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EFFICIENT HOMOTOPY SOLUTION AND A CONVEX

COMBINATION OF ROF AND LLT MODELS FOR IMAGE

RESTORATION

FENLIN YANG, KE CHEN, AND BO YU

Abstract. The Rudin, Osher, and Fatemi model [20] (ROF) for image restoration has been

extensively studied due to its edge preserving capability, but for images without edges (jumps),

the solution to this model has the undesirable staircasing effect. To improve the model, Lysaker,

Lundervold and Tai [14] (LLT) proposed a better second-order functional suitable for restoring

smooth images but it is difficult to preserve discontinuities for non-smooth images. It turns out

that results from convex combinations of ROF model and LLT model can preserve the main

advantages of both models (see [16, 9]). In this paper, we first propose an applicable homotopy

algorithm based fixed point method for the LLT model. We then propose two new variants of

convex combination models. Numerical experiments are shown to demonstrate the advantages of

these combination models and the robustness of our homotopy algorithm.

Key words. Image restoration, total variation, fourth-order PDE, fixed point method, homotopy

method, convex combination.

1. Introduction

An observed image f can often become blurry and noisy during the formation,

transmission or recording process for the original image u. The common additive

degradation model is

f = Ku+ η,(1)

where η is an additive noise term and K is a known linear operator representing the

blur (usually a convolution), the image is only corrupted by noise when K is the

identity. The recovery of the original image from the observed image is an essential

pre-processing phase for further image processing tasks such as edge detection,

pattern recognition, and object tracking, etc.

The usual approach for image restoration solves the following constrained opti-

mization problem:

min
u

R(u) subject to ‖Ku− f‖2 = σ2.(2)

This problem is naturally linked to the following unconstrained problem – the

minimization of the total variation penalized least squares functional (see [20, 4,

24]):

min
u

{

J(u) = αR(u) +
1

2
‖Ku− f‖2

}

.(3)

Here ‖·‖ is the norm in L
2(Ω) and α is a positive parameter controlling the trade-off

between goodness of fit-to-the-data and variability in u. R(u) is some functional

which controls the regularity of u and ensures the solvability of the inverse problem
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(1). Examples of regularization functionals that can be found in the literature

[24, 26, 7, 2] include R(u) = ‖u‖, ‖△u‖, ‖∇u‖.
The total variation semi-norm proposed by Rudin, Osher, and Fatemi [20] (ROF)

is one of the most effective regularization functionals for R(u) which does not pe-

nalize discontinuities in u, and thus allows us to recover the edges of the original

image. Its formula is

R1(u) = TV (u) =

∫

Ω

|∇u|dxdy =

∫

Ω

√

u2
x + u2

ydxdy.

The corresponding Euler-Lagrange equation for (3) is

g1(u) = −α∇ ·
(

∇u
√

|∇u|2 + β

)

+K∗(Ku− f) = 0,(4)

with homogeneous Neumann boundary condition ∂u
∂~n

= 0, and ~n is the normal

vector. Here β is a small positive parameter to avoid the denominator equals to

zero. There are many fast methods for (4) (see [20, 22, 6, 17, 5, 8, 18]) up to now.

Although the ROF model yields very satisfactory results for removing noise while

preserving edges, it suffers from the undesirable staircase effect for problems without

sharp edges, namely the transformation of smooth regions (ramps) into piecewise

constant regions (stairs). Some effort has been made to remedy this unfavorable

property [15, 17, 19, 2, 21, 7, 10].

In [14], Lysaker, Lundervold and Tai (LLT) proposed a second-order functional

as the regularization functional

R2(u) =

∫

Ω

|D2u|dxdy =

∫

Ω

√

u2
xx + u2

xy + u2
yx + u2

yydxdy.

The corresponding Euler-Lagrange equation for (3) using this R2(u) is

g2(u) = α

[

( uxx

|D2u|β

)

xx
+
( uxy

|D2u|β

)

yx
+
( uyx

|D2u|β

)

xy
+
( uyy

|D2u|β

)

yy

]

(5)

+K∗(Ku− f) = 0,

where β is a small positive parameter and |D2u|β =
√

u2
xx + u2

xy + u2
yx + u2

yy + β.

It is known that the LLT model can recover smooth surfaces. However, there exist

two major challenges in dealing with this model. One is to preserve jumps as done

by the ROF model and the other is to get a more efficient solution method for (5)

than the gradient descent.

To address the first challenge, one idea is to combine the models of ROF and

LLT because we desire restoration properties of both models. Therefore, Lysaker

and Tai [16] suggested a convex combination of the respective two solutions from

(4) and (5). Specifically, with w0 = f , a new iteration wk+1 is generated by the

convex combination

wk+1 = θkvk+1 + (1− θk)uk+1 k = 0, 1, 2 · · · ,(6)

where vk+1 and uk+1 are respectively obtained by the kth time marching iteration

of ROF model and LLT model with wk as their old iteration. Here the parameter

θk which is applied to control the combination depends on ∇wk as follows:

θk =

{

1, if |∇wk| ≥ c,

1
2 cos(

2π|∇wk|
c

) + 1
2 , elsewhere,

(7)
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where c is some constant parameter in the interval [0, 1].

The above convex combination solution (6) reduces to the ROF solution in re-

gions where |∇u| is large (near edges) or to the LLT solution where |∇u| is 0 (flat

regions). It would be better to use the ROF solution when |∇u| ≈ 0 i.e. not exact-

ly 0 and also one may wish to solve a single PDE (from a combined optimization)

instead of solving two separate PDEs. This is the idea taken up in Chang, Tai and

Xing [9] who proposed a new combination of the ROF model and the LLT model

in the form

min
u

[

α
(

∫

Ω

θ|∇u|dxdy +

∫

Ω

(1− θ)|D2u|dxdy
)

+
1

2
‖Ku− f‖2

]

,(8)

and its Euler-Lagrange equation is

α

{

− θ∇ ·
(

∇u
√

|∇u|2 + β

)

+ (1− θ)

[

( uxx

|D2u|β

)

xx
+
( uxy

|D2u|β

)

yx
(9)

+
( uyx

|D2u|β

)

xy
+
( uyy

|D2u|β

)

yy

]}

+K∗(Ku− f) = 0.

Here the variable parameter θ is chosen as:

θ =



































1, if |∇u| ≤ C0 and |∇u| ≥ C1,

Cd, if C0 + 5 ≤ |∇u| ≤ C1 − 5,

1− (|∇u| − C0)(1 − Cd)

5
, if C0 ≤ |∇u| ≤ C0 + 5,

1 +
(|∇u| − C1)(1 − Cd)

5
, if C1 − 5 ≤ |∇u| ≤ C1.

(10)

Note that this varying θ suggests a global iteration scheme which is exactly the

implementation of [9]. In computation, the parameters C0 = 0, and Cd = 0.05 are

fixed. The parameter C1 is taken as 50 for most images and is properly modified

for some images.

In this paper, we mainly address the second challenge. We first develop a fast

homotopy algorithm based fixed point method for solving (5). It is also applicable

to related combination models. Here to achieve fast convergence, the homotopy

algorithm is equipped with an adaptively varying regularization parameter β in a

predictor-corrector framework. Based on a convergent algorithm, we then propose

two new variants as alterative combinations of ROF and LLT.

The rest of this paper is organized as follows. In Section 2 we first review the

discretization scheme and two fixed point algorithms for ROF model and LLT model

respectively. We then propose a homotopy method for LLT model. In Section 3

we present two homotopy-based fixed point schemes using convex combinations

of ROF and LLT model for the image restoration problem. Finally, we give the

numerical results of the implementation of the proposed algorithms on several tests

in Section 4.

2. Numerical algorithms for image restoration by ROF and LLT

Before describing the detail of numerical algorithms, we proceed to outline the

discretization scheme we use and to fix our notation. For the sake of simplicity,

we assume that the image domain Ω is a square [8] such that the mesh size is

△x = △y = 1 when defining a regular n × n grid of pixels, indexed as (i, j), for
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i = 1, 2, . . . , n, j = 1, 2, . . . , n. Let ui,j represent the value of the function u at

pixel (i, j). The discrete gradient operator at pixel (i, j) is defined by

(∇u)i,j =
(

(∇xu)i,j , (∇yu)i,j

)

with

(∇xu)i,j =

{

ui+1,j − ui,j if i < n,

0 if i = n,
(∇yu)i,j =

{

ui,j+1 − ui,j if j < n,

0 if j = n

The discrete divergence operator is the negative adjoint of the gradient operator

due to the analysis of the continuous setting, namely ∇· = −∇∗. Therefore, it can

be defined as follows:

(∇ · w)i,j =















(w1)i,j − (w1)i−1,j

(w1)i,j

−(w1)i−1,j

+















(w2)i,j − (w2)i,j−1 if 1 < i, j < n

(w2)i,j if i = j = 1

−(w2)i,j−1 if i = j = n.

Once we stack the grid functions u along rows of Ω into a vector

u = (u1,1, · · · , un,1, u1,2, · · · , un,2, · · · , u1,n, · · · , un,n)
T ,

as commonly done, then u ∈ R
N , where N = n2. The discrete gradient (∇u)i,j can

be expressed by a multiplication of the matrix AT
l ∈ R

2×N (l = 1, 2, · · · , N) to the

vector u:

AT
l u =



























(ul+1 − ul;ul+n − ul) if l mod n 6= 0 and l + n ≤ N

(0;ul+n − ul) if l mod n = 0 and l + n ≤ N

(ul+1 − ul; 0) if l mod n 6= 0 and l + n > N

(0; 0) if l mod n = 0 and l + n > N.

We also stack the grid functions AT
l u along rows into a vector. We form the matrix

A by concatenating the matrices Al, l = 1, 2, · · · , N , that is,

A = (A1, A2, · · · , AN ) = (A1,1, A1,2, · · · , AN,1, AN,2) ∈ R
N×2N .

Meanwhile, we form another two matrices Ax and Ay as follows:

Ax = (A1,1, A2,1, · · · , AN,1) ∈ R
N×N , Ay = (A1,2, A2,2, · · · , AN,2) ∈ R

N×N .

In this notation, the gradient ∇u and the divergence ∇· (∇u) are respectively ATu

and −
∑

j

Aj

(

AT
j u
)

. It is easy to see ux, uy, uxxx + uxyy, and uyxx + uyyy are

respectively AT
xu, A

T
y u, −

∑

j

Aj

(

AT
j (A

T
xu)

)

and −∑
j

Aj

(

AT
j (A

T
y u)

)

. Denoting

by g1(u) and g2(u) the discretization of g1(u) and g2(u), respectively, then we have

g1(u) = α

(

∑

j

Aj

( AT
j u

√

|AT
j u|2 + β

)

)

+K∗(Ku− f) = 0,(11)

g2(u) = α

[

Ax

(

∑

j

Aj

( AT
j (A

T
xu)

√

|AT
j (A

T
xu)|2 + |AT

j (A
T
y u)|2 + β

)

)

(12)
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+Ay

(

∑

j

Aj

( AT
j (A

T
y u)

√

|AT
j (A

T
xu)|2 + |AT

j (A
T
y u)|2 + β

)

)]

+K∗(Ku− f) = 0.

We remark that there exist many competing algorithms [24] for solving (11) but no

fast algorithms for (12).

Below we first discuss the fixed point type schemes before we introduce a homo-

topy scheme which is primarily for helping (12) but can also benefit (11).

2.1. Standard fixed point methods. A common technique for solving a non-

linear problem directly is by linearization. As far as the nonlinear equations (11)

and (12) are concerned, a fixed point method must linearize some nonlinear terms

by using the previous iterate u(k) with u(0) = f . The computational formula for

(11) is

α

(

∑

j

Aj

( AT
j u

(k+1)

√

|AT
j u

(k)|2 + β

)

)

+K∗(Ku(k+1) − f) = 0,(13)

which is known to be convergent [24] for any β.

Motivated by the above idea, a natural fixed point method is the following

α

[

Ax

(

∑

j

Aj

( AT
j (A

T
xu

(k+1))
√

|AT
j (A

T
xu

(k))|2 + |AT
j (A

T
y u

(k))|2 + β

)

)

(14)

+Ay

(

∑

j

Aj

( AT
j (A

T
y u

(k+1))
√

|AT
j (A

T
xu

(k))|2 + |AT
j (A

T
y u

(k))|2 + β

)

)]

+K∗(Ku(k+1) − f) = 0.

The above equation is equal to (see [22]):

M(u(k))δu(k) = −g2(u(k)),(15)

where δu(k) = u(k+1) − u(k) and

M(u(k)) = α

(

Ax

∑

j

AjA
T
j

√

|AT
j (A

T
xu

(k))|2 + |AT
j (A

T
y u

(k))|2 + β
AT

x

+Ay

∑

j

AjA
T
j

√

|AT
j (A

T
xu

(k))|2 + |AT
j (A

T
y u

(k))|2 + β
AT

y

)

+K∗K.

Here M(u(k)) is a symmetric positive definite matrix (see [23]), which guaran-

tees the existence of δu(k) = −M−1(u(k))g2(u
(k)) and moreover the linear system

M(u(k))δu(k) = −g2(u(k)) can be solved by suitable iterative solvers; here we use a

preconditioned conjugate gradient method. Unfortunately the above linear systems

are high singular for small β.

For now, we summarise how the above two fixed point schemes are implemented

as algorithms in preparation for introducing our homotopy algorithm.



912 F. L. YANG, K. CHEN, AND B. YU

Algorithm 1. [u, iter]← FP1 method(f , u(0), α, β, maxit, tol)

step 1. Set k := 0.

step 2. Compute (13) to obtain u(k+1), and then compute ‖g1(u(k+1))‖2.
step 3. If ‖g1(u(k+1))‖2 ≤ tol or k = maxit− 1, then

record the iteration iter := k + 1, and return with u :=

u(k+1).

Else set k := k + 1, then

return to step 2.

Algorithm 2. [u, iter]← FP2 method(f , u(0), α, β, maxit, tol)

step 1. Set k:=0.

step 2. Compute (14) to obtain u(k+1), and then compute ‖g2(u(k+1))‖2.
step 3. If ‖g2(u(k+1))‖2 ≤ tol or k = maxit− 1, then

record the iteration iter := k + 1, and return with u :=

u(k+1).

Else set k := k + 1, then

return to step 2.

To give an indication of how sensitive Algorithm 2 for LLT model is about β,

Table 1 shows with different β the number of fixed point (FP) steps and CPU time

needed to achieve a reduction of the residual by a factor of 10−4 on a 128 × 128

“triangular” image (with the random noise having a signal to noise ratio (SNR) of

7.3008). It is clear to draw the conclusion that the smaller the β is, the higher the

quality of the reconstruction of image edges and the more the iterations are. To

speed up the convergence of the fixed point for the Euler-lagrange equations (12)

with small β, the following section will introduce a homotopy method constructed

by gradually decreasing parameter β to improve its convergence.

Table 1. Number of fixed point steps, CPU time and the signal

to noise ratio (SNR) for LLT model on 128× 128 “triangular”

image with different β.

β 1.0 0.1 10−2 10−4 10−8 10−12

FP steps 19 25 32 49 116 238

CPU 8 11 14 21 55 546

SNR 9.1531 9.1862 9.1983 9.2021 9.2022 9.2022

Fixed point scheme 1. Recall that in Lundervold and Tai’s iterative method

combining ROF model and LLT model [16] for image restoration, the time marching

method is used. Since a time marching method should fulfill the Courant-Friedrichs-

Lewy (or CFL) stability criterion, it is generally slow. Equipped with the above

Algorithm 1 and Algorithm 2, we may replace their time marching method and

obtain an iterative method based on the fixed point algorithm as follows.
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Algorithm 3 (Fixed point scheme 1).

step 1. Given k:=0, and put wk := vk := uk := f .

step 2. Compute (13) to get vk+1,

Compute (14) to get uk+1,

Using wk to get θ by (7), set wk+1 = θvk+1 + (1− θ)uk+1.

step 3. If k = maxit− 1, then

return with w := wk+1.

Else set k := k + 1, vk := wk, uk := wk, then

return to step 2.

For ease of comparison, we shall denote by LT1 for Lundervold and Tai’s original

time marching based iterative method and by LT2 the above Algorithm 3.

2.2. Homotopy method for LLT model. In this section, a homotopy method

is presented to solve the fourth order Euler-Lagrange equation (12) with the above

fixed point method (Algorithm 2) as its correction. As a globally convergent

method, the homotopy method has versatility and robustness, and it has become

an important tool for solving nonlinear problems, see [12, 3, 11, 25, 1, 13]. As is

known, the basic idea of a homotopy algorithm is to construct a continuous map

H(u, t) which deforms a simple function H(u, 0) to the given function H(u, 1) as

t varies from 0 to 1. Our continuous map is constructed by gradually reducing

parameter β as follows:

H(u, t)

= α

[

Ax

(

∑

j

Aj

( tAT
j (A

T
xu)

√

t2(|AT
j (A

T
xu)|2 + |AT

j (A
T
y u)|2) + (1 − t)

)

)

(16)

+Ay

(

∑

j

Aj

( tAT
j (A

T
y u)

√

t2(|AT
j (A

T
xu)|2 + |AT

j (A
T
y u)|2) + (1− t)

)

)]

+K∗(Ku− f) = 0.

The essence of a homotopy algorithm is to find the solution of the final function

by tracking the zero curve Γ emanating from the solution of H(u, 0). We usually

use a predictor-corrector path following method to get this solution. The whole

process consists of a succession of the following two phases.

Predictor step. For t0 = 0, the solution of H(u, t0) = 0 is known, namely u0 = f .

After we have obtained an approximate solution uk−1 ofH(u, tk−1) for some tk−1 ∈
[0, 1), increase t with some predictor steplength hk−1 to reach tk = tk−1+hk−1 and

the solution of H(u, tk) = 0 is provided with the initial guess uk−1.

Corrector steps. From the initial point uk−1, approximately solve H(u, tk) = 0

by the fixed point method. Because the parameter t is introduced into (16) for

compute 1/
√

|AT
j (A

T
xu)|2 + |AT

j (A
T
y u)|2 + (1− t)/t2, the fixed point method used

here is slightly different from Algorithms 2 in replacing the parameter β = β(t) by

t.

As we know, the prediction phases and the correction phases mutually affect each

other. The predictor steplength h is adjusted according to the performance of the

corrector procedure as done below in Algorithm 4: when a corrector step terminates
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within prescribed steps of it1, h is considered too small for the next predictor and is

increased, when the iterations terminate over some it2 > it1 steps, h is considered

too large and will be decreased. The procedure of predictor-corrector path following

is shown as follows:

Algorithm 4. u←homotopy1(f , α, β, µ, maxit, maxit∗, tol)

step 1. Set k := 1, uk−1 := f , tk−1 := 0.

step 2. Set tk := tk−1 +min(µ, 0.5(1− tk−1)).

If tk ≥ 2/(1 +
√
1 + 4β), then

tk = 2/(1 +
√
1 + 4β),

u← FP2 method(f , uk−1, α, tk, maxit∗, tol).

Return with u.

Else [uk, iter]← FP2 method(f , uk−1, α, tk, maxit, tol).

step 3. Set k := k − 1.

If iter ≤ it1, then

set µ := min(1.2µ, 0.9).

If iter ≥ it2, then

set µ := µ/1.2.

If µ is unreasonably small, then

return with an error flag.

Return to step 2.

Here we may replace the step FP2 method by FP1 method if we hope to acceler-

ate Algorithm 1. In this case, the continuous map for Algorithm 1 (i.e. TV model)

is

F (u, t) = α

(

∑

j

Aj

( tAT
j u

√

t2|AT
j u|2 + (1− t)

)

)

+K∗(Ku− f) = 0.(17)

3. Alternative convex combinations of ROF model and LLT model

With our accelerated LLT method (Algorithm 4), we may propose different con-

vex combinations of ROF model and LLT model using the same homotopy frame-

work. It turns out that such new combinations are competitive in performance (see

next section).

3.1. Homotopy fixed point scheme 2. Notice that before the final solution is

obtained, a convex combination is done in each iteration for both the LT1 method

and the LT2 method. Below we will introduce a simple approach which finds the

solutions of (11) and (12) independent of each other in homotopy framework, and

a convex combination of the two solutions is done at their convergence. Observe

that θ plays an important role in the combination, we apply a simple iterative

method which arises after each solution of (11) and (12). The aim is to update

θ for the convex combination so that it can take the best out of each of both

models efficiently. Assume that the required (small) β is prescribed, α1 and α2 are

regularization parameters for (11) and (12), respectively. The details of our first

alternative algorithm are given in the following
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Algorithm 5 (Homotopy fixed point scheme 2).

step 1. Compute (11) by homotopy method, via (17), to get v,

Compute (12) by homotopy method, via (16), to get u.

step 2. Set k:=0, wk := f (or wk := v, or wk := u).

step 3. Using wk to get θ by (10),

set wk+1 = θv + (1− θ)u.

step 4. If k = maxit, then

return with wk+1.

Else set k := k + 1, then return to step 3.

Here we use the function (10) to get θ so function (7) offers another choice.

Numerical tests indicate that θ obtained by (10) is more effective and accurate

than that by (7) for this algorithm. Meanwhile, we remark that in step 3 the first θ

is usually given by w0 = f , but w0 = v is better for images composed of many flat

subregions, and for images with many smooth subregions w0 = u would be better.

3.2. Homotopy fixed point scheme 3. In Algorithm 5, we solve ROF and LLT

models separately before combining them. Below our second alterative algorithm

consists of solving two homotopy equations (16) and (17) simultaneously over the

complete homotopy path.

This is achieved by firstly reducing parameter β in (16) and (17) simultaneously

with the formula (1−t)/t2 as the homotopy parameter t varies from 0 to 1. Secondly,

a convex combination is done after each correction and we allow both equations to

start with the same initial solution for a new parameter t (i.e. new β).

The overall scheme is summarized by the following algorithm.

Algorithm 6 (Homotopy fixed point scheme 3).

w←homotopy2(f , α1, α2, β, µ, maxit1, maxit2, maxit∗, tol)

step 1. Set t0 := 0, w0 := f .

step 2. Set t := t0 +min(µ, 0.5(1− t0)), and βt := (1 − t)/t2.

If t ≥ 2/(1 +
√
1 + 4β), then

βt = β,

v← FP1 method(f , w0, α1, βt, maxit∗, tol),

u← FP2 method(f , w0, α2, βt, maxit∗, tol),

using w0 to get θ by (10), set w = θv + (1− θ)u.

Else [v, iter1]← FP1 method(f , w0, α1, βt, maxit1, tol),

[u, iter2]← FP2 method(f , w0, α2, βt, maxit2, tol),

using w0 to get θ by (10), set w∗ = θv + (1 − θ)u.

step 3. Set (w0, t0) := (w∗, t), and iter = max(iter1, iter2).

If iter ≤ it1, then

set µ := min(1.2µ, 0.9).

If iter ≥ it2, then

set µ := µ/1.2.

If µ is unreasonably small, then

return with an error flag.

Return to step 2.
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4. Numerical experiments and discussions

In this section we use the signal to noise ratio (SNR), and the L
2- norm of

the difference between the recovered image and the original image to measure the

quality of the restored images, both of them are defined by

SNR =

n
∑

i=1

n
∑

j=1

u2
i,j

n
∑

i=1

n
∑

j=1

(ui,j − ũi,j)2
, and L

2-norm =

n
∑

i=1

n
∑

j=1

(ui,j − ũi,j)
2,

where u and ũ are the original image and the restored image, respectively.

We test and compare our restoration algorithms on “Lena”, “Aircraft” and

“Cameraman” images, with 256 × 256 pixels and an intensity range of [0, 255].

All of the original images are shown in Figure 1. The test images with their SNR

and L
2-norm are listed in Table 2. The corresponding regularization parameters

used in the following tests can also be seen in Table 2. For ease of distinction, we use

α1 for ROF model, α2 for LLT model and α for CTX model (see [9]). Here “Lena I”

and “Lena II” (“Aircraft I” and “Aircraft II”) are noisy “Lena” (“Aircraft”) images

with weak and strong noise respectively, and “Cameraman” is contaminated with

Gaussian noise and Gaussian blur.

Table 2. SNR, L2-norm and the corresponding regularizing

parameters for each noisy image.

noisy image f SNR of f L
2 − norm regularize parameters

Lena I 40 4.5348e+003 α1 = 6, α2 = 4

Lena II 8 1.0141e+004 α1 = 14, α2 = 10

Aircraft I 50 4.4219e+003 α1 = 6, α2 = 4, α = 4

Aircraft II 10 9.8877e+003 α1 = 15, α2 = 10, α = 10

Cameraman 20 7.6870e+003 α1 = 8, α2 = 3

We aim to compare both the restoration quality (to highlight the usefulness of

combined models) as well as the solution speed (to highlight the advantage of our

homotopy algorithms).

4.1. Comparisons of Algorithm 4 with time marching (TM) method and

fixed point method for LLT model for image denoising. To compare the

effect of Algorithm 4 for LLT model, we conduct our experiments on the standard

“Lena” image which is well suited for processing images with smooth transitions.

We take β = 10−8 for all algorithms in this section, and set µ = 0.2 for our

homotopy method. The maximum iteration steps for a time marching method (i.e.

a gradient descent method) are 10000 for “Lena I” and 40000 for “Lena II”, and the

tolerance for fixed point methods is 10−4. The summary of computational results

is listed in Table 3.

As far as the quality of the denoised images is concerned, the fixed point method

and Algorithm 4 are better than time marching methods and the same result can be

seen in Figures 2 and 3. And we also see that our Algorithm 4 is about four times
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Figure 1. Above Left Plot: The original “Lena” image. Above

Right Plot: The original “Aircraft” image. Bottom Plot: The

original “Cameraman” image.
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Figure 2. Left Plot: Noisy image of “Lena I”. Right Plot:

Image recovered by time marching method with SNR=46.5281.

more efficient than the fixed point method and five times than the time marching

for this test.
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Figure 3. Left Plot: Image recovered by fixed point method

with SNR=47.4484. Right Plot: By Algorithm 4 with

SNR=47.4485.

Table 3. Comparison of the time marching (TM) method, fixed

point (FP) method, and Algorithm 4 for the same LLT model on

“Lena I” and “Lena II”.

method
Lena I Lena II

SNR L
2 − norm CPU SNR L

2 − norm CPU

TM method 46.5281 4.2048e+003 974 10.0139 9.0636e+003 3807

FP method 47.4484 4.1638e+003 829 10.0358 9.0537e+003 3606

Algorithm 4 47.4485 4.1638e+003 212 10.0358 9.0537e+003 356

4.2. Comparisons of new algorithms with ROF model and LLT model.

We do our first comparison for pure image denoising problem. Due to ROF model

does well in “blocky” images and LLT model works almost perfectly for smooth

images, we still choose the standard “Lena” image as the test image which is com-

posed of flat subregions, subregions with a smooth change in intensity value and

jumps. We take the parameter β = 10−6 for all these comparison algorithms. Table

4 shows numerical results on SNR and the L
2-norm of the difference between the

denoised image and the true image and CPU time needed for each algorithms.

It is evident to draw the conclusion that our proposed methods do much better

than ROF model and LLT model for “Lena I” and “Lena II”, and they do well in

recovering both of jumps and smooth signals by observing the flat subregion and

smooth subregion of the “Lena” image (see Figures 4-12). We can also see the

strengths and weakness about both ROF model and LLT model.
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Table 4. Comparison of ROF model, LLT model, Algorithm 5,

and Algorithm 6 for “Lena I” and “Lena II”.

method
Lena I Lena II

SNR L
2 − norm CPU SNR L

2 − norm CPU

ROF model 47.5896 4.1576e+003 87 10.0479 9.0482e+003 91

LLT model 47.4485 4.1638e+003 89 10.0358 9.0537e+003 138

Algorithm 5 48.1440 4.1336e+003 173 10.0657 9.0402e+003 226

Algorithm 6 47.9564 4.1417e+003 83 10.0791 9.0342e+003 182
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Figure 4. Left Plot: The flat subregion of “Lena” image. Right

Plot: The subregion of “Lena I”.
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Figure 5. Left Plot: The subregion recovered by ROF model.

Right Plot: By LLT model.
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Figure 6. Left and Middle Plots: The subregion recovered by

LT2 method and Algorithm 5. Right Plot: By Algorithm 6.
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Figure 7. Left Plot: The smooth subregion of “Lena” image.

Right Plot: The subregion of “Lena I”.
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Figure 8. Left Plot: The subregion recovered by ROF model.

Right Plot: By LLT model.
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Figure 9. Left and Middle Plots: The subregion recovered by

LT2 method and Algorithm 5. Right Plot: By Algorithm 6.
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Figure 10. Left Plot: The contour of smooth subregion of Lena

image. Right Plot: The contour of subregion of “Lena I”.
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Figure 11. Left Plot: The contour of subregion recovered by

ROF model. Right Plot: by LLT model.
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Figure 12. Left and Middle Plots: The contour of subregion

recovered by LT2 method and Algorithm 5. Right Plot: By

Algorithm 6.

Our next comparison is for image deblurring and uses the “Cameraman” image

added with Gaussian noise and Gaussian blur; see Figure 13. Table 5 reports the

numerical results for each algorithm. According to Table 5, as visualized in Figures

14-15, we find that images recovered by Algorithms 5 and 6 have better quality

than that recovered by ROF and LLT models. This observation is similar to the

denoising case discussed.

Table 5. Comparison of ROF model, LLT model, Algorithm 5

and Algorithm 6 for image restoration.

method SNR L2 − norm CPU

ROF model 45.0604 5.1140e+003 361

LLT model 44.1073 5.1690e+003 395

Algorithm 5 45.5557 5.0861e+003 754

Algorithm 6 45.1404 5.1095e+003 643
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Figure 13. The “Cameraman” image degraded by Gaussian

noise and Gaussian blur with SNR=20 and L
2-norm=

7.6870e+003.
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Figure 14. Left Plot: Image restored by ROF model with

SNR=45.0604. Right Plot: By LLT model with SNR=44.1073.
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Figure 15. Left Plot: Image restored by Algorithm 5 with

SNR=45.5557. Right Plot: By Algorithm 6 with SNR=45.1404.

4.3. Comparisons of new convex combination methods with others. In

this section, we conduct further comparisons on “Aircraft I” and “Aircraft II” (see

Figure 16 left and Figure 19 left). The parameter β is still taken 10−6 for all cases.

LT1 method terminates by the maximum iteration steps 500, both CTX model and
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LT2 method terminate by 100 steps. Table 6 reports the numerical results of all

methods. We find our methods attains much better quality of image restorations

than LT1 method , CTX model and LT2 method in comparable complexity.

Table 6. Comparison of CTX model, LT1 method, LT2 method,

Algorithm 5, and Algorithm 6 for “Aircraft I” and “Aircraft II”.

method
Aircraft I Aircraft II

SNR L
2 − norm CPU SNR L

2 − norm CPU

LT1 method 58.8291 4.0766e+003 212 12.8078 8.7369e+003 211

CTX model 61.8681 3.9752e+003 253 12.7083 8.7710e+003 271

LT2 method 62.5060 3.9549e+003 284 12.8244 8.7312e+003 309

Algorithm 5 62.9111 3.9421e+003 195 12.9328 8.6946e+003 234

Algorithm 6 62.7001 3.9488e+003 101 12.8320 8.7286e+003 191
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Figure 16. Left Plot: Noisy image of “Aircraft I”. Right Plot:

Image recovered by LT1 method with SNR=58.8291.
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Figure 17. Left Plot: Images recovered by CTX model with

SNR=61.8681. Right Plot: By LT2 method with SNR=62.5060.



HOMOTOPY SOLUTION OF A COMBINATION MODEL FOR IMAGE RESTORATION 925

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 18. Left Plot: Images recovered by algorithm 5 with

SNR=62.9111. Right Plot: By Algorithm 6 with SNR=62.7001.
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Figure 19. Left Plot: Noisy image of “Aircraft II”. Right Plot:

Image recovered by LT1 method with SNR=12.8078.
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Figure 20. Left Plot: Images recovered by CTX model with

SNR=12.7083. Right Plot: By LT2 method with SNR=12.8244.
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Figure 21. Left Plot: Images recovered by Algorithm 5 with

SNR=12.9328. Right Plot: By Algorithm 6 with SNR=12.8320.

5. Conclusions

Image restoration combining total variation minimization and a second-order

functional can restore effectively both the blocky subregion (of piecewise constant

intensities) and smooth subregion (with no clear jumps) of an image. The resulting

model can inherit the advantages of the ROF model and the LLT model, and

avoid the disadvantages of both models. Construction of an effective combination

and finding an efficient algorithm are both important tasks. This paper first gave a

homotopy based fixed point method for directly solving the fourth order LLT model

by curve tracking to adaptively choose the regularizing parameter β to achieve a

fast convergence, and then presented new alterative combination schemes for image

restoration to take the best out of ROF model, LLT model and the homotopy

robustness to recover both jumps and smooth signals accurately. The resulting

methods turn out to be quite effective for test images. Numerical experiments can

demonstrate advantages of our methods over image iterative restoration method

proposed in [16] and CTX model in [9]. Future work will consider how to apply

our methods to other models and applications where combination may be used.
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