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SPLIT-STEP FORWARD MILSTEIN METHOD FOR

STOCHASTIC DIFFERENTIAL EQUATIONS

SAMAR SINGH

Abstract. In this paper, we consider the problem of computing numerical

solutions for stochastic differential equations (SDEs) of Itô form. A fully ex-

plicit method, the split-step forward Milstein (SSFM) method, is constructed

for solving SDEs. It is proved that the SSFM method is convergent with strong

order γ = 1 in the mean-square sense. The analysis of stability shows that the

mean-square stability properties of the method proposed in this paper are an

improvement on the mean-square stability properties of the Milstein method

and three stage Milstein methods.
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1. Introduction

In this paper, we consider d-dimensional Itô stochastic differential equations
(SDEs) of the following form

{

dY (t) = f (Y (t)) dt+ g (Y (t)) dW (t), t ∈ [t0, T ],

Y (t0) = Y0,
(1)

where Y (t) is a random variable with value in Rd, f : Rd → Rd is called the drift
function, g : Rd → Rd is called the diffusion function, and W (t) is a Wiener process
whose increments ∆W (t) = W (t + ∆t) − W (t) are Gaussian random variables
N(0,∆t).

Stochastic differential equations have come to play an important role in many
branches of science and industry. The importance of numerical methods for SDEs
can not be overemphasized as SDEs are used in modeling of many chemical, phys-
ical, biological and economical systems [2]. SDEs arising in many applications can
not be solved analytically, hence one needs to develop effective numerical methods
for such systems. In recent years, many efficient numerical methods have been con-
structed for solving different type of SDEs with different properties, for example,
Wang et al.[8], Higham [1], Platen [5], Wang [7]. These numerical schemes are
now abundant and classified according to their type (strong or weak) and order of
convergence [2]. In this paper, we focus our attention on schemes that converge
in the strong sense. The concepts of strong convergence concern the accuracy of a
numerical method over a finite interval [t0, T ] for small step sizes ∆t.
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2. Motivation and background

Milstein et al.[3] studied the fully implicit methods for Itô SDEs. The fully
implicit methods have been constructed for stiff SDEs where some components of
a stiff multidimensional system have a vanishing drift term for which semi-implicit
methods can not improve the stability of the numerical solution. In this paper, we
propose to solve SDEs of type (1). For such equations semi-implicit methods are
applicable, however the Newton iteration is necessary for semi-implicit methods,
which makes such methods expensive. Hence to avoid this issue, we need explicit
methods.

In order to improve the stability properties of the explicit methods for solving
SDEs, some attempts have been made to propose modified explicit Euler and Mil-
stein methods. For example, Wang et al.[8] studied the split-step forward methods
for Itô SDEs. Wang [7] studied the three-stage stochastic Runge-Kutta methods for
Stratonovich SDEs. In this paper, as a fully explicit method, we discuss the split-
step forward Milstein (SSFM) method which has better stability properties than
the Milstein and three-stage Milstein methods. The SSFM method has unbounded
stability region whereas the Milstein method has bounded stability region. In Sec-
tion 5, an example is presented in order to show that the accuracy and convergence
property of SSFM method are better than that of the Milstein method and three
stage Milstein methods.

This paper is organized as follows. In Section 3, we introduce some notation and
hypotheses of Eq. (1). In the same section we discuss the convergence of the SSFM
method. The stability properties of the SSFM method are reported in Section 4.
In Section 5, examples are presented in order to illustrate the applicability of our
results. Conclusions are given in Section 6.

3. Numerical analysis of the method

3.1. General framework. Let there be a common underlying complete proba-
bility space (Ω,F ,P) with index t ∈ [t0, T ] on which the vector stochastic process
Y (t) consists of component-wise collections of random variables. Along a given
sample path w, Y (t;w) denotes the value taken by the random variable Yt. We
consider the numerical integration of the initial value Itô SDEs with noise in the
form of

dY (t) = f (Y (t)) dt+ g (Y (t)) dW (t)(2)

with

Y (t0) = Y0.

Let |x| be the Euclidean norm of vector x ∈ Rd. Let E denote the expectation.

3.2. Assumptions. Let gg′ denote a vector of length d with ith component equal

to (gg′)i =
∑d

k=1 gk
∂gi
∂yk

.

The following assumptions can be found in [4, 8] when considering the convergence
properties of splitting schemes for Itô SDEs.
A1. The functions f, g and gg′ satisfy the Lipschitz condition; that is, there exists
a positive constant L1 such that for any x1, x2 ∈ Rd,

| f (x1)− f (x2) | ≤ L1 | x1 − x2 |,(3)

| g (x1)− g (x2) | ≤ L1 | x1 − x2 |,(4)
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and

| g(x1)g
′(x1)− g(x2)g

′(x2) | ≤ L1 | x1 − x2 | .(5)

A2. The functions f, g and gg′ satisfy a linear growth condition; that is,

| f(x1) |2≤ C2

(

1+ | x1 |2
)

,(6)

| g(x1) |2≤ C2

(

1+ | x1 |2
)

,(7)

| g(x1)g
′(x1) |2≤ C2

(

1+ | x1 |2
)

,(8)

where C2 is a constant.
A3. The process Y (t) is adapted to filtration {Ft, t ≥ t0}, where Ft1 ⊆ Ft2 for
t1 < t2.

3.3. Numerical discretization.

Lemma 1. [8] Under the assumptions A1−A3, there exists a unique solution Y (t)
to Eq.(1) and

E( sup
t0≤t≤T

|Y (t)|2) < K(1 +E|Y0|2),(9)

where K is a constant.

We define a mesh with a uniform step on the interval [t0, T ], h = (T−t0)
N , tn =

t0 + nh, where n = 0, ....., N .
For SDE (1), here we present explicit method based on the Milstein method in [2]
and three-stage Milstein methods in [8], the split-step forward Milstein (SSFM)
method:

Yn1 = yn − γ1g(yn)g
′(yn)h,

Yn2 = Yn1 + hα1f(Yn1),

Yn3 = Yn2 +∆Wng(Yn2) +
1

2
(∆Wn)

2g(Yn2)g
′(Yn2),

Yn4 = Yn3 + hα2f(Yn3),

Yn5 = Yn4 − γ2g(Yn4)g
′(Yn4)h,

yn+1 = Yn5 + hα3f(Yn5),(10)

where α1, α2, α3, γ1, γ2 ∈ [−1, 1] satisfying the conditions

α1 + α2 + α3 = 1,

γ1 + γ2 =
1

2
,

and the increments ∆Wn = Wn+1 −Wn are Gaussian random variables N(0, h).
Throughout the following analysis, we use k1, k2, k3, ...., to denote generic constants
that do not depend on h.

Lemma 2. Under the assumptions A1−A3, the SSFM method is consistent with

order 2 in the mean and order 3
2 in the mean-square sense.

Proof. Invoke the Milstein method

yMn+1 = yn + hf(yn) + g(yn)∆Wn +
1

2
g(yn)g

′(yn){(∆Wn)
2 − h},

considered in [2].
We use the Lipschitz-continuity of the drift and diffusion function, properties of
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multiple Itô-integrals and linear growth bounds of the drift and diffusion function.

H1 : = |E (Y (tn+1)− yn+1) |Ftn |
= |E

(

Y (tn+1)− yMn+1 + yMn+1 − yn+1

)

|Ftn |
≤ |E

(

Y (tn+1)− yMn+1

)

|Ftn |+ |E
(

yMn+1 − yn+1

)

|Ftn |
≤ k4(1 + |yn|2)

1

2h2 +H2,

where

H2 = |E
(

yMn+1 − yn+1

)

|Ftn |
= |E(yMn+1 − Yn5 − hα3f(Yn5))|Ftn |
= |E(yMn+1 − Yn3 − hα2f(Yn3) + γ2hg(Yn4)g

′(Yn4)

−hα3f(Yn5))|Ftn |
≤ |E(∆Wn(g(Yn2)− g(yn)))|Ftn |

+|E(
1

2
(∆Wn)

2(g(Yn2)g
′(Yn2)− g(yn)g

′(yn)))|Ftn |
+|E(hα2(f(Yn3)− f(yn)))|Ftn |
+|E(hα3(f(Yn5)− f(yn)))|Ftn |
+|E(hα1(f(yn − γ1hg(yn)g

′(yn))− f(yn)))|Ftn |
+|E(hγ2(g(Yn4)g

′(Yn4)− g(yn)g
′(yn)))|Ftn |,

from Eqs. (3), (4) and (5), we have

H2 ≤ k5h(|E(Yn2 − yn)|Ftn |+ |E(Yn3 − yn)|Ftn |+ |E(Yn5 − yn)|Ftn |
+|E(Yn4 − yn)|Ftn |+ |E(yn − γ1hg(yn)g

′(yn)− yn)|Ftn |),

from Eqs. (6), (7) , (8) and inequality |a| < (1 + |a|2) 1

2 , we have

H2 ≤ k6(1 + |yn|2)
1

2h2,

where k4, k5 and k6 are constants. Similarly by standard arguments, we can
prove the following

H3 =
(

E
(

|Y (tn+1)− yn+1|2
)

|Ftn

)
1

2

≤
(

E
(

|Y (tn+1)− yMn+1|2
)

|Ftn

)

1

2 + (E|∆Wn(g(Yn2)− g(yn))|2|Ftn)
1

2

+(E|1
2
(∆Wn)

2(g(Yn2)g
′(Yn2)− g(yn)g

′(yn))|2|Ftn)
1

2

+(E|hα2(f(Yn3)− f(yn))|2|Ftn)
1

2

+(E|hα3(f(Yn5)− f(yn))|2|Ftn)
1

2

+(E|hα1(f(yn − γ1hg(yn)g
′(yn))− f(yn))|2|Ftn)

1

2

+(E|hγ2(g(Yn4)g
′(Yn4)− g(yn)g

′(yn))|2|Ftn)
1

2

≤ k7(1 + |yn|2)
1

2h
3

2 ,

where k7 is a constant. �

Theorem 1. [3] Assume for a one-step discrete time approximation y that the local

mean error and mean-square error for all N = 1, 2, ..., and n = 0, 1, ..., N−1 satisfy

the estimates

|E(Y (tn)− yn+1)|Ftn | ≤ k1(1 + |yn|2)
1

2 hp1
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and

(E|Y (tn)− yn+1|2|Ftn)
1

2 ≤ k2(1 + |yn|2)
1

2hp2 ,

with p2 ≥ 1
2 and p1 ≥ p2 +

1
2 . Then,

(E|Y (tn)− yn+1|2|Ft0)
1

2 ≤ k3(1 + |y0|2)
1

2hp2−
1

2 .

Theorem 2. Under the assumptions A1−A3, the numerical solution produced by

the SSFM method (10) converges to the exact solution of Eq. (1) in the mean-square

sense with strong order of convergence 1.

Proof. According to Eq. (1), SSFM method (10), Lemma 1 and Lemma 2, we can
easily see that all conditions of Theorem 1 are satisfied. Thus, this conclusion can
be considered as a corollary of Theorem 1. �

4. Stability properties of the method

Following the established practice [6, 7, 8] for analyzing the stochastic stability of
a numerical integrator in the mean-square sense, we take a one-dimensional linear
test SDE with a single channel of noise:

dY (t) = aY (t)dt+ bY (t)dW (t),(11)

with known solution Y (t) = Y0e
(a−b2/2)t+bW (t) which is represented by

yn+1 = R(a, b, h, J)yn,

where J is the standard Gaussian random variable J ∼ N(0, 1) and we assume that
Y0 6= 0 with probability 1. Saito and Mitsui [6] introduced the following definition
of the mean-square (MS) stability.

Definition 1. The numerical method is said to be MS-stable , if

r(a, b, h) = E(R2(a, b, h, J)) < 1.

r(a, b, h) is called MS-stability function of the numerical method.

The MS-stability function of the SSFM method is given by

r1(p, q) = (1 + α1p)
2(1 + α2p)

2(1 + α3p)
2(1− γ1q

2)2(1 − γ2q
2)2(1 + 2q2 +

3

4
q4),

where p = ah and q = b
√
h.

Figs. 1, 2, 3, 4 and 5 give the MS-stable regions of the SSFM method. Fig.

-6 -4 -2 0 2
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2.0

2.5

3.0

Figure 1. MS-stable region of the SSFM method (α1 = α2 =
α3 = 1

3 , γ1 = 0, γ2 = 1
2 ) for linear SDE.

6 gives the MS-stable region of the Milstein method. Fig. 7 gives the MS-stable
region of the three-stage Milstein methods. The MS-stable regions of the Milstein



SPLIT-STEP FORWARD MILSTEIN METHOD FOR SDE 975

-8 -6 -4 -2 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. MS-stable region of the SSFM method (α1 = α2 =
1
5 , α3 = 3

5 , γ1 = 0, γ2 = 1
2 ) for linear SDE.
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Figure 3. MS-stable region of the SSFM method (α1 = α2 =
1
4 , α3 = 1

2 , γ1 = γ2 = 1
4 ) for linear SDE.
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Figure 4. MS-stable region of the SSFM method (α1 = 0.5, α2 =
0.6, α3 = −0.1, γ1 = 0, γ2 = 1

2 ) for linear SDE.

method, three stage Milstein methods and SSFM method are the areas between the
plotted curves and are symmetric about the X-axis. From these figures, we can see
that the MS-stability properties of the split-step forward Milstein method are better
than that of the Milstein method and three stage Milstein methods. In particular,
the MS-stable regions of the split-step forward Milstein method are unbounded.

5. Examples

In this section, we shall discuss the examples to illustrate our theory.
Example 1. Denoting yiN the numerical approximation to Yi(tN ) at step point
tN in the ith simulation of all 5000 simulations, we use mean of absolute errors M ,
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Figure 5. MS-stable region of the SSFM method (α1 = 0.5, α2 =
0.6, α3 = −0.1, γ1 = 0.2, γ2 = 0.3) for linear SDE.
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Figure 6. MS-stable region of the Milstein method for linear SDE.
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Figure 7. MS-stable region of the three stage Milstein methods
for linear SDE.

convergence rates Rh defined by [8]

M =
1

5000

5000
∑

i=1

|yiN − Yi(tN )|, Rh =
M

h
,

to measure the accuracy and convergence property of the SSFM method.
The test equation is a nonlinear SDE, whose Itô form is given by

dY (t) = Y (t)(1 − Y 2(t))dt− (1− Y 2(t))dW (t), Y (0) = 2, t ∈ [0, 3].(12)

The exact solution of Eq. (12) is Y (t) = coth(W (t) + arccoth(Y0)).
For Eq. (12), the errors of Milstein method, three-stage Milstein (TSM 1b) method
and SSFM method are shown in Table 1. For Eq. (12), the convergence rates
of Milstein method, three-stage Milstein (TSM 1b) method and SSFM method are
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shown in Table 2. The accuracy of SSFM method is better than that of the Milstein
and three-stage Milstein(TSM 1b) methods.

Table 1. Mean (M) of absolute errors × 104

method\h 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

α1 = α2 = 1
4
,

α3 = 1
2
,

γ1 = 0, γ2 = 1
2

4.01 3.57 1.57 1.63 1.29 1.03 0.976 0.574

α1 = 0.5, α2 = 0.6,
α3 = −0.1,

γ1 = 0, γ2 = 1
2

3.93 3.05 1.60 1.39 1.24 1.21 0.892 0.487

α1 = 1
3
, α2 = 1

3
,

α3 = 1
3
,

γ1 = 0, γ2 = 1
2

3.81 3.25 1.81 1.54 1.31 1.17 0.883 0.539

Milstein method 4.52 3.93 2.61 2.05 1.79 1.52 0.991 0.696

TSM 1b 4.23 3.77 2.03 1.69 1.41 1.24 0.985 0.658

Table 2. Convergence rates (Rh) × 102

method\Rh R2−3 R2−4 R2−5 R2−6 R2−7 R2−8 R2−9 R2−10

α1 = α2 = 1
4
,

α3 = 1
2
,

γ1 = 0, γ2 = 1
2

0.320 0.571 0.502 1.04 1.65 2.63 4.99 5.87

α1 = 0.5, α2 = 0.6,
α3 = −0.1,

γ1 = 0, γ2 = 1
2

0.314 0.488 0.512 0.889 1.58 3.09 4.56 4.98

α1 = 1
3
, α2 = 1

3
,

α3 = 1
3
,

γ1 = 0, γ2 = 1
2

0.304 0.520 0.579 0.985 1.67 2.99 4.52 5.51

Milstein method 0.361 0.628 0.835 1.31 2.29 3.89 5.07 7.12

TSM 1b 0.338 0.603 0.649 1.08 1.80 3.17 5.04 6.73

Example 2. We consider the stochastic rotating problem,
{

dY1(t) = 5Y2(t) + 2(Y1(t) + Y2(t))dW (t),

dY2(t) = −5Y1(t) + 2(Y1(t) + Y2(t))dW (t), Y1(0) = 1, Y2(0) = 0.
(13)

For this equation, a version with two Wiener processes can be found in [3] and a
version with single Wiener process can be found in [8]. Stochastic stiffness is a
generalization of the deterministic notion of stiffness, so a stiff ordinary differential
equation is also stiff in the stochastic sense. The deterministic version of the Eq.(13)
is a stiff system which implies that the Eq.(13) is a stiff system . In [8], we can
see that the Milstein method can not give the stable solution for Eq. (13) when
h = 0.02. For Eq. (13), Figs. 8, 9, 10, 11 and 12 illustrate the numerical simulation
of the split-step forward Milstein method when h = 0.02. We observe in Figs. 8,
9, 10, 11 and 12 that the approximate trajectory of the split-step forward Milstein
method stays close to the origin, which replicates the behavior of the exact solution.
Example 3. We consider the following SDE,

{

dY1(t) = −12Y1(t) + 4Y1(t)dW (t),

dY2(t) = −12Y2(t) + 4Y1(t)dW (t), Y1(0) = 0.3, Y2(0) = 0.1.
(14)

For Eq. (14), Fig. 13 illustrates the numerical simulation of the split-step forward
Milstein method when h = 1

5 and Fig. 14 illustrates the numerical simulation of
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Figure 8. Numerical simulation of the SDE (13) by SSFM
method (α1 = 0.2, α2 = 0.2, α3 =

3
5 , γ1 = 0, γ2 = 1

2 ) .
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1
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Figure 9. Numerical simulation of the SDE (13) by SSFM
method (α1 = 1

4 , α2 = 1
4 , α3 = 1

2 , γ1 = 0, γ2 =
1
2 ).

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Y
1

Y 2

Figure 10. Numerical simulation of the SDE (13) by SSFM
method (α1 = α2 = α3 = 1

3 , γ1 = 0, γ2 = 1
2 ) .

the three-stage Milstein methods when h = 1
5 . Fig. 15 illustrates the deterministic



SPLIT-STEP FORWARD MILSTEIN METHOD FOR SDE 979

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Y
1

Y 2

Figure 11. Numerical simulation of the SDE (13) by SSFM
method (α1 = 0.5, α2 = 0.6, α3 = −0.1, γ1 = 0, γ2 = 1

2 ).
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Figure 12. Numerical simulation of the SDE (13) by SSFM
method (α1 = 0.5, α2 = 0.6, α3 = −0.1, γ1 = 0.2, γ2 = 0.3).

solution of Eq.(14). We observe in Figs. 13 and 14 that the split-step forward Mil-
stein method gives stable solution for Eq. (14), while three-stage Milstein methods
give unstable solution for Eq. (14).
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Figure 13. Numerical simulation of the SDE (14) by SSFM method



980 S. SINGH

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

t

Y 2

 

 

TSM 1d
TSM 1f
TSM 1c
TSM 1a

Figure 14. Numerical simulation of the SDE (14) by three-stage
Milstein methods

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

Y 2

Figure 15. Deterministic solution of Eq. (14)

6. Conclusion

In this paper, we have constructed a new explicit method (split-step forward
Milstein method), a significant feature of our method is its better stability and error
properties for stochastic differential equations as compared to the Milstein method
and three stage Milstein methods. The ability to use larger step sizes justifies the
additional computational work required to implement the SSFM method. From
the numerical results, it is also clear that the SSFM method is suitable for solving
stiff stochastic differential equations. We will consider constructing a method with
better stability properties and higher convergence order (under global and local
Lipschitz condition) in a future work.
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