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ON ERROR ESTIMATES OF THE PENALTY METHOD FOR

THE UNSTEADY CONDUCTION-CONVECTION PROBLEM

I: TIME DISCRETIZATION

HAIYAN SUN, YINNIAN HE, AND XINLONG FENG

Abstract. In this paper, the penalty method is proposed and discussed for the unsteady
conduction-convection problem in two dimensions. In addition, we analyze its time discretiza-
tion which is based on the backward Euler implicit scheme. Finally, the main results of this paper
that optimal error estimates are obtained for the penalty system and the time discretization under
reasonable assumptions on the physical data.
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1. Introduction

In this paper, let Ω be a bounded domain in R
2 with C2 boundary ∂Ω or a

convex polygon. Now we consider the following unsteady conduction-convection
problem (cf. [3, 5]).

Problem (I) : Find u, p and T such that for tN > 0,




ut − ν∆u+ (u · ∇)u+∇p = λjT, (x, t) ∈ Ω× (0, tN),
div u = 0, (x, t) ∈ Ω× (0, tN),
Tt − λ−1∆T + u · ∇T = 0, (x, t) ∈ Ω× (0, tN),
u(x, t) = 0, T (x, t) = 0, (x, t) ∈ ∂Ω× (0, tN ),
u(x, 0) = 0, T (x, 0) = ϕ(x), x ∈ Ω,

(1)

where u = (u1(x, t), u2(x, t)) represents velocity vector, p(x, t) the pressure, T (x, t)
the temperature, ν > 0 the viscosity, λ−1 > 0 the thermal diffusivity, j = (0, 1) the
two-dimensional unit vector, ϕ(x, y) is the given function, tN is the final time.

The unsteady conduction-convection Problem (I) is an important dissipative
nonlinear system in atmospheric dynamics. It is the coupled equations governing
viscous incompressible flow and heat transfer process [6, 22], where the incompress-
ible flow is the Boussinesq approximation to the unsteady Navier-Stokes equations.
There are many numerical methods have been studied on the conduction-convection
problem (see [2, 5]) and many literatures (see [12, 13, 14, 15, 18]) are put into
the construction, analysis and implementation for conduction-convection problem.
Shen [19] firstly analyzed the existence uniqueness of approximation solution for
steady conduction-convection equations with the Bernadi-Raugel element. Luo
and his coworkers gave an optimizing reduced PLSMFE in [14] and a least squares
Galerkin/Petrov mixed finite element method in [15]. Shi provided nonconforming
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mixed finite element method in [18]. An analysis of conduction natural convec-
tion conjugate heat transfer in the gap between concentric cylinders under solar
irradiation was studied in [11], etc.

As we known, the velocity u, the pressure p and the temperature T are coupled
together by the impressibility constraint “divu = 0” and two dissipative nonlin-
ear equation, which make the system is difficult to solve by using the numerical
methods. In order to overcome coupled problem, the penalty method as a popular
pseudo-compressibility strategy which initially proposed by Courant [4] is popular
used (see [7, 16, 17]). Temam [22] firstly applied it to the Navier-Stokes equations.
Then, many works appeared on this subject. Shen [16] derived the optimal error
estimates for the unsteady Navier-Stokes equations as follows:

τ
1
2 (tn)‖u(tn)− uε(tn)‖L2 + τ(tn)‖u(tn)− uε(tn)‖H1 ≤ Cε,

for tn ∈ [0, tN ], where τ(tn) = min{1, tn}, C is a general positive constant and
u(tn), uε(tn) are the solution of the Navier-Stokes equations and its penalty system,
respectively. Recently, He [7] extended it to the finite element method. For the
viscoelastic Oldroyd flow problem, Wang et al derived the optimal error estimates
for the penalty system [23] and extended it to the fully discrete schemes [24]. This
motivates our interest in solving more complicated problem by this method and we
have investigated the unsteady conduction-convection problem. For the unsteady
conduction-convection problem, the penalty method for Problem (I) is as follows.

Problem (II): Find uε = (u1ε, u2ε), pε and Tε such that for tN > 0,





uεt − ν∆uε + B̃(uε, uε) +∇pε = λjTε, (x, t) ∈ Ω× (0, tN ),
div uε +

ε
ν pε = 0, (x, t) ∈ Ω× (0, tN ),

Tεt − λ−1∆Tε + B̃(uε, Tε) = 0, (x, t) ∈ Ω× (0, tN ),
uε(x, t) = 0, Tε(x, t) = 0, (x, t) ∈ ∂Ω× (0, tN ),
uε(x, 0) = 0, Tε(x, 0) = ϕ(x), x ∈ Ω,

(2)

where 0 < ε < 1 is a penalty parameter,

B̃(uε, vε) = (uε · ∇)vε +
1

2
(divuε)vε and B̃(uε, Tε) = uε · ∇Tε +

1

2
(divuε)Tε

is the modified bilinear term, (divuε)vε and (divuε)Tε are introduced to ensure
the dissipativity of Problem (II) as (divu)v is introduced in the Navier-Stokes e-
quations by Temam [21] to ensure the dissipativity of the Navier-Stokes equations.
In this way, pε can be eliminated to obtain a penalty system that only contains
uε, Tε, which is much easier to solve than the original equations. Zhang and He
have analyzed the penalty finite element for the stationary conduction convection
problems [25] and the non-stationary conduction convection problems [26], they
have given that, for all tn ∈ [0, tN ],

‖u(tn)− uε(tn)‖L2 + (

∫ tn

0

‖u(t)− uε(t)‖2H1dt)
1
2 + ‖T (tn)− Tε(tn)‖L2

+ (

∫ tn

0

‖T (t)− Tε(t)‖2H1dt)
1
2 ≤ C

√
ε,(3)

under the assumptions that the exact solutions are sufficiently smooth. When
we consider the discrete problem for the penalty system (2), the estimate (3) is
misleading. For instance, if the backward Euler scheme is applied to the penalized
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system (2), the estimate (3) would lead to

‖u(tn)− unε ‖L2 + (k
n∑

m=1

‖u(tm)− umε ‖2H1)
1
2 + ‖T (tn)− T n

ε ‖L2

+ (k

n∑

m=1

‖T (tm)− Tm
ε ‖2H1)

1
2 ≤ C(k +

√
ε).(4)

where 0 < k < 1 is the time step size, tn = nk and (unε , T
n
ε ) is a penalty approxi-

mation of (u, T ) at the time tn. (4) suggests the choice ε = ∆t2, which would result
in a very ill conditioned system when we make a further spatial discretization (see
[16]).

The main focus of this paper is to apply the techniques in [16] to unsteady
conduction-convection problem and derive the optimal error estimates for the penal-
ty system and its time discretization. Under some realistic assumptions of the initial
value (u0, ϕ(x)), we have the following error estimates

τ
1
2 (tn)‖u(tn)− uε(tn)‖L2 + τ(tn)‖u(tn)− uε(tn)‖H1 + τ

1
2 (tn)‖T (tn)− Tε(tn)‖L2

+ τ(tn)‖T (tn)− Tε(tn)‖H1 ≤ Cε,

τ
1
2 (tn)‖u(tn)− unε ‖L2 + τ(tn)‖u(tn)− unε ‖H1 + τ

1
2 (tn)‖T (tn)− T n

ε ‖L2

+ τ(tn)‖T (tn)− T n
ε ‖H1 ≤ C(k + ε),

for sufficiently small ε and k, which substantially improve the previous results (3)
and (4) and lead to the proper choices of ε for time discretizations of the penalized
system.

The remainder of this paper is organized as follows. We firstly introduce some
notations and preliminary results for Problem (I) in the next section. Then we
provide error behavior for the linearized penalty system in Section 3 and for the
nonlinear penalty system in Section 4. In Section 5, we analyze the backward Euler
time discretization scheme for the nonlinear penalty system. Finally, conclusions
are given in Section 6.

2. Preliminaries

In this section, we describe some of the notations and results which will be fre-
quently used in this paper. For the mathematical setting of conduction-convection
Problem (I) and the penalty conduction-convection Problem (II), we introduce the
following Hilbert spaces

X = H1
0 (Ω)

2, W = H1
0 (Ω), M = {q ∈ L2(Ω);

∫

Ω

qdx = 0}.

The norm corresponding to Hi(Ω)2 or Hi(Ω) will be denote || · ||i for i=1, 2. In
particular, we use (·, ·) and ‖ · ‖0 to denote the inner product and norm in L2(Ω)2

or L2(Ω). The spaces X and W are equipped with their usual scalar product and
norm

((u, v)) = (∇u,∇v), ‖∇u‖0 = ((u, u))1/2.

We also introduce the Hilbert space H and V defined by

H = {v ∈ L2(Ω)2; div v = 0, v · n|∂Ω = 0}, V = {v ∈ X ; divv = 0},
Define Au = −∆u and Aεu = −∆u−∇divu/ε, which are the operators associat-

ed with the conduction-convection problem and the penalty conduction-convection
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problem, respectively. They are the positive self-adjoint operators from D(A) =
H2(Ω)2 ∩X (or H2(Ω) ∩W ) onto L2(Ω)2(or L2(Ω)). It is valid that

(Ãu, v) = (Ã1/2u, Ã1/2v), ∀u ∈ D(A), v ∈ X (or W ),

where Ã = A or Aε. In particular, there holds

(A1/2u,A1/2v) = (∇u,∇v), ∀u, v ∈ X (or W ).(5)

(A1/2
ε u,A1/2

ε v) = (A1/2u,A1/2v) +
1

ε
(divu, divv), ∀u, v ∈ X.(6)

It is known that (see [1, 9]):

‖u‖L4 ≤ γ0‖u‖
1
2

0 ‖A
1
2u‖

1
2

0 , ‖u‖0 ≤ γ0‖A
1
2 u‖0, ∀ u ∈ X (or W ),(7)

‖A 1
2 u‖L4 ≤ γ0‖A

1
2 u‖

1
2

0 ‖Au‖
1
2

0 , ‖A
1
2u‖0 ≤ γ0‖Au‖0, ∀u ∈ D(A),(8)

where γ0 is a positive constant depending only on Ω, which may stand for different
values at its different occurrences. Furthermore, we recall the following lemma
given in [16].

Lemma 2.1. There exists a constant C > 0, depending only on Ω and such that
for ε sufficiently small, we have

‖Au‖0 ≤ C‖Aεu‖0, ∀u ∈ D(A),

‖A 1
2u‖0 ≤ C‖A

1
2
ε u‖0, ∀u ∈ X,

‖A−1
ε u‖0 ≤ C‖u‖−2, ∀ u ∈ H−2(Ω)2.

Associated with the conduction-convection Problem (I) and the penalty conduction-
convection Problem (II), we define the continuous bilinear forms

a(u, v) = ν(∇u,∇v), aε(u, v) = ν(A1/2
ε u,A1/2

ε v), ∀u, v ∈ X,

ā(T, ϕ) = λ−1(∇T,∇φ), ∀T, ϕ ∈ W,

d(v, q) = (q, divv), ∀v ∈ X, q ∈M,

respectively. We also introduce a continuous trilinear form b̃(·, ·, ·) on X ×X ×X ,

b̂(·, ·, ·) on X ×W ×W , respectively.

b̃(u, v, w) =
1

2

∫

Ω

2∑

i,k=1

(ui
∂vk
∂xi

wk − ui
∂wk

∂xi
vk)dx, ∀ u, v, w ∈ X,

b̂(u, T, ψ) =
1

2

∫

Ω

2∑

i=1

(ui
∂T

∂xi
ψ − ui

∂ψ

∂xi
T )dx, ∀ u ∈ X, T, ψ ∈W.

Some estimates of the trilinear b̃(·, ·, ·) can be found in [8, 20, 27].

b̃(u, v, w) = −b̃(u,w, v), ∀u, v, w ∈ X,(9)

|b̃(u, v, w)| ≤ C‖u‖1‖v‖
1
2

1 ‖v‖
1
2

2 ‖w‖0, ∀u,w ∈ X, v ∈ D(A),(10)

|b̃(u, v, w)|+ |b̃(v, u, w)|+ |b̃(w, u, v)|
≤ C‖u‖2‖v‖1‖w‖0, ∀u ∈ D(A), v, w ∈ X.(11)
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Similarly, it is easy to verify that b̂(·, ·, ·) satisfy the following important property

b̂(u, T, ψ) = −b̂(u, ψ, T ), ∀u ∈ X, T, ψ ∈ W,(12)

|b̂(u, T, ψ)| ≤ C‖u‖1‖T ‖
1
2

1 ‖T ‖
1
2

2 ‖ψ‖0, ∀u ∈ X,T ∈ D(A), ψ ∈W,(13)

|b̂(u, T, ψ)|+ |b̂(T, u, ψ)|+ |b̂(ψ, T, u)|
≤ C‖u‖1‖T ‖2‖ψ‖0, ∀ T ∈ D(A), u ∈ X,ψ ∈ W.(14)

With above notations, the variational formulation of Problem (I) is written as
follow.

Problem (III): Find (u, p, T ) ∈ (X,M,W ), for all t ∈ [0, tN ], such that for all
(v, φ, ψ) ∈ (X,M,W ):






(ut, v) + a(u, v) + b̃(u, u, v)− d(v, p) = λ(jT, v),
d(u, φ) = 0,

(Tt, ψ) + ā(T, ψ) + b̂(u, T, ψ) = 0,

(15)

and the variational formulation of the penalty system Problem (II) reads as.
Problem (IV): Find (uε, pε, Tε) ∈ (X,M,W ), for all t ∈ [0, tN ], such that for all

(v, φ, ψ) ∈ (X,M,W ):




(uεt, v) + a(uε, v) + b̃(uε, uε, v)− d(v, pε) = λ(jTε, v),
d(uε, φ) +

ε
ν (pε, φ) = 0,

(Tεt, ψ) + ā(Tε, ψ) + b̂(uε, Tε, ψ) = 0,

(16)

with u(x, 0) = uε(x, 0) = 0, T (x, 0) = Tε(x, 0) = ϕ(x), respectively.
Theorem 2.2. [13] If ϕ(x) ∈ H2(Ω), Problem (III) has a unique solution

(u, p, T ) ∈ [L2(0, tN ;X) ∩H1(0, tN ;V )]× L2(0, tN ;M)×H1(0, tN ;W ), satisfies

‖∇T (i)‖0 + ‖T (i)‖0 + ‖∇u(i)‖0 + ‖u(i)‖0 ≤ θ(t), 0 ≤ i ≤ 3,

where θ(t) is continuous general positive function about t only depends on the data
ϕ(x).

Theorem 2.3. If ϕ(x) ∈ H2(Ω), Problem (IV) has a unique solution (uε, pε, Tε) ∈
[L∞(0, tN ;H2(Ω)) ∩ L2(0, tN ;X)]× L2(0, tN ;M)×H1(0, tN ;W ).

The proof of Theorem 2.3 and the solution (uε, pε, Tε) of Problem (IV) converges
to the solution (u, p, T ) of Problem (III) uniformly as ε→ 0 are similar to the proof
of Theorem 3.1 and Theorem 3.2 of [26] and much easier than that, here we omit
it.

By using a similar argument to [21], we have the following properties.
(A1). Assume that the initial velocity u0 ∈ V , the initial temperature ϕ(x) ∈

W , then T ∈ L∞(0, T ;L2(Ω)), there exists a finite time tM1 < tN such that

u ∈ C([0, tM1];V ) ∩ L2([0, tM1];H
2(Ω)2),

T ∈ L2([0, tM1];H
2(Ω)), p ∈ L2([0, tM1];H

1(Ω)/R).(17)

(A2). Assume that ϕ(x) ∈ H2(Ω), then tTt ∈ L2([0, tN ];L2(Ω)).
By using the smoothing property of the conduction-convection problem, that

tpt ∈ L2([0, tN ];H1(Ω)).(18)

Similar to the penalty Navier-Stokes equation [16], one can show that assumption
(A1), there exists a finite time tM2 < tN and a constant C independent of ε such
that

‖uε(t)‖21 +
∫ t

0

‖uε(t)‖22ds ≤ C, ∀t ∈ [0, tM2].
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In the sequel, we restrict ourselves to the interval [0, tM ] with tM = min{tM1, tM2}.
We also recall two lemmas of Gronwall type which will be frequently used [21].

Lemma 2.4. (Gronwall Lemma). Let y(t), g(t), h(t), f(t) be nonnegative func-

tions such that

∫ tN

0

g(t)dt ≤M and

y(t) +

∫ t

0

h(s)ds ≤ y(0) +

∫ t

0

(g(s)y(s) + f(s))ds, ∀ 0 ≤ t ≤ tN ,

then

y(t) +

∫ t

0

h(s)ds ≤ exp(M)
(
y(0) +

∫ t

0

f(s)ds
)
, ∀ 0 ≤ t ≤ tN .

Lemma 2.5. (Discrete Gronwall Lemma). Let C and an, bn, dn, for integer
1 ≤ m ≤ tN

k , be nonnegative numbers, such that

am + k

m∑

n=0

bn ≤ k

m∑

n=0

andn + C, ∀ 1 ≤ m ≤ tN
k
.(19)

Assume that kdn <
1
2 and for all 1 ≤ n ≤ tN

k then

am + k

m∑

n=1

bn ≤ C exp(2k

m−1∑

n=1

an), ∀ 1 ≤ m ≤ tN
k
.(20)

3. Error estimates for the linearized problem

In this section, we will consider the following linear problem. The results in this
section will be used in the next section as an intermediate step for analyzing the
nonlinear conduction-convection problem.






ut − ν∆u +∇p = λjT, div u = 0, (x, t) ∈ Ω× (0, tN ),
Tt − λ−1∆T = 0, (x, t) ∈ Ω× (0, tN ),
u(x, t) = T (x, t) = 0, (x, t) ∈ ∂Ω× (0, tN ).

(21)

The penalty method of (21) is as follows:




uεt − ν∆uε +∇pε = λjTε, div uε +
ε
ν pε = 0, (x, t) ∈ Ω× (0, tN),

Tεt − λ−1∆Tε = 0, (x, t) ∈ Ω× (0, tN),
uε(x, t) = 0, Tε(x, t) = 0, (x, t) ∈ ∂Ω× (0, tN ),

(22)

with u(x, 0) = uε(x, 0) = 0, T (x, 0) = Tε(x, 0) = ϕ(x), respectively.
Similarly, the variational formulation of the problem (21) is defined as follows:

find (u, p, T ) ∈ (X,M,W ), for all t ∈ [0, tN ], such that for all (v, φ, ψ) ∈ (X,M,W ),
{

(ut, v) + a(u, v)− d(v, p) + d(u, φ) = λ(jT, v),
(Tt, ψ) + ā(T, ψ) = 0.

(23)

The penalty method applied to (23) is that: find (uε, pε, Tε) ∈ (X,M,W ), for all
t ∈ [0, tN ], such that for all (v, φ, ψ) ∈ (X,M,W ),

{
(uεt, v) + a(uε, v)− d(v, pε) + d(uε, φ) +

ε
ν (pε, φ) = λ(jTε, v),

(Tεt, ψ) + ā(Tε, ψ) = 0,
(24)

with u(x, 0) = uε(x, 0) = 0, T (x, 0) = Tε(x, 0) = ϕ(x), respectively.
Setting e = u− uε, q = p− pε, ξ = T − Tε, it follows that e(0) = ξ(0) = 0. We

shall derive a sequence of estimates for the penalty error e, q and ξ.
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Subtracting (24) from (23), we obtain
{

(et, v) + a(e, v)− d(v, q) + d(e, φ) + ε
ν (q, φ) = λ(jξ, v) + ε

ν (p, φ),
(ξt, ψ) + ā(ξ, ψ) = 0.

(25)

Lemma 3.1. Suppose (A1) is valid, ε sufficiently small, for all t ∈ [0, tM ], we
have

‖e‖20 +
∫ t

0

‖∇e‖20ds+ ε

∫ t

0

‖q‖20ds ≤ Cε,(26)

∫ t

0

‖e‖20ds ≤ Cε2,(27)

‖ξ‖20 +
∫ t

0

‖∇ξ‖20ds = 0.(28)

Proof. Taking (v, φ, ψ) = (e, q, ξ) in (25) and using (7), we have

1

2

d

dt
‖e‖20 + ν‖∇e‖20 +

ε

ν
‖q‖20 =

ε

ν
(p, q) + λ(jξ, e)

≤ ε

2ν
‖q‖20 +

ε

2ν
‖p‖20 +

ν

2
‖∇e‖20 + C‖∇ξ‖20,(29)

and

1

2

d

dt
‖ξ‖20 + λ−1‖∇ξ‖20 = 0.(30)

Integrating the above two inequalities from 0 to t ≤ tM , thanks to e(0) = 0, ξ(0) = 0
and (17), we have

‖e‖20 +
∫ t

0

‖∇e‖20ds+ ε

∫ t

0

‖q‖20ds ≤ Cε,(31)

‖ξ‖20 +
∫ t

0

‖∇ξ‖20ds = 0.(32)

Now we use the standard parabolic duality argument. For any 0 < t ≤ tM , we
define (w,ϕ) by

{
ws + ν∆w +∇ϕ = e(s), ∀ 0 < s ≤ t,
divw = 0, w(t) = 0.

(33)

There are the following inequality (see [16]),

ν

∫ t

0

‖w‖22ds+
∫ t

0

‖∇ϕ‖20ds ≤ C

∫ t

0

‖e‖20ds.(34)

Taking the inner product of (33) with e(s), because of (25) and divw = 0, we derive

‖e‖20 = (ws, e) + ν(∆w, e) + (∇ϕ, e)

=
d

ds
(w, e)− λ(jξ, w) − ε

ν
(ϕ, pε).

Integrating from 0 to t, using Schwarz inequality, (7), (32) and (34), since w(t) =
e(0) = 0, we have

∫ t

0

‖e‖20ds ≤ Cε2
∫ t

0

‖pε‖20ds ≤ Cε2, ∀t ∈ [0, tM ].

Remark: Note that equation (27) implies that ξ is equal to zero, this indicates
that equation (25) is the same as equation (3.3)-(3.4) in Shen [16]. Now, we recall
some results from the reference [16] .
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Lemma 3.2. Suppose (A1) and (A2) are valid, ε sufficiently small, for all
t ∈ [0, tM ], we have

∫ t

0

s2‖pεt‖20ds ≤ C.

Theorem 3.3. Suppose (A1) and (A2) are valid, ε sufficiently small, for all
t ∈ [0, tM ], we have

t‖e‖20 +
∫ t

0

s‖∇e‖20ds+ ε

∫ t

0

s‖q‖20ds ≤ Cε2,(35)

t2‖∇e‖20 +
∫ t

0

s2‖q‖20ds ≤ Cε2.(36)

4. Error estimates for the nonlinear problem

We consider the following intermediate linear problem:





vt − ν∆v +∇γ = λjT − B̃(u, u),
div v + ε

ν γ = 0,

Tt − λ−1∆T = −B̃(u, T ),

(37)

with v(x, 0) = 0, T (x, 0) = ϕ(x), where (u, T ) is the solution of Problem (I).
Letting ρ = v − u, σ = γ − p and subtracting Problem (I) from (37), we obtain

ρt − ν∆ρ+∇σ = 0,(38)

divρ+
ε

ν
σ = − ε

ν
p,(39)

with ρ(x, 0) = 0.
Lemma 4.1. Suppose (A1) and (A2) are valid, ε sufficiently small, for all

t ∈ [0, tM ], we have

t‖ρ‖20 + t2‖∇ρ‖20 +
∫ t

0

‖ρ‖20ds+
∫ t

0

s‖∇ρ‖20ds+
∫ t

0

s2‖σ‖20ds ≤ Cε2.

Proof. From Section 3, we note that the assumption (A1) for a linear problem can
be replaced by the weaker condition λjT ∈ L2([0, tM ];L2(Ω)). Thanks to (17), we

have λjT − B̃(u, u) ∈ L2([0, tM ];L2(Ω)). On the other hand, it can be easily shown
(see for instance [9] that tut ∈ L2([0, tM ];L2(Ω))). Hence

t
∂

∂t
(λjT − B̃(u, u)) = t(λjTt − B̃(ut, u)− B̃(u, ut) ∈ L2([0, tM ];L2(Ω)).

Lemma 4.1 is then a direct consequence of Lemma 3.1 and Theorem 3.3 applied to
(38)-(39).

Now, letting η = uε − v, δ = pε − γ, ς = Tε − T and subtracting (37) from
Problem (II), we obtain





ηt − ν∆η + B̃(uε, η + ρ) + B̃(η + ρ, u) +∇δ = λjς,
divη + ε

ν δ = 0,

ςt − λ−1∆ς + B̃(uε, ς) + B̃(η + ρ, T ) = 0,

(40)

with η(x, 0) = 0, ς(x, 0) = 0, respectively. The variational formulation of the
problem (40) is defined as follows.
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Find (η, δ, ς) ∈ (X,M,W ), for all t ∈ [0, tN ], such that for all (v, φ, ψ) ∈
(X,M,W ),






(ηt, v) + a(η, v) + b̃(uε, η + ρ, v) + b̃(η + ρ, u, v)− d(v, δ) = λ(jς, v),
d(η, φ) + ε

ν (δ, φ) = 0,

(ςt, ψ) + ā(ς, ψ) + b̂(uε, ς, ψ) + b̂(η + ρ, T, ψ) = 0,

(41)

or {
(ηt, v) + aε(η, v) + b̃(uε, η + ρ, v) + b̃(η + ρ, u, v) = λ(jς, v),

(ςt, ψ) + ā(ς, ψ) + b̂(uε, ς, ψ) + b̂(η + ρ, T, ψ) = 0,
(42)

Lemma 4.2. Suppose (A1) and (A2) are valid, ε sufficiently small, for all
t ∈ [0, tM ], we have

t‖η‖20 + t2‖∇η‖20 + t‖ς‖20 + t2‖∇ς‖20 +
∫ t

0

s2‖δ‖20ds ≤ Cε2.

Proof. Taking v = A−1
ε η in (42), thanks to Lemma 2.1, (11) and Schwarz inequal-

ity, we get

1

2

d

dt
‖A− 1

2
ε η‖20 + ν‖η‖20 = −b̃(uε, η + ρ,A−1

ε η)− b̃(η + ρ, u,A−1
ε η) + λ(jς, A−1

ε η)

≤ ν

2
‖η‖20 +

1

2
‖ρ‖20 + C(‖u‖22 + ‖uε‖22 + 1)‖A− 1

2
ε η‖20 +

λ−1

4
‖ς‖20.

Taking ψ = A−1ς in (42), thanks to (14) and Schwarz inequality, we get

1

2

d

dt
‖A− 1

2 ς‖20 + λ−1‖ς‖20 = −b̂(uε, ς, A−1ς)− b̂(η + ρ, T,A−1ς)

≤ λ−1

2
‖ς‖20 + C(‖T ‖22 + ‖uε‖22)‖A− 1

2 ς‖20 +
ν

8
(‖η‖20 + ‖ρ‖20).

Since

∫ tM

0

(‖T ‖22 + ‖uε‖22 + ‖u‖22)ds ≤ C, we can apply Lemma 2.4 to above two

inequalities, use Lemma 4.1, we obtain

‖A− 1
2

ε η‖20 + ‖A− 1
2 ς‖20 + ν

∫ t

0

‖η‖20ds+ λ−1

∫ t

0

‖ς‖20ds ≤ Cε2.(43)

Now, taking (v, φ) = t(η, δ) in (41), summing up the two relations, using (11) and
Schwarz inequality, we derive

1

2

d

dt
t‖η‖20 + νt‖∇η‖20 +

ε

ν
t‖δ‖20

=
1

2
‖η‖20 − tb̃(uε, η + ρ, η)− tb̃(η + ρ, u, η) + λt(jς, η)

≤ 1

2
‖η‖20 +

νt

2
‖∇η‖20 + Ct‖∇ρ‖20 + Ct(‖u‖22 + ‖uε‖22 + 1)‖η‖20 +

λ−1t

4
‖∇ς‖20.

Taking ψ = tς in (41), using (9), (14) and Schwarz inequality, we derive

1

2

d

dt
t‖ς‖20 + λ−1t‖∇ς‖20 =

1

2
‖ς‖20 − tb̂(uε, ς, ς)− tb̂(η + ρ, T, ς)

≤ 1

2
‖ς‖20 + Ct‖T ‖22‖ς‖20 +

νt

8
(‖∇η‖20 + ‖∇ρ‖20).

Integrating over [0, t], we can apply (43), Lemma 4.1 and Lemma 2.4 to above two
inequalities, such that

t‖η‖20 + t‖ς‖20 + ν

∫ t

0

s‖∇η‖20ds+ λ−1

∫ t

0

s‖∇ς‖20ds+
ε

ν

∫ t

0

s‖δ‖20ds ≤ Cε2.(44)
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Next, we take the partial derivative with respect to t of the second term of (41) to
obtain

(divηt, φ) +
ε

ν
(δt, φ) = 0.(45)

Now, taking v = t2ηt in (41) and φ = t2δ in (45). Then adding them up, using (11)
and Schwarz inequality, we get

t2‖ηt‖20 +
ν

2

d

dt
t2‖∇η‖20 +

ε

2ν

d

dt
t2‖δ‖20

= νt‖∇η‖20 +
ε

ν
t‖δ‖20 − t2b̃(uε, η + ρ, ηt)− t2b̃(η + ρ, u, ηt) + λt2(jς, ηt)

≤ νt‖∇η‖20 +
ε

ν
t‖δ‖20 +

t2

2
‖ηt‖20 + C(‖u‖22 + ‖uε‖22)(ε2 + t2‖∇η‖20) +

λ2t2

2
‖ς‖20.

Taking ψ = t2ς in (41), using (9), (14) and Schwarz inequality, we derive

1

2

d

dt
t2‖ς‖20 + λ−1t2‖∇ς‖20 = t‖ς‖20 − t2b̂(uε, ς, ς)− t2b̂(η + ρ, T, ς)

≤ t‖ς‖20 + Ct2‖T ‖22‖ς‖20 + δ3t
2(‖∇η‖20 + ‖∇ρ‖20).

Integrating over [0, t], using (44), Lemma 2.4 and Lemma 4.1 to above two inequal-
ities and taking δ3 sufficiently small, we derive

νt2‖∇η‖20 + t2‖ς‖20 +
ε

ν
t2‖δ‖20 +

∫ t

0

s2‖ηt‖20ds+ λ−1

∫ t

0

s2‖∇ς‖20ds ≤ Cε2.(46)

Taking ψ = t2ςt in (41), using (11), (14) and Schwarz inequality, we have

t2‖ςt‖20 +
λ−1

2

d

dt
t2‖∇ς‖20

= λ−1t‖∇ς‖20 − t2b̂(uε, ς, ςt)− t2b̂(η + ρ, T, ςt)

≤ λ−1t‖∇ς‖20 +
t2

2
‖ςt‖20 + Ct2‖uε‖22‖∇ς‖20 + Ct2‖T ‖22‖∇(η + ρ)‖20.

Integrating over [0, t], using (44), (46), Lemma 2.4 and Lemma 4.1, we derive

λ−1t2‖∇ς‖20 +
∫ t

0

s2‖ςt‖20ds ≤ Cε2.

From (40) , there holds

∇δ = −ηt + ν∆η − B̃(uε, η + ρ)− B̃(η + ρ, u) + λjς.

Therefore by using previous estimates on the above equation, we derive
∫ tM

0

s2‖δ‖20ds ≤
∫ tM

0

s2‖∇δ‖2−1ds ≤ Cε2.

By combining Lemma 4.1 with Lemma 4.2, we obtain the following error estimate
result.

Theorem 4.3. Suppose (A1) and (A2) are valid, ε sufficiently small, for all
t ∈ [0, tM ], the following error estimates holds.

t‖u(t)− uε(t)‖20 + t2‖∇(u(t)− uε(t))‖20 + t‖T (t)− Tε(t)‖20

+t2‖∇(T (t)− Tε(t))‖20 +
∫ t

0

s2‖p(t)− pε(t)‖20ds ≤ Cε2.
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5. Time discretizations of the penalized system

In this section, we will analyze the backward Euler time discretization scheme
for the nonlinear penalty system. Let 0 < k < 1 is the time-step size and tn = nk.

Lemma 5.1. In addition to (A1) and (A2), we assume u0 ∈ H2(Ω)2, then the
solution (uε, Tε) of Problem (II) satisfies

uεt ∈ L2([0, tM ];X), A
− 1

2
ε uεtt,

√
tuεtt ∈ L2([0, tM ];L2(Ω)2),(47)

Tεt ∈ L2([0, tM ];W ), A− 1
2Tεtt,

√
tTεtt ∈ L2([0, tM ];L2(Ω)).(48)

Proof. By using a similar argument which used by He in [7], we known that
‖uεt(0)‖0 and ‖Tεt(0)‖0 is bounded. We take the partial derivative with respect to
t of problem(IV) to obtain

{
(uεtt, v) + aε(uεt, v) + b̃(uεt, uε, v) + b̃(uε, uεt, v) = λ(jTεt, v),

(Tεtt, ψ) + ā(Tεt, ψ) + b̂(uεt, Tε, ψ) + b̂(uε, Tεt, ψ) = 0,
(49)

Now, taking v = uεt in (49), using Lemma 2.1, (14) and Schwarz inequality, we
obtain

1

2

d

dt
‖uεt‖20 + ν‖A

1
2
ε uεt‖20 = λ(jTεt, uεt)− b̃(uεt, uε, uεt)

≤ ν

2
‖A

1
2
ε uεt‖20 + C‖Tεt‖2−1 + C‖uε‖22‖uεt‖20.

Taking ψ = Tεt in Problem (IV), using (14) and Schwarz inequality, we obtain

‖Tεt‖20 +
λ−1

2

d

dt
‖∇Tε‖20 = −b̂(uε, Tε, Tεt) ≤

1

2
‖Tεt‖20 + C‖uε‖22‖∇Tε‖20.

Integrating over [0, t], using Lemma 2.4 to above two inequalities, we derive

‖uεt‖20 + ‖Tε‖20 +
∫ t

0

‖A
1
2
ε uεt‖20ds+

∫ t

0

‖Tεt‖20ds ≤ C.(50)

Taking ψ = Tεt in (49), using Lemma 2.4, (14) and Schwarz inequality, we obtain

1

2

d

dt
‖Tεt‖20 + λ−1‖A 1

2Tεt‖20 = −b̂(uεt, Tε, Tεt)

≤ 1

2
‖A

1
2
ε uεt‖20 + C‖Tε‖22‖Tεt‖20.

Integrating over [0, t] and using Lemma 2.4, we derive

‖Tεt‖20 +
∫ t

0

‖A 1
2Tεt‖20ds ≤ C.(51)

From Problem(II), we known that

λ−1∆Tε = Tεt + B̃(uε, Tε).

Taking the inner products of the last relation with ∆Tε, using Theorem 2.3, and
(51), we derive readily that

‖Tε‖2 ≤ C.

By using Lemma 2.1 and (50), we have

∫ t

0

‖A 1
2 uεt‖20ds ≤ C. Then, we get

‖A− 1
2

ε B̃(uεt, uε)‖0 ≤ ‖B̃(uεt, uε)‖−1 ≤ sup
v∈X

b̃(uεt, uε, v)

‖v‖1
≤ C‖uεt‖0‖uε‖2.
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The same is true for B̃(uε, uεt), B̃(uεt, Tε) and B̃(uε, Tεt). Thus

A
− 1

2
ε uεtt = A

− 1
2

ε {λjTεt −Aεuεt − B̃(uεt, uε)− B̃(uε, uεt)} ∈ L2([0, tM ], L2(Ω)2).

A− 1
2 Tεtt = A− 1

2 {λ−1ATεt − B̃(uεt, Tε)− B̃(uε, Tεt)} ∈ L2([0, tM ], L2(Ω)).

Taking v = tuεtt in (49), thanks to Lemma 2.1, (11) and Schwarz inequality, we
obtain

t‖uεtt‖20 +
ν

2

d

dt
t‖A

1
2
ε uεt‖20

=
ν

2
‖A

1
2
ε uεt‖20 + tλ(jTεt, uεtt)− tb̃(uεt, uε, uεtt)− tb̃(uε, uεt, uεtt)

≤ ν

2
‖A

1
2
ε uεt‖20 + Ct‖Tεt‖20 +

t

2
‖uεtt‖20 + Ct‖uε‖22‖A

1
2
ε uεt‖20.

Taking ψ = tTεt in Problem (IV), using (14) and Schwarz inequality, we obtain

t‖Tεt‖20 +
λ−1

2

d

dt
t‖∇Tε‖20 =

λ−1

2
‖∇Tε‖20 − tb̂(uε, Tε, Tεt)

≤ λ−1

2
‖∇Tε‖20 +

t

2
‖Tεt‖20 + Ct‖uε‖22‖∇Tε‖20.

Integrating over [0, t], using Lemma 2.4 and (50) to above two inequalities, we
derive

t‖A
1
2
ε uεt‖20 +

∫ tM

0

s‖uεtt‖20dt ≤ C.

Taking ψ = tTεtt in Problem (49), using Lemma 2.1, (14) and Schwarz inequality,
we get

t‖Tεtt‖20 +
λ−1

2

d

dt
t‖A 1

2Tεt‖20

=
λ−1

2
‖A 1

2Tεt‖20 − tb̂(uεt, Tε, Tεtt)− tb̂(uε, Tεt, Tεtt)

≤ λ−1

2
‖A 1

2Tεt‖20 +
t

2
‖Tεtt‖20 + Ct‖Tε‖22‖A

1
2
ε uεt‖20 + Ct‖uε‖22‖A

1
2Tεt‖20.

Integrating over [0, t] and using Lemma 2.4, we derive

∫ tM

0

s‖Tεtt‖20dt ≤ C.

The backward Euler time discretization scheme of the penalized system Problem
(IV) is as follow

{
( 1k (u

n+1 − un, v) + aε(u
n+1, v) + b̃(un+1, un+1, v) = λ(jT n+1, v),

( 1k (T
n+1 − T n, ψ) + ā(T n+1, ψ) + b̂(un+1, T n+1, ψ) = 0,

(52)

with u0 = 0, T 0 = ϕ(x).
Lemma 5.2. Under the assumptions of (A1) and (A2), then, for any 0 ≤ n ≤

tM/k, it is valid that

tn‖uε(tn)− un‖20 + t2n‖∇(uε(tn)− un)‖20 ≤ Ck2,

tn‖Tε(tn)− T n‖20 + t2n‖∇(Tε(tn)− T n)‖20 ≤ Ck2.



888 H.Y. SUN, Y.N. HE, AND X.L. FENG

Proof. Letting en = uε(tn) − un, δn = Tε(tn) − T n and subtracting (52), from
Problem(IV) at t = tn+1, we get






( 1k (e
n+1 − en, v) + aε(e

n+1, v) + b̃(un+1, en+1, v) + b̃(en+1, uε(tn+1), v)
= (Rn

εu, v) + λ(jδn+1, v),

( 1k (δ
n+1 − δn, ψ) + ā(δn+1, ψ) + b̂(un+1, δn+1, ψ) + b̂(en+1, Tε(tn+1), ψ)

= (Rn
εT , ψ),

(53)

where

Rn
εu = uεt(tn+1)−

1

k
(uε(tn+1)− uε(tn)) =

1

k

∫ tn+1

tn

(t− tn)uεtt(t)dt,(54)

Rn
εT = Tεt(tn+1)−

1

k
(Tε(tn+1)− Tε(tn)) =

1

k

∫ tn+1

tn

(t− tn)Tεtt(t)dt.(55)

Taking (v, ψ) = 2k(en+1, δn+1) in (53), using (11), (14) and Schwarz inequality, we
obtain

‖en+1‖20 − ‖en‖20 + ‖en+1 − en‖20 + 2νk‖A
1
2
ε e

n+1‖20
= 2k(Rn

εu, e
n+1)− 2kb̃(en+1, uε(tn+1), e

n+1) + 2λk(jδn+1, en+1)

≤ νk‖A
1
2
ε e

n+1‖20 + Ck2
∫ tn+1

tn

‖A− 1
2

ε uεtt‖20dt

+ Ck(‖uε(tn+1)‖22 + 1)‖en+1‖20 + k‖δn+1‖20.(56)

and

‖δn+1‖20 − ‖δn‖20 + ‖δn+1 − δn‖20 + 2λ−1k‖A 1
2 δn+1‖20

= 2k(Rn
εT , δ

n+1)− 2kb̂(en+1, Tε(tn+1), δ
n+1)

≤ λ−1k‖A 1
2 δn+1‖20 + Ck2

∫ tn+1

tn

‖A− 1
2 Tεtt‖20dt+ Ck‖Tε(tn+1)‖22‖en+1‖20.(57)

Taking the summation of (56), (57) for n from 0 tom, using Lemma 2.5 and Lemma
5.1, for all 0 ≤ m ≤ tM/k − 1, we have

‖em+1‖20 + ‖δm+1‖20 + νk

m∑

n=0

‖A
1
2
ε e

n+1‖20 + λ−1k

m∑

n=0

‖A 1
2 δn+1‖20 ≤ Ck2.(58)

Thus

‖∇um+1‖0 ≤ C, ‖∇Tm+1‖0 ≤ C, ∀m ≤ tM/k − 1.(59)

Taking v = 2ktn+1e
n+1 in (53), using Lemma 2.1, (11) and Schwarz inequality, we

obtain

tn+1(‖en+1‖20 − ‖en‖20 + ‖en+1 − en‖20) + 2νktn+1‖A
1
2
ε e

n+1‖20
= 2ktn+1(R

n
εu, e

n+1) + 2ktn+1λ(jδ
n+1, en+1)

− 2ktn+1b̃(e
n+1, uε(tn+1), e

n+1)

≤ νktn+1‖A
1
2
ε e

n+1‖20 + Ck2
∫ tn+1

tn

t‖uεtt‖20dt+ ktn+1‖δn+1‖20

+ Cktn+1(‖uε(tn+1)‖22 + 1)‖en+1‖20.(60)
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Taking ψ = 2ktn+1δ
n+1 in (53), using (14) and Schwarz inequality, we get

tn+1(δ
n+1‖20 − ‖δn‖20 + ‖δn+1 − δn‖20) + 2λ−1ktn+1‖A

1
2 δn+1‖20

= 2ktn+1(R
n
εT , δ

n+1)− 2ktn+1b̂(e
n+1, Tε(tn+1), δ

n+1)

≤ λ−1ktn+1‖A
1
2 δn+1‖20 + Ck2

∫ tn+1

tn

t‖Tεtt‖20dt

+ Cktn+1‖Tε(tn+1)‖22‖en+1‖20.(61)

We known that

tn+1(‖vn+1‖20 − ‖vn‖20) = tn+1‖vn+1‖20 − tn‖vn‖20 − k‖vn‖20.(62)

Taking the summation of (60), (61) for n from 0 to m, using (58), (62), Lemma 2.5
and Lemma 5.1, for all 0 ≤ m ≤ tM/k − 1, we derive

tm+1(‖em+1‖20 + ‖δm+1‖20) + k

m∑

n=0

tn+1(ν‖A
1
2
ε e

n+1‖20 + λ−1‖A 1
2 δn+1‖20) ≤ Ck2.

Taking v = 2kt2n+1Aεe
n+1 in (53), using (10), (11), (58), (59), Young inequality

and Lemma 2.1, we obtain

t2n+1{‖A
1
2
ε e

n+1‖20 − ‖A
1
2
ε e

n‖20 + ‖A
1
2
ε (e

n+1 − en)‖20}+ 2νkt2n+1‖Aεe
n+1‖20

= 2kt2n+1(R
n
εu, Aεe

n+1)− 2kt2n+1b̃(u
n+1, en+1, Aεe

n+1)

− 2kt2n+1b̃(e
n+1, uε(tn+1), Aεe

n+1) + 2kt2n+1λ(jδ
n+1, Aεe

n+1)

≤ νkt2n+1‖Aεe
n+1‖20 + Ck2

∫ tn+1

tn

t‖uεtt‖20dt+ Ckt2n+1‖δn+1‖20

+ Ckt2n+1(‖uε(tn+1)‖22 + 1)‖A
1
2
ε e

n+1‖20.(63)

Then, taking ψ = 2kt2n+1Aδ
n+1 in (53), using (13), (14), (59), Young inequality

and Lemma 2.1, we obtain

t2n+1{‖A
1
2 δn+1‖20 − ‖A 1

2 δn‖20 + ‖A 1
2 (δn+1 − δn)‖20}+ 2λ−1kt2n+1‖Aδn+1‖20

= 2kt2n+1{(Rn
εT , Aδ

n+1)− 2kt2n+1b̂(u
n+1, δn+1, Aδn+1)

− 2kt2n+1b̂(e
n+1, Tε(tn+1), Aδ

n+1)}

≤ λ−1kt2n+1‖Aδn+1‖20 + Ck2
∫ tn+1

tn

t‖Tεtt‖20dt

+ Ckt2n+1‖Tε(tn+1)‖22‖A
1
2
ε e

n+1‖20 + Ckt2n+1‖A
1
2 δn+1‖20.(64)

We known that

t2n+1(‖vn+1‖20 − ‖vn‖20) = t2n+1‖vn+1‖20 − t2n‖vn‖20 − (2ktn + k2)‖vn‖20.(65)

Taking the summation of (63), (64) for n from 0 to m, using (65), Lemma 2.5 and
Lemma 5.1, for all 0 ≤ m ≤ tM/k − 1, we derive

t2m+1(‖A
1
2
ε e

m+1‖20 + ‖A 1
2 δm+1‖20) + k

m∑

n=0

t2n+1(ν‖Aεe
n+1‖20 + λ−1‖Aδn+1‖20) ≤ Ck2.

Lemma 5.3. Under the assumptions of (A1) and (A2), then, for any 0 ≤ m ≤
tM/k, it is valid that

k

m∑

n=1

t2n‖pε(tn)− pn‖20 ≤ Ck2.
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Proof. Taking v = t2n+1(e
n+1 − en) in (53), using Lemma 2.1, (11) and Schwarz

inequality, we obtain

kt2n+1‖
en+1 − en

k
‖20 + νt2n+1{‖A

1
2
ε e

n+1‖20 − ‖A
1
2
ε e

n‖20 + ‖A
1
2
ε (e

n+1 − en)‖20}

= t2n+1(R
n
εu, e

n+1 − en)− t2n+1b̃(u
n+1, en+1, en+1 − en)

− t2n+1b̃(e
n+1, uε(tn+1), e

n+1 − en) + λt2n+1(jδ
n+1, en+1 − en)

≤ kt2n+1

2
‖e

n+1 − en

k
‖20 + Ck2

∫ tn+1

tn

t‖uεtt‖20dt+ Ckt2n+1‖A
1
2 δn+1‖20

+ Ckt2n+1‖∇un+1‖20‖Aεe
n+1‖20 + Ckt2n+1‖uε(tn+1)‖22‖A

1
2
ε e

n+1‖20.(66)

Taking the summation of (66) for n from 0 tom, using Lemma 2.5, (59) and Lemma
5.2, we derive

k

m∑

n=1

t2n+1‖
en+1 − en

k
‖20 ≤ Ck2, ∀m ≤ tM/k − 1.(67)

Then using the equation (53) and the available estimates for en and δn, we can
prove

k

m∑

n=1

t2n‖pε(tn)− pn‖20 ≤ Ck2, ∀m ≤ tM/k.

Finally, by combining Theorem 4.3 with Lemma 5.2, Lemma 5.3, we obtain the
following theorem.

Theorem 5.4. Under the assumptions of (A1) and (A2), ε sufficiently small,
then, for any 0 ≤ m ≤ tM/k, it is valid that

tm(‖u(tm)− um‖20 + ‖T (tm)− Tm‖20) + t2m(‖∇(u(tm)− um)‖20 + ‖∇(T (tm)− Tm)‖20)

+k
m∑

n=1

t2n‖p(tn)− pn‖20 ≤ C(k2 + ε2).

6. Conclusions

In this paper, we studied the penalty method for the two-dimensional unsteady
conduction-convection problem under some realistically assumptions. By using the
penalty method, we overcome the coupled problem and can efficiently sperate the
computation of the velocity from that of the pressure. Optimal error estimate of
the numerical velocity, pressure and temperature for the penalized system and the
backward Euler scheme are derived, we will extend the present analysis to a fully
discrete scheme by combining it with the finite element approximation results in
our future work.
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