assume that U(x, y, t) and ∂xU(x, y, t) decay to zero as x → ∞. Then the
stream function form of the Navier-Stokes equations is of the form

(23)































∂t∆U(x, y, t) +G(U(x, y, t), U(x, y, t))
−µ∆2U(x, y, t) = f(x, y, t), in Ω× (0, T ],

∂U(x, y, t)

∂n
= U(x, y, t) = 0, on ∂Ω× (0, T ],

lim
x→∞

U(x, y, t) = lim
x→∞

∂xU(x, y, t) = 0, for y ∈ [−1, 1], t ∈ (0, T ],

U(x, y, 0) = U0(x, y), in Ω ∪ ∂Ω.



MIXED SPECTRAL METHOD FOR NAVIER-STOKES EQUATIONS 987

By virtue of (20), we derive a weak formulation of (23). It is to find v ∈ L∞(0, T ;H1(Ω))∩
L2(0, T ;H2

0 (Ω)) such that

(24)







(∂t∇U(t),∇v)Ω + J(U(t), U(t), v) + µ(∆U(t),∆v)Ω = −(f(t), v)Ω,
∀ v ∈ H2

0 (Ω), t ∈ (0, T ],
U(0) = U0, in Ω ∪ ∂Ω.

According to Theorem 2.1 of [18], if U0 ∈ H1
0 (Ω) and f ∈ L2(0, T ;H−2(Ω)), then

problem (24) admits a unique solution.
Now, let 0F(Ω) = 0F(Λ) ⊗ 0F(I) and VN,M,β(Ω) = 0QN,β(Λ) ⊗ P

0
M (I). The

orthogonal projection Π1,0
N,M,β : 0F(Ω) → VN,M,β(Ω) is defined by

(25) (∇(Π1,0
N,M,βv − v),∇φ)Ω = 0, ∀ φ ∈ VN,M,β(Ω).

The orthogonal projection Π2,0
N,M,β : H2

0 (Ω) → VN,M,β(Ω) is defined by

(26) (∆(Π2,0
N,M,βv − v),∆φ)Ω = 0, ∀ φ ∈ VN,M,β(Ω).

The mixed spectral scheme for (24) is to seek uN,M(t) ∈ VN,M,β(Ω) for 0 ≤ t ≤ T ,
such that

(27)







(∂t∇uN,M(t),∇φ)Ω + J(uN,M(t), uN,M (t), φ) + µ(∆uN,M (t),∆φ)Ω
= −(f(t), φ)Ω, ∀ φ ∈ VN,M,β(Ω), t ∈ (0, T ],

uN,M(0) = uN,M,0 = Π1,0
N,M,βU0 or Π2,0

N,M,βU0, in Ω ∪ ∂Ω.
We now check the boundedness of numerical solution. Taking φ = 2uN,M(t) in

(27), we use (17)-(19) to deduce that

(28)
∂t||∇uN,M (t))||2Ω + 2µ||∆uN,M(t))||2Ω = −2(f(t), uN,M(t))Ω

≤ µ

2
‖∇uN,M(t)‖2Ω +

4

µ
‖f(t)‖2Ω ≤ µ‖∆uN,M(t)‖2Ω +

4

µ
‖f(t)‖2Ω.

Let

(29) E(v, σ, t) = ||∇v(t)||2Ω + σ

∫ t

0

||∆v(s)||2Ωds.

Integrating the inequality (28) with respect to t, we obtain

(30) E(uN,M , µ, t) ≤ ‖∇uN,M,0‖2Ω +
4

µ

∫ t

0

‖f(η)‖2Ωdη.

Remark 3.1. For the existence of solution of (24), we only require U0 ∈ H1
0 (Ω).

It means that ∂U
∂n

could be discontinuous at t = 0. In this case, we may approximate
the initial value in another way. To do this, let V ∗

N,M,β(Ω) = Q∗
N,β(Λ) ⊗ P∗

M (I)
where

Q∗
N,β(Λ) = { φ ∈ QN,β(Λ) | φ(0) = 0 }, P

∗
M (I) = { φ ∈ PM (I) | φ(±1) = 0 }.

The orthogonal projection Π1,∗
N,M,β : H1

0 (Ω) → V ∗
N,M,β(Ω) is defined by

(31) (∇(Π1,∗
N,M,βv − v),∇φ)Ω = 0, ∀φ ∈ V ∗

N,M,β(Ω).

Accordingly, we take uN,M,0 = Π1,∗
N,M,βU0 in (27). We can derive a priori estimate

similar to (30).
We next consider the stability of scheme (27). Because of the nonlinearity, it

does not possess the usual stability. But it might be of the generalized stability, as
described in [9, 10]. We assume that f and uN,M,0 have the errors f̃ and ũN,M,0

respectively, which induce the error of numerical solution uN,M , denoted by ũN,M .
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Theorem 3.1. Let ũN,M(x, y, t) be the error of solution of (27), induced by the

errors f̃ and ũN,M,0. We have

(32)
E(ũN,M , µ, t) ≤ e

8
µ

∫
t

0
‖∆uN,M(η)‖2

Ωdη(||∇ũN,M,0||2Ω
+
8

µ

∫ t

0

e−
8
µ

∫
η

0
‖∆uN,M(ξ)‖2

Ωdξ‖f̃(η)‖2Ωdη).

Remark 3.2. According to (30), the integral

∫ t

0

‖∆uN,M(η)‖2Ωdη is finite. There-

fore, the scheme (27) is of the generalized stability.
Finally, we deal with the convergence of scheme (27). For description of numer-

ical errors, we introduce the following quantities with non-negative integers r and
s:

Ar,s,β(v) =

∫∫

Ω

(1− y2)s−2e−βx(∂2x∂
s
y(e

1
2βxv))2dxdy

+

∫∫

Ω

(1− y2)s−2((∂x∂
s
yv)

2 + (∂syv)
2)dxdy

+

∫∫

Ω

xr−2e−βx((∂rx∂y(e
1
2βxv))2 + (∂rx(e

1
2βxv))2)dxdy,

Br,s,β(v) =

∫∫

Ω

(1 − y2)s−2e−βx(∂2x∂
s
y(e

1
2βxv))2dxdy

+

∫∫

Ω

(1− y2)s−2((∂syv)
2 + (∂2x∂

s
yv)

2)dxdy

+

∫∫

Ω

xr−2e−βx((∂rx(e
1
2βxv))2 + (∂rx∂

2
y(e

1
2βxv))2)dxdy,

Rr,s,β(v, σ, t) =
1

σ
(Br,s,β(∂tv(t)) + (β4 +

1

β4
)B2,2,β(v(t)) + ‖∆v(t)‖2Ω),

Vβ(v, σ, t) =
c

σ
((β4 +

1

β4
)B2,2,β(v(t)) + ‖∆v(t)‖2Ω).

Besides, if uN,M,0 = Π2,0
N,M,βU0, we take Dr,s,β(U0) = 0. If uN,M,0 = Π1,0

N,M,βU0,

then Dr,s,β(U0) = Ar,s,β(U0) +Br,s,β(U0).
Theorem 3.2. Let U(x, y, t) and uN,M(x, y, t) be the solutions of (24) and (27),

respectively. If for integers 2 ≤ r ≤ N + 1 and 2 ≤ s ≤ M + 1, the quantities
Rr,s,β(U, µ, t) and Dr,s,β(U0) are finite, then

(33)

E(U − uN,M , µ, t) ≤ c
(

(β4 +
1

β4
)(βN)2−r +M4−2s

)(

e
∫

t

0
Vβ(U,µ,η)dη

×
(

∫ t

0

e−
∫

η

0
Vβ(U,µ,ξ)dξRr,s,β(U, µ, η)dη +Dr,s,β(U0)

)

+µ

∫ t

0

Br,s,β(U(η))dη +Br,s,β(U(t))
)

.

Remark 3.3. The result (33) implies

(34) E(U − uN,M , µ, t) = O((β4 +
1

β4
)(βN)2−r +M4−2s).

Therefore, the smoother the exact solution, the more accurate the numerical result.
Remark 3.4. We may also take uN,M,0 = Π1,∗

N,M,βU0 in (27), and derive the

error estimation of numerical solution, which is similar to (33).
Remark 3.5. The spectral method (27) is the same as the method given in

the reference [29] mathematically, except that we now put a parameter β for the
flexibility of computation. But in actual computation, our new algorithm is much
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easier to be carried out. In fact, Xu and Guo [29] introduced the variable transfor-

mation U = e−
1
2xW , and then used the Laguerre polynomials to solve the reformed

problem

(35)































∂t△(e−
x
2W ) +G(e−

x
2W, e−

x
2W )

−µ△2(e−
x
2W ) = f(x, y, t), in Ω× (0, T ],

∂W

∂n
=W = 0, on ∂Ω× [0, T ],

lim
x→∞

e−
x
2W = lim

x→∞
e−

x
2 ∂xW = 0, for y ∈ [−1, 1], t ∈ (0, T ],

W (x, y, 0) = e
x
2U0(x, y) =W0(x, y), in Ω ∪ ∂Ω.

Clearly, this is a twisted way. Therefore, it is quite complicated to derive the
algorithm and estimate the error of numerical solution. In opposite, we now use the
Laguerre functions directly to solve problem (24), based on the new approximation
results of [20]. Accordingly, it is much simpler to do calculation and the error
estimate. In particular, we could use the recurrence relations (2)-(5) to derive the
corresponding discrete system easily and use the new approximation results (40)
and (46) of this paper to estimate the numerical error more precisely.

Remark 3.6. According to Theorem 3.2 of [29], the error of numerical solution
wN,M of problem (35), is bounded above by

∫ ∫

Ω

e−
1
2x|∇(W (t)− wN,M (t))|2dxdy

+µ

∫ t

0

∫ ∫

Ω

e−
1
2x|∆(W (s) − wN,M (s))|2dxdyds ≤ cd1(N

2−r +M4−s)

where d1 is a positive constant depending on the norms of certain derivatives ofW ,
with the weight e−qx, q < 1. Since W = e

1
2xU , the above result implies

∫ ∫

Ω

|∇(U(t) − uN,M(t))|2dxdy

+µ

∫ t

0

∫ ∫

Ω

|∆(U(s)− uN,M(s))|2dxdyds ≤ cd2(N
2−r +M4−s), q < 1

where d2 is a positive constant depending on the norms of certain derivatives of
U , with the weight e(1−q)x. In other words, the error estimate is valid only for
such solutions whose certain derivatives decay exponeintially. This is a very strong
restriction. However, by (33),

∫ ∫

Ω

|∇(U(t)− uN,M(t))|2dxdy

+µ

∫ t

0

∫ ∫

Ω

|∆(U(s) − uN,M(s))|2dxdyds ≤ cd3(N
2−r +M4−s),

where d3 is a positive constant depending on the weighted norms of certain deriva-
tives of U , without the weight e(1−q)x. In other words, this error estimate is valid
for all solutions whose certain derivatives are in L2(Ω). Thereby, our new result is
an essential improvement of the existing results.

4. Numerical Results

We now present some numerical results. We first describe the implementation
for scheme (27). Let Ll(y) be the Legendre polynomial of degree l, and

φk(x) = L̃
(0,β)
k (x) − 2L̃

(0,β)
k+1 (x) + L̃

(0,β)
k+2 (x), 0 ≤ k ≤ N − 2.
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ψl(y) =
1

√

2(2l + 3)2(2l+ 5)
(Ll(y)−

2(2l+ 5)

2l + 7
Ll+2(y) +

2l+ 3

2l+ 7
Ll+4(y)),

0 ≤ l ≤M − 4.

Obviously, φk(0) = ∂xφk(0) = ψl(±1) = ∂yψl(±1) = 0, cf. [23, 26]. Take
Φk,l(x, y) = φk(x)ψl(y). The set of all Φk,l(x, y) conforms a basis of VN,M,β(Ω).

We expand the numerical solution uN,M as

uN,M(x, y, t) =

N−2
∑

i=0

M−4
∑

j=0

ui,j(t)Φi,j(x, y).

For notational convenience, we also set

qk,l(t) = −J
(

uN,M(t), uN,M (t),Φk,l

)

, fk,l(t) = −(f(t),Φk,l)Ω.

Taking φ(x, y) = Φk,l(x, y) in (27), we obtain a linear system of ordinary differential
equations, as
(36)

N−2
∑

i=0

M−4
∑

j=0

∂tui,j(t)

∫∫

Ω

(

∂xΦi,j(x, y)∂xΦk,l(x, y) + ∂yΦi,j(x, y)∂yΦk,l(x, y)
)

dxdy

+µ

N−2
∑

i=0

M−4
∑

j=0

ui,j(t)

∫∫

Ω

(

∂2xΦi,j(x, y)∂
2
xΦk,l(x, y) + ∂2xΦi,j(x, y)∂

2
yΦk,l(x, y)

+∂2yΦi,j(x, y)∂
2
xΦk,l(x, y) + ∂2yΦi,j(x, y)∂

2
yΦk,l(x, y)

)

dxdy

= qk,l(t) + fk,l(t), 0 ≤ k ≤ N − 2, 0 ≤ l ≤M − 4.

We could rewrite the above system in a compact matrix form. To do this, we set

X(t) = (u0,0(t), ···, u0,M−4(t), u1,0(t), ···, u1,M−4(t), ···, uN−2,0(t), ···, uN−2,M−4(t))
T ,

Q(t) = (q0,0(t), · · ·, q0,M−4(t), q1,0(t), · · ·, q1,M−4(t), · · ·, qN−2,0(t), · · ·, qN−2,M−4(t))
T ,

F (t) = (f0,0(t), ···, f0,M−4(t), f1,0(t), ···, f1,M−4(t), ···, fN−2,0(t), ···, fN−2,M−4(t))
T .

We also introduce the matrices Aσ,λ = (a
(σ,λ)
k,i ) and Bσ,λ = (b

(σ,λ)
l,j ), with the fol-

lowing entries,

a
(1,1)
k,i =

∫

Λ

∂xφk(x)∂xφi(x)dx, 0 ≤ k, i ≤ N − 2,

a
(1,2)
k,i = a

(2,4)
k,i =

∫

Λ

φk(x)φi(x)dx, 0 ≤ k, i ≤ N − 2,

a
(2,1)
k,i =

∫

Λ

∂2xφk(x)∂
2
xφi(x)dx, 0 ≤ k, i ≤ N − 2,

a
(2,2)
k,i = a

(2,3)
i,k =

∫

Λ

∂2xφk(x)φi(x)dx, 0 ≤ k, i ≤ N − 2,

and

b
(1,1)
l,j = b

(2,1)
l,j =

∫

I

ψl(y)ψj(y)dy, 0 ≤ l, j ≤M − 4,

b
(1,2)
l,j =

∫

I

∂yψl(y)∂yψj(y)dy, 0 ≤ l, j ≤M − 4,

b
(2,2)
l,j = b

(2,3)
j,l =

∫

I

ψl(y)∂
2
yψj(y)dy, 0 ≤ l, j ≤M − 4,

b
(2,4)
l,j =

∫

I

∂2yψl(y)∂
2
yψj(y)dy, 0 ≤ l, j ≤M − 4.
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Furthermore, let

A = A11⊗B11+A12⊗B12, B = A21⊗B21+A22⊗B22+A23⊗B23+A24⊗B24.

Then, the system (36) can be rewritten as the following compact matrix form,

(37) A∂tX(t) + µBX(t) = Q(t) + F (t).

In actual computation, we use the fourth order Runge-kutta approximation with
the step size τ in time.

For description of numerical errors, we denote the nodes and weights of Laguerre-
Gauss-Radau quadrature using generalized Laguerre functions (cf. [21]), by ξβ,i and
ωβ,i, respectively. Meanwhile, we denote the nodes and weights of Legendre-Gauss-
Labatto quadrature by ζj and κj , respectively. The numerical errors are measured
by the quantity

EN,M (t) =
(

N−2
∑

i=0

M−4
∑

j=0

(U(ξβ,i, ζj , t)−uN,M(ξβ,i, ζj , t))
2ωβ,iκj

)
1
2 ≈ ‖U(t)−uN,M(t)‖Ω.

We use scheme (27) to solve problem (24). We first take the test function

U(x, y, t) = x2(1− y2)2e−xsin(kxt+ kyt),

which oscillates and decays exponentially as x increases. In Figure 1, we plot the
value of log10EN,M (1) with k = 0.2, β = 1, N = 4M and τ = 0.005, 0.001, 0.0001,
vs. the mode M . Clearly, the numerical error decays very fast when M increases
and τ decreases. This confirms the prediction by Theorem 3.2. In Figure 2, we plot
the values of log10EN,M (t) for 0 ≤ t ≤ 5, with k = 0.1, β = 1, N = 4M = 48 and
τ = 0.001. They demonstrate the stability of scheme (27), as predicted by Theorem
3.1.

4 5 6 7 8 9 10 11 12
−15

−12

−9

−6

−3

0

M

lo
g 10

E
N

,M
(1

)

 

 

τ=0.005

τ=0.001

τ=0.0001

Figure 1. Convergence rate.

We next take the test function

U(x, y, t) =
x2(1 − y2)2sin(kxt+ kyt)

(2 + x+ y)h
, h > 0,

which oscillates and decays algebraically as x tends to infinity. In Table 1, we list
the values of log10 EN,M (1) with k = 0.2, h = 4, 6, β = 1, N = 4M and τ = 0.001,
vs. the mode M . It shows again the convergence of scheme (27). We also observe
that our method provides more accurate numerical results for solutions decaying
faster. This coincides with theoretical analysis.
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1 2 3 4 5
−15

−10

−5

t

lo
g 10

E
N

,M
(t

)

Figure 2. Stability of computation.

Table 1. Convergence rate with h = 3, 4.

M = 4 M = 6 M = 8 M = 10 M = 12 M = 14
h = 3 1.77E-2 3.58E-4 2.28E-4 1.60E-4 1.16E-4 8.99E-5
h = 4 2.81E-3 8.51E-5 1.33E-5 2.57E-6 9.30E-7 5.13E-7

Finally, we take the test function

U(x, y, t) =
x2(1 − y2)2sin(

kt

x+ d
+ kyt)

(2 + x+ y)h
, d > 0.

This function with small d > 0, oscillates very seriously near x = 0, and decays
algebraically as x tends to infinity. In Table 2, we list the values of log10EN,M (1)
with d = 0.1, k = 1, h = 4, N = 4M , τ = 0.001 and β = 1, 1.5, vs. the mode M .
We find that the suitable parameter β leads to better numerical results.

Table 2. Convergence rate with β = 1, 1.5.

M = 4 M = 6 M = 8 M = 10 M = 12
β = 1 2.06E-3 8.24E-4 4.48E-4 2.41E-4 1.25E-4
β = 1.5 1.81E-3 3.53E-4 1.26E-4 4.46E-5 2.92E-5

5. Error Analysis

In this section, we prove Theorems 3.1 and 3.2.
5.1. Proof of Theorem 3.1. We have from (27) that

(38)
(∂t∇ũN,M(t),∇φ)Ω + µ(∆ũN,M(t),∆φ)Ω + J(uN,M(t), ũN,M (t), φ)

+J(ũN,M(t), uN,M (t) + ũN,M(t), φ) = −(f̃(t), φ)Ω.

Taking φ = 2ũN,M in (38), we use the two results of (19) to obtain

(39)
∂t‖∇ũN,M(t)‖2Ω + 2µ‖∆ũN,M(t)‖2Ω − 2J(ũN,M(t), ũN,M (t), uN,M(t))

= −2(f̃(t), ũN,M (t))Ω.
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Thanks to (17), (18), (21) and the Cauchy inequality, we derive that

|J(ũN,M (t), ũN,M(t), uN,M )| ≤ 2‖∆ũN,M(t)‖Ω‖∇ũN,M(t)‖Ω‖∆uN,M(t)‖Ω
≤ µ

4
‖∆ũN,M(t)‖2Ω +

4

µ
‖∆uN,M(t)‖2Ω‖∇ũN,M(t)‖2Ω,

|(f̃(t), ũN,M (t))Ω| ≤
µ

8
‖∇ũN,M(t)‖2Ω +

4

µ
‖f̃(t)‖2Ω ≤ µ

4
‖∆ũN,M(t)‖2Ω +

4

µ
‖f̃(t)‖2Ω.

Let E(v, σ, t) be the same as in (29). Substituting the above two inequalities into
(39), yields

∂tE(ũN,M , µ, t) ≤ 8

µ
(‖∆uN,M(t)‖2ΩE(ũN,M , µ, t) + ‖f̃(t)‖2Ω).

This implies

∂t(e
− 8

µ

∫
t

0
‖∆uN,M(η)‖2

ΩdηE(ũN,M , µ, t)) ≤
8

µ
e−

8
µ

∫
t

0
‖∆uN,M (η)‖2

Ωdη‖f̃(t)‖2Ω.

Integrating the above inequality with respect to t, we obtain the desired result (32).
5.2. Some approximation results. In order to prove Theorem 3.2, we need

some results on the mixed generalized Laguerre-Legendre approximation. In the
sequel, the meanings of Ar,s,β(v) and Br,s,β(v) are the same as in Theorem 3.2.

Lemma 5.1. If v ∈ 0F(Ω) and Ar,s,β(v) are finite for integers 2 ≤ r ≤ N+1, 2 ≤
s ≤M + 1, then

(40) ‖∇(Π1,0
N,M,βv − v)‖2Ω ≤ c((1 +

1

β2
)(βN)2−r +M4−2s)Ar,s,β(v).

Proof. Clearly, Π1,0
M,I(0Π

1
N,β,Λv) ∈ VN,M,β(Ω). By projection theorem,

(41)

‖∇(Π1,0
N,Mv − v)‖2Ω = inf

φ∈VN,M,β(Ω)
‖∇(φ− v)‖2Ω ≤ ‖∇(Π1,0

M,I(0Π
1
N,β,Λv)− v)‖2Ω

≤ ‖∂x(Π1,0
M,I(0Π

1
N,β,Λv)− 0Π

1
N,β,Λv)‖2Ω

+‖∂y(Π1,0
M,I(0Π

1
N,β,Λv)− 0Π

1
N,β,Λv)‖2Ω

+‖∂x(0Π1
N,β,Λv − v)‖2Ω + ‖∂y(0Π1

N,β,Λv − v)‖2Ω.
By using (14) with µ = 0 and (7) with µ = 1, r = 2 successively, we deduce that
for s ≥ 2,

(42)

‖∂x(Π1,0
M,I(0Π

1
N,β,Λv)− 0Π

1
N,β,Λv)‖2Ω

≤ cM2−2s

∫∫

Ω

(1− y2)s−2(∂x∂
s
y(0Π

1
N,β,Λv))

2dxdy

≤ c(1 +
1

β2
)M2−2s

∫∫

Ω

(1− y2)s−2e−βx(∂2x∂
s
y(e

1
2βxv))2dxdy

+cM2−2s

∫∫

Ω

(1− y2)s−2(∂x∂
s
yv)

2dxdy.

Similarly, we use (14) with µ = 1 and (7) with µ = 0, r = 2 successively, to obtain
that for s ≥ 2,

(43)

‖∂y(Π1,0
M,I(0Π

1
N,β,Λv)− 0Π

1
N,β,Λv)‖2Ω

≤ cM2−2s

∫∫

Ω

(1− y2)s−2(∂sy(0Π
1
N,β,Λv))

2dxdy

≤ c(1 +
1

β2
)M2−2s

∫∫

Ω

(1− y2)s−2e−βx(∂2x∂
s
y(e

1
2βxv))2dxdy

+cM2−2s

∫∫

Ω

(1− y2)s−2(∂syv)
2dxdy.
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It is easy to verify that for r ≥ 2,

(44) ‖∂x(0Π1
N,β,Λv − v)‖2Ω ≤ c(1 +

1

β2
)(βN)2−r

∫∫

Ω

xr−2e−βx(∂rx(e
1
2βxv))2dxdy,

(45) ‖∂y(0Π1
N,β,Λv−v)‖2Ω ≤ c(1+

1

β2
)(βN)2−r

∫∫

Ω

xr−2e−βx(∂rx∂y(e
1
2βxv))2dxdy.

Then, a combination of (41)-(45) leads to the desired result. �

We next deal with the error of projection Π2,0
N,M,βv, which plays an essential role

in the error estimate of numerical solution.
Lemma 5.2. If v ∈ H2

0 (Ω) and Br,s,β(v) are finite for integers 2 ≤ r ≤ N+1, 2 ≤
s ≤M + 1, then

(46) ‖∆(Π2,0
N,Mv − v)‖2Ω ≤ c((β4 +

1

β4
)(βN)2−r +M4−2s)Br,s,β(v).

Proof. Obviously, Π2,0
M,I(0Π

2
N,β,Λv) ∈ VN,M,β(Ω). By projection theorem,

(47)

‖∆(Π2,0
N,Mv − v)‖2Ω = inf

φ∈VN,M,β(Ω)
‖∆(φ− v)‖2Ω ≤ ‖∆(Π2,0

M,I(0Π
2
N,β,Λv)− v)‖2Ω

≤ 2‖∂2x(Π2,0
M,I(0Π

2
N,β,Λv)− 0Π

2
N,β,Λv)‖2Ω

+2‖∂2y(Π2,0
M,I(0Π

2
N,β,Λv)− 0Π

2
N,β,Λv)‖2Ω

+2‖∂2x(0Π2
N,β,Λv − v)‖2Ω + ‖∂2y(0Π2

N,β,Λv − v)‖2Ω.
We use (16) with µ = 0 and (10) with µ = r = 2 successively, to obtain that for
s ≥ 2,

(48)

‖∂2x(Π2,0
M,I(0Π

2
N,β,Λv)− 0Π

2
N,β,Λv)‖2Ω

≤ cM−2s

∫∫

Ω

(1− y2)s−2(∂2x∂
s
y(0Π

2
N,β,Λv))

2dxdy

≤ c(β4 +
1

β4
)M−2s

∫∫

Ω

(1− y2)s−2e−βx(∂2x∂
s
y(e

1
2βxv))2dxdy

+cM−2s

∫∫

Ω

(1− y2)s−2(∂2x∂
s
yv)

2dxdy.

In the same manner, we use (16) with µ = 2 and (10) with µ = 0, r = 2 successively,
to verify that for s ≥ 2,

(49)

‖∂2y(Π2,0
M,I(0Π

2
N,β,Λv)− 0Π

2
N,β,Λv)‖2Ω

≤ cM4−2s

∫∫

Ω

(1 − y2)s−2(∂sy(0Π
2
N,β,Λv))

2dxdy

≤ c(β4 +
1

β4
)M4−2s

∫∫

Ω

(1 − y2)s−2e−βx(∂2x∂
s
y(e

1
2βxv))2dxdy

+cM4−2s

∫∫

Ω

(1 − y2)s−2(∂syv)
2dxdy.

Similarly, for r ≥ 2,

(50) ‖∂2x(0Π2
N,β,Λv− v)‖2Ω ≤ c(β4 +

1

β4
)(βN)2−r

∫∫

Ω

xr−2e−βx(∂rx(e
1
2βxv))2dxdy,

(51)

‖∂2y(0Π2
N,β,Λv − v)‖2Ω ≤ c(β4 +

1

β4
)(βN)2−r

∫∫

Ω

xr−2e−βx(∂rx∂
2
y(e

1
2βxv))2dxdy.

Then, the desired result frows from a combination of (47)-(51) . �

5.3. Proof of Theorem 3.2. We are now in position to estimate the error of
numerical solution uN,M .
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Let U∗
N,M = Π2,0

N,M,βU. Then, by virtue of (24) and (26), we have

(∂t∇U∗
N,M (t),∇φ)Ω + µ(∆U∗

N,M (t),∆φ)Ω + J(U,U, φ)

= G1(φ, t) + (f(t), φ)Ω, ∀φ ∈ VN,M,β(Ω),

with

G1(φ, t) = (∂t∇(U∗
N,M − U),∇φ)Ω.

Further, we set ŨN,M = uN,M − U∗
N,M . Subtracting the above equation from (27),

we obtain

(52)







(∂t∇ŨN,M (t),∇φ)Ω + µ(∆ŨN,M (t),∆φ)Ω +G1(φ, t)
+J(uN,M , uN,M , φ)− J(U,U, φ) = 0, ∀φ ∈ VN,M (Ω),

ŨN,M,0 = Π1,0
N,M,βU0 −Π2,0

N,M,βU0 or 0.

With the aid of (19), it can be checked that if u, v, v∗ ∈ H2(Ω) and u−v∗ ∈ H2
0 (Ω),

then

J(u, u, u− v∗)− J(v, v, u − v∗) = −J(u− v∗, u− v∗, v∗) + J(v∗ − v, v∗, u− v∗)
+J(v, v∗ − v, u− v∗).

As a result,

J(uN,M , uN,M , ŨN,M)− J(U,U, ŨN,M) =
4

∑

j=2

Gj(ŨN,M , t)

where

G2(ŨN,M , t) = −J(ŨN,M(t), ŨN,M (t), U∗
N,M(t)),

G3(ŨN,M , t) = J(U∗
N,M(t)− U(t), U∗

N,M (t), ŨN,M (t)),

G4(ŨN,M , t) = J(U(t), U∗
N,M(t)− U(t), ŨN,M (t)).

We take φ = 2ŨN,M in (52). Then

(53) ∂t‖∇ŨN,M(t)‖2Ω + 2µ‖∆ŨN,M(t)‖2Ω + 2

4
∑

j=1

Gj(ŨN,M , t) = 0.

We now estimate |Gi(ŨN,M (t), t)|, 1 ≤ j ≤ 4. Let Rr,s,β(v, σ, t) and Dr,s,β(v) be
the same as in Theorem 3.2. Since ∂xU

∗
N,M (x, y, t), ∂yU

∗
N,M(x, y, t), ∂xUN,M(x, y, t)

and ∂yUN,M(x, y, t) vanish at y = −1, we can use (18), (17) and (46) successively
to deduce that
(54)

|G1(ŨN,M(t), t)| ≤ 4

µ
‖(∇(∂tU

∗
N,M (t)− ∂tU(t))‖2Ω +

µ

16
‖∇ũN,M(t)‖2Ω

≤ 8

µ
‖(∆(∂tU

∗
N,M (t)− ∂tU(t))‖2Ω +

µ

8
‖∆ũN,M(t)‖2Ω

≤ µ

8
‖∆ũN,M‖2Ω +

c

µ
((β4 +

1

β8
)(βN)2−r +M4−2s)Br,s,β(∂tU(t)).

Next, by virtue of (46) with r = s = 2, we have

(55)
‖∆U∗

N,M(t)‖2Ω ≤ ‖∆(U∗
N,M (t)− U(t))‖2Ω + ‖∆U(t))‖2Ω

≤ c(β4 +
1

β4
)B2,2,β(U(t)) + ‖∆U(t)‖2Ω.
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Accordingly, we use (21), (17) and (55) successively to verify that

(56)

|G2(ŨN,M (t), t)| ≤ 2|ŨN,M(t)|1,Ω|ŨN,M (t)|2,Ω|U∗
N,M(t)|2,Ω

= 2‖∇ŨN,M(t)‖Ω‖∆ŨN,M(t)‖Ω‖∆U∗
N,M(t)‖Ω

≤ µ

8
‖∆ŨN,M(t)‖2Ω +

8

µ
‖∇ŨN,M(t)‖2Ω‖∆U∗

N,M‖2Ω

≤ µ

8
‖∆ŨN,M(t)‖2Ω +

c

µ
((β4 +

1

β4
)B2,2,β(U(t))

+‖∆U(t)‖2Ω)‖∇ŨN,M (t)‖2Ω.

Furthermore, by virtue of (17) and (18), for any v ∈ H2
0 (Ω),

||v||22,Ω ≤ |v|22,Ω + 2||∂x∂yv||2Ω + 2||∂2yv||2Ω + 4||∂2yv||2Ω ≤ 7|v|22,Ω = 7||∆v||2Ω.

Therefore, with the aid of (22), (46) and (55), we derive that
(57)

|G3(ŨN,M(t), t)| ≤ 2‖U∗
N,M(t)− U(t)‖2,Ω‖ŨN,M(t)‖2,Ω‖U∗

N,M(t)‖2,Ω
≤ 2

√
343‖∆(U∗

N,M(t)− U(t))‖Ω‖∆ŨN,M(t)‖Ω‖∆U∗
N,M(t)‖Ω

≤ µ

8
‖∆ŨN,M(t)‖2Ω +

2744

µ
‖∆(U∗

N,M(t)− U(t))‖2Ω‖∆U∗
N,M(t)‖2Ω

≤ µ

8
‖∆ŨN,M(t)‖2Ω +

c

µ
((β4 +

1

β4
)(βN)2−r +M4−2s)

×((β4 +
1

β4
)B2,2,β(U(t)) + ‖∆U(t)‖2Ω)Br,s,β(U(t)).

Similarly,
(58)

|G4(ŨN,M(t), t)| ≤ µ

8
‖∆ŨN,M(t)‖2Ω +

2744

µ
‖∆(U∗

N,M(t)− U(t))‖2Ω‖∆U(t)‖2Ω
≤ µ

8
‖∆ŨN,M(t)‖2Ω

+
c

µ
((β4 +

1

β8
)(βN)2−r +M4−2s)‖∆U(t)‖2ΩBr,s,β(U(t)).

If we take uN,M,0 = Π2,0
N,M,βU0, then ŨN,M,0 = 0. If we take uN,M,0 = Π1,0

N,M,βU0,

then we use (17), (18), (40) and (46) to deduce that

(59)

||ŨN,M,0||2Ω ≤ ‖∇(Π1,0
N,MU0 − U0)‖2Ω + ‖∇(U0 −Π2,0

N,MU0)‖2Ω
≤ ‖∇(Π1,0

N,MU0 − U0)‖2Ω + 2‖∆(U0 −Π2,0
N,MU0)‖2Ω

≤ c((1 +
1

β2
)(βN)2−r +M4−2s)Ar,s,β(U0)

+c((β4 +
1

β4
)(βN)2−r +M4−2s)Br,s,β(U0).

By substituting (54) and (56)-(58) into (53), we obtain

∂tE(ŨN,M , µ, t) ≤ Vβ(U, µ, t)E(ŨN,M , µ, t)
+c((β4 + 1

β4 )(βN)2−r +M4−2s)Rr,s,β(U, µ, t).

Then, by (59) and an argument like the last part of Subsection 5.1, we obtain

E(ŨN,M , µ, t) ≤ c((β4 +
1

β4
)(βN)2−r +M4−2s)e

∫
t

0
Vβ(U,µ,η)dη

×
(

∫ t

0

e−
∫

η

0
Vβ(U,µ,ξ)dξRr,s,β(U, µ, η)dη +Dr,s,β(U0)

)

.

Finally, we use (46) again to reach the desired result (33).
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6. Concluding Discussion

In this work, we proposed the mixed spectral method for the stream function
form of the Navier-Stokes equations in an infinite strip, by using generalized La-
guerre functions. We proved its generalized stability and convergence. Numerical
results demonstrated its efficiency and confirmed the analysis well. This approach
has several fascinating merits as discussed in the first section of this paper.

We introduced a new mixed generalized Laguerre-Legendre orthogonal approx-
imation and established the basic approximation results in certain non-uniformly
weighted Sobolev spaces, which play important roles in spectral method for fourth
order problems defined on unbounded domains.

Although we only considered the Navier-Stokes equations in an infinite strip, the
suggested method and the approximation results are also applicable to many other
problems, such as certain problems arising in fluid dynamics, quantum mechanics,
and other fields.
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