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NUMERICAL COMPUTATION OF THE FIRST EIGENVALUE
OF THE p-LAPLACE OPERATOR ON THE UNIT SPHERE

A. EL SOUFI, M. JAZAR, AND H. AZARI

Abstract. In this paper, we discuss a numerical approximation of the first

eigenvalue of the p-Laplace operator on the sphere (S™, g) of R+
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1. Introduction

The p-Laplace operator has been extensively studied in recent years, especially
in the context of a bounded domain in R™ [12, 7, 6, 11, 5, 13, 2, 1]. Recently, there
has been an increasing interest in the study of this operator - and in particular
of its first eigenvalue - in the more general setting of Riemannian manifolds. The
aim of this work is to provide numerical approximation of the first eigenvalue of the
p-Laplace operator on the sphere (S™, g) of R**1 g being the standard Riemannian
metric of the sphere, namely the first positive number A* such that the following
problem admits a non trivial solution in W1P(S")

* -2 mn
(1.1) Afu = XNuluP™= in S",

where p > 1. It is well known that A\* is the minimizer of the associated energy

(12 N emmind [ VAP, f WS, Il =1 [ 1P =)

That is, A* is the best constant such that the following Poincaré type inequality
holds for any f such that [g, |f[P~2f = 0:

[owsrzx [

By [10, Corollaire 3.1], we know that A* is also the first eigenvalue of the p-

Laplace operator on a semi-sphere with Dirichlet boundary condition
(1.3) Afu = NululP~2 in SV,
' u=0 on 98T =5"""1

where S is the upper semi-sphere.
We know the following

11772
(1) A [” 1} for p > 2. [10, Theorems3.2]
(2) A* = n in the case where p = 2.
(3) The first eigenfunction u of (1.3) can be chosen to be nonnegative.
(4) w is radial: u = @(p) where p is the geodesic distance from the north pole

ST
(5) u is a non increasing function of p € [0,7/2], ¢(7/2) = 0 and ¢’(0) = 0.
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Of course, one can set the normalization ¢(0) = 1.

From the expression of the spherical Laplacian in polar coordinates, the constant
A* appears as the unique positive number such that the following problem admits
a solution

@, € C%(0,7/2)

(1) {7 o= Dl + (- DBl =Xl peO./2)
Px 20, 0u(0) =1, L (0) =0, pu(m/2) = 0.

Behavior of the eigenfunction near 7 Let’s look to the behavior of the
solution of (1.4) near §. First, note that if p < 2 then ¢ (7/2) = 0 implies
that ¢ (7/2) = 0 also. Now, if p > 2 then putting ¢t := § — p and writing
0x(p) = pu(F — 1) = at™ + O(t*), with a > 1, we get

(aot® P72 [(p — Daa(a — 1)t* 2 + (n — 1)aat®] = —A*(at)P~".

Then necessarily, one has (« —1)(p—2)+a—2=p—1,ie a= 2pp:11 > 2. In both
cases, p > 2 or p < 2, we have

(1.5) pu(m/2) = @, (7/2) = P (m/2) = 0.
2. Some monotony properties

By “first positive eigenvalue” problem it is classically meant: given a manifold
M, find a couple (), @), A the least positive possible such that the problem

App = AplplP™  in M,
=0 on OM.

Aiming to point out some monotony properties, we invert the order: given A > 0,
find a couple (M, ) such that the associated problem admits a solution.

For our purpose, we limit ourselves to geodesic balls, i.e., M = By(N, p), where
N is the north pole on the unit sphere and p € (0,7). The problem can then be
formulated as follows: given A > 0, find (px, pa) so that @, is the unique solution,
up to the multiplication by a constant, of the problem (2.1) on B,(N, py). This
gives directly the following

(2.1)

Proposition 2.1. For all A > 0 there exists a unique py € (0,7) such that the
problem (2.1) admits a unique solution px on Bg(N,py) satisfying oAx(N) = 1.
Moreover, the mapping A — py s continuous decreasing and limy_o px = 7 and
limy 00 pa = 0.

3. Approximate problem
Fix A > 0, p) € (0,7) and ¢, solution of the following

"2\ S 02(07/))\)5
A p—2 _ ' _
(3.1) [—¢)\] (p— Dy +(n—1) s p

ex =20, @xa(0)=1, ©3(0)=0, wr(px)=0.
In order to study Problem (3.1) we transform it into an initial condition problem.
Since we have a problem at zero, using development into fractional Taylor series,
one find that ¢(p) = 1 — ap?T + O(p?**®), for p near zero, where
2—p
o= —
p—1

cos p _
o =-AE pe(0,p),

and a:= E[/\/n]ﬁ
p
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Therefore, instead of considering the problem (3.1), one consider, for £ > 0, the
approximated problem (3.2)

P € 02 (Sa p)\,s)
cosp ,

—2 —
(32) § AL -V + - Dgeh e = =AELL pe (e

pree) =1—a? ¢ () = —a(2+ a)e'™,
where py o :==sup{0 <r <7mst. x>0 on Ier]}.
We have the following
Proposition 3.1. For all e < p <min(7, px.c), ) (p) is negative.

Proof. Assume that there exists ¢ < pg < min(3, px ) such that ¢\ _(po) = 0. If
p > 2 then vy (po) = 0 and hence py = px. Now, if p < 2 then writing p = pg — ¢,
t > 0 we have, by using the Taylor series of )y . near t = 0, i (p) = @a.(po)+at®,
we get

(aot® P72 [(p — Daa(a — 1)t* 2 4+ (n — 1)(—aa) cot pot® '] = —A(pa(po))P "
Thus, if pxe(po) # 0 we have (¢ —1)(p —2) + o =2 =0, ie. o= L5 >1and
(aa)P~™ = =X(pac(po))P~L. In both cases ¢z (po) = 0. Contradiction. O

Proposition 3.2. Let 0 < A\, A2 < A and 0 < g1 < €3 < €g, €9 small. Then for
all e2 < po < p1 < min{px, e, Prg,e0 | there exists C = C(n,p, A, g9, p1) > 0 such
that

(33) ”90)\1751 — Phz,e2 ”Cl([po,pl]) < Cmax{’/\%—i_a - >‘5+a’ ) ‘Ei—i_a - E%J’_a’}'
Proof. Write the ODE 3.2 as ®' = F(®, A, p), where ® := (¢, ¢’') and F(x,y, A, p) :=
(y, ﬁ [—(n—1)ycotp— )\xp_l(—y)Q_pD. Denote by ¢1 := @i, and @y =

Org.e-  Since @1,p2 € C®(ea,pm) where pn, = min{px, ;s Pr0.e0}, let L =
max{||Fy| r=(a,B), | FyllLe(a,B)}, where A and B such that o([po,p1]) C [A, B]
and ¢’ ([po, p1]) C [4, B]. Then by the general theory of the ODE one has,

191 — P2l poe (e ) < €| Pr(e2) — Pa(e2)]-
Remains to estimate |®1(e2) — Pa(e2)|. We have
lp1(e2) — p1(en)l < le2 = erl l@hl Lo (ere) < Clez — el

as |¢'| is increasing and ¢/ (¢1) = a(2 + a)ed . Now, setting a(\) := ()\/n)ﬁ (p—
1)/p, one has

< ealer) — wale2)| + Cler — &2

< la(A)ef™ = a(h2)e3 ™| + Cler — e

< Cmax{le1 — e, [ATT* = A7}

lp1(e2) — p2(e2)]

Let’s show that

(3.4) 07 |00 (e1,e0) < CeF.

Using (3.5) and the fact that ¢” < 0 near zero, we have
] < Ceoter|g(e2)| + C(1 — p1(e1))? ! max(ef, e20r)

< Ccoter|g)(e1)| + Ceoter|p](e2) — @y (e1)] + Cep max (e, e2cx)

<

Cef + Ccoterles — 1| | Lo (e ,20) + Ce1 max(ef, €53).
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Therefore, taking eo — g1 < %51 we get
||</7/1/||L°°(€1,€2) < CS? + OE%JFQ'
Using this, we have
|¢h (e2) — @i (e1)] < Clea —enef < Cleg™™ —e1™.
Then
¥i(e1) — ph(ea)| + Cleg ™™ — 1|
2+ a)la(M)ert™ = a(A)ey ™| + Cleg ™™ — e+

C max {|£}+O‘ — 5%+0‘|, )\}+O‘ — )\é‘“’“} )

£ (e2) — @5(e2)|

INIACIA

Lemma 3.3. There exists eg > 0 small such that for € < ey the function
A= AN e) = ¢X _(€) is decreasing, and ¢} _(¢) < 0.

Proof. We have
(3.5) (p— 1) .(e) = a2+ a)e® [(n — 1)ecote — n(1 — ag® )P~

A direct calculation gives

0
(p— 1)8—A(A,5)(5) =(2+a)e” [(n—1)ecote —n(l — ag®t*)P~!
a
+ n(p — 1)e*ta(l — ae®t*)P~?]
=(2+a)e” [(n—1)ecote — n(l — ag®T*)P73(1 — pae®**)]
which is negative for small €. O
Proposition 3.4. Let for € > 0 and A > 0, py . the solution of (3.2). Assume
that px.e < m, then @i (pre) = 0. Moreover, we have
(1) The function X\ — px ¢ is continuous and decreasing.

(2) There exists a unique A\ > 0 such that py, . = 5.

(3) The function e — A is increasing and for all p € [e, px. ] the function
e —> . (p) is increasing and

lim Ao = A",

e—0
and
lim ¢y, - = ¢"
e—0
Moreover, there exists a constant C > 0 such that
(3.6) e — N < Celte
and
(3.7) lox = eacellerep,..) < Celte,

Proof. 1. For the first point we will prove that the function A — pj . is decreasing.
For this we observe that A — 1 — ag?*® and A — —a(2 + a)e' T are decreasing.

Lemma 3.5. Consider two solutions w1 and @o corresponding respectively to Ay <
Aa. Then ©1(p) > pa2(p) for all p € [, pm], where py, = min(px, e, Prs.e)-



FIRST EIGENVALUE OF THE p-LAPLACE OPERATOR 817

Proof. Since 1(€) > pa(e), ¢ (e) > ¢4(e) and, by Lemma 3.3, ¢ () > ¢5(g), let
@ =1 — s and

po :=sup{p € (g, pm), ¥"(p) >0},

p1 = sup{p € (¢, pm), ¥'(p) >0},
and

p2 :=sup{p € (&, pm), ¥(p) > 0},
then, obviously, po < p1 < p2. In order to prove that ¢i(p) > wa(p) for all
p € [e, pm] it is sufficient to show that p,, < pa. Assume that ps < p,,. To get a
contradiction, evaluate the expression of the second derivative

(38) (= 1)¢"(p) = (n = 1)(=¢'(p) cot p — A=) ()" ()

at p1. Using ¢4 (p1) = @h(p1) and =Ml ™" (p1) > =dopb ™ (p1), we get ¢ (p1)
©45(p1) which is a contradiction. Henceforth, p,, < pa.

vV

2. We will show that limyopxe > 5 and limyxz, pae < 5 where Ao :=
n(L)pflefp_

p—1
For this write the differential equation as
(3.9) (p— 19" = —(n = 1) cot pib’ + X1 = )P~ (y")*7P,
where ¢ := 1 — . This implies directly the following differential inequality

(p—1)¢" < —(n — 1) cot pi’ + A(¥')* 7P,
which, setting z := v’ can be writing as
(p—1)2' < —(n—1)cotpz + A\z>7P,
with z(e) = C/\P_il, C > 0is a constant. By Proposition 3.1 z > 0 for all p € (g, po),
with po := min(7/2, pxc), thus (p — 1)z’ < Az27P which implies that 2P~1(p) <
Ap —e+ CP7Y < C'"7IX for p € (g,p0). Therefore, '(p) < C'A7T for all
p € (g, po) and hence, for p € (e, po),
_1
L—p(p) =1(p) < A7T[C + C'pl,
or
(3.10) p(p) > 1—C"AFT  Wpe (e, pm).
This obviously implies that limy_ px . > %
Let’s show the second limit: limy_x, px,c < 5. Equation (3.9) implies
(p— 19" = —(n— 1) cot py/
(p—1)2" > —(n—1)cotpz > —(n—1)cotez
>

!’

Z > =z,

where v := ﬁ cote. Integrating this differential inequality gives

—¢'(p) =¥/ (p) = Y (e)e 779
then
/ ! —v(p—e)
¢'(p) < —¢'(e)e ,
which gives
!
o(p) < o) + £ [0 1]
This implies that ¢ vanishes before p = e —~vIn [1 — ”y;f,((?)} which is obviously less

than 7 as A is near Ao (since in that case ¢(¢) is close to 0).
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3. The monotony of € — . is a direct consequence of the following lemma

Lemma 3.6. Consider 0 < €1 < €9 small and denote by @1 1= ey rer and pg 1=
©xe,,e0 the corresponding solutions respectively. Then A1 := Ae; < Ay = A, and
01 <o on [e2, %),

Proof. In order to find a contradiction let us assume that A\; > Ag. Since ¢f(e1) <
0 and €3 — &7 is small, one have by direct computation, ¢1(e2) < @2(e2) and
i (e2) < @h(e2). Now, since A\ > Ag then, by Lemma 3.3, A(A1,e2) < A(Ag,€2).
Using the continuity of the mappings ¢ — ¢/ (g) and € — A(Aa,€) at 1 one has
o (e2) < ¥4 (e2). Using a similar argument of that of the first point one gets that
©1 < @3 on [ea, pm]. This is a contradiction since here pm, = pPr,.e; = Pro,er = %
and by definition ¢1(pa,.e,) = 0 = w2(pxrs,e,). This proves the lemma and the
monotony. ([

This monotony implies that the limit Ay := lim._o A exists and for all p €
(0,7/2), px. e(p) converges to some function ¢o(p) and the same is true for the first
and second derivatives. Obviously this function ¢y is solution of (3.1) on the interval
(0,7/2). Moreover, po(m/2) = 0 by construction, ¢o(0) = lim._,o @x. () =1 —
ag?T® — 1 and by the same way ¢} (0) = 0. In other words \* = \g and ¢* = .
Now, for € > 0 small enough, one have, by construction,

1 (pu(€); £4l€)) = (0a.e(e), D5, () I < C(N)E .

To terminate notice that, using the continuous dependence of the solution in terms
of the initial data, one have, for all e < r < 7/2

[0x = Oaccllcreps, .y < CA)ET™ < Celte

Writing (3.8) in the form

1"

" =F(p,p,¢),

where F(p,z,y) := ﬁ [—(n — 1) cot py — AaP~!(—y)?~P], one can get the estimate
(3.6) by using the previous inequality (3.7) and calculating the difference at a

specific value of p, /4 for example. O

4. Numerical procedures

For each value of possible A, solve the ode with the following two conditions:
© is positive on [0,7/2),
p(r/2) = 0.
Proposed algorithm:
(1) Fix e > 0.
(2) Take A equal to an initial starting value.
(3) Solve the ODE (Py,) and determine pj .
(4) Test (pr,e =7/2)
(5) If test false then
o if p) . > ¢/2 then increase .
e elsewhere then decrease .

By “decrease” one means decrease half of the last step.
Another, more general, trick is to treat the constant A as another dependent
variable, adding the ODE (3, 4]

(4.1) N = 0.
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The problem (3.2) is again in standard form. Now, any of our standard methods
can be used to solve the BVP (3.2), (4.1) because its solution, which are eigenvalue—
eigenfunction pairs, are isolated.

This approach can be extremely convenient in the common case where only the
first one or two eigenvalues and eigenfunctions are desired.

Finite difference methods can also be applied directly to solve our problems.
After discretization the problem, it can be solved using standard linear algebra
routines. We can use the QR algorithm, note that this gives us all of eigenvalues
and eigenvectors.

There are other well-studied methods for calculating a set of eigenvalue approx-
imations. The Rayleigh—-Ritz method and collocation method, utilizes a variational
characterization of the eigenvalues and, after selection of an approximation space for
the eigenfunctions (e.g., piecewise polynomials) involves solving a resulting matrix
eigenvalue problem just as above.

We solving BVPs for ODEs in MATLAB with bvp4c [9], bvp4c implements a
collocation method for the solution of BVPs of the form

y =f(z,y.p), a<z<b,
subject to general nonlinear, two—point boundary conditions

g(y(a),y(b),p) =0.

Here p is a vector of unknown parameters. For simplicity it is suppressed in the
expressions that follow. The approximate solution y,(z) is a continuous function
that is a cubic polynomial on each subinterval [z, Z,,1+1] of a mesh a = z¢ < 21 <
-+ < xn =b. It satisfies the boundary condition

g(yn(a),yn(b)) =0

and it satisfies the differential equations (collocates) at both ends and the midpoint
of each subinterval

y;L(xn) = f(xnayh(xn))a
Y;L((In + 2n41)/2) = £((@n + Tnt1) /2, yn ((T0 + Tn41)/2)),

Y;L(xnﬂ) =f(Tny1,yn(Tni1)).

These conditions result in a system of nonlinear algebraic equations for the coef-
ficients defining y(x). In contrast to shooting, the solution y(z) is approximated
over the whole interval [a, b] and the boundary conditions are taken into account at
all times. The nonlinear algebraic equations are solved iteratively by linearization,
so this approach relies upon the linear equation solvers of MATLAB rather than its
IVP codes. The basic method of bvp4c, which we call Simpson’s method, is well-
known and is found in a number of codes. It can be shown [8] that with modest
assumptions, yp(z) is a fourth order approximation to an isolated solution y(x),
ie., ||ly(z)—yn(x)|| < Ch*. Here h is the maximum of the step sizes h,, = T,11— T
and C' is a constant. Because it is not true of some popular collocation methods,
we stress the important fact that this bound hold for all x in [a, b].

5. Numerical results

In this section we will present some numerical examples by using the numerical
procedures discussed in the previous sections.
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Example 5.1. This ezample illustrates the solution of a boundary value problem
involving an unknown parameter. It also shows how to evaluate the solution any-
where in the interval of integration. The task is to compute the eigenvalue of the
problem (3.2) with n = 3,p = 2,
&, () +2°% (p) Fe (p)
dt? sin (p)
on [e,m/2], where an initial guess of Ao = 2.5 and € = 0.001. The computed value

for the unknown parameter is A = 3.000000213508. The Numerical solution of v(p)
is shown in Figure 1.

+Ap(p)=0

EJA problem —— BVP with singular term.
1 T T ‘

Computed by n=3 and p=2
091 R

0.8} b

0.7f R

0.5f i

solution ¢(p)

0.4} b

0.2} b

0.1f b

F1GURE 1. Numerical solution obtained with n = 3,p = 2

Example 5.2. The boundary value problem (3.2) involving an unknown parameter
and a singular point with n = 3,p = 1.5,

—0-5 2 co 4
(-0 0) (0-5 Lot 422020 dt‘”’”) FA (o () =0

sin (p)

on [e,7/2] where an initial guess of Ao = 2 and € = 0.001. The computed value
for the unknown parameter is A\ = 2.401797995328. Figure 2 show the numerical
solution of o(p).

Example 5.3. This example introduces BVP (3.2) with n = 3,p = 3. The differ-
ential equation is

2 cos (p) & 9
(50 0) (2%@)%%) £ () =0

on [e,7/2] where an initial guess of Ao = 3 and € = 0.001. The computed value
for the unknown parameter is A = 3.708216401664. We plot ¢(p) from 0 to w/2
(Figure 3).
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EJA problem -- BVP with singular term.
1 T T T T T T
R\‘ Computed by n=3 and p=1.5

0.8}

0.7r

0.6

solution ¢(p)

0.4

0.3F

FIGURE 2. Numerical solution obtained with n = 3,p = 1.5

EJA problem -- BVP with singular term.

081 i

1 T T

Computed by n=3 and p=3‘
0.9+ b

solution ¢(p)

0.2 b

01F 1

FiGURE 3. Numerical solution obtained with n = 3,p =3

The numerical solution of A(n, p) is shown in Figure 4.

FIGURE 4. Problem with behavior of A(n, p)
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