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ANISOTROPIC hp–ADAPTIVE DISCONTINUOUS GALERKIN

FINITE ELEMENT METHODS FOR COMPRESSIBLE FLUID

FLOWS

STEFANO GIANI AND PAUL HOUSTON

Abstract. In this article we consider the construction of general isotropic and anisotropic adap-
tive mesh refinement strategies, as well as hp–mesh refinement techniques, for the numerical
approximation of the compressible Euler and Navier–Stokes equations. To discretize the latter
system of conservation laws, we exploit the (adjoint consistent) symmetric version of the interior
penalty discontinuous Galerkin finite element method. The a posteriori error indicators are derived
based on employing the dual-weighted-residual approach in order to control the error measured
in terms of general target functionals of the solution; these error estimates involve the product of
the finite element residuals with local weighting terms involving the solution of a certain adjoint
problem that must be numerically approximated. This general approach leads to the design of
economical finite element meshes specifically tailored to the computation of the target functional
of interest, as well as providing efficient error estimation. Numerical experiments demonstrating
the performance of the proposed adaptive algorithms will be presented.

Key words. Discontinuous Galerkin methods, a posteriori error estimation, adaptivity, anisotrop-
ic hp–refinement, compressible flows

1. Introduction

The development of Discontinuous Galerkin (DG) methods for the numerical ap-
proximation of the compressible Euler and Navier-Stokes equations is an extremely
exciting research topic which is currently being developed by a number of groups
all over the world, cf. [1, 2, 3, 4, 6, 10, 11, 16, 20, 21, 22, 32, 33, 34], for example.
DG methods have several important advantages over well established finite volume
methods. The concept of higher-order discretization is inherent to the DG method.
The stencil is minimal in the sense that each element communicates only with its
direct neighbors. In particular, in contrast to the increasing stencil size needed to
increase the accuracy of classical finite volume methods, the stencil of DG methods
is the same for any order of accuracy, which has important advantages for the im-
plementation of boundary conditions and for the parallel efficiency of the method.
Moreover, due to the simple communication at element interfaces, elements with
so–called hanging nodes can be easily treated, a fact that simplifies local mesh
refinement (h–refinement). Additionally, the communication at element interfaces
is identical for any order of the method, which simplifies the use of methods with
different polynomial orders p in adjacent elements. This allows for the variation of
the order of polynomials over the computational domain (p–refinement), which in
combination with h–refinement leads to so–called hp–adaptivity.

Mesh adaptation in finite element discretizations should be based on rigorous
a posteriori error estimates; for hyperbolic/nearly–hyperbolic equations such esti-
mates should reflect the inherent mechanisms of error propagation (see [26, 27]).
These considerations are particularly important when local quantities such as point
values, local averages or flux integrals of the analytical solution are to be computed
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with high accuracy. In the context of aerodynamic flow simulations, it is of vital
importance that certain force coefficients, such as the drag, lift and moment on
a body immersed within a compressible fluid, are reliably and efficiently comput-
ed. Selective error estimates of this kind can be obtained by the optimal control
technique proposed in [8] and [5] which is based on duality arguments analogous
to those from the a priori error analysis of finite element methods. In the result-
ing a posteriori error estimates, the element-residuals of the computed solution are
multiplied by local weights involving the adjoint solution. These weights represent
the sensitivity of the relevant error quantity with respect to variations of the lo-
cal mesh size. Since the adjoint solution is usually unknown analytically, it has
to be approximated numerically. On the basis of the resulting a posteriori error
estimate the current mesh is locally adapted and then new approximations to the
primal and adjoint solution are computed. This feed-back process is repeated, for
instance, until the required error tolerance is reached. In this way, optimal mesh-
es, or in the hp–setting, optimal finite element spaces can be obtained for various
kinds of error measures, where optimal can mean most economical for achieving
a prescribed accuracy TOL or most accurate for a given maximum number Nmax

of degrees of freedom. This approach is quite universal as it can, in principle, be
applied to almost any problem, as long as it is posed in a variational setting.

In this work, we consider the a posteriori error estimation and adaptive mesh
design of the hp–version of the DG finite element method applied to compressible
flows on general finite element spaces consisting of an anisotropic computational
mesh with anisotropic polynomial degree approximation orders. Here, we shall
be interested in the reliable and efficient approximation of certain target func-
tionals of the underlying analytical solution of practical interest. In particular,
(weighted) Type I a posteriori error bounds are derived, based on employing the
dual-weighted-residual approach, cf. [5, 19, 28, 29], for example. Based on the
a posteriori error bound we design and implement a series of adaptive algorithms
to efficiently design the underlying finite element space. Inspired by our recent
articles [12, 13], we consider adaptive mesh refinement algorithms based on u-
tilizing anisotropic h–refinement, isotropic hp–refinement, and finally anisotropic
hp–refinement. Within this latter strategy, once elements have been marked for
refinement/derefinement, on the basis of the size of the local error indicators, the
proposed adaptive algorithm consists of two key steps: (a) Determine whether to
undertake h– or p–refinement/derefinement; (b) Select a locally optimal anisotrop-
ic/isotropic refinement. Step (a) is based on assessing the local analyticity of the
underlying primal and adjoint solutions, on the basis of the decay rates of Legendre
series coefficients; see our previous articles [16, 30, 29], together with [7]. Step (b)
is based on employing a competitive refinement strategy, whereby the “optimal”
refinement is selected from a series of trial refinements. This entails the numerical
solution of a series of local primal and adjoint problems which is relatively cheap
and fully parallelizable, cf. [13]. The work presented in this paper is a complete
and improved account of our recent work announced in the book chapter [14].

This article is structured as follows. In Section 2 we introduce the three–
dimensional compressible Navier–Stokes equations. Then, in Section 3 we formulate
its discontinuous Galerkin finite element approximation, based on employing the
adjoint consistent symmetric interior penalty method introduced in [23]. Then, in
Section 4 we derive an error representation formula together with the correspond-
ing (weighted) Type I a posteriori error bound for general target functionals of
the solution. The error representation formula stems from a duality argument and
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includes computable residual terms multiplied by local weights involving the ad-
joint solution; the inclusion of the adjoint solution in the Type I bound ensures
that the error creation and error propagation mechanisms inherent in compressible
fluid flows are reflected by the resulting local error indicators. In Section 5 we
outline an anisotropic h–version adaptive algorithm, which is based on employing
a competitive refinement strategy; see [12, 15] for the application of this approach
to 2D convection–diffusion problems. Numerical experiments for both 2D and 3D
viscous flows will be undertaken. Before we embark on anisotropic hp–refinement,
in Section 6 we first study the application of standard isotropic hp–refinement to
both inviscid and viscous flows. Finally, Section 7 considers the application of the
anisotropic hp–refinement algorithm developed in [13] to a viscous flow problem.

2. Compressible Navier-Stokes equations

In this article, we consider both two– and three–dimensional inviscid and laminar
compressible flow problems. With this in mind, for generality, in this section we
introduce the stationary compressible Navier-Stokes equations in three-dimensions:

(1) ∇ · (Fc(u)−Fv(u,∇u)) = 0 in Ω,

where Ω is an open bounded domain in R
d with boundary Γ; for the purposes

of this section, we set d = 3. The vector of conservative variables u is given by

u = (ρ, ρv1, ρv2, ρv3, ρE)⊤ and the convective flux Fc(u) = (fc1 (u), f
c
2 (u), f

c
3 (u))

⊤

is defined by

(2) fc1 (u) =













ρv1
ρv21 + p
ρv1v2
ρv1v3
ρHv1













, fc2 (u) =













ρv2
ρv2v1
ρv22 + p
ρv2v3
ρHv2













, and fc3 (u) =













ρv3
ρv3v1
ρv3v2
ρv23 + p
ρHv3













.

Furthermore, writing Fv(u) = (fv1 (u), f
v
2 (u), f

v
3 (u))

⊤
, we have

fvk (u,∇u) =













0
τ1k
τ2k
τ3k

τklvl +KTxk













, k = 1, 2, 3.

Here, ρ, v = (v1, v2, v3)
⊤, p, E and T denote the density, velocity vector, pressure,

specific total energy, and temperature, respectively. Moreover, K is the thermal
conductivity coefficient and H is the total enthalpy given by

H = E +
p

ρ
= e+ 1

2v
2 +

p

ρ
,

where e is the specific static internal energy, and the pressure is determined by the
equation of state of an ideal gas

p = (γ − 1)ρe,(3)

where γ = cp/cv is the ratio of specific heat capacities at constant pressure, cp, and
constant volume, cv; for dry air, γ = 1.4. For a Newtonian fluid, the viscous stress
tensor is given by

τ = µ
(

∇v + (∇v)⊤ − 2
3 (∇ · v)I

)

,

where µ is the dynamic viscosity coefficient; the temperature T is given by

KT = µγ
Pr

(

E − 1
2v

2
)

,
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where Pr = 0.72 is the Prandtl number. For the purposes of discretization, we
rewrite the compressible Navier–Stokes equations (1) in the following (equivalent)
form:

∇ · (Fc(u)−G(u)∇u) ≡
∂

∂xk

(

fck(u)−Gkl(u)
∂u

∂xl

)

= 0 in Ω.

Here, the matricesGkl(u) = ∂fvk (u,∇u)/∂uxl
, for k, l = 1, 2, 3, are the homogeneity

tensors defined by fvk (u,∇u) = Gkl(u)∂u/∂xl, k = 1, 2, 3.
Given that Ω ⊂ R

3 is a bounded region, with boundary Γ, the system of con-
servation laws (1) must be supplemented by appropriate boundary conditions. For
simplicity of presentation, we assume that Γ may be decomposed as follows

Γ = ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out ∪ ΓW ∪ Γsym,

where ΓD,sup, ΓD,sub-in, ΓD,sub-out, ΓW, and Γsym are distinct subsets of Γ represent-
ing Dirichlet (supersonic), Dirichlet (subsonic-inflow), Dirichlet (subsonic-outflow),
solid wall boundaries, and symmetry boundaries, respectively, cf. [21]. We remark
that as in [21, 22], Neumann boundary conditions may also be considered; for clarity
of presentation, we neglect this case and refer to our earlier articles for details.

Thereby, we may specify the following boundary conditions:

B(u) = B(g) on ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out,

where g = (g1, . . . , g5)
⊤ is a prescribed Dirichlet condition. Here, B is a boundary

operator employed to enforce appropriate Dirichlet conditions on ΓD,sup∪ΓD,sub-in∪
ΓD,sub-out. For simplicity of presentation, we assume that

B(u) =







u on ΓD,sup,
(u1, u2, u3, u4, 0)

⊤ on ΓD,sub-in,
(

0, 0, 0, 0, (γ − 1)(u5 − (u2
2 + u2

3 + u2
4)/(2u1))

)⊤
on ΓD,sub-out;

we note that this latter condition enforces a specific pressure pout = (B(g))5 on
ΓD,sub-out.

For solid wall boundaries, we consider isothermal and adiabatic conditions; to
this end, decomposing ΓW = Γiso ∪ Γadia, we set

v = 0 on ΓW, T = Twall on Γiso, n · ∇T = 0 on Γadia,

where Twall is a given wall temperature; see [3, 1, 6, 9] and the references cited
therein for further details. On the symmetry boundary, we simply impose that the
normal component of the velocity is zero; see below for further details.

3. DG Discretization

In this section we introduce the adjoint-consistent interior penalty DG discretiza-
tion of the compressible Navier–Stokes equations (1), cf. [23] for further details.
First, we begin by introducing some notation. We assume that Ω ⊂ R

d, d = 2, 3,
can be subdivided into a mesh Th = {κ} consisting of tensor-product (quadrilat-
erals, d = 2, and hexahedra, d = 3) open element domains κ. For each κ ∈ Th,
we denote by nκ, the unit outward normal vector to the boundary ∂κ. We assume
that each κ ∈ Th is an image of a fixed reference element κ̂, that is, κ = σκ(κ̂) for
all κ ∈ Th, where κ̂ is the open unit hypercube in R

d, and σκ is a smooth bijective
mapping. On the reference element κ̂ we define the polynomial space Qp with
respect to the anisotropic polynomial degree vector p := {pi}i=1,...,d as follows:

Qp = span{Πd
i=1x̂

j
i : 0 ≤ j ≤ pi}.

With this notation, we introduce the following (anisotropic) finite element space.
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Definition 3.1. Let p = (pκ : κ ∈ Th) be the composite polynomial degree vector
of the elements in a given finite element mesh Th. We define the finite element
space with respect to Ω, Th, and p by

Vh,p = {u ∈ L2(Ω) : u|κ ◦ σκ ∈ [Qpκ
]
d+2}.

In the case when the elemental polynomial degree vector pκ = {pκ,i}i=1,...,d,
κ ∈ Th, is isotropic in the sense that

pκ,1 = pκ,2 = . . . = pκ,d ≡ pκ

for all elements κ in the finite element mesh Th, then we write Vh,piso
in lieu of

Vh,p, where piso = (pκ : κ ∈ Th). Additionally, in the case when the polynomial
degree is both isotropic and uniformly distributed over the mesh Th, i.e., when
pκ = p for all κ in Th, then we simply denote the finite element space by Vh,p.

An interior face of Th is defined as the (non-empty) (d− 1)–dimensional interior
of ∂κ+ ∩ ∂κ−, where κ+ and κ− are two adjacent elements of Th, not necessarily
matching. A boundary face of Th is defined as the (non-empty) (d− 1)–dimensional
interior of ∂κ∩Γ, where κ is a boundary element of Th. We denote by ΓI the union
of all interior faces of Th. Let κ+ and κ− be two adjacent elements of Th, and x
an arbitrary point on the interior face f = ∂κ+ ∩ ∂κ−. Furthermore, let v and τ
be vector- and matrix-valued functions, respectively, that are smooth inside each
element κ±. By (v±, τ±), we denote the traces of (v, τ ) on f taken from within the
interior of κ±, respectively. Then, the averages of v and τ at x ∈ f are given by
{{v}} = (v++v−)/2 and {{τ}} = (τ++ τ−)/2, respectively. Similarly, the jump of v
at x ∈ f is given by [[v]] = v+ ⊗nκ+ +v− ⊗nκ− , where we denote by nκ± the unit

outward normal vector of κ±, respectively. On f ⊂ Γ, we set {{v}} = v, {{τ}} = τ
and [[v]] = v⊗n, where n denotes the unit outward normal vector to Γ. For matrices

σ, τ ∈ R
m×n, m,n ≥ 1, we use the standard notation σ : τ =

∑m
k=1

∑n
l=1 σklτkl;

additionally, for vectors v ∈ R
m,w ∈ R

n, the matrix v ⊗w ∈ R
m×n is defined by

(v ⊗w)kl = vk wl.
The DG discretization of (1) is given by: find uh ∈ Vh,p such that

N (uh,v) ≡ −

∫

Ω

Fc(uh) : ∇hv dx+
∑

κ∈Th

∫

∂κ\Γ
H(u+

h ,u
−
h ,n

+) · v+ ds

+

∫

Ω

Fv(uh,∇huh) : ∇hv dx−

∫

ΓI

{{Fv(uh,∇huh)}} : [[v]] ds

−

∫

ΓI

{{G⊤(uh)∇hv}} : [[uh]] ds+

∫

ΓI

δ(uh) : [[v]] ds

+NΓ\Γsym
(uh,v) +NΓsym(uh,v) = 0(4)

for all v in Vh,p. The subscript h on the operator ∇h is used to denote the discrete
counterpart of ∇, defined elementwise. Here, H(·, ·, ·) denotes the (convective)
numerical flux function; this may be chosen to be any two–point monotone Lipschitz
function which is both consistent and conservative. For the purposes of this article,
we employ the Vijayasundaram flux.

In order to define the penalization function δ(·) arising in the DG method (4),
we first introduce the local (anisotropic) mesh and polynomial functions h and
p, respectively. To this end, the function h in L∞(ΓI ∪ Γ) is defined as h(x) =
min{mκ+ ,mκ−}/mf , if x is in the interior of f = ∂κ+ ∩ ∂κ− for two neighboring
elements in the mesh Th, and h(x) = mκ/mf , if x is in the interior of f = ∂κ ∩ Γ.
Here, for a given (open) bounded set ω ⊂ R

s, s ≥ 1, we write mω to denote the s–
dimensional measure (volume) of ω. In a similar fashion, we define p in L∞(ΓI ∪Γ)
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by p(x) = max{pκ+,i, pκ−,j} for κ+, κ− as above, where the indices i and j are

chosen such that σ−1
κ+ (f) and σ−1

κ−(f) are orthogonal to the ith–, respectively, jth–
coordinate direction on the reference element κ̂. For x in the interior of a boundary
face f = ∂κ ∩ Γ, we write p(x) = pκ,i, when σ−1

κ (f) is orthogonal to the ith–
coordinate direction on κ̂. With this notation the penalization term is given by

δ(uh) = CIP
p
2

h
{{G(uh)}}[[uh]],

where CIP is a (sufficiently large) positive constant, cf. [13].
Finally, we define the boundary terms present in the forms NΓ\Γsym

(·, ·) and

NΓsym(·, ·). To this end, we write

NΓ\Γsym
(uh,v) =

∫

Γ\Γsym

HΓ(u
+
h ,uΓ(u

+
h ),n

+) · v+ ds+

∫

Γ\Γsym

δΓ(u
+
h ) : v ⊗ n ds

−

∫

Γ\Γsym

n · Fv
Γ(uΓ(u

+
h ),∇hu

+
h )v

+ ds

−

∫

Γ\Γsym

(

G⊤
Γ (u

+
h )∇hv

+
h

)

:
(

u+
h − uΓ(u

+
h )

)

⊗ n ds,

where

δΓ(uh) = CIP
p
2

h
GΓ(u

+
h ) (uh − uΓ(uh))⊗ n.

Here, the viscous boundary flux Fv
Γ and the corresponding homogeneity tensor GΓ

are defined by

Fv
Γ(uh,∇uh) = Fv(uΓ(uh),∇uh) = GΓ(uh)∇uh = G(uΓ(uh))∇uh.

Furthermore, on portions of the boundary Γ where adiabatic boundary conditions
are imposed, Fv

Γ and GΓ are modified such that n · ∇T = 0. The convective
boundary flux HΓ is defined by

HΓ(u
+
h ,uΓ(u

+
h ),n) = n · Fc(uΓ(u

+
h )).

The boundary function uΓ(u) is given according to the type of boundary condition
imposed. To this end, we set

uΓ(u) =











g on ΓD,sup,

(g1, g2, g3, g4,
p(u)
γ−1 + (g22 + g23 + g24)/(2g1))

⊤ on ΓD,sub-in,

(u1, u2, u3, u4,
pout
γ−1 + (u2

2 + u2
3 + u2

4)/(2u1))
⊤ on ΓD,sub-out.

Here, p ≡ p(u) denotes the pressure evaluated using the equation of state (3).

On Γiso, we set uΓ(u) = (u1, 0, 0, 0, u1cvTwall)
⊤
, while uΓ(u) = (u1, 0, 0, 0, u5)

⊤ on
Γadia, cf. [23], for example.

On the symmetry boundary, we employ the same technique introduced in [25].
To this end, we define

(5) uΓ(u) =













1 0 0 0 0
0 1− 2n2

1 −2n1n2 −2n1n3 0
0 −2n1n2 1− 2n2

2 −2n2n3 0
0 −2n1n3 −2n2n3 1− 2n2

3 0
0 0 0 0 1













u on Γsym,

where n = (n1, n2, n3)
⊤ is the unit outward normal vector to the boundary. Addi-

tionally, it is necessary to introduce a suitable approximation of ∇u−
h ; to this end,

we introduce the following gradient operator

(∇u)Γ,jl(uh) = ∂um
uj
Γ(uh)∂xk

um
h (δkl − 2nknl).
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With this notation, the form NΓsym(·, ·) is defined as follows

NΓsym(uh,v) =

∫

Γsym

HΓ(u
+
h ,uΓ(u

+
h ),n

+) · v+ ds+

∫

Γ

δΓsym
(u+

h ) : v
+ ⊗ n ds

−
1

2

∫

Γsym

(

Fv(u+
h ,∇hu

+
h ) + Fv(uΓ(u

+
h ), (∇u)Γ(u

+
h ))

)

: v+ ⊗ n ds

−
1

2

∫

Γ

(

G⊤(u+
h )∇hv

+
h

)

:
(

u+
h − uΓ(u

+
h )

)

⊗ n ds,

where

δΓsym
(uh) = CIP

p
2

h

1

2

(

G(u+
h ) +G(uΓ(u

+
h ))

)

(uh − uΓ(uh))⊗ n.

4. A posteriori error estimation

In this section we briefly outline the derivation of an adjoint-based a posteriori
bound on the error in a given computed target functional J(·) of practical interest,
such as the drag, lift, or moment on a body immersed within a compressible fluid,
for example; see [8, 5] for further details.

Assuming that the functional of interest J(·) is differentiable, we write J̄(·; ·) to
denote the mean value linearization of J(·) defined by

J̄(u,uh;u− uh) = J(u)− J(uh) =

∫ 1

0

J ′[θu+ (1− θ)uh](u− uh) dθ,

where J ′[w](·) denotes the Fréchet derivative of J(·) evaluated at some w in V.
Here, V is some suitably chosen function space such that Vh,p ⊂ V.

Analogously, for v in V, we define the mean–value linearization of N (·,v) by

M(u,uh;u−uh,v) = N (u,v)−N (uh,v) =

∫ 1

0

N ′[θu+ (1− θ)uh](u−uh,v) dθ.

Here, N ′[w](·,v) denotes the Fréchet derivative of u 7→ N (u,v), for v ∈ V fixed,
at some w in V. Let us now introduce the adjoint problem: find z ∈ V such that

M(u,uh;w, z) = J̄(u,uh;w) ∀w ∈ V.(6)

With this notation, we may state the following error representation formula

(7) J(u)− J(uh) = RΩ(uh, z− zh) ≡
∑

κ∈Th

ηκ,

where RΩ(uh, z−zh) = −N (uh, z−zh) includes primal residuals multiplied by the
difference of the adjoint solution z and an arbitrary discrete function zh ∈ Vh,p, and
ηκ denotes the local elemental indicators; see [20, 22] for details. Upon application
of the triangle inequality, we deduce that

|J(u)− J(uh)| ≤ R|Ω|(uh, z− zh) ≡
∑

κ∈Th

|ηκ| .(8)

We note that the error representation formula (7) depends on the unknown ana-
lytical solution z to the adjoint problem (6) which in turn depends on the unknown
analytical solution u. Thus, in order to render these quantities computable, both u
and z must be replaced by suitable approximations. Here, the linearizations leading
to M(u,uh; ·, ·) and J̄(u,uh; ·) are performed about uh and the adjoint solution z
is approximated by computing the DG approximation z̄h̄ ∈ Vh̄,pd

, where Vh̄,pd
is

an adjoint finite element space consisting of (discontinuous) piecewise polynomials
of composite degree pd represented on a computational mesh Th̄ of granularity h̄.
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(a) (b) (c)

Figure 1. Cartesian refinement in 2D: (a) & (b) Anisotropic re-
finement; (c) Isotropic refinement.

On the basis of numerical experimentation, in this article we set Vh̄,pd
= Vh,pd

,
where pd = p + 1, cf. [19, 29]; thereby, in this setting, we write z̄h, in lieu of z̄h̄,
to denote the approximate adjoint solution sought from the finite element space
Vh,pd

.
In the following sections we consider the development of a variety of adaptive

mesh refinement algorithms in order to efficiently control the error in the computed
target functional of interest.

5. Anisotropic mesh adaptation

In this section we first consider the automatic design of anisotropic finite element
meshes Th, assuming that the underlying polynomial degree distribution is both
uniform and fixed, i.e., when uh ∈ Vh,p. Thereby, for a user-defined tolerance TOL,
we now consider the problem of designing an appropriate finite element mesh Th
such that

|J(u)− J(uh)| ≤ TOL ,

subject to the constraint that the total number of elements in Th is minimized.
Following the discussion presented in [28], we exploit the a posteriori error bound
(8) with z replaced by the numerical approximation z̄h ∈ Vh,pd

, with pd = p + 1,
cf. above. Thereby, in practice we enforce the stopping criterion

R|Ω|(uh, z̄h − zh) ≤ TOL .(9)

If (9) is not satisfied, then the elements are marked for refinement/derefinement
according to the size of the (approximate) error indicators |η̄κ|, based on employ-
ing a fixed fraction strategy, for example. Here, η̄κ is defined analogously to ηκ in
(7) with z replaced by z̄h. To subdivide the elements which have been flagged for
refinement, we employ a simple Cartesian refinement strategy; here, elements may
be subdivided either anisotropically or isotropically according to the three refine-
ments (in two–dimensions, i.e., d = 2) depicted in Figure 1. In order to determine
the optimal refinement, we exploit the following strategy based on choosing the
most competitive subdivision of κ from a series of trial refinements, whereby an
approximate local error indicator on each trial patch is determined, cf. [12, 15].

Algorithm 5.1. Given an element κ in the computational mesh Th (which has
been marked for refinement), we first construct the mesh patches Th,i, i = 1, 2, 3,
based on refining κ according to Figures 1(a), (b), & (c), respectively. On each
mesh patch, Th,i, i = 1, 2, 3, we compute the approximate error estimators

Rκ,i(uh,i, z̄h,i − zh) =
∑

κ′∈Th,i

ηκ′,i,
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2. Cartesian refinement in 3D.

for i = 1, 2, 3, respectively. Here, uh,i, i = 1, 2, 3, is the DG approximation comput-
ed on the mesh patch Th,i, i = 1, 2, 3, respectively, based on enforcing appropriate
boundary conditions on ∂κ computed from the original DG solution uh on the por-
tion of the boundary ∂κ of κ which is interior to the computational domain Ω, i.e.,
where ∂κ ∩ Γ = ∅. Similarly, z̄h,i denotes the DG approximation to z computed
on the local mesh patch Th,i, i = 1, 2, 3, respectively, with polynomials of degree pd,
based on employing suitable boundary conditions on ∂κ ∩ Γ = ∅ derived from z̄h.
Finally, ηκ′,i, i = 1, 2, 3, is defined in an analogous manner to ηκ, cf. above, with
uh and z replaced by uh,i and z̄h,i, respectively.

The element κ is then refined according to the subdivision of κ which satisfies

min
i=1,2,3

|ηκ| − |Rκ,i(uh,i, z̄h,i − zh)|

#dofs(Th,i)−#dofs(κ)
,

where #dofs(κ) and #dofs(Th,i), i = 1, 2, 3, denote the number of degrees of freedom
associated with κ and Th,i, i = 1, 2, 3, respectively, cf. [12].

The extension of this approach to the case when Th is a hexahedral mesh in
three-dimensions follows in an analogous fashion. Indeed, in this setting, we again
employ a Cartesian refinement strategy whereby elements may be subdivided ei-
ther isotropically or anisotropically according to the four refinements depicted in
Figures 2(a)–(d). We remark that we assume that a face in the computational
mesh is a complete face of at least one element. This assumption means that the
refinements depicted in Figures 2(b)–(d) may be inadmissible. In this situation, we
replace the selected refinement by either one of the anisotropic mesh refinements
depicted in Figures 2(e)–(g), or if necessary, an isotropic refinement is performed.

5.1. Numerical experiments. In this section we present a number of exper-
iments to numerically demonstrate the performance of the anisotropic adaptive
algorithm outlined in the previous section.

5.1.1. Example 1: Laminar flow around a NACA0012 airfoil. In this ex-
ample, we consider the subsonic viscous flow around a NACA0012 airfoil; here, the
upper and lower surfaces of the airfoil geometry are specified by the function g±,
respectively, where

g±(s) = ±5× 0.12× (0.2969s1/2 − 0.126s− 0.3516s2 + 0.2843s3 − 0.1015s4).
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Figure 3. Example 1: Zoom of initial mesh with 1134 elements.
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Figure 4. Example 1: Comparison between adaptive isotropic
and anisotropic mesh refinement.

As the chord length l of the airfoil is l ≈ 1.00893 we use a rescaling of g in order to
yield an airfoil of unit (chord) length. At the farfield (inflow) boundary we specify
a Mach 0.5 flow at an angle of attack α = 2◦, with Reynolds number Re = 5000;
on the walls of the airfoil geometry, we impose a zero heat flux (adiabatic) no-
slip boundary condition. This is a standard laminar test case which has been
investigated by many other authors, cf. [1, 21], for example, and serves as one of
the test cases for the EU project ADIGMA [31].

Here, we consider the estimation of the drag coefficient Cd; i.e., the target func-
tional of interest is given by

J(·) ≡ JCd
(·),
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(a)

(b)

Figure 5. Example 1: Anisotropic mesh after (a) 4 adaptive re-
finements, with 3485 elements; (b) 8 adaptive refinements, with
10410 elements.

where JCd
(·) is defined as the adjoint consistent approximation to Cd, cf. [17, 18,

24]. The initial starting mesh is taken to be an unstructured quadrilateral–dominant
hybrid mesh consisting of both quadrilateral and triangular elements; here, the
total number of elements is 1134; see Figure 3. Furthermore, curved boundaries
are approximated by piecewise quadratic polynomials. In Figure 4 we plot the
error in the computed target functional JCd

(·) using both an isotropic (only) mesh
refinement algorithm, together with the anisotropic refinement strategy outlined in
Section 5. From Figure 4, we observe the superiority of employing the anisotropic
mesh refinement algorithm in comparison with standard isotropic subdivision of
the elements. Indeed, the error |JCd

(u) − JCd
(uh)| computed on the series of

anisotropically refined meshes designed using the proposed algorithm outlined in
Section 5 is (almost) always less than the corresponding quantity computed on the
isotropic grids. Indeed, on the final mesh anisotropic mesh refinement leads to an
improvement in |JCd

(u)− JCd
(uh)| of over 60% compared with the same quantity

computed using isotropic mesh refinement. The meshes generated after 4 and 8
anisotropic adaptive mesh refinements are shown in Figures 5(a) & (b), respectively.
Here, we clearly observe significant anisotropic refinement of the viscous boundary
layer, as we would expect.
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Figure 6. Example 2: Initial coarse mesh on the body surface
and the symmetry plane.

5.1.2. Example 2: Laminar flow around a streamlined body. In this second
example we consider laminar flow past a streamlined three–dimensional body. Here,
the geometry of the body is based on a 10 percent thick airfoil with boundaries
constructed by a surface of revolution. More precisely, the (half) geometry is given
by the following expression

16(x− 1/4)2 + 400z2 = 1, 0 ≤ x ≤ 1/3, 0 ≤ y ≤ 1/100,
z = 1/(10

√
2) (1 − x), 1/3 < x ≤ 1, 0 ≤ y ≤ 1/100, z > 0,

z = −1/(10
√
2) (1− x), 1/3 < x ≤ 1, 0 ≤ y ≤ 1/100, z < 0,

16(x− 1/4)2 + 400(z2 + (y − 1/100)2) = 1, 0 ≤ x ≤ 1/3, y > 1/100,
200(z2 + (y − 1/100)2)− (1− x)2 = 0, 1/3 ≤ x ≤ 1, y > 1/100,

cf. Figure 6.
This geometry is considered at laminar conditions with inflow Mach number

equal to 0.5, at an angle of attack α = 1◦, and Reynolds number Re = 5000 with
adiabatic no-slip wall boundary condition imposed. Here, we suppose that the aim
of the computation is to calculate the lift coefficient Cl; i.e.,

J(·) ≡ JCl
(·).

In this example, the initial starting mesh is taken to be an unstructured hexahe-
dral mesh with 992 elements, cf. Figure 6. In Figure 7 we plot the error in the
computed target functional JCl

(·) using both an isotropic (only) mesh refinement
algorithm, together with the anisotropic refinement strategy outlined in Section 5.
From Figure 7, we again observe the superiority of employing the anisotropic mesh
refinement algorithm in comparison with standard isotropic subdivision of the ele-
ments. Indeed, the error |JCl

(u)−JCl
(uh)| computed on the series of anisotropically

refined meshes designed using Algorithm 5.1 is always less than the corresponding
quantity computed on the isotropic grids. Indeed, on the final mesh the true error
between JCl

(u) and JCl
(uh) using anisotropic mesh refinement is over an order of

magnitude smaller than the corresponding quantity when isotropic h–refinement
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Figure 7. Example 2: Comparison between adaptive isotropic
and anisotropic mesh refinement.

is employed alone. The mesh generated after 3 anisotropic adaptive mesh refine-
ments is shown in Figures 8(a) & (b). Here, we again observe significant anisotropic
refinement of the viscous boundary layer.

6. hp–Adaptivity on isotropically refined meshes

In this section we now consider the case when both the underlying finite ele-
ment mesh Th and the polynomial distribution are isotropic; thereby, uh ∈ Vh,piso

.
The extension to general anisotropic finite element spaces will be considered in the
following section. In this setting, once an element has been selected for refine-
ment/derefinement the key step in the design of such an (isotropic) hp–adaptive
algorithm is the local decision taken on each element κ in the computational mesh
as to which refinement strategy (i.e., h-refinement via local mesh subdivision or p-
refinement by increasing the degree of the local polynomial approximation) should
be employed on κ in order to obtain the greatest reduction in the error per unit
cost. To this end, we employ the technique for assessing local smoothness developed
in the article [30], which is based on monitoring the decay rate of the sequence of
coefficients in the Legendre series expansion of a square–integrable function. The
extension of this analyticity estimation procedure to higher–dimensions is based
on the application of these techniques in each coordinate direction on a reference
element, assuming that a quadrilateral/hexahedral finite element mesh has been
employed. For the case of triangular and tetrahedral meshes, we refer to [7].

6.1. Example 3: Inviscid flow around a NACA0012 airfoil. In this sec-
tion we consider the performance of the goal–oriented hp–refinement algorithm
outlined above for the inviscid compressible flow around a NACA0012 airfoil with
inflow Mach number equal to 0.5, at an angle of attack α = 2◦. Here, we sup-
pose that the aim of the computation is to calculate the pressure induced drag
coefficient Cdp; i.e., J(·) ≡ JCdp

(·). In Tables 1 & 2 we show the performance of
the proposed adaptive finite element algorithm employing hp–refinement based on
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(a)

(b)

Figure 8. Example 2. Anisotropic mesh after 3 adaptive refine-
ments, with 2314 elements: (a) Boundary mesh; (b) Symmetry
plane.

exploiting a structured and unstructured (hybrid) starting mesh, respectively. In
each case, we show the number of elements and degrees of freedom (Dof) in Vh,piso

,
the true error in the functional JCdp

(u) − JCdp
(uh), the computed error represen-

tation formula
∑

κ∈Th
η̄κ, the approximate a posteriori error bound

∑

κ∈Th
|η̄κ|,

and their respective effectivity indices θ1 =
∑

κ∈Th
η̄κ/(JCdp

(u) − JCdp
(uh)) and

θ2 =
∑

κ∈Th
|η̄κ|/|JCdp

(u) − JCdp
(uh)|. Here, we see that the quality of the com-

puted error representation formula is extremely good, with θ1 ≈ 1 even on very
coarse meshes.

In Figure 9 we plot the error in the computed target functional JCdp
(·), using

both h– and hp–refinement against the square–root of the number of degrees of
freedom on a linear–log scale in the case of both a structured and unstructured
initial mesh. In both cases, we see that after the initial transient, the error in
the computed functional using hp–refinement becomes (on average) a straight line,
thereby indicating exponential convergence of JCdp

(uh) to JCdp
(u). Figure 9 al-

so demonstrates the superiority of the adaptive hp–refinement strategy over the
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# Ele # Dof JCdp
(u)− JCdp

(uh)
∑

κ∈Th
η̄κ θ1

∑

κ∈Th
|η̄κ| θ2

448 7168 -0.4844E-02 -0.4411E-02 0.91 0.4453E-02 0.92
562 10252 -0.1197E-02 -0.1111E-02 0.93 0.1126E-02 0.94
685 14912 -0.5029E-03 -0.4631E-03 0.92 0.4707E-03 0.94
784 19360 -0.3923E-03 -0.3685E-03 0.94 0.3749E-03 0.96
838 23928 -0.1541E-03 -0.1433E-03 0.93 0.1500E-03 0.97
970 31780 -0.7443E-04 -0.6990E-04 0.94 0.7720E-04 1.04
1018 38132 -0.3061E-04 -0.2893E-04 0.95 0.3295E-04 1.08
1045 45616 -0.3010E-04 -0.2770E-04 0.92 0.3009E-04 1.00
1120 56684 -0.7940E-05 -0.7772E-05 0.98 0.9242E-05 1.16
1201 73200 -0.2481E-05 -0.2341E-05 0.94 0.3868E-05 1.56

Table 1. Example 3: hp–Refinement algorithm based on an initial
structured quadrilateral mesh.

# Ele # Dof JCdp
(u)− JCdp

(uh)
∑

κ∈Th
η̄κ θ1

∑

κ∈Th
|η̄κ| θ2

365 5816 -0.1570E-01 -0.1276E-01 0.81 0.1292E-01 0.82
476 8612 -0.4385E-02 -0.3488E-02 0.80 0.3522E-02 0.80
530 11540 -0.8699E-03 -0.7229E-03 0.83 0.7335E-03 0.84
593 14556 -0.2288E-03 -0.2052E-03 0.90 0.2174E-03 0.95
650 18756 -0.6131E-04 -0.5476E-04 0.90 0.5862E-04 0.96
728 24456 -0.2285E-04 -0.2043E-04 0.89 0.2254E-04 0.99
809 30104 -0.8102E-05 -0.7065E-05 0.87 0.9337E-05 1.15
839 36188 -0.3086E-05 -0.2655E-05 0.86 0.4745E-05 1.54
881 45428 -0.1620E-05 -0.1456E-05 0.90 0.3153E-05 1.95
923 55592 -0.4111E-06 -0.4111E-06 1.00 0.1690E-05 4.11

Table 2. Example 3: hp–Refinement algorithm based on an initial
unstructured hybrid mesh.
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Figure 9. Example 3: Comparison between adaptive h– and hp–
mesh refinement. (a) Structured initial mesh; (b) Unstructured
initial mesh.

standard adaptive h–refinement algorithm. In each case, on the final mesh the
true error between JCdp

(u) and JCdp
(uh) using hp–refinement is almost 2 orders of
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(a)

(b)

Figure 10. Example 3: hp–Mesh distribution. (a) Structured
initial mesh after 9 adaptive refinements; (b) Unstructured initial
mesh after 7 adaptive refinements.

magnitude smaller than the corresponding quantity when h–refinement is employed
alone. Finally, in Figure 10 we show the hp–mesh distributions based on employing
a structured and unstructured initial mesh after 9 and 7 adaptive refinement steps,
respectively.

6.2. Example 1 (Revisited): Laminar flow around a NACA0012 airfoil.
Secondly, we again consider Example 1; i.e., laminar compressible flow around a
NACA0012 airfoil with inflow Mach number equal to 0.5, at an angle of attack
α = 2◦, and Reynolds number Re = 5000 with adiabatic no-slip wall boundary
condition imposed on the airfoil geometry. As before, we suppose that the aim of
the computation is to calculate the drag coefficient Cd.

In Figure 11 we plot the error in the computed target functional JCd
(·), using

both h– and hp–refinement against the square–root of the number of degrees of
freedom on a linear–log scale in the case of both a structured and unstructured



944 STEFANO GIANI AND PAUL HOUSTON

100 200 300 400 500 600

10
−5

10
−4

10
−3

10
−2

 

 

h−Refinement
hp−Refinement

|J
C

d
(u

)
−
J
C

d
(u

h
)|

sqrt(Degrees of freedom)
100 150 200 250 300 350 400 450 500

10
−4

10
−3

 

 

h−Refinement
hp−Refinement

|J
C

d
(u

)
−
J
C

d
(u

h
)|

sqrt(Degrees of freedom)
(a) (b)

Figure 11. Example 1 (revisited): Comparison between adaptive
h– and hp–mesh refinement. (a) Structured initial mesh; (b) Un-
structured initial mesh.

initial mesh. As before, in both cases, we see that after the initial transient, the error
in the computed functional using hp–refinement becomes (on average) a straight
line, thereby indicating exponential convergence of JCd

(uh) to JCd
(u). Figure 11

also demonstrates the superiority of the adaptive hp–refinement strategy over the
standard adaptive h–refinement algorithm. In each case, on the final mesh the
true error between JCd

(u) and JCd
(uh) using hp–refinement is over an order of

magnitude smaller than the corresponding quantity when h–refinement is employed
alone.

In Figure 12 we show the hp–mesh distributions based on employing a structured
and unstructured initial mesh after 8 and 7 adaptive refinement steps, respectively.
In each case we observe that some h–refinement has been undertaken in the vicinity
of the boundary layers as we would expect. However, once the h–mesh has ade-
quately captured the structure of the primal and adjoint solutions, the hp–adaptive
algorithm subsequently performs p–refinement.

7. Anisotropic hp–mesh adaptation

Finally, in this section we consider the general case of automatically generating
anisotropically refined computational meshes, together with an anisotropic poly-
nomial degree distribution. With this in mind, once an element has been select-
ed for refinement/derefinement a decision is first made whether to carry out an
h-refinement/derefinement or p-enrichment/derefinement based on the technique
outlined in Section 6, whereby the analyticity of the solutions u and z is assessed
by studying the decay rates of their underlying Legendre coefficients. Once the
h– and p–refinement flags have been determined on the basis of the above strat-
egy, a decision regarding the type of refinement to be undertaken — isotropic or
anisotropic — must be made. Motivated by the work in Section 5, we employ
a competitive refinement technique, whereby the “optimal” refinement is selected
from a series of trial refinements. In the h–version setting, we again exploit the
algorithm outlined in Section 5. For the case when an element has been selected for
polynomial enrichment we consider the p–version counterpart of Algorithm 5.1 and
solve local problems based on increasing the polynomial degrees anisotropically in
one direction at a time by one degree, or isotropically by one degree; see [13] for
details.
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(a)

(b)

Figure 12. Example 1 (revisited): hp–Mesh distribution. (a)
Structured initial mesh after 8 adaptive refinements; (b) Unstruc-
tured initial mesh after 7 adaptive refinements.

7.1. Example 1 (Revisited): Laminar flow around a NACA0012 airfoil.
In this section we again consider the test case outlined in Example 1 and again
suppose that the aim of the computation is to calculate the drag coefficient Cd,
cf. Section 5.1.1. In Figure 13 we plot the error in the computed target functional
JCd

(·), using a variety of h–/hp–adaptive algorithms against the square–root of the
number of degrees of freedom on a linear–log scale in the case when an unstructured
initial mesh is employed. In particular, here we consider the performance of the
following adaptive mesh refinement strategies: isotropic h–refinement, anisotropic
h–refinement, isotropic hp-refinement, anisotropic h–/isotropic p–refinement, and
anisotropic hp–refinement. Here, we clearly observe that as the flexibility of the
underlying adaptive strategy is increased, thereby allowing for greater flexibility in
the construction of the finite element space Vh,p, the error in the computed target
functional of interest is improved in the sense that the error in the computed val-
ue of JCd

(·) is decreased for a fixed number of degrees of freedom. However, we
point out that in the initial stages of refinement, all of the refinement algorithms
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Figure 13. Example 1 (revisited): Comparison between different
adaptive refinement strategies.

perform in a similar manner. Indeed, it is not until the structure of the underlying
analytical solution is resolved that we observe the benefits of increasing the com-
plexity of the adaptive refinement strategy. Finally, we point out that the latter
three refinement strategies incorporating p–refinement all lead to exponential con-
vergence of JCd

(uh) to JCd
(u). Figures 14(a) & (b) show the resultant hp–mesh

distribution when employing anisotropic hp–refinement after 5 adaptive steps; here,
Figures 14(a) & (b) show the (approximate) polynomial degrees employed in the
x– and y–directions, respectively. We observe that anisotropic h–refinement has
been employed in order to resolve the boundary layer and anisotropic p-refinement
has been utilized further inside the computational domain. In particular, we notice
that the polynomial degrees have been increased to a higher level in the orthogonal
direction to the curved geometry, as we would expect.
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