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FINITE ELEMENT APPROXIMATIONS OF OPTIMAL

CONTROLS FOR THE HEAT EQUATION WITH

END-POINT STATE CONSTRAINTS

GENGSHENG WANG AND LIJUAN WANG

Abstract. This study presents a new finite element approximation for an optimal control problem
(P ) governed by the heat equation and with end-point state constraints. The state constraint set
S is assumed to have an empty interior in the state space. We begin with building a new penalty
functional where the penalty parameter is an algebraic combination of the mesh size and the time
step. Based on it, we establish a discrete optimal control problem (Phτ ) without state constraints.
With the help of Pontryagin’s maximum principle and by suitably choosing the above-mentioned
combination, we successfully derive error estimate between optimal controls of problems (P ) and
(Phτ ), in terms of the mesh size and time step.

Key words. Error estimate, optimal control problem, the heat equation, end-point state con-
straint, discrete.

1. Introduction

Let Ω be a bounded convex domain (with a smooth boundary ∂Ω) in R
d, d =

1, 2, 3. Let ω be an open subset of Ω and T be a positive number. We write Q
for the product set Ω × (0, T ) and χω for the characteristic function of the subset
ω. Let 〈·, ·〉 denote the inner product of the space L2(Ω). Consider the following
optimal control problem:

(P ) MinJ(y, u)

over all such pairs (y, u) ∈ L2(0, T ;H2(Ω)∩H1
0 (Ω))∩H

1(0, T ;L2(Ω))×L2(0, T ;L2(Ω))
that

(1.1)






∂ty −△y = χωu in Ω× (0, T ),
y = 0 on ∂Ω× (0, T ),
y(0) = y0 in Ω

and

y(T ) ∈ S.

Here, the initial data y0 is a given function in H1
0 (Ω) ∩H2(Ω), the cost functional

J is defined by

J(y, u) =
1

2

∫ T

0

∫

Ω

(y − yd)
2 dx dt+

1

2

∫ T

0

∫

Ω

u2 dx dt,

the reference function yd is taken from the spaceH1(0, T ;L2(Ω)), and the constraint
set S satisfies the following conditions:

(A1) S ⊂ H⊥
1 is a convex and closed subset with a nonempty interior in H⊥

1 .
Here, H⊥

1 denotes the orthogonal subspace of H1 in L2(Ω), while H1 is a subspace
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spanned by f1, f2, · · · , fn0
with fi, i = 1, 2, · · · , n0, being functions in the space

H1
0 (Ω) and n0 being a positive integer.
(A2) The boundary of S, denoted by ∂S, is a C1−manifold with one codimen-

sion in H⊥
1 . Furthermore, ∂S = {y ∈ H⊥

1 : F (y) = 0}, where F ∈ C1(H⊥
1 ) holds

the property that F ′(ξ) ∈ H1
0 (Ω) whenever ξ ∈ H1

0 (Ω) ∩H⊥
1 .

The purpose of this paper is to build a discrete approximating optimal control
problem (Phτ ) (where h and τ are the mesh size and time step, respectively), and
then present an error estimate between optimal controls for those two problems.
The main steps to reach the goals are as follows: We first set up a new penalty
functional, where the penalty parameter is a suitable algebraic combination of the
mesh size and the time step, then establish, with the aid of the penalty functional,
a discrete approximating optimal control problem (Phτ ) without state constraint,
and finally, derive, with the help of the Pontryagin’s maximum principle, an error
estimate of optimal controls for those two problems. The main result of the paper
can be approximately stated as: the order of the L2−error between optimal controls

of the problems (P ) and (Phτ ) is h
1
2 whenever τ ≈ O(h2).

In general, for parabolic equations, the study of optimal control problems with
state constraints is much more difficult than the study of those without state con-
straints. This can be seen from the following points of view: (1) It is harder to show
the existence of optimal controls for the problems with state constraints than those
without state constraints. It may happen that a problem without state constraints
has optimal controls while the same problem with a state constraint has no solution.
(2) Some optimal control problems without state constraints hold the Pontryagin
maximum principle, while the same problems with some state constraints do not
have the Pontryagin maximum principle (see [5]). Therefore, to guarantee the prob-
lem (P ) having optimal controls and holding the Pontryagin maximum principle, it
is necessary to impose some conditions on S. It will be proved that when S satisfies
the above-mentioned conditions (A1) and (A2), the problem (P ) has a unique op-
timal control and holds the Pontryagin maximum principle. These two conditions
are quite close to the finite codimensionality condition provided in [5].

The end-point state constraint is a very important kind of state constraints in
the field of optimal controls for parabolic equations. To our surprise, the stud-
ies on error estimates for numerical approximations to optimal control problems
for parabolic differential equations with end-point state constraint are very lim-
ited. Here we quote two related papers [11] and [12]. In [11], the authors studied
numerical approximations of optimal controls for linear parabolic equations. The
state constraint set in that paper was assumed to have interior points in the state
space. In [12], the authors studied such a problem where the constraint set is a
non-degenerate closed unit ball centered at the origin of the state space. An error
estimate was established in [12]. Moreover, that estimate is better than what we
have in this paper. However, the problem studied in the current paper properly
covers the case in [12]. This will be seen from the following example:

Write {ek}
∞
k=1 ⊂ H1

0 (Ω) for an orthonormal basis of L2(Ω). SetH⊥
1 = span{en0+1,

en0+2, · · · }, where n0 is a positive integer. Let S ≡ {y ∈ H⊥
1 : ‖y‖L2(Ω) ≤ 1}. It is

easy to check that S satisfies (A1). Moreover, if we define F : H⊥
1 → (−∞,+∞)

by F (y) = ‖y‖2
L2(Ω) − 1, ∀ y ∈ H⊥

1 , then ∂S = {y ∈ H⊥
1 : ‖y‖L2(Ω) = 1} = {y ∈

H⊥
1 : F (y) = 0} and F ′(y) = 2y, which imply that S satisfies (A2).
Obviously, the above-mentioned S is a degenerate closed unit ball centered at the

origin of the state space. Therefore, the framework of this paper properly covers
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the cases studied in [12]. Moreover, the above-mentioned example on the state
constraint fits in our setting but not in one of [11]. The essential difference between
S and the state constraint sets in [11] and [12] is that S can have no interior point
while the constraint sets in those papers have interior points. From both perspective
of infinite dimensional optimal control theory and numerical approximations for
optimal controls, the case where the state constraint set has no interior points is
much more complicated than the case that the state constraint set has an interior
point.

Because of the constraint set S, the discrete problem cannot be constructed
by directly projecting the problem (P ) via the classical space-time discretization
scheme (The authors of [11] and [12] did in this way). The reason is that if we did
it in such a way, then the constraint set S would be projected into the set S ∩ Vh,
where Vh is a finite element space with the mesh size h. Thus, we cannot guarantee
the existence of admissible controls for this discrete problem (and it is very hard to
prove otherwise). As a result, we are not able to guarantee the existence of solutions
for the above-mentioned discrete problem. To overcome this difficulty, we create a
penalty functional where the penalized parameter is chosen to be the combination
2(h+ τ

1
2 ) of the mesh size h and the time step τ . This penalty functional leads us

to a right way to set up our discrete problem (Phτ ), which is an optimal control
problem without state constraints. Furthermore, the problem (Phτ ) has a unique
optimal control.

When we apply Pontryagin’s maximum principle to study error estimates be-
tween optimal controls to the problems (Phτ ) and (P ), another barrier appears.
Namely, the multipliers, which are the initial data of the adjoint state equations
in Pontryagin’s maximum principle of problems (P ) and (Phτ ), respectively, lack
quantitative information. Therefore, one cannot expect to estimate the difference
between optimal controls for problems (P ) and (Phτ ) by directly estimating the
errors between solutions for the state equations or adjoint state equations. Fortu-
nately, in the paper [12], the authors observed that this barrier can be passed if the
multipliers belong to the space H1

0 (Ω). Because of the specific construction of our
discrete problem (Phτ ), the multiplier for the problem (Phτ ) stays in this space.
Thus, we only need to have the H1

0 (Ω)−regularity for the multiplier, denoted by
−µ∗, corresponding to the problem (P ). In general, this is not the case. How-
ever, we can prove that it is true whenever the set S holds the above-mentioned
properties (A1) and (A2).

Next, we would like to explain that the assumption (A1) and the assumption
(A2) on the constraint set S are fairly reasonable from the perspectives of Pontrya-
gin’s maximum principle and the numerical approximation to the problem (P ). On
one hand, because of the difference between finite and infinite dimensional spaces,
for optimal control problems of the infinite dimensional spaces and with end-point
state constraint, Pontryagin’s maximum principle doesn’t necessarily hold for only
closed and convex constraint set ([5]). It is known ([5]) that if the constraint set
S is finite codimensional when it is convex and closed in the state space, Pontrya-
gin’s maximum principle holds for problem (P ). The most important characteristic
of the sets of finite codimension in L2(Ω) can be roughly stated as: if S is a set
of finite codimension in L2(Ω), then it may have an empty interior in L2(Ω), but
inevitably have a non-empty interior in a finite codimensional subspace of L2(Ω).
There are indeed other conditions on the constraint set S, under which, Pontrya-
gin’s maximum principle of the corresponding optimal control problem holds ([2]).
However, in our specific case, these conditions are related to the attainable set of
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the internally controlled heat equation. And we have quite limited knowledge about
this sophisticated attainable set. Hence, if we only assume that the constraint set
S satisfies the above-mentioned conditions, then it would be very hard to study
the numerical approximation to the corresponding optimal control problems by ap-
plying Pontryagin’s maximum principle. Thus, it appears that in order to apply
Pontryagin’s maximum principle to get our error estimates, we should assume that
the constraint set is of finite codimension when it is a convex and closed subset.
On the other hand, the following argument may not be correct: if the constraint
set S is of finite codimension in L2(Ω) when it is convex and closed, then the
above-mentioned multiplier −µ∗ is in the space H1

0 (Ω) (and it is very hard to prove
otherwise). From this point of view, it is quite reasonable to study such constraint
sets that have realistically stronger properties than the finite codimension. Clearly,
when the set S satisfies the property (A1) and the property (A2), it is a set of finite
codimension in L2(Ω). Moreover, we can prove that the corresponding multiplier
−µ∗ has H1

0 (Ω)-regularity (Proposition 2.5) . To conclude, the assumption (A1)
and the assumption (A2) are rational assumptions for our study.

The rest of this paper is organized as the following: In section 2, we first prove
that the problem (P ) has a unique optimal control. Then we state the Pontryagin’s
maximum principle for the problem (P ). Finally, we show the regularity of the
above-mentioned multiplier −µ∗. In section 3, we introduce some notations and
existing results that will be used in the rest of the paper. In section 4, we first set
up a discrete problem (Phτ ) for the problem (P ), and then show that the problem
(Phτ ) has a unique solution. Finally, we establish Pontryagin’s maximum principle
for the problem (Phτ ). Section 5 presents the main result of this paper, namely, an
error estimate between optimal controls to the problems (P ) and (Phτ ).

2. Some properties of the optimal control for the problem (P )

First of all, we derive the existence and uniqueness of the optimal control for the
problem (P ). The proof is based on the following existing result.

Lemma 2.1. ([9]) Let E be a subspace of L2(Ω) of finite dimension and ΠE be
the orthogonal projection over E. Given z0 and z1 in L2(Ω) and ε > 0, then there
exists a control f ∈ L2(0, T ;L2(Ω)) such that the solution of






∂tz −△z = χωf in Ω× (0, T ),
z = 0 on ∂Ω× (0, T ),
z(0) = z0(x) in Ω

satisfies simultaneously ΠE(z(T )) = ΠE(z1) and ‖z(T )− z1‖L2(Ω) ≤ ε.

Theorem 2.2. If the constraint set S has the finite codimension in L2(Ω) when it
is closed and convex, then the problem (P ) has a unique optimal control.

Proof. Let Uad , {u ∈ L2(0, T ;L2(Ω)) : y(u)(T ) ∈ S}, where y(u)(·) denotes
the solution of the equation (1.1) corresponding to the control u. Each u in Uad

is called an admissible control for the problem (P ). Two observations are given in
order. First, if we can show that Uad 6= ∅, namely, the problem (P ) has admissible
controls, then the existence of optimal controls for the problem (P ) follows from

a standard argument. Second, since the functional J̃ : Uad → R+, defined by

J̃(u) = J(y(u), u), is strictly convex, the optimal control for the problem (P ), if
exists, is unique. Hence, it suffices to show the existence of admissible controls for
the problem (P ). We argue it as follows.
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According to the definition of the finite codimension (see page 134 in [5]), there
exists an element s0 in the set S such that the space

span{S−s0} , the closed subspace spanned by {s−s0 : s ∈ S}

is finite codimensional in L2(Ω) and the set {S−s0} has a nonempty interior
in this subspace. Hence, on one hand, there exist linearly independent vectors
z̃1, z̃2, · · · , z̃m0

in L2(Ω) such that

(2.1) span{S−s0} ⊕ span{z̃1, · · · , z̃m0
} = L2(Ω),

while on the other hand, the space L2(Ω) contains a closed ball B(s∗−s0, ε0),
centered at (s∗−s0) with s∗ ∈ S and of radius ε0 > 0, such that

(2.2) B(s∗−s0, ε0) ∩ span{S−s0} ⊂ S−s0.

Now we write

(2.3) z̃i = z̃i1 + z̃i2, i = 1, 2, · · · ,m0,

where z̃i1 ∈ span{S−s0} and z̃i2 ∈ (span{S−s0})⊥, i = 1, 2, · · · ,m0. It follows
from (2.1) and (2.3) that

span{S−s0} ⊕ span{z̃12, · · · , z̃m0,2} = L2(Ω)

and

(span{S−s0})
⊥ = span{z̃12, · · · , z̃m0,2}.

An application of Lemma 2.1 to the case, where E = (span{S−s0})⊥, z0 = y0
and z1 = s∗, gives the existence of such a control u ∈ L2(0, T ;L2(Ω)) that the
corresponding solution y(u)(·) to the equation (1.1) holds the following properties:

ΠE(y(u)(T )) = ΠE(s
∗) and ‖y(u)(T )− s∗‖L2(Ω) ≤

ε0
2
.

These imply that

ΠE(y(u)(T )− s0) = ΠE(s
∗−s0) = 0 and ‖(y(u)(T )−s0)− (s∗−s0)‖L2(Ω) ≤

ε0
2
.

Therefore, we find that

y(u)(T )−s0 ∈ span{S−s0} and y(u)(T )− s0 ∈ B(s∗−s0, ε0),

which, together with (2.2), yield that y(u)(T ) ∈ S. This completes the proof. �

Next, we state the Pontryagin’s maximum principle for the problem (P ) which
is indeed a necessary and sufficient condition for the optimal control in this case,
and will be frequently used in the rest of the paper. It can be proved by standard
methods. For the sake of completeness, we will give its proof in Appendix of this
paper.

Theorem 2.3. Let S ⊂ L2(Ω) be a closed and convex subset of finite codimension.
Then u∗ and y(u∗) are the optimal control and the corresponding optimal state
for the problem (P ), respectively, if and only if there exist a function µ∗ in L2(Ω)
and a function p∗ in H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1

0 (Ω)) such that the following
properties hold:

(2.4) y(u∗)(T ) ∈ S, 〈µ∗, s− y(u∗)(T )〉 ≤ 0, ∀ s ∈ S,

(2.5)





∂ty(u
∗)−△y(u∗) = χωu

∗ in Ω× (0, T ),
y(u∗) = 0 on ∂Ω× (0, T ),
y(u∗)(0) = y0(x) in Ω,
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(2.6)






∂tp
∗ +△p∗ = y(u∗)− yd in Ω× (0, T ),

p∗ = 0 on ∂Ω× (0, T ),
p∗(T ) = −µ∗ in Ω

and

(2.7) u∗ = χωp
∗ in Ω× (0, T ).

Remark 2.4. When a constraint set S satisfies the conditions (A1) and (A2), it
has nonempty interior in H⊥

1 , by Definition 1.5 of Chapter 4 in [5], one can check
that S is of finite codimension in L2(Ω). Furthermore, it is a convex and closed
subset. Hence, Theorem 2.2 and Theorem 2.3 hold for the optimal control problem
(P ) with such constraint sets that have the properties (A1) and (A2).

Now, we are going to study the regularities of the multiplier −µ∗, the adjoint
state p∗ and the optimal control u∗ in Theorem 2.3, which are very important in
the investigation of our error estimate.

Proposition 2.5. Let S satisfy the properties (A1) and (A2). Then, it holds that
µ∗∈H1

0 (Ω), p
∗∈L2(0, T ;H1

0 (Ω)∩H
2(Ω))∩H1(0, T ;L2(Ω)) and u∗∈ H1(0, T ;L2(Ω))∩

L2(0, T ;H2(ω)).

Proof. Since the desired regularities for p∗ and u∗ are direct consequences of the
H1

0 (Ω)−regularity of µ∗, together with (2.6) and (2.7), respectively, it suffices to
prove that µ∗∈H1

0 (Ω).
For this purpose, we write

(2.8) µ∗ = µ∗
1 + µ∗

2, where µ∗
1 ∈ H1 ⊂ H1

0 (Ω) and µ∗
2 ∈ H⊥

1 .

By (A1) and (2.4), we get

(2.9) 〈µ∗
2, s− y(u∗)(T )〉 ≤ 0, ∀ s ∈ S.

Since y(u∗)(T ) ∈ S, there are only two alternatives: either y(u∗)(T ) ∈ intS or
y(u∗)(T ) ∈ ∂S. In the first case, it follows at once from (A2) and (2.9) that µ∗

2 = 0,
which, together with (2.8), gives

(2.10) µ∗ = µ∗
1 ∈ H1

0 (Ω).

In the second case, we first assert that

(2.11) µ∗
2⊥Ty(u∗)(T )∂S and F ′(y(u∗)(T ))⊥Ty(u∗)(T )∂S.

Here Ty(u∗)(T )∂S denotes the tangent space of the manifold ∂S at the point y(u∗)(T ).

The argument is as follows: Given a vector v ∈ Ty(u∗)(T )∂S, we can find a C1−para
metrized curve on the manifold ∂S given by α(t) : [−1, 1] → ∂S, such that

(2.12) α(0) = y(u∗)(T ) and α′(0) = v.

On one hand, by (2.9) and (2.12), we get

〈µ∗
2, α(t) − α(0)〉 ≤ 0, ∀ t ∈ [−1, 1],

which implies that

(2.13) 〈µ∗
2, t

−1(α(t)− α(0))〉 ≤ 0, ∀ t ∈ (0, 1]

and

(2.14) 〈µ∗
2, t

−1(α(t) − α(0))〉 ≥ 0, ∀ t ∈ [−1, 0).

Passing to the limits for t → 0+ in (2.13) and for t → 0− in (2.14), respectively, we
derive that

〈µ∗
2, α

′(0)〉 = 0.
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This, together with (2.12), shows that 〈µ∗
2, v〉 = 0, for all v in the tangent space

Ty(u∗)(T )∂S. Hence, the first property in (2.11) holds. On the other hand, it follows
from (A2) that

F (α(t)) ≡ 0, ∀ t ∈ [−1, 1],

which leads to

〈F ′(α(0)), α′(0)〉 = 0.

This, combined with (2.12), yields that 〈F ′(y(u∗)(T )), v〉 = 0 for all v in Ty(u∗)(T )∂S,
and the second property in (2.11) follows. Thus, we have proved the above-
mentioned assertion. Next, we deduce from (2.11) and (A2) that µ∗

2 = kF ′(y(u∗)(T )),
for some constant k, which, together with (A2), gives µ∗

2 ∈ H1
0 (Ω). Then, we in-

fer from (2.8) that µ∗ ∈ H1
0 (Ω) in the second case, and conclude that µ∗ has the

H1
0 (Ω)−regularity. This completes the proof. �

3. Some notations, hypotheses and existing results on (Phτ )

We begin with introducing some notations and certain existing results on finite
element spaces, which will be used later. Associated with a positive parameter h,
we consider a family Th of triangulations in Ω. Let Ωh = ∪T ∈Th

T be the polygonal
approximation of Ω. Write Ωh and ∂Ωh for the interior and boundary of the set
Ωh, respectively. The vertices of Th, which are on the boundary ∂Ωh, belong to
∂Ω. Corresponding to each element T ∈ Th, we denote by ρ(T ) and σ(T ) the
diameters of the set T and of the biggest ball included in T , respectively. Let
h = maxT ∈Th

ρ(T ). In the rest of this paper, the following hypotheses are effective:

(i) There exist two positive constants ρ and σ independent of h, such that

ρ(T )

σ(T )
≤ σ and

h

ρ(T )
≤ ρ, for each element T ∈ Th.

(ii) The subset ω is a polygon. Moreover, for any triangulation Th, there exists

a subset T̃h ⊂ Th such that ω = ∪T ∈T̃h
T .

We shall set up the discrete state space and control space to our problem in
different manners. With regard to the state space, we define, corresponding to each
triangulation Th, the following discrete space:

Vh = {ϕh ∈ C(Ω); ϕh|T ∈ P1(T ), for every T ∈ Th, and ϕh|Ω\Ωh
= 0},

where P1(T ) is the space of all polynomials, defined on T and with the degree less
than or equal to 1 on T . It is obvious that Vh ⊂ H1

0 (Ω). Regarding the control
space, we set

Uh = {v ∈ L2(Ω) : v|T is a constant function for each T ∈ Th, v|Ω\Ωh
= 0}.

Let Qh be the L2−projection from L2(Ω) to Vh defined by

(3.1) 〈Qhϕ, ϕh〉 = 〈ϕ, ϕh〉, ∀ ϕ ∈ L2(Ω), ϕh ∈ Vh.

The following well-known inequalities ([1] and [10]) will be frequently used in the
rest of the paper:

(3.2) ‖ϕh‖H1
0
(Ω) ≤ Ch−1‖ϕh‖L2(Ω), ∀ ϕh ∈ Vh,

(3.3) ‖Qhϕ‖L2(Ω) ≤ ‖ϕ‖L2(Ω), ∀ ϕ ∈ L2(Ω),
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and

‖ϕ−Qhϕ‖L2(Ω) + h‖ϕ−Qhϕ‖H1
0
(Ω)(3.4)

≤ Chm+1‖ϕ‖Hm+1(Ω), ∀ ϕ ∈ Hm+1(Ω) ∩H1
0 (Ω),

for m = 0, 1. Here and throughout this section, C stands for several positive
constants independent of h (and also τ), which may be different in different contexts.

Define a L2−projection operator Π̃h from L2(Ω) to Uh by

(3.5) 〈Π̃hv, vh〉 = 〈v, vh〉, ∀ v ∈ L2(Ω), vh ∈ Uh.

Clearly, it follows that

(3.6) Π̃hv|T =
1

|T |

∫

T

v dx, ∀ v ∈ L2(Ω), ∀ T ∈ Th

and

(3.7) ‖Π̃hv‖L2(Ω) ≤ ‖v‖L2(Ω), ∀ v ∈ L2(Ω).

Moreover, we have (see page 164 in [3]),

(3.8) ‖Π̃hv − v‖L2(T ) ≤ Cρ(T )‖v‖H1(T ) ≤ Ch‖v‖H1(T ), ∀ v ∈ H1(T ), ∀ T ∈ Th.

Next, we turn to the time discretization. We divide the time interval (0, T ) into
N equally-spaced subintervals by the nodal points:

0 = t0 < t1 < · · · < tN = T.

Here ti = iτ with i = 0, 1, · · · , N , and τ = T
N
. For a sequence of functions {Zi}Ni=0

given in the space L2(Ω), we denote by ∂τZ
i the difference quotient Zi−Zi−1

τ
, where

i = 1, 2, · · · , N .
Now, we consider the semi-discrete equation

(3.9)

{
〈∂tzh, ϕh〉+ 〈∇zh,∇ϕh〉 = 〈v, ϕh〉, ∀ ϕh ∈ Vh, t ∈ (0, T ),
zh(0) = z0h in Ω

and the fully discrete equation

(3.10)

{
〈∂τZi

h, ϕh〉+ 〈∇Zi
h,∇ϕh〉 = 〈U i, ϕh〉, ∀ ϕh ∈ Vh, 1 ≤ i ≤ N,

Z0
h = z0h in Ω,

respectively. The following results are quoted from [12] and will be used later.

Lemma 3.1. Let z0h ∈ Vh and v ∈ L2(Q). Then the equation (3.9) has a unique
solution zh in the space H1(0, T ;Vh) with the following estimate:

‖zh‖
2
C([0,T ];H1

0
(Ω)) + ‖∂tzh‖

2
L2(Q) ≤ C(‖z0h‖

2
H1

0
(Ω) + ‖v‖2L2(Q)).

Lemma 3.2. Let z0h ∈ Vh and (U1, U2, · · · , UN ) ∈ (L2(Ω))N . Then the equation
(3.10) has a unique solution Zhτ = (Z1

h, Z
2
h, · · · , Z

N
h ) ∈ (Vh)

N . Moreover, the
following estimate holds:

max
1≤i≤N

‖Zi
h‖

2
H1

0
(Ω) + τ

N∑

i=1

‖∂τZ
i
h‖

2
L2(Ω) ≤ C

(
‖z0h‖

2
H1

0
(Ω) + τ

N∑

i=1

‖U i‖2L2(Ω)

)
.

Lemma 3.3. Let z0 ∈ H1
0 (Ω) and v ∈ L2(Q). Write z and zh ∈ H1(0, T ;Vh) for

the solutions to the equation
{

〈∂tz(t), ϕ〉+ 〈∇z(t),∇ϕ〉 = 〈v, ϕ〉, ∀ ϕ ∈ H1
0 (Ω), t ∈ (0, T ),

z(0) = z0(x) in Ω
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and the equation
{

〈∂tzh(t), ϕh〉+ 〈∇zh(t),∇ϕh〉 = 〈v, ϕh〉, ∀ ϕh ∈ Vh, t ∈ (0, T ),
zh(0) = Qhz0(x) in Ω,

respectively. Then it holds that

‖z − zh‖L2(Q) + h(‖z − zh‖C([0,T ];L2(Ω)) + ‖z − zh‖L2(0,T ;H1
0
(Ω)))

≤ Ch2(‖z0‖H1
0
(Ω) + ‖v‖L2(Q)).

Lemma 3.4. Let v ∈ H1(0, T ;L2(Ω)), (U1, U2, · · · , UN ) ∈ (L2(Ω))N and z0 ∈
H1

0 (Ω)∩H2(Ω). Write zh ∈ H1(0, T ;Vh) and Zhτ = (Z1
h, Z

2
h, · · · , Z

N
h ) ∈ (Vh)

N for
the solutions to equations:
{

〈∂tzh(t), ϕh〉+ 〈∇zh(t),∇ϕh〉 = 〈χωv, ϕh〉, ∀ ϕh ∈ Vh, t ∈ (0, T ),
zh(0) = Qhz0(x) in Ω

and {
〈∂τZi

h, ϕh〉+ 〈∇Zi
h,∇ϕh〉 = 〈χωU

i, ϕh〉, ∀ ϕh ∈ Vh, 1 ≤ i ≤ N,
Z0
h = Qhz0 in Ω,

respectively. Then it holds that

max
1≤i≤N

‖zh(ti)− Zi
h‖

2
L2(Ω) + τ

N∑

i=1

‖zh(ti)− Zi
h‖

2
H1

0
(Ω)

≤ C
(
τ

N∑

i=1

∥∥∥
1

τ

∫ ti

ti−1

v dt− U i
∥∥∥
2

L2(Ω)
+ τ2(‖v‖2H1(0,T ;L2(Ω)) + ‖z0‖

2
H2(Ω))

)

and

max
t∈[0,T ]

‖∂tzh‖
2
L2(Ω) +

∫ T

0

‖∂tzh‖
2
H1

0
(Ω) dt ≤ C(‖v‖2H1(0,T ;L2(Ω)) + ‖z0‖

2
H2(Ω)).

4. Approximating scheme for the problem (P )

We start with building a discrete problem according to the problem (P ). Write
dS(·) for the distance function from · to S in L2(Ω). We define a penalty functional
Jhτ from (Vh)

N×(Uh)
N to R+ by setting

Jhτ (Yhτ , Uhτ )(4.1)

=
[dS(Y

N
h ) + h+ τ

1
2 ]2

2(h+ τ
1
2 )

+
τ

2

N∑

i=1

(‖Y i
h − yd(ti)‖

2
L2(Ω) + ‖U i

h‖
2
L2(Ω)),

where Yhτ=(Y 1
h , Y

2
h , · · · , Y

N
h ) ∈ (Vh)

N , Uhτ=(U1
h , U

2
h, · · · , U

N
h ) ∈ (Uh)

N . The first
right hand term in (4.1) is responsible for the elimination of the end-point state

constraint, while the combination 2(h + τ
1
2 ) of the mesh size and the time step

plays the role of the penalized parameter. Consider the following discrete problem:

(Phτ ) MinJhτ (Yhτ , Uhτ ),

over all such pairs (Yhτ , Uhτ ) ∈ (Vh)
N × (Uh)

N that

(4.2)

{
〈∂τY

i
h , ϕh〉+ 〈∇Y i

h ,∇ϕh〉 = 〈χωU
i
h, ϕh〉, ∀ ϕh ∈ Vh, i = 1, 2, · · · , N,

Y 0
h = Qhy0(x) in Ω.

When (Y ∗
hτ , U

∗
hτ ) solves the problem (Phτ ) , it will be called an optimal pair, while

U∗
hτ and Y ∗

hτ are called an optimal control and an optimal state, respectively.

With regard to the problem (Phτ ), the existence and uniqueness of the optimal
control and the Pontryagin maximum principle are given in order.
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Lemma 4.1. The problem (Phτ ) has a unique optimal control.
Proof. Let

d∗ = infJhτ (Yhτ , Uhτ ),

where the infimum is taken over all pairs (Yhτ , Uhτ), with Yhτ = (Y 1
h , Y

2
h , · · · , Y

N
h ) ∈

(Vh)
N and Uhτ = (U1

h , U
2
h , · · · , U

N
h ) ∈ (Uh)

N , satisfying the equation (4.2). It is
obvious that d∗ ≥ 0. Hence, there exists a sequence {(Yhτ,m, Uhτ,m)}∞m=1, with
Yhτ,m = (Y 1

h,m, Y 2
h,m, · · · , Y N

h,m) and Uhτ,m = (U1
h,m, U2

h,m, · · · , UN
h,m), such that

d∗ ≤
[dS(Y

N
h,m) + h+ τ

1
2 ]2

2(h+ τ
1
2 )

(4.3)

+
τ

2

N∑

i=1

(‖Y i
h,m − yd(ti)‖

2
L2(Ω) + ‖U i

h,m‖2L2(Ω)) ≤ d∗ +
1

m

and

(4.4)

{
〈∂τY i

h,m, ϕh〉+ 〈∇Y i
h,m,∇ϕh〉 = 〈χωU

i
h,m, ϕh〉, ∀ ϕh ∈ Vh, 1 ≤ i ≤ N,

Y 0
h,m = Qhy0(x) in Ω.

According to Lemma 3.2, and by (4.4), (3.4) and (4.3), we have the estimate:

(4.5) max
1≤i≤N

‖Y i
h,m‖2H1

0
(Ω) ≤ C

(
‖y0‖

2
H1

0
(Ω) + τ

N∑

i=1

‖U i
h,m‖2L2(Ω)

)
≤ C.

Here, C stands for two different positive constants independent of m. Then by (4.3)
and (4.5), we can take a subsequence of {m}∞m=1, still denoted in the same way,
such that when m → ∞,

U i
h,m → U∗i

h weakly in L2(Ω), Y i
h,m → Y ∗i

h weakly in H1
0 (Ω) and strongly in L2(Ω),

where i = 1, 2, · · · , N. Furthermore, one can easily check that for all i = 1, 2, · · · , N ,
U∗i
h ∈ Uh and Y ∗i

h ∈ Vh. Therefore, by passing to the limit for m → ∞ in (4.3) and
(4.4), respectively, we derive that

(4.6)
[dS(Y

∗N
h ) + h+ τ

1
2 ]2

2(h+ τ
1
2 )

+
τ

2

N∑

i=1

(‖Y ∗i
h − yd(ti)‖

2
L2(Ω) + ‖U∗i

h ‖2L2(Ω)) ≤ d∗

and

(4.7)

{
〈∂τY ∗i

h , ϕh〉+ 〈∇Y ∗i
h ,∇ϕh〉 = 〈χωU

∗i
h , ϕh〉, ∀ ϕh ∈ Vh, 1 ≤ i ≤ N,

Y ∗0
h = Qhy0(x) in Ω.

Now, we write Y ∗
hτ = (Y ∗1

h , · · · , Y ∗N
h ) and U∗

hτ = (U∗1
h , · · · , U∗N

h ). Then, according
to Lemma 3.2, it follows at once from (4.6) and (4.7) that (Y ∗

hτ , U
∗
hτ ) is an optimal

pair to the problem (Phτ ).
Next, we shall prove the uniqueness of the optimal control to the problem (Phτ ).

For this purpose, we define a functional J̃hτ : (Uh)
N → R+ by setting J̃hτ (Uhτ ) =

Jhτ (Yhτ , Uhτ ), where Yhτ ∈ (Vh)
N is the unique solution of (4.2) corresponding to

Uhτ . One can easily check that the functional J̃hτ is strictly convex. Therefore, the
above-mentioned uniqueness follows immediately. This completes the proof. �

Theorem 4.2. Let (Y ∗
hτ , U

∗
hτ) ∈ (Vh)

N × (Uh)
N be the optimal pair for the problem

(Phτ ), where Y ∗
hτ = (Y ∗1

h , Y ∗2
h , · · · , Y ∗N

h ) and U∗
hτ = (U∗1

h , U∗2
h , · · · , U∗N

h ). Then
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there exist a positive constant λhτ , functions p∗hτ = (p∗0h , p∗1h , · · · , p∗N−1
h ) ∈ (Vh)

N

and ahτ ∈ L2(Ω) satisfying:
{

〈∂τY ∗i
h , ϕh〉+ 〈∇Y ∗i

h ,∇ϕh〉 = 〈χωU
∗i
h , ϕh〉, ∀ ϕh ∈ Vh, 1 ≤ i ≤ N,

Y ∗0
h = Qhy0(x) in Ω,

(4.8)





〈∂τp∗ih , ϕh〉 − 〈∇p∗i−1

h ,∇ϕh〉 = 〈Y ∗i
h − yd(ti), ϕh〉, ∀ ϕh ∈ Vh, 1 ≤ i ≤ N,

p∗Nh = −µ∗
hτ , −

Qhahτ
λhτ

in Ω,
(4.9)

U∗i
h = Π̃hχωp

∗i−1
h , 1 ≤ i ≤ N,(4.10)

ahτ ∈ ∂dS(Y
∗N
h ),(4.11)

‖ahτ‖L2(Ω) =

{
1 if Y ∗N

h 6∈ S,
0 if Y ∗N

h ∈ S,
(4.12)

and

(4.13) λhτ =
h+ τ

1
2

h+ τ
1
2 + dS(Y ∗N

h )
.

Proof. Corresponding to each vhτ = (v1h, v
2
h, · · · , v

N
h ) ∈ (Uh)

N and λ > 0, we let
Yhτ,λ ≡ (Y 1

h,λ, Y
2
h,λ, · · · , Y

N
h,λ) be the solution to the following equation:

(4.14)






〈∂τY i
h,λ, ϕh〉+ 〈∇Y i

h,λ,∇ϕh〉 = 〈χω(U
∗i
h + λvih), ϕh〉, ∀ ϕh ∈ Vh,

1 ≤ i ≤ N,
Y 0
h,λ = Qhy0(x) in Ω.

Then, we write

(4.15) zih =
Y i
h,λ − Y ∗i

h

λ
, 0 ≤ i ≤ N.

Noticing that the optimal pair (Y ∗
hτ , U

∗
hτ ) solves the equation (4.8), we infer from

(4.14) that

(4.16)

{
〈∂τzih, ϕh〉+ 〈∇zih,∇ϕh〉 = 〈χωv

i
h, ϕh〉, ∀ ϕh ∈ Vh, 1 ≤ i ≤ N,

z0h = 0 in Ω.

Let Uhτ,λ = (U∗1
h + λv1h, U

∗2
h + λv2h, · · · , U

∗N
h + λvNh ). Since the pair (Y ∗

hτ , U
∗
hτ )

is optimal to the problem (Phτ ), we find that

Jhτ (Yhτ,λ, Uhτ,λ)− Jhτ (Y
∗
hτ , U

∗
hτ )

λ
≥ 0.

By (4.1) and (4.15), we can pass to the limit for λ → 0+ in the above inequality to
get

(4.17)
dS(Y

∗N
h ) + h+ τ

1
2

h+ τ
1
2

〈ahτ , z
N
h 〉+ τ

N∑

i=1

[〈Y ∗i
h − yd(ti), z

i
h〉+ 〈U∗i

h , vih〉] ≥ 0,

where

(4.18) ahτ ∈ ∂dS(Y
∗N
h ) and ‖ahτ‖L2(Ω) =

{
1 if Y ∗N

h 6∈ S,
0 if Y ∗N

h ∈ S.

Let λhτ be the number given by (4.13). Then it follows from (4.17) that

(4.19) 〈ahτ , z
N
h 〉+ λhτ · τ

N∑

i=1

[〈Y ∗i
h − yd(ti), z

i
h〉+ 〈U∗i

h , vih〉] ≥ 0.
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Write (p0h, · · · , p
N−1
h ) ∈ (Vh)

N for the solution to the following equation:

(4.20)






〈∂τpih, ϕh〉 − 〈∇pi−1
h ,∇ϕh〉 = 〈−λhτ (Y

∗i
h − yd(ti)), ϕh〉, ∀ ϕh ∈ Vh,

1 ≤ i ≤ N,
pNh = Qhahτ in Ω.

By taking ϕh = pi−1
h in (4.16), we obtain that

〈zih, p
i−1
h 〉 − 〈zi−1

h , pi−1
h 〉+ τ〈∇zih,∇pi−1

h 〉 = τ〈χωv
i
h, p

i−1
h 〉, 1 ≤ i ≤ N.

Summing the above equalities over i = 1, 2, · · · , N , after some calculations, we
conclude that

(4.21) 〈zNh , pN−1
h 〉 − τ

N−1∑

i=1

〈zih, ∂τp
i
h〉+ τ

N∑

i=1

〈∇zih,∇pi−1
h 〉 = τ

N∑

i=1

〈χωv
i
h, p

i−1
h 〉.

Taking ϕh = zih in (4.20) and then summing them over i = 1, 2, · · · , N , after some
calculations, we derive that

τ

N∑

i=1

〈∂τp
i
h, z

i
h〉 − τ

N∑

i=1

〈∇pi−1
h ,∇zih〉 = −τ

N∑

i=1

λhτ 〈Y
∗i
h − yd(ti), z

i
h〉,

which, together with (4.21) and the second equation in (4.20), gives

〈zNh , Qhahτ 〉 = τ

N∑

i=1

〈χωv
i
h, p

i−1
h 〉 − τ

N∑

i=1

λhτ 〈Y
∗i
h − yd(ti), z

i
h〉.

This, combined with (3.1), leads to the equality:

(4.22) 〈zNh , ahτ 〉 = τ

N∑

i=1

〈χωp
i−1
h , vih〉 − τ

N∑

i=1

λhτ 〈Y
∗i
h − yd(ti), z

i
h〉.

Now, we derive from (4.19) and (4.22) that

(4.23)
N∑

i=1

〈χωp
i−1
h + λhτU

∗i
h , vih〉 = 0, ∀ vhτ = (v1h, v

2
h, · · · , v

N
h ) ∈ (Uh)

N .

Next, we let p∗ih denote −pih/λhτ , for i = 0, 1, 2, · · · , N . Then, the equation (4.9)
follows at once from (4.20). Moreover, by (4.23), we deduce that

(4.24)

N∑

i=1

〈χωp
∗i−1
h − U∗i

h , vih〉 = 0, ∀ vhτ = (v1h, v
2
h, · · · , v

N
h ) ∈ (Uh)

N .

The remainder is to prove (4.10). For this purpose, we arbitrarily fix an element
T in Th. By taking vhτ = (0, · · · , 0, vih, 0, · · · , 0) with vih = χT , i = 1, 2, · · · , N , in
(4.24), we get

0 =

∫

T

(χωp
∗i−1
h − U∗i

h ) dx =

∫

T

χωp
∗i−1
h dx− |T | · U∗i

h |T .

Hence, it holds that

U∗i
h |T =

1

|T |

∫

T

χωp
∗i−1
h dx,

which gives (4.10). This completes the proof. �
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5. An error estimate between the solutions of (P ) and (Phτ )

In this section, we shall give an error estimate between the optimal controls to
problems (P ) and (Phτ ). In what follows, C stands for several positive constants
independent of h and τ , which may be different in different contexts.

Lemma 5.1. Let (Y ∗
hτ , U

∗
hτ ) be the optimal pair for the problem (Phτ ), where Y

∗
hτ =

(Y ∗1
h , · · · , Y ∗N

h ) and U∗
hτ = (U∗1

h , · · · , U∗N
h ). Then, the following estimates hold for

sufficiently small h and τ :

(5.1) dS(Y
∗N
h ) ≤ C(h+ τ

1
2 )

1
2 ,

(5.2) τ
N∑

i=1

(‖Y ∗i
h − yd(ti)‖

2
L2(Ω) + ‖U∗i

h ‖2L2(Ω)) ≤ C

and

(5.3) max
1≤i≤N

‖Y ∗i
h ‖2H1

0
(Ω) + τ

N∑

i=1

‖∂τY
∗i
h ‖2L2(Ω) ≤ C,

here and throughout proof of this lemma, C denotes several positive constants de-
pendent on y0, u

∗ and yd.

Proof. Write u∗i
h = Π̃h(

1
τ

∫ ti

ti−1
u∗ dt) ∈ Uh, i = 1, 2, · · · , N , where Π̃h is the opera-

tor defined by (3.5). For each i = 1, 2, · · · , N , we let y∗ih ∈ Vh denote the solution
of the discrete equation:

(5.4)

{
〈∂τy∗ih , ϕh〉+ 〈∇y∗ih ,∇ϕh〉 = 〈χωu

∗i
h , ϕh〉, ∀ ϕh ∈ Vh,

y∗0h = Qhy0(x) in Ω.

Then, by the optimality of the pair (Y ∗
hτ , U

∗
hτ ) for the problem (Phτ ), we find that

Jhτ (Y
∗
hτ , U

∗
hτ )(5.5)

=
1

2(h+ τ
1
2 )

[dS(Y
∗N
h ) + h+ τ

1
2 ]2 +

τ

2

N∑

i=1

(‖Y ∗i
h − yd(ti)‖

2
L2(Ω) + ‖U∗i

h ‖2L2(Ω))

≤
1

2(h+ τ
1
2 )

[dS(y
∗N
h ) + h+ τ

1
2 ]2 +

τ

2

N∑

i=1

(‖y∗ih − yd(ti)‖
2
L2(Ω) + ‖u∗i

h ‖2L2(Ω)).

Since it follows from (3.7) that

(5.6) τ
N∑

i=1

‖u∗i
h ‖2L2(Ω) ≤ τ

N∑

i=1

∥∥∥
1

τ

∫ ti

ti−1

u∗ dt
∥∥∥
2

L2(Ω)
≤

∫ T

0

‖u∗‖2L2(Ω) dt,

we can apply Lemma 3.2 and use (5.4) and (3.4) to get the estimate:

max
1≤i≤N

‖y∗ih ‖2H1
0
(Ω) + τ

N∑

i=1

‖∂τy
∗i
h ‖2L2(Ω)(5.7)

≤ C
(
‖y0‖

2
H1

0
(Ω) + τ

N∑

i=1

‖u∗i
h ‖2L2(Ω)

)
≤ C.

Now, we write yh(u
∗) for the solution to the following semi-discrete equation:

(5.8)

{
〈∂tyh(u∗), ϕh〉+ 〈∇yh(u

∗),∇ϕh〉 = 〈χωu
∗, ϕh〉, ∀ ϕh ∈ Vh,

yh(u
∗)(0) = Qhy0(x) in Ω.
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According to Lemma 3.4 and Proposition 2.5, it follows from (5.4) and (5.8) that

max
1≤i≤N

‖yh(u
∗)(ti)− y∗ih ‖2L2(Ω) + τ

N∑

i=1

‖yh(u
∗)(ti)− y∗ih ‖2H1

0
(Ω)

≤ C
(
τ

N∑

i=1

∥∥∥
1

τ

∫ ti

ti−1

u∗ dt− u∗i
h

∥∥∥
2

L2(Ω)
+ τ2(‖u∗‖2H1(0,T ;L2(Ω)) + ‖y0‖

2
H2(Ω))

)

≤ C
(
τ

N∑

i=1

∥∥∥
1

τ

∫ ti

ti−1

u∗ dt− Π̃h

1

τ

∫ ti

ti−1

u∗ dt
∥∥∥
2

L2(Ω)
+ τ2

)
.

Since u∗ ∈ L2(0, T ;H1(ω)) (by Proposition 2.5), we deduce from the latter estimate,
(2.7), the assumption (ii), (3.6) and (3.8) that

max
1≤i≤N

‖yh(u
∗)(ti)− y∗ih ‖2L2(Ω) + τ

N∑

i=1

‖yh(u
∗)(ti)− y∗ih ‖2H1

0
(Ω)(5.9)

≤ C
(
τ

N∑

i=1

∥∥∥
1

τ

∫ ti

ti−1

u∗ dt− Π̃h

1

τ

∫ ti

ti−1

u∗ dt
∥∥∥
2

L2(ω)
+ τ2

)

≤ C
(
τ

N∑

i=1

h2
∥∥∥
1

τ

∫ ti

ti−1

u∗ dt
∥∥∥
2

H1(ω)
+ τ2

)

≤ C(τ2 + h2).

On the other hand, an application of Lemma 3.3 to the equations (2.5) and (5.8)
yields

(5.10) ‖y(u∗)− yh(u
∗)‖C([0,T ];L2(Ω)) ≤ Ch(‖y0‖H1

0
(Ω) + ‖u∗‖L2(Q)) ≤ Ch.

Finally, putting the estimates (5.5), (5.6), (5.7), (5.9) and (5.10) together, we
conclude that

Jhτ (Y
∗
hτ , U

∗
hτ )

=
1

2(h+ τ
1
2 )

[dS(Y
∗N
h ) + h+ τ

1
2 ]2 +

τ

2

N∑

i=1

(
‖Y ∗i

h − yd(ti)‖
2
L2(Ω) + ‖U∗i

h ‖2L2(Ω)

)

≤
1

2(h+ τ
1
2 )

[‖y∗Nh − y(u∗)(T )‖L2(Ω) + h+ τ
1
2 ]2 + C

≤
1

2(h+ τ
1
2 )

[‖y∗Nh − yh(u
∗)(T )‖L2(Ω)

+‖yh(u
∗)(T )− y(u∗)(T )‖L2(Ω) + h+ τ

1
2 ]2 + C

≤ C(h+ τ
1
2 ) + C

≤ C.

The desired estimates (5.1) and (5.2) follow at once from the latter inequality, while
the estimate (5.2), together with (4.8), Lemma 3.2 and (3.4), gives

max
1≤i≤N

‖Y ∗i
h ‖2H1

0
(Ω) + τ

N∑

i=1

‖∂τY
∗i
h ‖2L2(Ω) ≤ C

(
‖y0‖

2
H1

0
(Ω) + τ

N∑

i=1

‖U∗i
h ‖2L2(Ω)

)
≤ C.

Thus, we complete the proof of the lemma. �
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Lemma 5.2. Suppose that (Y ∗
hτ , U

∗
hτ ) is the optimal pair for the problem (Phτ ),

where Y ∗
hτ = (Y ∗1

h , Y ∗2
h , · · · , Y ∗N

h ) ∈ (Vh)
N and U∗

hτ = (U∗1
h , U∗2

h , · · · , U∗N
h ) ∈

(Uh)
N . Then, it holds that

τ
N∑

i=1

‖Y ∗i
h − Y ∗i−1

h ‖2H1
0
(Ω) ≤ C[τ + τ2h−2(h+ τ

1
2 )−1],

here and throughout proof of this lemma, C denotes several positive constants de-
pendent on y0, u

∗ and yd.
Proof. Let Z∗i

h = Y ∗i
h − Y ∗i−1

h , where i = 1, 2, · · · , N . Then, by subtracting two
consecutive equations in (4.8), we deduce that

〈∂τZ
∗i
h , ϕh〉+ 〈∇Z∗i

h ,∇ϕh〉 = 〈χω(U
∗i
h − U∗i−1

h ), ϕh〉, ∀ ϕh ∈ Vh, 2 ≤ i ≤ N.

Taking ϕh = τZ∗i
h in the above equality, after some simple calculations, we get

‖Z∗i
h ‖2L2(Ω) − ‖Z∗i−1

h ‖2L2(Ω) + τ‖∇Z∗i
h ‖2L2(Ω) ≤ Cτ‖U∗i

h − U∗i−1
h ‖2L2(Ω), 2 ≤ i ≤ N,

Summing the above inequalities over i = 2, · · · , N , we obtain the estimate:

‖Z∗N
h ‖2L2(Ω) − ‖Z∗1

h ‖2L2(Ω) + τ

N∑

i=2

‖∇Z∗i
h ‖2L2(Ω) ≤ Cτ

N∑

i=2

‖U∗i
h − U∗i−1

h ‖2L2(Ω).

This implies that

τ

N∑

i=1

‖∇Z∗i
h ‖2L2(Ω)(5.11)

≤ τ‖∇Z∗1
h ‖2L2(Ω) + ‖Z∗1

h ‖2L2(Ω) + Cτ

N∑

i=2

‖U∗i
h − U∗i−1

h ‖2L2(Ω).

Now, we shall estimate the right hand terms in (5.11) by the following two steps.
Step 1. To prove the estimate:

(5.12) τ

N∑

i=2

‖U∗i
h − U∗i−1

h ‖2L2(Ω) ≤ Cτ2(h+ τ
1
2 )−1h−2.

For this purpose, we first infer from Lemma 3.2 and (4.9) that

max
1≤i≤N

‖p∗i−1
h ‖2H1

0
(Ω) + τ

N∑

i=1

‖∂τp
∗i
h ‖2L2(Ω)(5.13)

≤ C

(
λ−2
hτ ‖Qhahτ‖

2
H1

0
(Ω) + τ

N∑

i=1

‖Y ∗i
h − yd(ti)‖

2
L2(Ω)

)
.

Here, we recall that λhτ is the positive constant given by Theorem 4.2. Because of
(4.13) and (5.1), we find that

(5.14) λ−1
hτ =

h+ τ
1
2 + dS(Y

∗N
h )

h+ τ
1
2

≤ C(h+ τ
1
2 )−

1
2 .
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Hence, putting the estimates (5.13), (3.2), (5.2), (3.3) and (4.12) together gives

max
1≤i≤N

‖p∗i−1
h ‖2H1

0
(Ω) + τ

N∑

i=1

‖∂τp
∗i
h ‖2L2(Ω)(5.15)

≤ C[(h+ τ
1
2 )−1h−2‖Qhahτ‖

2
L2(Ω) + 1]

≤ C[(h+ τ
1
2 )−1h−2‖ahτ‖

2
L2(Ω) + 1]

≤ C(h+ τ
1
2 )−1h−2,

which, together with (4.10) and (3.7), yields that

τ

N∑

i=2

‖U∗i
h − U∗i−1

h ‖2L2(Ω) = τ

N∑

i=2

‖Π̃hχωp
∗i−1
h − Π̃hχωp

∗i−2
h ‖2L2(Ω)

≤ τ
N∑

i=2

‖p∗i−1
h − p∗i−2

h ‖2L2(Ω) = τ
N−1∑

i=1

‖p∗ih − p∗i−1
h ‖2L2(Ω)

= τ3
N−1∑

i=1

‖∂τp
∗i
h ‖2L2(Ω)

≤ Cτ2(h+ τ
1
2 )−1h−2.

Step 2. To show estimates:

(5.16) τ‖∇Z∗1
h ‖2L2(Ω) ≤ Cτ and ‖Z∗1

h ‖2L2(Ω) ≤ Cτ.

To this end, we observe first that the second estimate in (5.16) is a direct conse-
quence of the estimate (5.3). In order to prove the first estimate in (5.16), we write

yh(·) and (Ỹ ∗1
h , Ỹ ∗2

h , · · · , Ỹ ∗N
h ) for the solutions of the equation

{
〈∂tyh(t), ϕh〉+ 〈∇yh(t),∇ϕh〉 = 〈χωU

∗1
h , ϕh〉, ∀ ϕh ∈ Vh, t ∈ (0, T ),

yh(0) = Qhy0(x) in Ω

and the equation

{
〈∂τ Ỹ ∗i

h , ϕh〉+ 〈∇Ỹ ∗i
h ,∇ϕh〉 = 〈χωU

∗1
h , ϕh〉, ∀ ϕh ∈ Vh, i = 1, 2, · · · , N

Ỹ ∗0
h = Qhy0 in Ω,

respectively. It is clear that Ỹ ∗1
h = Y ∗1

h , hence, an application of Lemma 3.4 gives

‖yh(τ) − Y ∗1
h ‖2L2(Ω) + τ‖yh(τ) − Y ∗1

h ‖2H1
0
(Ω) ≤ Cτ2(‖U∗1

h ‖2L2(Ω) + ‖y0‖
2
H2(Ω))

and

max
t∈[0,τ ]

‖∂tyh‖
2
L2(Ω) +

∫ τ

0

‖∂tyh‖
2
H1

0
(Ω) dt ≤ C(‖U∗1

h ‖2L2(Ω) + ‖y0‖
2
H2(Ω)).
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These two inequalities, together with (5.2), yield that

τ‖∇Z∗1
h ‖2L2(Ω) = τ‖∇Y ∗1

h −∇Y ∗0
h ‖2L2(Ω)

≤ Cτ‖∇Y ∗1
h −∇yh(τ)‖

2
L2(Ω) + Cτ‖∇yh(τ) −∇Qhy0‖

2
L2(Ω)

≤ Cτ(τ‖U∗1
h ‖2L2(Ω) + τ) + Cτ

∥∥∥∇
∫ τ

0

(yh)t dt
∥∥∥
2

L2(Ω)

≤ Cτ + Cτ2
∫ τ

0

‖∇(yh)t‖
2
L2(Ω) dt

≤ Cτ + Cτ(τ‖U∗1
h ‖2L2(Ω) + τ)

≤ Cτ.

Thus we have proved the first estimate in (5.16) and reached the aim of Step 2.

Finally, by (5.11), (5.12) and (5.16), we obtain that

τ

N∑

i=1

‖∇Z∗i
h ‖2L2(Ω) ≤ C[τ + τ2h−2(h+ τ

1
2 )−1].

This completes the proof of this lemma. �

Now, we turn to the main result of this paper.

Theorem 5.3. Suppose that u∗ and U∗
hτ are the optimal controls for the problems

(P ) and (Phτ ), respectively, where U∗
hτ = (U∗1

h , U∗2
h , · · · , U∗N

h ) ∈ (Uh)
N . Then the

following error estimate holds:

N∑

i=1

∫ ti

ti−1

‖u∗ − U∗i
h ‖2L2(Ω) dt ≤ C(h+ τ

1
2 )

1
2 + Cτh−1(h+ τ

1
2 )−

1
2 .

Furthermore, it holds that

N∑

i=1

∫ ti

ti−1

‖u∗ − U∗i
h ‖2L2(Ω) dt ≤ Ch

1
2 , whenever τ ≈ O(h2),

here and through proof of this theorem, C denotes several positive constants depen-
dent on y0, u

∗, yd and µ∗.
Proof. We shall write Y ∗

hτ = (Y ∗1
h , Y ∗2

h , · · · , Y ∗N
h ) for the optimal state to the

problem (Phτ ). Namely, (Y ∗
hτ , U

∗
hτ ) is the optimal pair to the problem (Phτ ). Note

that the second estimate in the theorem is obviously a consequence of the first one.
Hence, it suffices to show the first estimate. We shall carry out the proof by several
stages as follows:

Stage 1. To prove the estimate:

(5.17) max
1≤i≤N

‖p∗i−1
h ‖2L2(Ω) + τ

N∑

i=1

‖∇p∗i−1
h ‖2L2(Ω) ≤ C(h+ τ

1
2 )−1.

Here, we recall that p∗ih ∈ Vh, i = 0, 1, · · · , N − 1, are given by (4.9).

For this purpose, we take ϕh = p∗i−1
h in the first equation of (4.9). After some

calculations, we find that

‖p∗i−1
h ‖2L2(Ω) − ‖p∗ih ‖2L2(Ω) + τ‖∇p∗i−1

h ‖2L2(Ω) ≤ Cτ‖Y ∗i
h − yd(ti)‖

2
L2(Ω), 1 ≤ i ≤ N.
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Summing up the above inequalities over i = k, · · · , N , with 1 ≤ k ≤ N , we get

‖p∗k−1
h ‖2L2(Ω) + τ

N∑

i=k

‖∇p∗i−1
h ‖2L2(Ω) ≤ ‖p∗Nh ‖2L2(Ω) + Cτ

N∑

i=1

‖Y ∗i
h − yd(ti)‖

2
L2(Ω).

This, together with (5.2), the second equation in (4.9), (3.3), (4.12) and (5.14),
yields that

‖p∗k−1
h ‖2L2(Ω) + τ

N∑

i=k

‖∇p∗i−1
h ‖2L2(Ω) ≤ C + λ−2

hτ ‖Qhahτ‖
2
L2(Ω)

≤ C + λ−2
hτ ‖ahτ‖

2
L2(Ω) ≤ C + C(h+ τ

1
2 )−1

≤ C(h+ τ
1
2 )−1, ∀ 1 ≤ k ≤ N,

which leads to the estimate (5.17).

Stage 2. To show the equality:

N∑

i=1

∫ ti

ti−1

‖u∗ − U∗i
h ‖2L2(Ω) dt(5.18)

= τ

N∑

i=1

〈
U∗i
h − χωp

∗i−1
h , Π̃h

(1
τ

∫ ti

ti−1

u∗ dt
)
−

1

τ

∫ ti

ti−1

u∗ dt
〉

+
N∑

i=1

∫ ti

ti−1

〈χωp
∗, u∗〉 dt+

N∑

i=1

∫ ti

ti−1

〈χωp
∗i−1
h , U∗i

h 〉 dt

−
N∑

i=1

∫ ti

ti−1

〈χωp
∗, U∗i

h 〉 dt−
N∑

i=1

∫ ti

ti−1

〈χωp
∗i−1
h , u∗〉 dt

,

5∑

i=1

Ji.

Here, we recall that p∗ is given by (2.6) and Π̃h is the operator defined by (3.5).
To this end, we first derive from (2.7) and (4.10) that

N∑

i=1

∫ ti

ti−1

‖u∗ − U∗i
h ‖2L2(Ω) dt(5.19)

=

N∑

i=1

∫ ti

ti−1

〈u∗, u∗ − U∗i
h 〉 dt−

N∑

i=1

∫ ti

ti−1

〈U∗i
h , u∗ − U∗i

h 〉 dt

=
N∑

i=1

∫ ti

ti−1

〈χωp
∗, u∗ − U∗i

h 〉 dt− τ
N∑

i=1

〈
U∗i
h ,

1

τ

∫ ti

ti−1

u∗ dt− U∗i
h

〉

+τ

N∑

i=1

〈
U∗i
h − χωp

∗i−1
h , Π̃h

(1
τ

∫ ti

ti−1

u∗ dt
)
− U∗i

h

〉
.
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Since it clearly holds that

τ

N∑

i=1

〈
U∗i
h − χωp

∗i−1
h , Π̃h

(1
τ

∫ ti

ti−1

u∗ dt
)
− U∗i

h

〉

= τ

N∑

i=1

〈
U∗i
h − χωp

∗i−1
h , Π̃h

(1
τ

∫ ti

ti−1

u∗ dt
)
−

1

τ

∫ ti

ti−1

u∗ dt
〉

+τ

N∑

i=1

〈
U∗i
h − χωp

∗i−1
h ,

1

τ

∫ ti

ti−1

u∗ dt− U∗i
h

〉
,

we infer from from (5.19) that

N∑

i=1

∫ ti

ti−1

‖u∗ − U∗i
h ‖2L2(Ω) dt

= τ

N∑

i=1

〈
U∗i
h − χωp

∗i−1
h , Π̃h

(1
τ

∫ ti

ti−1

u∗ dt
)
−

1

τ

∫ ti

ti−1

u∗ dt
〉

+
N∑

i=1

{∫ ti

ti−1

〈
χω(p

∗ − p∗i−1
h ), u∗ − U∗i

h

〉
dt

+

∫ ti

ti−1

〈
χωp

∗i−1
h , u∗ −

1

τ

∫ ti

ti−1

u∗ dt
〉
dt
}
.

Notice that the last term on the above equality is identically zero because χωp
∗i−1
h

is independent of the t variable. Thus, the equality (5.18) follows at once.

Stage 3. To estimate the right hand sum
∑5

i=1 Ji in (5.18).
This will be done by several steps as follows:
Step 3.1. To prove the estimate:

(5.20) J1 ≤ Ch(h+ τ
1
2 )−

1
2 .

Indeed, it follows from (2.7), the assumption (ii), (3.8), (5.2) and (5.17) that

J1 ≡ τ

N∑

i=1

〈
U∗i
h − χωp

∗i−1
h , Π̃h

(1
τ

∫ ti

ti−1

u∗ dt
)
−

1

τ

∫ ti

ti−1

u∗ dt
〉

≤ Cτh
N∑

i=1

‖U∗i
h − χωp

∗i−1
h ‖L2(Ω)

∥∥∥
1

τ

∫ ti

ti−1

u∗ dt
∥∥∥
H1(ω)

≤ Ch

N∑

i=1

τ
1
2 ‖U∗i

h − χωp
∗i−1
h ‖L2(Ω)

(∫ ti

ti−1

‖u∗‖2H1(ω) dt
) 1

2

≤ Ch
( N∑

i=1

τ‖U∗i
h − χωp

∗i−1
h ‖2L2(Ω)

) 1
2

≤ Ch(h+ τ
1
2 )−

1
2 .

Step 3.2. Studies on the sum
∑5

i=2 Ji.
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About the term J2, we have

J2 ≡
N∑

i=1

∫ ti

ti−1

〈χωp
∗, u∗〉 dt =

∫ T

0

〈p∗, ∂ty(u
∗)−△y(u∗)〉 dt(5.21)

= 〈y(u∗)(T ), p∗(T )〉 − 〈y0, p
∗(0)〉

−

∫ T

0

〈∂tp
∗, y(u∗)〉 dt−

∫ T

0

〈△p∗, y(u∗)〉 dt

= −〈y(u∗)(T ), µ∗〉 − 〈y0, p
∗(0)〉 −

∫ T

0

〈y(u∗), y(u∗)− yd〉 dt.

Concerning the term J3, we infer from (4.8) and (4.9) that

J3 ≡
N∑

i=1

∫ ti

ti−1

〈χωp
∗i−1
h , U∗i

h 〉 dt = τ

N∑

i=1

〈p∗i−1
h , χωU

∗i
h 〉(5.22)

= τ

[
N∑

i=1

〈∂τY
∗i
h , p∗i−1

h 〉+
N∑

i=1

〈∇Y ∗i
h ,∇p∗i−1

h 〉

]

= −〈Qhy0, p
∗0
h 〉+ 〈Y ∗N

h , p∗Nh 〉

−τ

N∑

i=1

〈Y ∗i
h , ∂τp

∗i
h 〉+ τ

N∑

i=1

〈∇Y ∗i
h ,∇p∗i−1

h 〉

= −
〈
Y ∗N
h ,

Qhahτ
λhτ

〉
− 〈Qhy0, p

∗0
h 〉 − τ

N∑

i=1

〈Y ∗i
h , Y ∗i

h − yd(ti)〉.

As regards the term J4, we shall prove the estimate:

J4 ≤ Ch+ 〈Y ∗N
h , µ∗〉+ 〈Qhy0, p

∗(0)〉+

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt(5.23)

+

∫ T

0

∥∥∥∇(Y
∗

hτ − Ŷ
∗

hτ )
∥∥∥
L2(Ω)

‖∇p̃∗h‖L2(Ω) dt.

Here, the function Y
∗

hτ ∈ H1(0, T ;Vh) is given by Y
∗

hτ (t) = Y ∗i−1
h + t−ti−1

τ
(Y ∗i

h −

Y ∗i−1
h ) when t ∈ (ti−1, ti], i = 1, 2, · · · , N, Ŷ

∗

hτ is the step function taking value
Y ∗i
h over the interval (ti−1, ti] for i = 1, 2, · · · , N , and p̃∗h ∈ H1(0, T ;Vh) is the

solution to the equation:

(5.24)

{
〈∂tp̃∗h, ϕh〉 − 〈∇p̃∗h,∇ϕh〉 = 〈y(u∗)− yd, ϕh〉, ∀ ϕh ∈ Vh,
p̃∗h(T ) = Qhp

∗(T ) in Ω.

For this purpose, we let U
∗

hτ be the step function that takes value U∗i
h on the

interval (ti−1, ti] for i = 1, 2, · · · , N . Clearly, Y
∗

hτ , Ŷ
∗

hτ and U
∗

hτ satisfy the following
equation:

(5.25)





〈∂tY
∗

hτ , ϕh〉+ 〈∇Ŷ
∗

hτ ,∇ϕh〉 = 〈χωU
∗

hτ , ϕh〉, ∀ ϕh ∈ Vh,
a.e. t ∈ (0, T ),

Y
∗

hτ (0) = Qhy0(x) in Ω.
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According to Proposition 2.5 and Lemma 3.3, we derive from (2.6) and (5.24) that

‖p̃∗h − p∗‖L2(Q) + h(‖p̃∗h − p∗‖C([0,T ];L2(Ω)) + ‖p̃∗h − p∗‖L2(0,T ;H1
0
(Ω)))(5.26)

≤ Ch2(‖p∗(T )‖H1
0
(Ω) + ‖y(u∗)− yd‖L2(Q))

≤ Ch2.

Notice that

J4 ≡ −
N∑

i=1

∫ ti

ti−1

〈χωp
∗, U∗i

h 〉 dt(5.27)

= −
N∑

i=1

∫ ti

ti−1

〈p∗ − p̃∗h, χωU
∗i
h 〉 dt−

N∑

i=1

∫ ti

ti−1

〈p̃∗h, χωU
∗i
h 〉 dt

, J41 + J42.

In what follows, we shall estimate the terms J41 and J42 separately. First, it follows
at once from (5.2) and (5.26) that

J41 ≤
N∑

i=1

‖U∗i
h ‖L2(Ω)τ

1
2

(∫ ti

ti−1

‖p∗ − p̃∗h‖
2
L2(Ω) dt

) 1
2

(5.28)

≤
( N∑

i=1

τ‖U∗i
h ‖2L2(Ω)

) 1
2
(∫ T

0

‖p∗ − p̃∗h‖
2
L2(Ω) dt

) 1
2

≤ Ch2.

Then, we turn to study the term J42. By (5.25) and (5.24), we find that

J42 ≡ −
N∑

i=1

∫ ti

ti−1

〈p̃∗h, χωU
∗i
h 〉 dt = −

∫ T

0

〈p̃∗h, χωU
∗

hτ 〉 dt

= −

∫ T

0

〈∂tY
∗

hτ , p̃
∗
h〉 dt−

∫ T

0

〈∇Ŷ
∗

hτ (t),∇p̃∗h〉 dt

= −

∫ T

0

〈∂tY
∗

hτ , p̃
∗
h〉 dt−

∫ T

0

〈∇Y
∗

hτ ,∇p̃∗h〉 dt+

∫ T

0

〈∇(Y
∗

hτ − Ŷ
∗

hτ ),∇p̃∗h〉 dt

= −〈Y
∗

hτ (T ), p̃
∗
h(T )〉+ 〈Y

∗

hτ (0), p̃
∗
h(0)〉+

∫ T

0

〈Y
∗

hτ , ∂tp̃
∗
h〉 dt

−

∫ T

0

〈∇Y
∗

hτ ,∇p̃∗h〉 dt+

∫ T

0

〈∇(Y
∗

hτ − Ŷ
∗

hτ ),∇p̃∗h〉 dt

= −〈Y ∗N
h , Qhp

∗(T )〉+ 〈Qhy0, p̃
∗
h(0)〉+

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt

+

∫ T

0

〈∇(Y
∗

hτ − Ŷ
∗

hτ ),∇p̃∗h〉 dt.

This, combined with (3.1), (2.6), (3.3) and (5.26), gives

J42 = −〈Y ∗N
h , p∗(T )〉+ 〈Qhy0, p̃

∗
h(0)− p∗(0)〉+ 〈Qhy0, p

∗(0)〉

+

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt+

∫ T

0

〈∇(Y
∗

hτ − Ŷ
∗

hτ ),∇p̃∗h〉 dt

≤ Ch+ 〈Y ∗N
h , µ∗〉+ 〈Qhy0, p

∗(0)〉

+

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt+

∫ T

0

∥∥∥∇(Y
∗

hτ − Ŷ
∗

hτ )
∥∥∥
L2(Ω)

‖∇p̃∗h‖L2(Ω) dt.
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Thus, the above estimate, together with (5.27) and (5.28), leads to the estimate
(5.23).

With regard to the term J5, we first observe that

(5.29) J5 ≡ −
N∑

i=1

∫ ti

ti−1

〈χωp
∗i−1
h , u∗〉 dt = −

N∑

i=1

〈
p∗i−1
h , χω

∫ ti

ti−1

u∗ dt
〉
.

Then, by integrating the first equation of (5.8) from ti−1 to ti, we obtain that

〈yh(u
∗)(ti)− yh(u

∗)(ti−1), ϕh〉+
〈
∇

∫ ti

ti−1

yh(u
∗) dt,∇ϕh

〉

=
〈
χω

∫ ti

ti−1

u∗ dt, ϕh

〉
, ∀ ϕh ∈ Vh,

which gives

〈yh(u
∗)(ti)− yh(u

∗)(ti−1), p
∗i−1
h 〉+

〈
∇

∫ ti

ti−1

yh(u
∗) dt,∇p∗i−1

h

〉
(5.30)

=
〈
χω

∫ ti

ti−1

u∗ dt, p∗i−1
h

〉
.

Now, by (5.29), (5.30) and (5.8), we get

J5 = −
N∑

i=1

〈yh(u
∗)(ti)− yh(u

∗)(ti−1), p
∗i−1
h 〉 −

N∑

i=1

〈
∇

∫ ti

ti−1

yh(u
∗) dt,∇p∗i−1

h

〉

= 〈Qhy0, p
∗0
h 〉 − 〈yh(u

∗)(T ), p∗Nh 〉+ τ
N∑

i=1

〈yh(u
∗)(ti), ∂τp

∗i
h 〉

−
N∑

i=1

〈
∇

∫ ti

ti−1

yh(u
∗) dt,∇p∗i−1

h

〉
.

This, together with (4.9), yields that

J5 = 〈yh(u
∗)(T ), λ−1

hτ Qhahτ 〉+ τ

N∑

i=1

〈∇yh(u
∗)(ti),∇p∗i−1

h 〉(5.31)

+〈Qhy0, p
∗0
h 〉+ τ

N∑

i=1

〈yh(u
∗)(ti), Y

∗i
h − yd(ti)〉

−
N∑

i=1

〈
∇

∫ ti

ti−1

yh(u
∗) dt,∇p∗i−1

h

〉

= 〈yh(u
∗)(T ), λ−1

hτ Qhahτ 〉+ 〈Qhy0, p
∗0
h 〉

+τ

N∑

i=1

〈yh(u
∗)(ti)− y(u∗)(ti), Y

∗i
h − yd(ti)〉

+τ
N∑

i=1

〈y(u∗)(ti), Y
∗i
h − yd(ti)〉

+τ

N∑

i=1

〈
∇p∗i−1

h ,∇
(
yh(u

∗)(ti)−
1

τ

∫ ti

ti−1

yh(u
∗) dt

)〉
.
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Putting (5.21), (5.22), (5.23) and (5.31) together, and by (3.1), we conclude that

J2 + J3 + J4 + J5(5.32)

≤ Ch+ 〈µ∗, Y ∗N
h − y(u∗)(T )〉+ 〈p∗(0), Qhy0 − y0〉

+λ−1
hτ 〈ahτ , yh(u

∗)(T )− Y ∗N
h 〉

−

∫ T

0

〈y(u∗), y(u∗)− yd〉 dt− τ

N∑

i=1

〈Y ∗i
h , Y ∗i

h − yd(ti)〉

+

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt+

∫ T

0

∥∥∥∇(Y
∗

hτ − Ŷ
∗

hτ )
∥∥∥
L2(Ω)

‖∇p̃∗h‖L2(Ω) dt

+τ

N∑

i=1

〈yh(u
∗)(ti)− y(u∗)(ti), Y

∗i
h − yd(ti)〉

+τ

N∑

i=1

〈y(u∗)(ti), Y
∗i
h − yd(ti)〉

+τ
N∑

i=1

〈
∇p∗i−1

h ,∇
(
yh(u

∗)(ti)−
1

τ

∫ ti

ti−1

yh(u
∗) dt

)〉
.

Step 3.3. Further studies on the right hand terms in (5.32).

On one hand, because S is a closed subset in L2(Ω), we infer from (5.1) that
there exists an element shτ in S, such that

‖Y ∗N
h − shτ‖L2(Ω) = dS(Y

∗N
h ) ≤ C(h+ τ

1
2 )

1
2 .

This, together with (2.4), yields that

(5.33) 〈µ∗, Y ∗N
h −y(u∗)(T )〉 = 〈µ∗, Y ∗N

h −shτ 〉+〈µ∗, shτ−y(u∗)(T )〉 ≤ C(h+τ
1
2 )

1
2 .

Moreover, it follows from (3.4) that

(5.34) 〈p∗(0), Qhy0 − y0〉 ≤ ‖p∗(0)‖L2(Ω)‖Qhy0 − y0‖L2(Ω) ≤ Ch2.

On the other hand, because of (4.11), we find that

〈ahτ , s− Y ∗N
h 〉 ≤ 0, ∀ s ∈ S.

This, together with (5.10), (4.12) and (5.14), gives

λ−1
hτ 〈ahτ , yh(u

∗)(T )− Y ∗N
h 〉(5.35)

= λ−1
hτ 〈ahτ , yh(u

∗)(T )− y(u∗)(T )〉+ λ−1
hτ 〈ahτ , y(u

∗)(T )− Y ∗N
h 〉

≤ λ−1
hτ 〈ahτ , yh(u

∗)(T )− y(u∗)(T )〉

≤ Ch(h+ τ
1
2 )−

1
2 .

Furthermore, by (5.10) and (5.2), we obtain that

τ

N∑

i=1

〈yh(u
∗)(ti)− y(u∗)(ti), Y

∗i
h − yd(ti)〉

≤
( N∑

i=1

τ‖yh(u
∗)(ti)− y(u∗)(ti)‖

2
L2(Ω)

) 1
2
( N∑

i=1

τ‖Y ∗i
h − yd(ti)‖

2
L2(Ω)

) 1
2

≤ Ch.
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Now, it follows from (5.32)-(5.35) and the above inequality that

J2 + J3 + J4 + J5(5.36)

≤ C(h+ τ
1
2 )

1
2 −

∫ T

0

〈y(u∗), y(u∗)− yd〉 dt− τ

N∑

i=1

〈Y ∗i
h , Y ∗i

h − yd(ti)〉

+

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt+

∫ T

0

∥∥∥∇(Y
∗

hτ − Ŷ
∗

hτ )
∥∥∥
L2(Ω)

‖∇p̃∗h‖L2(Ω) dt

+τ

N∑

i=1

〈y(u∗)(ti), Y
∗i
h − yd(ti)〉

+τ

N∑

i=1

〈
∇p∗i−1

h ,∇
(
yh(u

∗)(ti)−
1

τ

∫ ti

ti−1

yh(u
∗) dt

)〉
.

Step 3.4. Estimates on the right hand terms in (5.36).

According to Lemma 5.2, by (5.26) and after some simple calculations, we obtain
that

∫ T

0

∥∥∥∇(Y
∗

hτ − Ŷ
∗

hτ )
∥∥∥
L2(Ω)

‖∇p̃∗h‖L2(Ω) dt(5.37)

≤
N∑

i=1

∫ ti

ti−1

‖∇Y ∗i
h −∇Y ∗i−1

h ‖L2(Ω)‖∇p̃∗h‖L2(Ω) dt

≤
( N∑

i=1

τ‖Y ∗i
h − Y ∗i−1

h ‖2H1
0
(Ω)

) 1
2
(∫ T

0

‖∇p̃∗h‖
2
L2(Ω) dt

) 1
2

≤ C[τ
1
2 + τh−1(h+ τ

1
2 )−

1
2 ].

On the other hand, by (5.8), and applying Lemma 3.4, we find that

∫ T

0

‖∂tyh(u
∗)‖2H1

0
(Ω) dt ≤ C(‖u∗‖2H1(0,T ;L2(Ω)) + ‖y0‖

2
H2(Ω)) ≤ C,

which, combined with (5.17), yields that

τ
N∑

i=1

〈
∇p∗i−1

h ,∇
(
yh(u

∗)(ti)−
1

τ

∫ ti

ti−1

yh(u
∗) dt

)〉

≤
N∑

i=1

τ
3
2

(∫ ti

ti−1

‖∂tyh(u
∗)‖2H1

0
(Ω) dt

) 1
2

‖∇p∗i−1
h ‖L2(Ω)

≤ τ
( N∑

i=1

τ‖∇p∗i−1
h ‖2L2(Ω)

) 1
2
(∫ T

0

‖∂tyh(u
∗)‖2H1

0
(Ω) dt

) 1
2

≤ Cτ(h+ τ
1
2 )−

1
2 .
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Hence, it follows from (5.36), (5.37) and the aforementioned inequality that

J2 + J3 + J4 + J5(5.38)

≤ C(h+ τ
1
2 )

1
2 + Cτh−1(h+ τ

1
2 )−

1
2 −

∫ T

0

〈y(u∗), y(u∗)− yd〉 dt

−τ

N∑

i=1

〈Y ∗i
h , Y ∗i

h − yd(ti)〉+

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt

+τ

N∑

i=1

〈y(u∗)(ti), Y
∗i
h − yd(ti)〉.

Step 3.5. Estimates on the right hand terms in (5.38).

We first observe that

−

∫ T

0

〈y(u∗), y(u∗)− yd〉 dt

= −
N∑

i=1

∫ ti

ti−1

〈y(u∗)− Y ∗i
h , y(u∗)− Y ∗i

h 〉 dt−
N∑

i=1

∫ ti

ti−1

〈y(u∗)− Y ∗i
h , Y ∗i

h − yd〉 dt

−
N∑

i=1

∫ ti

ti−1

〈Y ∗i
h , y(u∗)− yd〉 dt

≤ −2

N∑

i=1

∫ ti

ti−1

〈Y ∗i
h , y(u∗)〉 dt+

N∑

i=1

∫ ti

ti−1

〈y(u∗), yd〉 dt+ τ

N∑

i=1

‖Y ∗i
h ‖2L2(Ω),

which gives

−

∫ T

0

〈y(u∗), y(u∗)− yd〉 dt− τ

N∑

i=1

〈Y ∗i
h , Y ∗i

h − yd(ti)〉(5.39)

≤ −2
N∑

i=1

∫ ti

ti−1

〈Y ∗i
h , y(u∗)〉 dt+

N∑

i=1

∫ ti

ti−1

〈y(u∗), yd〉 dt+ τ
N∑

i=1

〈Y ∗i
h , yd(ti)〉.

Then, we rewrite the sum of the last two terms in (5.38) as:

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt+ τ

N∑

i=1

〈y(u∗)(ti), Y
∗i
h − yd(ti)〉

=

N∑

i=1

∫ ti

ti−1

〈Y
∗

hτ − Y ∗i
h , y(u∗)〉 dt+

N∑

i=1

∫ ti

ti−1

〈Y ∗i
h , y(u∗)〉 dt

−
N∑

i=1

∫ ti

ti−1

〈Y
∗

hτ , yd − yd(ti)〉 dt−
N∑

i=1

∫ ti

ti−1

〈Y
∗

hτ , yd(ti)〉 dt

+

N∑

i=1

∫ ti

ti−1

〈y(u∗)(ti), Y
∗i
h − yd(ti)〉 dt.
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This, along with (5.39), implies that

−

∫ T

0

〈y(u∗), y(u∗)− yd〉 dt− τ

N∑

i=1

〈Y ∗i
h , Y ∗i

h − yd(ti)〉(5.40)

+

∫ T

0

〈Y
∗

hτ , y(u
∗)− yd〉 dt+ τ

N∑

i=1

〈y(u∗)(ti), Y
∗i
h − yd(ti)〉

≤
N∑

i=1

∫ ti

ti−1

〈Y
∗

hτ − Y ∗i
h , y(u∗)〉 dt+

N∑

i=1

∫ ti

ti−1

〈y(u∗)(ti)− y(u∗), Y ∗i
h 〉 dt

+

N∑

i=1

∫ ti

ti−1

〈y(u∗)− y(u∗)(ti), yd〉 dt+
N∑

i=1

∫ ti

ti−1

〈y(u∗)(ti), yd − yd(ti)〉 dt

+
N∑

i=1

∫ ti

ti−1

〈Y ∗i
h − Y

∗

hτ , yd(ti)〉 dt−
N∑

i=1

∫ ti

ti−1

〈Y
∗

hτ , yd − yd(ti)〉 dt

,

6∑

i=1

Qi.

Next, we shall estimate terms Qi, 1 ≤ i ≤ 6 in (5.40).
With regard to the term Q1, we infer from (5.3) that

Q1 ≡
N∑

i=1

∫ ti

ti−1

〈Y
∗

hτ − Y ∗i
h , y(u∗)〉 dt(5.41)

=
N∑

i=1

∫ ti

ti−1

(t− ti)〈∂τY
∗i
h , y(u∗)〉 dt ≤ C

N∑

i=1

τ2‖∂τY
∗i
h ‖L2(Ω)

≤ Cτ

(
N∑

i=1

τ‖∂τY
∗i
h ‖2L2(Ω)

) 1
2

≤ Cτ.

Concerning the term Q2, we derive from (5.3) that

Q2 ≡
N∑

i=1

∫ ti

ti−1

〈y(u∗)(ti)− y(u∗), Y ∗i
h 〉 dt(5.42)

≤
N∑

i=1

∫ ti

ti−1

τ
1
2

(∫ ti

ti−1

‖∂ty(u
∗)‖2L2(Ω) dt

) 1
2

‖Y ∗i
h ‖L2(Ω) dt

≤ τ

(
N∑

i=1

∫ ti

ti−1

‖∂ty(u
∗)‖2L2(Ω) dt

) 1
2( N∑

i=1

τ‖Y ∗i
h ‖2L2(Ω)

) 1
2

≤ Cτ.

About terms Qi with i = 3, · · · , 6, we can utilize the similar methods to get

(5.43) Q3 +Q4 +Q5 +Q6 ≤ Cτ.

Now, by utilizing (5.38) and (5.40)-(5.43), we find that

(5.44) J2 + J3 + J4 + J5 ≤ C(h+ τ
1
2 )

1
2 + Cτh−1(h+ τ

1
2 )−

1
2 .
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Finally, putting (5.18), (5.20) and (5.44) together, we complete the proof of the
theorem.

�

Remark 5.4. Although the control, state and adjoint state have the same regularity
as those in [12], estimates about the multiplier −µ∗

hτ corresponding to (Phτ ) are
weaker than those in [12]. For example, by the proof of (5.13)-(5.15), we know

‖µ∗
hτ‖H1

0
(Ω) = ‖p∗Nh ‖H1

0
(Ω) ≤ Cλ−1

hτ ‖Qhahτ‖H1
0
(Ω) ≤ C(h+ τ

1
2 )−

1
2 h−1.

However, in [12], ‖µ∗
hτ‖H1

0
(Ω) is bounded by a constant independent of h and τ .

Weak estimates about −µ∗
hτ are due to the construction of penalty functional in

(Phτ ), and lead to weak error estimate about optimal controls between (P ) and
(Phτ ).

Appendix

Proof of Theorem 2.3. The proof of the “if” part is standard. We aim to show
the “only if” part. For this purpose, we shall first build an approximation problem
(Pε), with ε > 0, to the problem (P ). Write Y = L2(0, T ;H2(Ω) ∩ H1

0 (Ω)) ∩
H1(0, T ;L2(Ω)) and recall that dS(·) denotes the distance function from · to S in
L2(Ω). Let Jε be the penalty functional from Y × L2(0, T ;L2(Ω)) to R+, defined
by

(1) Jε(y, u) = [dS(y(T )) + ε]2/2ε+
1

2

∫ T

0

∫

Ω

[(y − yd)
2 + u2] dx dt.

Consider the following optimal control problem (Pε):

(Pε) MinJε(y, u), over all such pairs (y, u) ∈ Y × L2(0, T ;L2(Ω)) that (1.1) holds.

When an pair (yε, uε) solves the problem (Pε), it will be called an optimal pair,
while uε and yε are called an optimal control and an optimal state, respectively.
Now, we shall carry out the proof with several stages.

Stage 1. The existence of optimal pairs (yε, uε) to the problem (Pε).

Let d∗ = infJε(y, u), where the infimum is taken over all pairs (y, u) ∈ Y ×
L2(0, T ;L2(Ω)) satisfying the equation (1.1). It is obvious that d∗ ≥ 0. Hence,
there exists a sequence {(ym, um)}∞m=1 in Y × L2(0, T ;L2(Ω)), such that

(2) [dS(ym(T )) + ε]2/2ε+
1

2

∫ T

0

∫

Ω

[(ym − yd)
2 + u2

m] dx dt ≤ d∗ +
1

m

and

(3)





∂tym −△ym = χωum in Ω× (0, T ),
ym = 0 on ∂Ω× (0, T ),
ym(0) = y0 in Ω.

By (2), we see that the sequence {um}∞m=1 is bounded in L2(0, T ;L2(Ω)). Then,
we can use the equation (3) to get the following estimate:

‖ym‖L2(0,T ;H2(Ω)∩H1
0
(Ω)) + ‖y′m‖L2(0,T ;L2(Ω)) + ‖um‖L2(0,T ;L2(Ω)) ≤ C.
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Here, C stands for a positive constant independent of m. Thus, we can take a
subsequence from {m}∞m=1, still denoted in the same way, such that when m → ∞,

ym → ỹ weakly in L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)),

ym → ỹ strongly in C([0, T ];L2(Ω))

and

um → ũ weakly in L2(0, T ;L2(Ω)).

Therefore, by passing to the limit for m → ∞ in (2) and (3), respectively, we
derive that

(4) [dS(ỹ(T )) + ε]2/2ε+
1

2

∫ T

0

∫

Ω

[(ỹ − yd)
2 + ũ2] dx dt ≤ d∗

and

(5)





∂tỹ −△ỹ = χωũ in Ω× (0, T ),
ỹ = 0 on ∂Ω× (0, T ),
ỹ(0) = y0 in Ω.

It follows at once from (4) and (5) that (ỹ, ũ) is an optimal pair to the problem (Pε).

Stage 2. The convergence of the problem (Pε). More precisely, there exists a
subsequence of the family {ε}ε>0, still denoted in the same way, such that when
ε → 0+,

Jε(yε, uε) → J(y(u∗), u∗),

yε → y(u∗) weakly in L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω))

and

uε → u∗ weakly in L2(0, T ;L2(Ω)).

Since the pair (yε, uε) is optimal for the problem (Pε), we infer from (1) that

Jε(yε, uε) ≤ Jε(y(u
∗), u∗) =

ε

2
+ J(y(u∗), u∗),

which gives

(6) limε→0Jε(yε, uε) ≤ J(y(u∗), u∗).

It also yields that

(7)

∫ T

0

∫

Ω

u2
ε dx dt ≤ C and dS(yε(T )) ≤ Cε

1
2 .

Here, C denotes a positive constant independent of ε. By the first estimate in
(7) and (1.1), we can utilize the same arguments as those in Stage 1 to find a
subsequence of the family {ε}ε>0, still denoted in the same way, such that when
ε → 0,

(8)
yε → y weakly in L2(0, T ;H2(Ω) ∩H1

0 (Ω)) ∩H1(0, T ;L2(Ω)),
yε → y strongly in C([0, T ];L2(Ω)),
uε → u weakly in L2(0, T ;L2(Ω)).

Furthermore, one can easily check that (y, u) solves the equation:

(9)





∂ty −△y = χωu in Ω× (0, T ),
y = 0 on ∂Ω× (0, T ),
y(0) = y0 in Ω.
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It follows from (1), (8) and (9) that

(10) limε→0Jε(yε, uε) ≥ limε→0

1

2

∫ T

0

∫

Ω

[(yε − yd)
2 + u2

ε] dx dt ≥ J(y, u).

Note that the second estimate in (7) and (8) yield that y(T ) ∈ S. Hence, u is ad-
missible for the problem (P ). Therefore, from the optimality of the pair (y(u∗), u∗)
to the problem (P ), it follows that J(y, u) ≥ J(y(u∗), u∗), which, together with
(10) and (6) gives

lim
ε→0

Jε(yε, uε) = J(y, u) = J(y(u∗), u∗).

Hence, (y, u) is an optimal pair for the problem (P ). However, according to The-
orem 2.2, the problem (P ) has a unique optimal control. Thus, we must have
(y, u) = (y(u∗), u∗). This, together with (8), gives the desired convergence of
{(yε, uε)}.

Stage 3. Necessary conditions for an optimal pair (yε, uε). Namely, there ex-
ist a positive constant λε, functions aε ∈ L2(Ω) and pε ∈ L2(0, T ;H1

0(Ω)) ∩
H1(0, T ; (H1

0 (Ω))
∗) satisfying:

(11)






∂tyε −△yε = χωuε in Ω× (0, T ),
yε = 0 on ∂Ω× (0, T ),
yε(0) = y0 in Ω,

(12)






∂tpε +△pε = −λε(yε − yd) in Ω× (0, T ),
pε = 0 on ∂Ω× (0, T ),
pε(T ) = aε in Ω,

(13) χωpε = −λεuε,

(14) aε ∈ ∂dS(yε(T )),

(15) ‖aε‖L2(Ω) =

{
1 if yε(T ) 6∈ S,
0 if yε(T ) ∈ S,

and

(16) λε =
ε

ε+ dS(yε(T ))
.

Corresponding to each v ∈ L2(0, T ;L2(Ω)) and λ > 0, we let yλ,v be the solution
to the following equation:

(17)





∂tyλ,v −△yλ,v = χω(uε + λv) in Ω× (0, T ),
yλ,v = 0 on ∂Ω× (0, T ),
yλ,v(0) = y0 in Ω.

Then, we write

(18) z =
yλ,v − yε

λ
.

Since (yε, uε) solves the equation (11), we infer from (17) that

(19)





∂tz −△z = χωv in Ω× (0, T ),
z = 0 on ∂Ω× (0, T ),
z(0) = 0 in Ω.
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Because the pair (yε, uε) is optimal to the problem (Pε), we find that

Jε(yλ,v, uε + λv)− Jε(yε, uε)

λ
≥ 0.

By (1) and (18), we can pass to the limit for λ → 0+ in the above inequality to get

(20)
dS(yε(T )) + ε

ε
〈aε, z(T )〉+

∫ T

0

∫

Ω

(yε − yd) · z dx dt+

∫ T

0

∫

Ω

uε · v dx dt ≥ 0,

where aε satisfies (14) and (15). Let λε be the number given by (16). Then it
follows from (20) that for each v ∈ L2(0, T ;L2(Ω)),

(21) 〈aε, z(T )〉+ λε

∫ T

0

∫

Ω

(yε − yd) · z dx dt+ λε

∫ T

0

∫

Ω

uε · v dx dt ≥ 0.

Write pε for the solution given by (12). Then, multiplying both sides of (19) by pε
and integrating it over Ω× (0, T ), we obtain the identity:

〈z(T ), pε(T )〉 −

∫ T

0

∫

Ω

(p′ε +△pε)z dx dt

=

∫ T

0

∫

Ω

χωv · pε dx dt, ∀ v ∈ L2(0, T ;L2(Ω)).

This, combined with (12) and (21), leads to the inequality:
∫ T

0

∫

Ω

(χωpε + λεuε) · v dx dt ≥ 0, ∀ v ∈ L2(0, T ;L2(Ω)),

which gives (13).

Stage 4. Passing to the limit for ε → 0 in (12)-(14).

We first observe that the property (14) is equivalent to the following:

(22) 〈aε, yε(T )− s〉 ≥ 0, ∀ s ∈ S.

By (15) and (16), we get

(23) 1 ≤ ‖aε‖
2
L2(Ω) + λ2

ε ≤ 2.

This, combined with (12) and the convergence results established in Stage 2, yields
the estimate:

‖pε‖L2(0,T ;H1
0
(Ω)) + ‖p′ε‖L2(0,T ;(H1

0
(Ω))∗)

≤ C(λε‖yε − yd‖L2(0,T ;L2(Ω)) + ‖aε‖L2(Ω)) ≤ C.

Here, C stands for two different positive constants independent of ε. Hence, it
follows from (23) and the above estimate that there exists a subsequence of {ε}ε>0,
still denoted in the same way, such that when ε → 0,

(24) aε → a0 weakly in L2(Ω), λε → λ0

and

(25) pε → p0 weakly in L2(0, T ;H1
0(Ω)) ∩H1(0, T ; (H1

0 (Ω))
∗).

Then, by (24), (25) and the convergence results obtained in Stage 2, we can pass
to the limit for ε → 0 in (12), (13) and (22) to get

(26)





∂tp0 +△p0 = −λ0[y(u
∗)− yd] in Ω× (0, T ),

p0 = 0 on ∂Ω× (0, T ),
p0(T ) = a0 in Ω,



874 G.WANG AND L.WANG

(27) χωp0 = −λ0u
∗,

(28) 〈a0, y(u
∗)(T )− s〉 ≥ 0, ∀ s ∈ S.

Stage 5. Non-triviality of λ0.

To prove that λ0 6= 0, we may assume that λ0 = 0 and arrive at a contradiction.
On one hand, we infer from (27), (26) and the uniqueness continuation for the heat
equation ([9]) that p0 = 0 a.e. in Ω× (0, T ). Hence,

(29) a0 = p0(T ) = 0.

On the other hand, it follows from (23) and (24) that there exists a positive constant
ε0, such that when ε ≤ ε0,

(30) ‖aε‖L2(Ω) ≥
1

2
.

Moreover, by (22), (23) and the convergence results obtained in Stage 2, we deduce
that

(31) 〈aε, y(u
∗)(T )− s〉 ≥ 〈aε, y(u

∗)(T )− yε(T )〉 → 0 when ε → 0.

Since S is a set of finite codimension in L2(Ω), it follows from Proposition 3.4 of

Chapter 4 in [5] that so does the set y(u∗)(T ) − S , {y(u∗)(T ) − s : s ∈ S}.
Therefore, according to Lemma 3.6 of Chapter 4 in [5], we infer from (31), (30) and
(24) that a0 6= 0. It contradicts to (29) and the non-triviality of λ0 is proved.

Stage 6. End of the proof. Because of (16), (24), we necessarily have λ0 > 0.
Let p∗ = −p0/λ0 and µ∗ = a0/λ0. Then (2.4), (2.6) and (2.7) follow directly from
(28), (26) and (27). This completes the proof.
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