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A FRONT-FIXING FINITE ELEMENT METHOD FOR

THE VALUATION OF AMERICAN PUT OPTIONS

ON ZERO-COUPON BONDS

ANTHONY D. HOLMES AND HONGTAO YANG

Abstract. A front-fixing finite element method is developed for the valua-

tion of American put options on zero-coupon bonds under a class of one-factor

models of short interest rates. Numerical results are presented to examine our

method and to compare it with the usual finite element method. A conjec-

ture concerning the behavior of the early exercise boundary near the option

expiration date is proposed according to the numerical results.
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1. Introduction

Consider a class of one-factor models of the short interest rate process:

(1.1) r(t) = ζ(X(t)), dX(t) = (φ(t) − ψ(t)X(t))dt+ σ(t)dW (t),

where ζ(x) is an invertible function on (−∞,+∞), φ(t), ψ(t) and σ(t) are some
known functions of t, and W (t) is a standard Brownian motion under the risk-
neutral measure. For ζ(x) = x and ζ(x) = ex, we have the popular Hull-White
model ([7]) and Black and Karasinski model ([4]), respectively.

Let x = η(r) be the inverse function of r = ζ(x). Assume that ζ(x) is twice
continuously differentiable. By using Ito’s formula, we can obtain the stochastic
differential equation (SDE) for the interest rate process r(t):

(1.2) dr(t) = a(r(t), t)dt + b(r(t), t)dW (t),

where

a(r, t) = ζ′(η(r))(φ(t) − ψ(t)η(r)) +
1

2
σ(t)2ζ′′(η(r)), b(r, t) = σ(t)ζ′(η(r)).

Then we have the following fundamental partial differential equation (PDE) for the
rational price V (r, t) of an interest rate derivative at time t ([3][14]):

(1.3) Vt +
1

2
b(r, t)2Vrr + a(r, t)Vr − rV = 0.

Since ζ(x) is invertible, we can rewrite the above PDE into the PDE for Ṽ (x, t) =
V (ζ(x), t):

Ṽt +
1

2
σ(t)2Ṽxx + (φ(t) − ψ(t)x)Ṽx − ζ(x)Ṽ = 0.
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The assumption that ζ(x) is invertible is necessary to derive the equivalent SDE
(1.2) for r(t) and the PDE (1.3) . For example, when ζ(x) = x2, we have the well-
known quadratic model. Since ζ(x) = x2 is not invertible on (−∞,+∞), we do
not have an SDE for the interest rate process r(t) = X(t)2 and can not express the
interest rate derivative price as a function of interest rate r. It should be pointed
out that ζ(x) can be chosen to be any bounded invertible function from (−∞,+∞)
to (0, 1), e.g.,

(1.4) ζ(x) =
ex

1 + ex
.

For such a choice of ζ(x), the interest rates will not take unrealistic values more
than 1. We are referred to [8] and [9] for other possible choices of ζ(x) and the
calibration of one-factor models.

Now let us consider an American put option on a T ∗-maturity zero-coupon bond.
The option expiration date is T (< T ∗) and its exercise price is K. Since the option
can be exercised at any time up to its expiration date, there is a critical interest rate
r∗(t) which is referred to as the early exercise interest rate. Denote the option price
by p(r, t). Let x∗(t) = η(r∗(t)) and p̃(x, t) = p(ζ(x), t). According to the above
argument, we can show that p̃(x, t) and x∗(t) solve the following free boundary
problem:

p̃t +
1

2
σ(t)2p̃xx + (φ(t)− ψ(t)x)p̃x − ζ(x)p̃ = 0, −∞ < x < x∗(t), 0 ≤ t ≤ T,(1.5)

p̃(x∗(t), t) = g(x∗(t), t), 0 ≤ t ≤ T,(1.6)

p̃x(x
∗(t), t) = gx(x

∗(t), t), 0 ≤ t ≤ T,(1.7)

p̃(x, T ) = g(x, T ), −∞ < x <∞,(1.8)

where g(x, t) = max(K−P̃ (x, t;T ∗), 0) is the payoff of the put option and P̃ (x, t;T ∗)
is the bond price when r = ζ(x) at time t.

Front-fixing/front-tracking methods have been applied for numerical valuation
of American options. Their favorable feature is that the early exercise boundaries
and option prices can be computed simultaneously and with higher accuracy. We
are referred to [6, 11, 12, 13, 15, 16] for recent work in this aspect for American
stock options. For the usual front-fixing method, the Landau transformation y =
(x+L)/(x∗(t) +L) will be employed after restricting the problem on the bounded
domain (−L, x∗(t)) for a sufficiently large positive number L. Here we shall use
the linear transformation y = x+ L− x∗(t) while the problem is truncated on the
variable domain (x∗(t)−L, x∗(t)). The transformation will not affect the coefficient
of the leading term in the partial differential equation (1.5). This approach is first
proposed for American options on stocks in [2], and our numerical results show
that it produces much more accurate approximations of early exercise boundaries
and option prices. In this paper we shall consider such a front-fixing finite element
method (FFEM) for the free boundary problem (1.5)–(1.8).

The outline of the paper is as follows. In §2 we develop a FFEM for the free
boundary problem (1.5)–(1.8) and establish its stability with an appropriate as-
sumption. In §3 we give details for the implementation of our method and show
how to compute bond prices and their derivatives when analytic formulas are not
available. In §4 numerical results are presented to examine our method and to
compare it with the usual finite element method in [17]. In particular, we shall an-
alyze the behavior of early exercise interest rates near the option expiration dates
numerically. We conclude the paper with remarks in the last section, §5.
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2. A front-fixing finite element method

In this section we consider a front-fixing finite element method for the free bound-
ary value problem (1.5)–(1.8) and analyze its stability with an appropriate assump-
tion about the approximate free boundaries near the option expiration date.

Let L be a positive number large enough such that

g(x, t) = 0, p̃(x, t) ≤ ǫ, ∀x ≤ x∗(t)− L,

where ǫ is a given error tolerance. Then we can truncate the free boundary problem
(1.5)–(1.8) into the following problem:

p̃t +
1

2
σ(t)2p̃xx + (φ(t) − ψ(t)x)p̃x − ζ(x)p̃ = 0, x∗(t)− L < x < x∗(t), 0 ≤ t ≤ T,

p̃(x∗(t)− L, t) = g(x∗(t)− L, t), 0 ≤ t ≤ T,

p̃(x∗(t), t) = g(x∗(t), t), 0 ≤ t ≤ T,

p̃x(x
∗(t), t) = gx(x

∗(t), t), 0 ≤ t ≤ T,

p̃(x, T ) = g(x, T ), −∞ < x <∞.

Consider the variable transforms:

τ = T − t, y = x− x∗(T − τ) + L,

u(x, τ) = e−βτ p̃(x, T − τ), ϕ(τ) = x∗(T − τ).

where β is a positive constant. Then we have the following nonlinear problem for
ϕ and u:

uτ − γ(τ)uyy + c(y, τ, ϕ, ϕ′)uy + d(y, τ ;ϕ)u = 0, 0 ≤ τ ≤ T, 0 < y < L,(2.1)

u(0, τ) = f(0, τ ;ϕ), 0 ≤ τ ≤ T,(2.2)

u(L, τ) = f(L, τ ;ϕ), 0 ≤ τ ≤ T,(2.3)

uy(L, τ) = fy(L, τ ;ϕ), 0 ≤ τ ≤ T,(2.4)

u(y, 0) = u0(y), 0 ≤ y ≤ L,(2.5)

where

γ(τ) =
1

2
σ(T − τ)2,

c(y, τ ;ϕ, ϕ′) = ψ(T − τ)(y + ϕ(τ) − L)− φ(T − τ) − ϕ′(τ),

d(y, τ ;ϕ) = ζ(y + ϕ(τ) − L) + β,

f(y, τ ;ϕ) = e−βτg(y + ϕ(τ) − L, T − τ),

v0(y) = g(y + ϕ(0)− L, T ).

Notice that we have two boundary conditions at y = L. The Neumann boundary
condition will be integrated into the variational problem and the Dirichlet boundary
condition will be used as a nonlinear equation for ϕ(τ). Define the bilinear form A
as follows:

A(v, w; τ, ϕ, ϕ′) = γ(τ)(vy , wy) + (c(y, τ ;ϕ, ϕ′)vy , w) + (d(y, τ ;ϕ)v, w),

where (·, ·) denotes the inner product of L2(Ω), the space of square integrable
functions on Ω = (0, L). Let H1

E(Ω) be the closure of
{
v ∈ C∞

(
Ω
)
: v(0) = 0

}
in

the usual Sobolev space H1(Ω), and let H−1(Ω) be the dual space of H1
E(Ω) (see

[1][10]). The variational form for problem (2.1)–(2.5) is: Find u ∈ L2
(
0, T ;H1

E(Ω)
)
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and ϕ ∈ C
(
[0, T ]) ∩ C1((0, T ]

)
such that uτ ∈ L2(0, T ;H−1(Ω)), u(0) = u0, and

(uτ , w) +A(u,w; τ, ϕ, ϕ′) = G(τ ;ϕ)w(L), ∀w ∈ H1
E(Ω), a.e. 0 ≤ τ ≤ T,(2.6)

u(L, τ) = f(L, τ ;ϕ), 0 ≤ τ ≤ T,(2.7)

where G(τ ;ϕ) = −γ(τ)fy(L, τ ;ϕ).
Let ∆τ : 0 = τ0 < τ1 < · · · < τM = T and ∆y : 0 = y0 < y1 < · · · < yN = L be

partitions of [0, T ] and [0, L], respectively, where M and N are positive integers.
Let Vh be the piecewise linear element subspace of H1

E(Ω) with respect to partition
∆y where h = max1≤j≤N (yj − yj−1). Denote the natural basis functions of Vh
by ω1, ω2, . . . , ωN , i.e., ωj ∈ Vh such that ωj(yi) = δij for j = 1, 2, . . . , N and
i = 0, 1, . . . , N , where δij is the Kronecker delta.

Recall that ϕ(0) is the solution of the following equation for x:

P̃ (x, T ;T ∗) = K.

Let

u0h =

N∑

j=1

u0(yj)ωj(y), ϕ0 = ϕ(0).

The finite element approximation to the variational problem (2.6)–(2.7) is: For
m = 1, 2, · · · , N , find umh ∈ Vh and ϕm > 0 such that

(δτu
m
h , w) +Am

(
u
m− 1

2

h , w
)
= Gmw(L), ∀w ∈ Vh(2.8)

umh (L) = f(L, τm;ϕm).(2.9)

where

Am(u,w) = A
(
u,w; τm− 1

2

, ϕm, δτϕm

)
, Gm = G

(
τm− 1

2

;ϕm− 1

2

)
,

u
m− 1

2

h =
umh + um−1

h

2
, τm− 1

2

=
τm + τm−1

2
, ϕm− 1

2

=
ϕm + ϕm−1

2
.

δτu
m
h =

umh − um−1
h

km
, δτϕm =

ϕm − ϕm−1

km
, km = τm − τm−1.

Here we only considered the the Crank-Nicolson scheme in time.
Concerning the stability of the finite element approximations, we need to assume

that the system (2.8)–(2.9) has a unique solution and that

|δτϕm| ≤ Cτν−1
m(2.10)

where 0 < ν < 1 and C is a generic positive constant. The above inequality has been
verified by numerical tests, but has not been mathematically proven. Substituting

w by u
m− 1

2

h in (2.8), we get

(2.11)
(
δτu

m
h , u

m− 1

2

h

)
+Am

(
u
m− 1

2

h , u
m− 1

2

h

)
= Gmu

m− 1

2

h (L).

Let

γm = γ
(
T − τm− 1

2

)
, ψm = ψ

(
T − τm− 1

2

)
,

cm(y) = c
(
y, τm− 1

2

;ϕm, δτϕm

)
, dm(y) = d

(
y, τm− 1

2

;ϕm

)
.
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Then we have

Am

(

u
m− 1

2

h , u
m− 1

2

h

)

= γm

∥

∥

∥

∥

u
m− 1

2

hy

∥

∥

∥

∥

2

+

(

cm(y)u
m− 1

2

hy + dm(y)u
m− 1

2

h , u
m− 1

2

h

)

= γm

∥

∥

∥

∥

u
m− 1

2

hy

∥

∥

∥

∥

2

+
1

2
cm(L)

∣

∣

∣

∣

u
m− 1

2

h (L)

∣

∣

∣

∣

2

−
ψm

2

∥

∥

∥

∥

u
m− 1

2

h

∥

∥

∥

∥

2

+

(

dm(y)u
m− 1

2

h , u
m− 1

2

h

)

≥ γm

∥

∥

∥

∥

u
m− 1

2

hy

∥

∥

∥

∥

2

+
1

2
cm(L)

∣

∣

∣

∣

u
m− 1

2

h (L)

∣

∣

∣

∣

2

+

(

β + min
0≤y≤L

ζ
(

y + ϕm− 1

2

− L
)

−
ψm

2

)∥

∥

∥

∥

u
m− 1

2

h

∥

∥

∥

∥

2

.

Thus, when β is sufficiently large, we can get

Am

(
u
m− 1

2

h , u
m− 1

2

h

)
≥ γ

∥∥∥um− 1

2

hy

∥∥∥
2

+
1

2
cm(L)

∣∣∣um− 1

2

h (L)
∣∣∣
2

.

where γ = min0≤τ≤T γ(τ). Hence it follows from (2.11) that

‖umh ‖2 −
∥∥um−1

h

∥∥2 + 2γmkm

∥∥∥um− 1

2

hy

∥∥∥
2

+ kmcm(L)
∣∣∣um− 1

2

h (L)
∣∣∣
2

≤ 2kmGmu
m− 1

2

h (L).

The assumption (2.10) implies that the sequence {ϕm} is bounded. Thus, the
sequences {Gm} and {umh (L)} = {f(L, τm;ϕm)} are also bounded. Therefore, we
have

‖umh ‖2 −
∥∥um−1

h

∥∥2 + 2γkm

∥∥∥um− 1

2

hy

∥∥∥
2

≤ Ckm
(
1 + τν−1

m

)
.

By summation, we obtain

M
max
m=1

‖umh ‖2 + 2γkm

M∑

m=1

∥∥∥um− 1

2

hy

∥∥∥
2

≤
∥∥u0h

∥∥2 + C

M∑

m=1

km
(
1 + τν−1

m

)
.

which leads to the following stability estimate

M
max
m=1

‖umh ‖+ 2γkm

M∑

m=1

∥∥∥um− 1

2

hy

∥∥∥
2

≤
∥∥u0h

∥∥2 + C.

3. Implementation

In this section we discuss the implementation of our FFEM in detail. Since there
are no known analytic formulas for the model other than the Hull-White model
(including the Vasicek model), we first consider how to compute zero-coupon bond
prices and their derivatives with respect to r, for example, for the Black-Karasinski
model and the model (1.4). Then we consider how to solve the nonlinear system
(2.8)–(2.9) and give an algorithm to implement our method.

As discussed in §1, we can see that P̃ (x, t;T ∗) is the solution of the final value
problem:

P̃t +
1

2
σ(t)2P̃xx + (φ(t) − ψ(t)x)P̃x − ζ(x)P̃ = 0, −∞ < x <∞, 0 ≤ t < T ∗,

P̃ (x, T ∗;T ∗) = 1, −∞ < x <∞.

In order to solve this problem on a bounded domain, we consider the transforms:

τ = T ∗ − t, y = ζ0(x) ≡
ex

1 + ex
, v(y, τ) = P̃ (ζ−1

0 (y), T ∗ − τ ;T ∗).

Then we have the following initial value problem for v(y, τ) on the interval Ω =
(0, 1):

vτ − c0(y, τ)vyy + c1(y, τ)vy + c2(y, τ)v = 0, 0 < y < 1, 0 < τ ≤ T ∗,(3.1)

v(y, T ∗) = 1, 0 < y < 1,(3.2)
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where

c0(y, τ) =
1

2
σ(T ∗ − τ)2y2(1− y)2,

c1(y, τ) = y(1− y)

(
ψ(T ∗ − τ)ζ−1

0 (y)− φ(T ∗ − τ)− 1

2
σ(T ∗ − τ)2(1− 2y)

)
,

c2(y) = ζ
(
ζ−1
0 (y)

)
.

Notice that y = r for the model (1.4). The new function v(y, τ) is simply the bond
price at time T ∗ − τ for this model.

Since c0(0, t) = c0(1, t) = 0, we essentially do not require any boundary condi-
tions at y = 0 and y = 1. For the Black-Karasinski model, we have c2(y) = y/(1−y)
which is singular at y = 1. However, we can show that P̃ (x, t;T ∗) → 0 and

P̃x(x, t;T
∗) → 0 as x → ∞ for this model. Thus V = {w ∈ H1(Ω) : w(1) = 0}

is the natural choice of the space for the weak form of the corresponding problem.
Since c2(y) = y for the model (1.4) is bounded, we simply set V = H1(Ω). Define
the bilinear form B by

B(τ ; v, w) = (c0(y, τ)vy , wy) + (c4(y, τ)vy , w) + (c2(y)v, w),

where

c4(y, τ) = y(1− y)

(
ψ(T ∗ − τ)ζ−1

0 (y)− φ(T ∗ − τ) +
1

2
σ(T ∗ − τ)2(1− 2y)

)
.

The variational problem for the initial value problem (3.1)–(3.2) is: Find v ∈
L2(0, T ∗;V ) such that vτ ∈ L2(0, T ∗;V ′), v(0) ≡ 1, and

(3.3) (vτ , w) + B(τ, v, w) = 0, ∀w ∈ V, a.e. , 0 < τ ≤ T ∗

Furthermore, we can form the following variational problem for q(y, τ) =

P̃x(ζ
−1
0 (y), T ∗ − τ ;T ∗): Find Find q ∈ L2(0, T ∗;V ) such that qτ ∈ L2(0, T ∗;V ′),

q(0) = 0, and

(3.4) (qτ , w) + B(τ ; q, w) = F (τ ;w), ∀w ∈ V, a.e. , 0 < τ ≤ T ∗

where

F (τ ;w) = −
(
ζ′
(
ζ−1
0 (y)

)
v, w

)
− ψ(T ∗ − τ)(y(1 − y)vy, w).

The above two variational problems can be solved by the same finite element method
simultaneously, e.g., using a piecewise linear element space.

Now let us consider how to solve the nonlinear system (2.8)–(2.9). Write

vmh (y) =

N∑

j=1

vmj ωj(y)

We can rewrite (2.8)–(2.9) into the following matrix form:
(
A+

1

2
kmBm

)
V m =

(
A− 1

2
kmBm

)
V m−1 + kmF

m,(3.5)

vmN = f(L, τm;ϕm)(3.6)

where

A = (ωj , ωi)N×N , Bm = (Am (ωj , ωi))N×N ,

V m = (vm1 , . . . , v
m
N ) , Fm = (0, . . . , Gm) .

For saving computational time, we divide Bm into

Bm = B(1)
m + ϕmB

(2)
m ,
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where B
(1)
m and B

(2)
m are independent of ϕm. Notice that (3.5) defines an implicit

vector function V m of ϕm. We can consider (3.6) as a nonlinear equation of ϕm

which can be rewritten as:

H(ϕm) = eβτmvmN −K + P (ϕm, T − τm;T ∗) = 0,

where we have used the fact that P (ϕm, T − τm;T ∗) ≤ K. In order to solve this

equation by Newton’s method, we need v̇mN =
∂vm

N

∂ϕm

. Differentiating (3.5) with

respect to ϕm, we get the linear system for the derivative V̇ m = ∂V m

∂ϕm

:

(3.7)

(
A+

1

2
kmBm

)
V̇ m = km

∂Fm

∂ϕm
− 1

2
kmB

(2)
m V m− 1

2 .

Systems (3.5) and (3.7) have the same tridiagonal coefficient matrix and thus can
be solved simultaneously by using the Thomas algorithm.

To sum up, for a given tolerance ǫ, our front-fixing finite element method is
implemented as follows:

For m = 1, 2, . . . ,M , do

1. Compute B
(1)
m and B

(2)
m .

2. Let ϕ
(0)
m = ϕm−1. For j = 1, 2, . . .

2.1. Solve (3.3) and (3.4) by the same finite element method.
2.2. Build the systems (3.5) and (3.7).
2.3. Solve the systems (3.5) and (3.7) by using the Thomas algorithm.

2.4. Compute ϕ
(j)
m by

ϕ(j)
m = ϕ(j−1)

m −
H

(
ϕ
(j−1)
m

)

H ′

(
ϕ
(j−1)
m

) .

2.5. If ∣∣∣ϕ(j−1)
m − ϕ(j)

m

∣∣∣ < ǫ,

then let ϕm = ϕ
(j)
m and terminate the j-loop. Otherwise, go to 2.1.

4. Solve system (3.5) for a better approximation of V m.

End do

We conclude this section by some remarks on the partitions ∆τ and ∆y. As in
[2], we shall use variable step sizes in time by setting

τm =
Tm2

M2
, m = 0, 1, . . . ,M.

In this way, we have relatively more steps near the option expiration date in order
to capture the singularity of the early exercise interest rates. For example, we have
more than 3% of steps in the interval [0, 0.001] for one-year options. We shall use
uniform partitions in spatial variable y such that the mesh size h in y is almost the
same as min1≤m≤M

√
km =

√
T/M . We just simply set β = 0 since our tests show

that the value of β does not affect the accuracy of computations.

4. Numerical Results

In this section, we shall examine our front-fixing finite element method (FFEM)
numerically and compare it with the usual finite element method (FEM) in [17].
Our programs were written in C++ and run on a computer with an Intel Core 2
CPUs of 3.0 GHz. Here we only consider the Vasicek model and the Hull-White
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model for simplicity. For the Vasicek model, the values of the parameters are given
in Table 1 in which θ = φ/ψ is the long-term expected interest rate. For the
Hull-White model, we assume that the initial term structure is determined by the
two-factor CIR model as in [7, 18]:

r(t) = x1(t) + x2(t),

dxi = κi(θi − xi)dt+ σi
√
xidWi(t), i = 1, 2.

where W1(t) and W2(t) are two independent standard Brownian motion under the
risk-neutral probability. The parameters are specified in Table 2. We are referred
to [7, 17] for how to calibrate the Hull-White model.

Table 1. Parameters for the Vasicek model

Case σ ψ θ r(0)
VAS1 0.06 0.40 0.08 0.08
VAS2 0.10 0.30 0.10 0.10

Table 2. Parameters for the TCIR model

Case σ1 κ1 θ1 x1(0) σ2 κ2 θ2 x2(0)
TCIR1 0.05 0.2 0.06 0.06 0.10 0.4 0.04 0.04
TCIR2 0.20 0.3 0.06 0.06 0.30 0.4 0.04 0.04

In the following, one-year American put options written on 5-year and 30-year
bonds will be considered. The option exercise prices are chosen to be the same
as the current forward bond prices. First, we check the dependency of truncation
errors on L. In Table 3 and Table 4, we display the maximum of the maximum
absolute errors (MMAE) for today’s option prices and early exercise interest rates
(EEIR) for the 4 put options. The maximum absolute errors are computed between
the approximate values for L = 2.0 and the L as in the tables when the error
tolerance for Newton’s Method is set to be 1.0e− 10. The maximum numbers (I)
of iterations for Newton’s method is also given in these tables. The results suggest
that L = 1.0 is sufficiently large enough for the eight options. It also shows that
Newton’s method attains the desired accuracy within at most 7 iterations.

Table 3. Dependency of MAEs on L: the Vasicek model

M 100 1000 10000
L Price EEIR I Price EEIR I Price EEIR I
0.8 3.3e− 10 1.8e− 13 5 4.7e− 10 3.9e− 11 6 4.6e− 09 1.5e− 09 7
1.0 1.0e− 12 1.9e− 13 5 4.9e− 11 4.8e− 11 6 4.6e− 09 3.0e− 09 7
1.2 4.8e− 13 1.8e− 13 5 9.1e− 11 4.1e− 11 6 5.2e− 09 1.7e− 09 7
1.4 7.0e− 13 1.7e− 13 5 8.8e− 11 3.6e− 11 6 4.5e− 09 2.6e− 09 7
1.6 1.2e− 12 1.7e− 13 5 4.2e− 11 3.4e− 11 6 6.4e− 09 2.2e− 09 7

Now we investigate the convergence of our method with L = 1.0 and ǫ = 1.0e−8.
We display the the L2-norm and H1-norm of the error uMh − uMh/2 in Figure 1
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Table 4. Dependency of MAEs on L: the Hull-White model

M 100 1000 10000
L Price EEIR I Price EEIR I Price EEIR I
0.8 2.0e− 12 3.8e− 14 5 2.1e− 11 9.8e− 12 5 1.0e− 09 1.5e− 09 6
1.0 1.1e− 12 4.9e− 14 5 2.9e− 11 7.3e− 12 5 3.8e− 10 1.1e− 09 6
1.2 8.7e− 13 5.5e− 14 5 2.5e− 11 1.1e− 11 5 2.9e− 10 1.1e− 09 6
1.4 1.1e− 12 3.9e− 14 5 2.2e− 11 6.4e− 12 5 1.0e− 09 1.3e− 09 6
1.6 7.6e− 13 3.6e− 14 5 5.4e− 11 7.4e− 12 5 2.3e− 10 1.1e− 09 6

and Figure 3. We also display the the L2-norm and maximum norm of the error
ϕM−ϕ2M in Figure 2 and Figure 4, where ϕM is the piecewise linear interpolation of
ϕm (m = 0, 1, . . . ,M). We can observe that the Crank-Nicolson scheme converges
linearly and quadratically in the L2-norm and H1-norm as expected. The rates
of convergence for the early exercise interest rates are more than 1 and 0.5 in the
L2-norm and maximum norm, respectively.
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Next, we verify the assumption (2.10) numerically. To this end, we use a very
small step size in time by taking M = 20000. In Figures 5– 6, we depict the graphs
of ϕM , ϕ′

M over the interval [0, 0.001] for which there are about 630 time steps (only
20 time steps for the uniform partition). The exponential functions in the figures
are obtained by fitting the data to the model a+ b ∗ τc. These figures demonstrate
that the assumption (2.10) holds. Especially, we can observe that the sums of the
exponents for the fitted exponential functions for ϕM and ϕ′

M are very close to 1,
which also supports the assumption. Furthermore, we can propose a conjecture
about the behavior of ϕ near τ = 0: There are some constants c1 > 0, c2 ≥ 0,
ν > 0, and µ ≥ 0 such that

(4.1) ϕ(τ) ∼ ϕ(0) + τν(c1 − c2 log(τ))
µ, τ → 0+.

It seems that we do not have ν = µ = 1
2 as for American options on stocks (see [5]).
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Figure 5. Early exercise interest rates near the option expiration
date: the Vasicek model & Case VAS1
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Figure 6. Early exercise interest rates near the option expiration
date: the Vasicek model & Case VAS2
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Figure 7. Early exercise interest rates near the option expiration
date: the Hull-White model & Case TCIR1
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Figure 8. Early exercise interest rates near the option expiration
date: the Hull-White model & Case TCIR2
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Finally, we want to compare our front-fixing finite element method (FFEM)
with the finite element method (FEM) in [17]. We consider one-year American put
options written on bonds with expiration dates 5 years, 10 years, 15 years, and 20
years. The option exercise prices are given as the percentage of the current forward
bond price: 87%, 88%, 89%, 90%, and 91%. We display the maximum absolute
errors for 20 option prices, hedge ratios (∂p/∂P ), and early exercise interest rates
in Table 5 – Table 10. In these tables, the first and second rows are the maximum
absolute errors when the “exact values” are the approximate values computed by
FEM and FFEM with 25600 time steps, respectively, for each given number M of
time steps. As expected, FFEM provides more accurate approximations, especially
for early exercise interest rates.

Table 5. MAEs for put prices: The Vasicek model

Case VAS1 VAS2
M FEM FFEM FEM FFEM
100 1.27e− 2 8.63e− 3 7.19e− 3 1.81e− 3

1.27e− 2 8.63e− 3 7.20e− 3 1.81e− 3
200 3.42e− 3 2.12e− 3 1.49e− 3 4.25e− 4

3.42e− 3 2.12e− 3 1.49e− 3 4.25e− 4
400 8.05e− 4 5.25e− 4 4.05e− 4 1.01e− 4

8.05e− 4 5.25e− 4 4.05e− 4 1.01e− 4
800 2.19e− 4 1.30e− 4 1.06e− 4 2.40e− 5

2.20e− 4 1.30e− 4 1.07e− 4 2.43e− 5
1600 5.38e− 5 3.21e− 5 2.59e− 5 5.57e− 6

5.40e− 5 3.22e− 5 2.62e− 5 5.89e− 6

Table 6. MAEs for hedge ratios: The Vasicek model

Case VAS1 VAS2
M FEM FFEM FEM FFEM
100 1.39e− 3 7.34e− 4 7.17e− 4 4.69e− 5

1.39e− 3 7.34e− 4 7.17e− 4 4.69e− 5
200 3.04e− 4 1.74e− 4 1.79e− 4 9.85e− 6

3.04e− 4 1.74e− 4 1.79e− 4 9.86e− 6
400 8.48e− 5 4.38e− 5 2.81e− 5 2.27e− 6

8.48e− 5 4.38e− 5 2.81e− 5 2.28e− 6
800 2.28e− 5 1.11e− 5 5.70e− 6 5.06e− 7

2.28e− 5 1.11e− 5 5.69e− 6 5.14e− 7
1600 5.77e− 6 2.73e− 6 1.11e− 6 1.17e− 7

5.78e− 6 2.74e− 6 1.10e− 6 1.23e− 7
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Table 7. MAEs for early exercise interest rates: The Vasicek model

Case VAS1 VAS2
M FEM FFEM FEM FFEM
100 5.04e− 3 6.33e− 5 4.61e− 3 3.80e− 5

5.03e− 3 4.96e− 5 4.61e− 3 2.24e− 5
200 2.58e− 3 2.92e− 5 2.27e− 3 2.17e− 5

2.58e− 3 1.29e− 5 2.27e− 3 5.93e− 6
400 1.25e− 3 2.07e− 5 1.25e− 3 1.73e− 5

1.24e− 3 3.31e− 6 1.26e− 3 1.54e− 6
800 5.47e− 4 1.90e− 5 6.25e− 4 1.72e− 5

5.36e− 4 8.45e− 7 6.17e− 4 3.95e− 7
1600 3.12e− 4 1.86e− 5 3.12e− 4 1.74e− 5

3.14e− 4 2.14e− 7 3.04e− 4 1.01e− 7

Table 8. MAEs for put prices: The Hull-White model

Case TCIR1 TCIR2
M FEM FFEM FEM FFEM
100 1.01e− 1 8.01e− 2 9.38e− 3 5.09e− 3

1.01e− 1 8.01e− 2 9.38e− 3 5.09e− 3
200 2.05e− 2 1.93e− 2 2.23e− 3 1.25e− 3

2.05e− 2 1.93e− 2 2.23e− 3 1.25e− 3
400 5.72e− 3 4.29e− 3 5.90e− 4 3.06e− 4

5.73e− 3 4.29e− 3 5.90e− 4 3.07e− 4
800 1.74e− 3 1.05e− 3 1.55e− 4 7.55e− 5

1.74e− 3 1.06e− 3 1.55e− 4 7.57e− 5
1600 4.26e− 4 2.62e− 4 3.96e− 5 1.85e− 5

4.26e− 4 2.62e− 4 3.98e− 5 1.87e− 5

Table 9. MAEs for hedge ratios: The Hull-white model

Case TCIR1 TCIR2
M FEM FFEM FEM FFEM
100 5.04e− 2 7.87e− 2 1.22e− 3 1.72e− 4

5.04e− 2 7.87e− 2 1.22e− 3 1.72e− 4
200 2.14e− 2 2.61e− 2 1.74e− 4 3.35e− 5

2.14e− 2 2.61e− 2 1.74e− 4 3.35e− 5
400 1.91e− 3 2.43e− 3 4.63e− 5 8.86e− 6

1.91e− 3 2.43e− 3 4.63e− 5 8.86e− 6
800 5.82e− 4 7.48e− 4 1.05e− 5 2.01e− 6

5.83e− 4 7.47e− 4 1.05e− 5 2.01e− 6
1600 1.58e− 4 1.82e− 4 2.66e− 6 5.01e− 7

1.58e− 4 1.81e− 4 2.66e− 6 5.01e− 7

5. Conclusions

In this paper we have applied the front-fixing finite element method proposed
in [2] to American put option problems on zero-coupon bonds. Our numerical
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Table 10. MAEs for early exercise interest rates: The Hull-White model

Case TCIR1 TCIR2
M FEM FFEM FEM FFEM
100 6.17e− 3 2.97e− 5 5.16e− 3 5.49e− 5

6.17e− 3 2.50e− 5 5.16e− 3 3.74e− 5
200 2.77e− 3 1.46e− 5 2.38e− 3 2.76e− 5

2.76e− 3 6.19e− 6 2.40e− 3 9.76e− 6
400 1.17e− 3 1.75e− 5 1.17e− 3 2.05e− 5

1.17e− 3 1.57e− 6 1.18e− 3 2.52e− 6
800 7.03e− 4 1.82e− 5 5.86e− 4 1.91e− 5

7.03e− 4 4.00e− 7 5.98e− 4 6.44e− 7
1600 3.13e− 4 1.84e− 5 3.12e− 4 1.95e− 5

3.28e− 4 1.01e− 7 3.01e− 4 1.63e− 7

results show that the method with the Crank-Nicolson scheme converges linearly
and quadratically in L2 and H1 norms. Together with variable step sizes in time,
it produces very accurate approximations of early exercise interest rates, which
enables us to propose a conjecture (4.1) about the asymptotic expansion of early
exercise interest rates near option expiration dates for the Hull-white model. We
shall try to establish this conjecture. Now we are developing C++ programs for
the calibration of model (1.1) and the valuation of the bond prices in the general
case. Empirical testing of model (1.1) will also be considered in our near future
work.
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