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DERIVATION OF VERTICAL EQUILIBRIUM MODELS FOR CO2

MIGRATION FROM PORE SCALE EQUATIONS
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Abstract. Equations describing flow in porous media averaged to allow for lateral spatial vari-

ability but integrated over the vertical dimension are derived from pore scale equations. Under

conditions of vertical equilibrium, the equations are simplified and employed to describe migration
of CO2 injected into an aquifer of variable thickness. The numerical model based on the vertical

equilibrium equations is shown to agree well with a fully three-dimensional model. Trapping of
CO2 in undulations at the top of the aquifer is shown to retard CO2 migration.
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1. Introduction

Storage of carbon dioxide (CO2) in saline aquifers has been proposed as an al-
ternative to reduce greenhouse gas emissions [5, 45]. It is expected that injection
rates of several million tons per year will be required to capture the emissions from
one or several industrial point sources [1]. Detailed modeling and numerical simu-
lations will be required to evaluate the storage capacity of potential sequestration
sites, to assess the feasibility of injecting such high volume rates and to predict the
long-term fate of the injected CO2 [6]. In particular, quantitative predictions of
migration distances and estimates of time scales associated with different trapping
mechanisms will be essential in assessing possible risks associated with CO2 storage
[45].

Supercritical CO2 injection and subsequent storage in saline aquifers involves
physical and chemical trapping mechanisms that occur over several length and
time scales. During the injection period, CO2 quickly rises due to its lower density
with respect to the resident brine. Once it reaches an impermeable sealing layer at
the top of the aquifer it accumulates beneath it [4, 29]. This structural entrapment
of CO2 is the primary trapping mechanism during the injection time frame. Once
injection ceases and the driving pressure dissipates, CO2 will migrate due to buoy-
ancy forces alone, following the upslope dip of the caprock [4, 31, 48]. During this
period, CO2 will become gradually immobilized due to irregularities in the caprock
surface and other primary trapping processes such as residual and solubility trap-
ping [38, 45]. Mineralization occurs on much longer time scales than the primary
mechanisms [35, 45], and thus is a secondary process not considered further here.
Characterization of the primary post-injection trapping processes is essential for
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understanding the long-term fate of CO2 in the subsurface over the thousand years
time scale. However, because of the large spatial and temporal scales that must
be considered, traditional numerical approaches to this problem are impractical in
terms of computational requirements. Therefore, efficient mathematical modeling
approaches are needed to speed up simulations [6].

With the objective of developing effective models, certain physical characteristics
of the CO2-brine system can be exploited to simplify the governing system of equa-
tions. For example, given the strong buoyancy forces, it is reasonable to assume that
complete gravity segregation occurs quickly during and after the injection period.
In addition, the large horizontal and thin vertical scales result in negligible vertical
movement of the fluids. These characteristics lead to implementation of what is
known as the vertical equilibrium (VE) assumption. This assumption facilitates
vertical integration of the three-dimensional governing flow equations to obtain a
set of two-dimensional equations [39, 49, 56]. So called vertically-integrated or VE
models have been used extensively in the past to simulate the behavior of petroleum
reservoirs where strong vertical fluid segregation occurs [9, 10, 13, 19, 39, 44, 55],
or groundwater aquifers with large aspect ratios [2, 20]. VE models have received
renewed attention in recent years to model CO2 injection and migration in saline
aquifers [12, 22, 31, 36, 43, 47, 49, 51]. Despite the model simplifications, analyti-
cal and numerical solutions to VE models have compared well with solutions using
standard simulation tools [12, 49, 51], most notably in two recent benchmark stud-
ies [8, 50]. Recently, Nilsen et al. [48] simulated the long-term migration of CO2

injected at the Utsira formation in the North Sea [7]. Furthermore, because of their
infinite vertical resolution, VE models have proven to be particularly advantageous
for modeling the long-term movement of thin CO2 plumes underneath the aquifer
caprock [31, 32, 48].

As with any simplified model, the VE model is not appropriate for all systems.
The limitations become important when considering small-scale (in the tens of
meters) or short-term (<10 yrs) processes, particularly when anisotropy and inter-
mediate shale layers retard the vertical migration of the CO2 plume. For example,
it has been shown that the VE model leads to inaccurate results when examining
near wellbore flow effects of CO2 injection [42]. Therefore, we focus on the longer
term effects of CO2 migration over tens of kilometers after injection has ceased, an
application for which the VE model is appropriate.

Previous mathematical models based on the VE assumption have been devel-
oped from the standard Darcy theory of two-phase flow, e.g.[31, 39]. By this pro-
cess Darcy scale, or macroscale equations, are integrated over the thickness of the
flow domain. The macroscale equations are employed as a starting point for a
change in scale to the megascale, the fully integrated scale. Here, we begin with
the microscale equations. These equations can be integrated to the macroscale to
obtain multiphase flow equations in term of variables that are well-defined functions
of their microscale precursors for multiphase flow. This procedure is best carried
out when the conservation equations of mass, momentum, and energy, along with
the fundamental thermodynamic postulates, are integrated to the macroscale [34].
These constructed equations and closure conditions would then have to be inte-
grated over the vertical to obtain a VE set. An alternative approach to obtaining
the VE equation is to start with the microscale equations and, in one step, integrate
the conservation and thermodynamic relations to a form that is macroscopic in the
lateral direction and megascale in the vertical direction. This is accomplished by us-
ing the theorems for mixed megascale/macroscale averaging [25]. We note that the
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use of available theorems to obtain a set of equations that is completely megascopic
has been advanced recently [26]. The present development seems to be the first
for obtaining mixed macroscale/megascale equations. The advantage of this ap-
proach is that the need to develop approximate closure relations at the macroscale
is bypassed. Rather, all closure relations and parameters are defined directly at the
scales of the problem of interest. For the present study, we reduce the equations to
forms previously employed for VE models (e.g., [22, 31, 36, 39]), but we are also
explicitly aware of all assumptions that have gone into the equations, definition of
variables, and assumptions in the closure relations.

An important aspect of confirming the effectiveness of the VE equations for
modeling is verification against standard simulation tools that solve the fully three-
dimensional macroscale equations in realistic geologic systems. In previous studies,
these types of systems have been the subject of a benchmark comparison [8] and a
recent study of the Utsira formation [48]. In the former study, several institutional
and commercial codes, including a VE model [22], were applied to a hypothetical
injection/post-injection scenario in the Johansen formation, a heterogeneous forma-
tion that is structurally characterized by a dipping, non-flat top surface. Although
a strict comparison was not performed in this case, the VE model produced qual-
itatively similar results to the three-dimensional simulators. In the latter study,
the Sleipner injection site [7] was modeled using a VE model and then compared
with ECLIPSE 3D simulations [48]. The VE simulations were shown to compare
favorably to full three-dimensional simulations of CO2 migration in real aquifers.
However, the primary goal was to validate the VE and 3D models against observed
data. The results of this work identified caprock topography as a feature that
greatly impacted the validation. In addition, the VE model was able to match the
observed data better than the ECLIPSE 3D simulations, which was attributed to
difficulty in obtaining sufficient vertical resolution with the ECLIPSE 3D simulator.

Much of the recent research on the long-term fate of CO2 in saline aquifers
has focused on solubility and residual trapping mechanisms. For example, recent
publications emphasized the role of the aquifer slope, regional background flow
and residual trapping on the migration distance and plume speed [31, 33, 36, 37].
Other studies have investigated the role of the capillary fringe and show that it
may reduce the tip speed of the CO2 plume significantly for systems with strong
capillary effects [24, 33, 50]. And finally, recent studies have examined the process of
convection-driven CO2 dissolution into brine using high-resolution numerics and/or
analytical methods [18, 28, 41, 46, 52, 53]. This enhanced dissolution phenomenon
has recently been incorporated into the vertically-integrated framework and used
to simulate its impact on large scale CO2 storage systems [23]. On the other hand,
with the exception of brief discussions in few studies (e.g. [40]), structural trapping
has received much less attention even though experience gained in hydrocarbon
exploration [11], would indicate that it may represent the largest potential trapping
volume in the reservoir. Moreover, structural trapping takes place at much shorter
time scales than the other three mechanisms so that it controls the plume evolution
during the first several hundred years. For example, Nilsen et al. [48] demonstrated
the importance of correctly modeling the caprock topography for understanding
the observed plume spreading at the Utsira Sand aquifer. Despite the potentially
significant impact of irregular caprocks, no other study has addressed the effect on
structural trapping and long-term CO2 migration. The present study is motivated
by the desire to examine VE models in simulating CO2 migration in synthetic
aquifers with irregular caprock topography. We compare results of VE models
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with full 3D simulations to demonstrate the applicability of VE models to simulate
irregular caprock scenarios. In addition, we analyze the simulation results to shed
light on the influence of caprock geometry on plume migration distance and speed.
In a subsequent manuscript, we will use those results as the main motivation to
develop effective equations that account for sub-scale heterogeneity in the caprock
topography.

This manuscript has three main objectives: i) to present a rigorous derivation
of the VE equations for modeling CO2 migration in saline aquifers; ii) to verify the
suitability of VE formulations to simulate CO2 migration in aquifers with irregular
caprock; and iii) to study the effect of caprock topography on the intermediate to
long term CO2 movement.

2. Averaged Porous Media Equations

In this section, we will develop averaged porous media equations that can be
used to model two-dimensional lateral migration of a non-wetting CO2 phase, des-
ignated as the n phase, into a brine-saturated w phase. The model formulation will
be presented starting with the three-dimensional microscale equations for mass and
momentum conservation. These equations will be integrated over a spatial region,
Ω, that is a cylinder whose height is denoted as b such that the size of the aver-
aging volume is bπ(∆r)2 where ∆r is the macroscale lateral averaging length scale
and A = π(∆r)2 is the cross-sectional area of the cylinder. Here, the microscale is
defined to be at the scale of individual pores, the macroscale is the averaging scale
in the lateral direction of order ∆r, while the megascale is the scale of the aquifer
height. Thus the resultant spatially integrated equations are macroscopic in the
lateral directions but megascopic in the vertical direction. Because the equations
have both macroscale and megascale elements, they will be referred to, for conve-
nience, as being at the averaged scale. The averaging theorems required to perform
the integration to obtain the appropriate conservation equations with these scale
characteristics are from the [3, (2, 0), 1] family [25], which are described in more
detail in Appendix A.

To begin, we will summarize the derivation framework as well as identify and
describe the assumptions employed in the model development at both at the mi-
croscale and averaged scale. These assumptions are not necessary for transforma-
tion of the three-dimensional microscale equations to the larger scales and may be
relaxed depending on the system of interest.

2.1. Microscale System and Assumptions. We begin with a microscale sys-
tem of mass and momentum conservation equations for both the n and w phases. At
the microscale, certain simplifying assumptions are invoked to facilitate the model
derivation. First, we will assume that mass transfer between phases is negligible and
that no mass accumulates at the interfaces between phases. Thus, the mass density
of the interfaces, mass per unit area, is zero; and no mass conservation equation
for the interface need be developed. In addition, we consider the solid grains to be
fixed with zero velocity. And finally, we consider each fluid to be Newtonian with
relatively slow velocities and negligible intra-fluid viscous effects.

Each of these assumptions will be applied throughout the derivation with a
discussion of their effect on the equation development. We emphasize that these
assumptions are not necessary to perform the derivation, and may not be valid
for all systems. For instance, we have only considered an isothermal system and
have not written an energy conservation equation for this system. In some cases, it
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will be necessary to integrate energy along with mass and momentum conservation
equations, but that is beyond the scope of this current work.

2.2. Averaged Scale System and Assumptions. The objective of the deriva-
tion is to arrive at an averaged scale system of mass and momentum conservation
equations for a post-injection segregated CO2-brine system, such as depicted in Fig
1. In this figure, three regions are depicted in order from bottom to top: 1) the
brine region, 2) the brine region with residual CO2; and 3) the CO2 region with
residual brine. The flow domain is confined on top and bottom by an impermeable
boundary. Assuming that the vertical direction z is positive upwards in a direction
orthogonal to the bottom of the flow domain, and there exists a constant datum
z = 0, we observe that the vertical organization of fluids can be described by the
vertical coordinates of three interfaces by noting that

(1) H ≥ h ≥ hi ≥ 0.

In eqn (1), H(x, y) is the upper boundary of the flow domain, or the aquifer height,
h(x, y, t) is the location of the interface between saturated CO2 and brine (with or
without residual CO2), and hi(x, y, t) is the location of the interface between brine
with residual CO2 and saturated brine.

In the region 1, only brine exists at a saturation of sw = 1. Because there is
no CO2 in this region, the mobility of brine will be higher in this region than in
the other two regions. In region 2, there is a history of complete drainage and
imbibition of brine to a residual CO2 saturation, snres. The residual CO2 is no
longer mobile, and the mobility of the brine phase will be that obtained at the
saturation sw = 1 − snres. Finally, the brine that originally saturated region 3 has
been partially displaced by CO2 to residual brine saturation, swres. Only CO2 is
mobile in this region and is present at a saturation sn = 1− swres. These properties
of each of the three regions are summarized in Table 1. Implied in Fig 1 and
Table 1 is the assumption that the saturations obtained from averaging, that will
be functions of lateral coordinates and time, will be constant within each region.

A key feature of the averaged system we wish to describe is the assumption
of complete gravity segregation due to buoyancy. This assumption implies that
vertical buoyancy forces are dominant and the timescale to gravity segregation is
fast relative to lateral flow velocities [56]. For many CO2-brine systems, density
differences are significant, and thus this assumption is typically valid. In addition,
the timescale of lateral flow is quite large during the post-injection period, with
only a few meters per year of migration expected for many systems.

One of the main objectives of this derivation is to develop a set of averaged equa-
tions from first principles that are megascale in the vertical direction and macroscale
in the lateral directions. Certain assumptions appropriate for the system under con-
sideration will be made to ease the derivation, and eliminate terms in some cases,
but these assumptions are not, in general, necessary. One advantage of the rigor-
ous process employed is that we obtain the particular set of conditions for which
certain assumptions are valid. For instance, it is common to invoke the assumption
that the fluids depicted in Fig 1 are in vertical equilibrium (VE), which means
that flow is predominantly horizontal and vertical flow is negligible and may be
ignored. We will derive the averaged equations without assuming VE, thus obtain-
ing all three vector components of the vertically-megascopic momentum equation
From this point, we can extract the vertical momentum component and obtain the
criteria under which the VE assumption may be justified.
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The concept of vertical equilibrium is commonly applied in groundwater and
other subsurface applications, wherever the lateral length scale is much larger than
the vertical scale of the system [39, 56]. Thus, VE may be considered an appropriate
assumption for most CO2 injection scenarios into long, thin aquifers [22, 49]. The
simplification to the system facilitated when the VE assumption applies is that
the pressure distribution is vertically static. For instance, for the case of a single-
phase groundwater system, the VE condition is known as the Dupuit assumption
and the vertical pressure distribution is simply defined as hydrostatic. The VE
assumption is also an important element of the classic Ghyben-Herzberg relation
that approximates a fresh water lens overlying sea water as a two phase system
[15, 16, 30]. For a two-phase system, the location of the phases must be known
to define the vertical distribution of pressure. Because we have assumed gravity
segregation, the vertical pressure is tied to the density of the n phase in region 1 and
the density of the w phase in regions 2 and 3. As such, gravity segregation is closely
tied to the concept of vertical equilibrium [56]. Related to gravity segregation and
vertical equilibrium is the assumption of a sharp interface between the two fluid
phases [49]. In Fig 1, the curve indicating the lower boundary of region 3 is the
location at which a jump change in CO2 saturation occurs from sn = 1 − swres in
region 3 to snres in region 2 or sn = 0 in region 1. In real systems, we expect that
capillary forces will act locally at this interface, dispersing the fluids and creating a
transition zone in saturation, known as a capillary fringe, where both phases exist
and are mobile. The sharp interface assumption considers the transition zone to
be negligibly small relative to the height of the aquifer. It should be noted that a
sharp interface is not a requirement in order to perform the vertical integration. In
the case of a large transition zone, we may assume that vertical equilibrium still
exists if the timescale to equilibrium between capillary and buoyancy forces is short
relative to that for horizontal flow [24]. Once the integration is performed, the
vertical distribution in saturation can be recovered since it is well defined by the
local capillary pressure function at equilibrium. This case has been studied more
extensively by [50] and applied by [23], and will not be discussed further here.

As mentioned, the vertical direction for megascale averaging, which is denoted
in Fig 1 by the unit vector Λ, is normal to the bottom boundary. For many
natural sedimentary systems, the large-scale topography of the aquifer top and
bottom boundaries is not uniformly flat or horizontal in space (i.e. [7, 17]). There
is variation at all spatial scales. Here, we are concerned with two scales. First,
there is the basin-scale topography that can be characterized over hundreds of
kilometers by a formation dip angle θ, that is usually on the order of 1◦ [1, 21,
31]. In this case, Λ can be defined as a unit vector orthogonal to the large-scale
dip of the formation, which is the definition adopted in this formulation. This
angle may change slowly over the lateral extent of the aquifer, in which case the
corresponding spatial variation in Λ can be considered. On the other hand, there is
often significant variation in topography at the scale of tens or hundreds of meters.
At such a scale, called the regional scale, the boundary between the formation and
the overlying caprock may be characterized by dome structures, traps and other
local fluctuations from the basin-scale dip angle of the aquifer. This local change
in topography may be accounted for through gradients in the top surface of the
aquifer, although the direction of Λ in deriving the equations will not change.

2.3. Mathematical Derivation. The porous medium is composed of phases and
interfaces between phases, as well as common curves where three phases meet. We
will refer to all of these as entities. We will be concerned with averaging of phase
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properties. For convenience, a subscript will be used to indicate a microscale prop-
erty while a superscript will denote a property averaged to the macroscale. Further
description of averaging theorems is provided in Appendix A and a summary of the
notation is included in Appendix B. These theorems are applied to the equations
of mass and momentum conservation for the fluid phases.

2.4. Mass Conservation Equation. The microscale equation of mass conserva-
tion of the brine or CO2 phase is

(2)
∂ρα
∂t

+∇· (ραvα) = 0 α = {w, n}.

Integration of this equation over the α phase then yields

(3)

〈
∂ρα
∂t

〉
Ωα,Ω

+ 〈∇· (ραvα)〉Ωα,Ω = 0 α = {w, n}.

Multiplication by the height of the region being considered, b, and application of
eqn (73) to the first term and eqn (74) to the second term yields the averaged mass
conservation equation

∂′

∂t
(bεαρα) +∇′·

(
bεαραvα′

)
+
∑
κ∈Icα

b〈ρα (vα − vκ) ·nα〉Ωκ,Ω

+
∑
ends

b〈ρα (vα −wend) ·nα〉Ωαend
,Ω = 0,

(4)

where εα is the volume fraction of the α phase. This equation is megascopic in the
vertical direction and macroscopic in the lateral direction. The first summation in
this expression accounts for interphase transfer and the second summation accounts
for fluxes at the top and bottom of the averaging domain. Because there is assumed
to be no phase change, the interface exchange terms may be deleted. Thus, eqn (4)
becomes

(5)
∂′

∂t
(bεαρα) +∇′·

(
bεαραvα′

)
+
∑
ends

b〈ρα (vα −wend) ·nα〉Ωαend
,Ω = 0.

When the averaged density is constant, it may be removed from the derivatives in
the first two terms. If, additionally, this constant value is equal to the microscale
density at the top and bottom of the averaging domain, which would be the case
if the microscale density is constant, this equation simplifies further by dividing by
the density to obtain

(6)
∂′

∂t
(bεα) +∇′·

(
bεαvα′

)
+
∑
ends

b〈(vα −wend) ·nα〉Ωαend
,Ω = 0.

In this study, since the solid grains have been assumed to be immobile, the
average Darcy velocity may be defined as

(7) qα′ = εαvα′.

For the fluid phases we can make use of the saturation whereby

(8) εsα = εα α = {w, n},

where ε is porosity. Thus it follows that

(9) sw + sn = 1.
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The mass conservation equation for a fluid in each vertically integrated region will
then be

(10)
∂′

∂t
(bεsα) +∇′·

(
bqα′

)
+
∑
ends

b〈(vα −wend) ·nα〉Ωαend
,Ω = 0.

Note that in this equation, only the lateral components of the averaged Darcy
velocity appear. No assumption is made about whether the vertical velocity is
zero, only that the direction of the vertical is independent of space and time.

Eqn (10) can be applied directly as a vertically megascale and laterally macroscale
mass conservation equation for the w and n fluids in regions 1, 2, or 3 defined pre-
viously. We will here add the equations appropriate for a phase at any location
over the three regions. Note that the mass exchange terms at the tops and bottoms
will cancel out at interfaces between regions and are specified to be zero at the top
and bottom of the study domain. We will consider the porosity to be a constant
so that for the w phase we obtain

∂′

∂t
{ε [hi + (h− hi) (1− snres) + (H − h) swres]}

+∇′·
[
hiq

w
1
′ + (h− hi) qw2

′
]

= 0,

(11)

where we have made use of the fact that the w phase is immobile in region 3. For
the n phase we have

∂′

∂t
{ε [(h− hi) snres + (H − h) (1− swres)]}

+∇′·
[
(H − h) qn3

′
]

= 0.

(12)

In this equation, we have made use of the fact that there is no n phase in region 1
and that n phase mobility is zero in region 2.

The forms of eqns (11) and (12) suggest that we make the following definitions

of vertically averaged saturations, Sα, and lateral velocities, Qα′:

(13) Sα =
his

α
1 + (h− hi) sα2 + (H − h) sα3

H
,

and

(14) Qα′ =
hiq

α
1
′ + (h− hi) qα2

′ + (H − h) qα3
′

H
.

From eqn (13), it follows that the vertically-averaged saturations must sum to unity,
which is analogous to eqn (9),

(15) Sw + Sn = 1.

Thus mass conservation eqns (11) and (12) may be written

(16)
∂′

∂t
(εHSα) +∇′·

(
HQα′

)
= 0 α = {w, n}.

Since ε and H are independent of time, this equation may alternatively be written

(17) εH
∂′Sα

∂t
+∇′·

(
HQα′

)
= 0 α = {w, n}.

From summation of this equation over the w and n phases in light of the condition
given in eqn (15) we see that

(18) ∇′·
[
H
(
Qw′ + Qn′

)]
= 0.
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A hysteresis model is required to relate the quantities h and hi that appear in
eqns (13) and (14). Making use of the fact that h ≥ hi, the macroscale interface
between region 1 and 2 can be modeled as

(19) hi = min
t

(h).

2.5. Momentum Conservation Equation. The microscale equation for conser-
vation of momentum of the α phase is

(20)
∂(ραvα)

∂t
+∇· (ραvαvα)−∇·tα − ραg = 0.

Integration of this equation over the phase within an averaging region then yields

(21)

〈
∂(ραvα)

∂t

〉
Ωα,Ω

+ 〈∇· (ραvαvα)〉Ωα,Ω − 〈∇·tα〉Ωα,Ω − 〈ραg〉Ωα,Ω = 0.

Multiplication by b and application of eqn (73) to the first term and eqn (74) to
the second and third terms yields

∂′

∂t

(
bεαραvα

)
+∇′·

(
bεαραvαvα

)
−∇′·

(
bεαtα′

)
− bεαραg

+
∑
κ∈Icα

b〈[ραvα (vα − vκ)− tα] ·nα〉Ωκ,Ω

+
∑
ends

b〈[ραvα (vα −wend)− tα] ·nα〉Ωαend
,Ω = 0,

(22)

where

(23) εαtα′ = (I−ΛΛ) ·
〈
tα − ρα

(
vα − vα

) (
vα − vα

)〉
Ωα,Ω

.

When there is no interphase mass exchange, eqn (22) simplifies to

∂′

∂t

(
bεαραvα

)
+∇′·

(
bεαραvαvα

)
−∇′·

(
bεαtα′

)
− bεαραg

−
∑
κ∈Icα

b〈tα·nα〉Ωκ,Ω +
∑
ends

b〈[ραvα (vα −wend)− tα] ·nα〉Ωαend
,Ω = 0.

(24)

We can apply the product rule to the first two terms in eqn (24) and then substitute
in mass conservation eqn (5) to simplify the momentum equation to

bεαρα
∂′vα

∂t
+ bεαραvα·∇′vα −∇′·

(
bεαtα′

)
− bεαραg −

∑
κ∈Icα

b〈tα·nα〉Ωκ,Ω

+
∑
ends

b
〈[
ρα
(
vα − vα

)
(vα −wend)− tα

]
·nα
〉

Ωαend
,Ω

= 0.

(25)

In modeling porous media, it is common to assume the flow is slow enough
that the advection terms and the time derivative in the momentum equation are
negligible. The advection terms are considered small because they involve velocity
squared, which is small when the velocity is small. These assumptions of small
terms need not be made to continue the derivation. However, because we will
be assuming that the flow is slow, the derivation is simplified if we impose this
constraint at this time and also drop the momentum flux expressions at the top
and bottom of the region as well as the other terms involving products of velocity.
Thus eqn (25) reduces to

(26) −∇′·
(
bεαtα′

)
− bεαραg −

∑
κ∈Icα

b〈tα·nα〉Ωκ,Ω −
∑
ends

b〈tα·nα〉Ωαend
,Ω = 0,
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and eqn (23) simplifies to

(27) εαtα′ = (I−ΛΛ) ·〈tα〉Ωα,Ω .

Finally, we will make use of the standard constitutive form for the microscale
stress tensor for a Newtonian fluid such that

(28) tα = −pαI + τα.

Thus, eqn (26) becomes

∇′ (bεαpα)−∇′·
(
bεατα′

)
− bεαραg +

∑
κ∈Icα

b〈pαnα〉Ωκ,Ω

−
∑
κ∈Icα

b〈τα·nα〉Ωκ,Ω +
∑
ends

b〈pαnα〉Ωαend
,Ω −

∑
ends

b〈τα·nα〉Ωαend
,Ω = 0.

(29)

We assume that the viscous effects within the fluid are small in comparison to
viscous interactions between phases (e.g., of the fluid with the solid). Therefore,
intra-fluid viscous terms are neglected so that eqn (29) simplifies further to

∇′ (bεαpα)− bεαραg +
∑
κ∈Icα

b〈pαnα〉Ωκ,Ω

−
∑
κ∈Icα

b〈τα·nα〉Ωκ,Ω +
∑
ends

b〈pαnα〉Ωαend
,Ω = 0.

(30)

Although it has been averaged to the megascale over the direction normal to the
bottom of the region of interest, momentum eqn (30) is still a three-dimensional
vector equation. Despite the fact that the averaging direction is not truly vertical,
unless the dip angle θ = 0, we will refer to the process of eliminating accounting
for gradients in the direction normal to the bottom surface as vertical averaging.
We can obtain the vertical component of the momentum equation by taking the
dot product of eqn (30) with Λ and the lateral vector component by taking the dot
product with I−ΛΛ. We will find these in turn.

2.6. Vertical Component of the Momentum Equation. When taking the dot
product of eqn (30) with Λ while noting that, in this formulation, Λ is a constant
that can be moved inside the averaging operator, we obtain

− bεαραg·Λ +
∑
κ∈Icα

b〈pαnα·Λ〉Ωκ,Ω

−
∑
κ∈Icα

bΛ·〈τα·nα〉Ωκ,Ω +
∑
ends

b〈pαnα·Λ〉Ωαend
,Ω = 0.

(31)

For the system of interest here, the volume fraction of a phase is constant in each
section considered. Additionally, the pressure over each end of the averaging region
is approximately constant so that we can integrate the last term on the left side of
eqn (31) to obtain

− bεαραg·Λ +
∑
κ∈Icα

b〈pαnα·Λ〉Ωκ,Ω

−
∑
κ∈Icα

bΛ·〈τα·nα〉Ωκ,Ω + εαpαtop − εαpαbot = 0.
(32)

We will make use of eqn (32) for the w and n phases only in sections where these
phases are continuous and mobile. Because the volume fraction is constant in each
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region, the first summation in eqn (32) will be negligible. Then division by εα and
rearrangement of the equation yields

(33) −bραg·Λ + pαtop − pαbot =
∑
κ∈Icα

b

εα
Λ·〈τα·nα〉Ωκ,Ω .

The term on the right side will be zero at equilibrium, i.e. when qα = 0. Thus we
can make a Taylor series expansion of this term around this equilibrium state to
obtain an expression of the form

(34)
∑
κ∈Icα

〈τα·nα〉Ωκ,Ω = −εαµ̂αR̂
α
·qα,

where R̂
α

is a resistance tensor. Substitution of eqn (34) into eqn (33) then provides

(35) −bραg·Λ + pαtop − pαbot = −bµ̂αΛ·R̂
α
·qα.

This equation describes vertical flow of an α phase fluid in a vertically megascopic
domain where the volume fraction is constant.

It has been shown that the applicable condition between two phases at a larger
scale interface (i.e., at an interface between regions in Fig 1) where there is a
discontinuous change in volume fraction is that the pressure is continuous [27].
Making use of this condition, we can apply eqn (35) for a w phase that is mobile
over regions 1 and 2 of the current problem, as described in Table 1, by adding the
equations for the two regions. The result is

(36) −hρwg·Λ + pwh − pw0 = −µ̂wΛ·
[
hiR̂

w

1 ·qw1 + (h− hi) R̂
w

2 ·qw2
]
.

The n phase is mobile only in region 3, so its vertical momentum equation is

(37) − (H − h) ρng·Λ + pnH − pnh = −µ̂n (H − h) Λ·R̂
n

3 ·qn3 .

For each phase, if the resistance tensor R̂
α

aligns with the coordinate system such
that it has only diagonal components (a condition that includes the case of an
isotropic medium) and the vertical flow is negligible, the hydrostatic conditions for
each phase are obtained, respectively, as

(38) −hρwg·Λ + pwh − pw0 = 0,

and

(39) − (H − h) ρng·Λ + pnH − pnh = 0.

It is interesting to note that for an anisotropic region in which the coordinate
axes do not align with the principal direction of the resistance tensor such that off-

diagonal elements of R̂
α

are non-zero, a deviation from these hydrostatic conditions
can occur due to the lateral flow.

2.7. Lateral Component of the Momentum Equation. We can take the dot
product of eqn (30) with the tensor I′ = I−ΛΛ to obtain the momentum equation
in the directions tangent to the bottom of the study region. Since Λ is a constant,
I′ can be moved inside the averaging operator if desired. Thus, we obtain

∇′ (bεαpα)− bεαραg·I′ +
∑
κ∈Icα

bI′·〈pαnα〉Ωκ,Ω

−
∑
κ∈Icα

bI′·〈τα·nα〉Ωκ,Ω +
∑
ends

bI′·〈pαnα〉Ωαend
,Ω = 0.

(40)
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We can apply the product rule to the lateral gradient term and eliminate ∇′ (bεα)
using eqn (77) to obtain

bεα∇′pα − bεαραg·I′ +
∑
κ∈Icα

bI′·〈(pα − pα) nα〉Ωκ,Ω

−
∑
κ∈Icα

bI′·〈τα·nα〉Ωκ,Ω +
∑
ends

bI′·〈(pα − pα) nα〉Ωαend
,Ω = 0.

(41)

Make use of constitutive eqn (34) to relate the frictional interactions between
phases. Subsequent rearrangement of terms yields

bµ̂αI′·R̂
α
·qα =− b

(
∇′pα − ραg·I′

)
−
∑
κ∈Icα

b

εα
I′·〈(pα − pα) nα〉Ωκ,Ω

−
∑
ends

b

εα
I′·〈(pα − pα) nα〉Ωαend

,Ω .

(42)

We will consider the hydrostatic case where the vertical flow is considered neg-
ligible. For this case, we can set

(43) qα = I′·qα = I′·qα′.

Then we can also define the lateral direction resistance tensor according to

(44) R̂
α′′ = I′·R̂

α
·I′,

and its inverse as

(45) K̂
α′′ =

(
R̂
α′′
)−1

.

These last three identities allow eqn (42) to be expressed as

bqα′ =− b K̂
α′′

µ̂α
·
(
∇′pα − ραg·I′

)
−
∑
κ∈Icα

b

εα
K̂
α′′

µ̂α
·〈(pα − pα) nα〉Ωκ,Ω

−
∑
ends

b

εα
K̂
α′′

µ̂α
·〈(pα − pα) nα〉Ωαend

,Ω .

(46)

For the case where the volume fraction within the region is a constant, the first
summation on the right side will be negligible so that the final form of the lateral
momentum equation simplifies further to

(47) bqα′ = −b K̂
α′′

µ̂α
·
(
∇′pα − ραg·I′

)
−
∑
ends

b

εα
K̂
α′′

µ̂α
·〈(pα − pα) nα〉Ωαend

,Ω .

The integrals over the ends of the domain can also be evaluated directly making
use of the fact that the variation of the pressure over an end of the averaging volume
is negligible. At the top of the region, we have

(48)
b

εα
K̂
α′′

µ̂α
·〈(pα − pα) nα〉Ωαtop ,Ω

= − K̂
α′′

µ̂α
· (pαtop − pα)∇′ztop,

while at the bottom,

(49)
b

εα
K̂
α′′

µ̂α
·〈(pα − pα) nα〉Ωαbot

,Ω =
K̂
α′′

µ̂α
· (pαbot − pα)∇′zbot.
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Therefore
(50)∑
ends

b

εα
K̂
α′′

µ̂α
·〈(pα − pα) nα〉Ωαend

,Ω = − K̂
α′′

µ̂α
· (pαtop∇′ztop − pαbot∇′zbot − pα∇′b) .

Substitution of this expression into eqn (47) gives the form of the lateral momentum
equation for a region as
(51)

bqα′ = −b K̂
α′′

µ̂α
·
(
∇′pα − ραg·I′

)
+

K̂
α′′

µ̂α
· (pαtop∇′ztop − pαbot∇′zbot − pα∇′b) .

From Table 1, we know that the wetting phase is mobile only in regions 1 and 2.
Therefore, we can apply eqn (51) to these two regions and add the results to obtain
the lateral momentum equation for phase w in any cross section. The result is

hiq
w
1
′ + (h− hi)qw2 ′ = −hi

K̂
w

1
′′

µ̂w
·
(
∇′pw1 − ρwg·I′

)
− (h− hi)

K̂
w

2
′′

µ̂w
·
(
∇′pw2 − ρwg·I′

)
+

K̂
w

1
′′

µ̂w
· (pwhi∇′hi − pw1∇′hi)

+
K̂
w

2
′′

µ̂w
· [pwh∇′h− pwhi∇′hi − pw2∇′ (h− hi)] .

(52)

Now note that all the pressures appearing in eqn (52) can be expressed in terms of
pwh since the vertical pressure gradient is hydrostatic. These expressions are

(53) pw1 = pwhi −
1

2
hiρ

wg·Λ,

(54) pw2 = pwhi +
1

2
(h− hi) ρwg·Λ,

and

(55) pwh = pwhi + (h− hi) ρwg·Λ.

Substitution of these three expressions into eqn (52) and collection of terms then
provides
(56)

hiq
w
1
′+(h−hi)qw2 ′ = −

[
hi

K̂
w

1
′′

µ̂w
+ (h− hi)

K̂
w

2
′′

µ̂w

]
·
(
∇′pwh − ρwg·Λ∇′h− ρwg·I′

)
.

In terms of relative permeabilities for each region, the permeability in each sec-
tion may be denoted as

(57) K̂
w

1
′′ = K̂′′·k̂

w

1rel
′′,

and

(58) K̂
w

2
′′ = K̂′′·k̂

w

2rel
′′.

Therefore, we can define the effective relative permeability for the wetting phase

over the full height of the study system, k̂
w

reff
′′, as

(59) k̂
w

reff
′′ =

hik̂
w

1rel
′′ + (h− hi) k̂

w

2rel
′′

H
.
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Substitution of this definition and the definition of eqn (14) into eqn (56) gives

(60) HQw′ = −H K̂′′

µ̂w
·k̂
w

reff
′′·
(
∇′pwh − ρwg·Λ∇′h− ρwg·I′

)
.

Table 1 indicates that the non-wetting phase is mobile only in region 3. There-
fore, eqn (51) may be applied to this region to obtain the lateral momentum equa-
tion for phase n in any cross section. The result is

(H − h) qn3
′ = − (H − h)

K̂
n

3
′′

µ̂n
·
(
∇′pn3 − ρng·I′

)
+

K̂
n

3
′′

µ̂n
· [pnH∇′H − pnh∇′h− pn3∇′ (H − h)] .

(61)

The pressures appearing in eqn (61) can be expressed in terms of pnh since the
vertical pressure gradient is hydrostatic. These expressions are:

(62) pn3 = pnh +
1

2
(H − h) ρng·Λ,

and

(63) pnh = pnH − (H − h) ρng·Λ.
Substitution of these relations into eqn (61) and collection of terms then provides

(64) (H − h) qn3
′ = − (H − h)

K̂
n

3
′′

µ̂n
·
(
∇′pnh − ρng·Λ∇′h− ρng·I′

)
.

The relative permeability may be denoted as

(65) K̂
n

3
′′ = K̂′′·k̂

n

3rel
′′.

Therefore, we can define the effective relative permeability for the non-wetting

phase over the full height of the study system, k̂
n

reff
′′, as

(66) k̂
n

reff
′′ = (H − h) k̂

n

3rel
′′.

Substitution of this definition and the definition of eqn (14) into eqn (64) gives

(67) HQn′ = −H K̂′′

µ̂n
·k̂
n

reff
′′·
(
∇′pnh − ρng·Λ∇′h− ρng·I′

)
.

Simulation of CO2 migration based on equations obtained from megascale av-
eraging in the vertical and macroscale averaging in the lateral directions involves
simultaneous solution of mass balance eqn (17) with α = {w, n} and hysteresis
model eqn (19) with the phase momentum equations given by eqns (60) and (67).

3. Numerical simulations

We applied the VE model presented above to CO2 migration within several
saline aquifer systems composed of varying caprock topography. The simulations
were designed to meet two objectives: 1) to verify the VE model against a fully
three-dimensional simulator and 2) to examine the effect of caprock topography on
long-term CO2 migration. The VE model equations are solved using the ECLIPSE
reservoir simulator, which can be run using a VE option (ECL-VE) [54]. Specifi-
cally, we used ECLIPSE 100 which is based on a black-oil formulation of the mul-
tiphase flow equations. For model verification, the three-dimensional simulations
were performed using the standard 3D option (ECL-3D) [54].

To capture the effect of caprock topography, a number of different aquifer geome-
tries were simulated using the ECL-VE and ECL-3D models. These simulations
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were performed on two types of domains: two-dimensional vertical cross-sections
as well as three-dimensional domains. The natural undulations of a typical caprock
surface are represented by sinusoidal functions that are superimposed on a sloping
caprock. The roughness of the surface, which refers to the extent of variation in the
topography, is captured by adjusting the amplitude and frequency of the underly-
ing function. Although these geometries are idealizations of real systems, they can
provide needed insight into the effects of caprock topography on plume migration.

In addition to the ECLIPSE simulations, each of the two-dimensional scenarios
was also simulated with a research code based on the VE formulation (VESA) [22].
Preliminary comparisons indicated that, for practical purposes, solutions computed
with ECL-VE and VESA are identical for all scenarios. Thus, for the sake of
brevity, the discussion focuses primarily on the ECL-VE simulator results with
VESA results considered only in a few cases. However, we do emphasize that the
comparison between both VE simulators allows us to verify their implementations
of the vertically averaged equations derived in the previous section.

3.1. Setup. In the simulations we consider a sloping aquifer with mean thickness
H0. To evaluate the effect of an irregular aquifer geometry we introduce a fluctua-
tion in the elevation of the top of the aquifer that we model by a sinusoidal series
such that caprock position is given by

(68) H(x, y) = H0 +H0

Nx∑
i=0

axi cos(k
x
i x+ γxi ) +

Ny∑
i=0

ayi cos(k
y
i y + γyi )

 ,
where kxi and kyi are the wavenumbers of the i-th sinusoidal perturbation in the x
and y directions, axi and ayi are relative amplitudes with respect to the mean aquifer
thickness, and γxi and γyi are phase shift angles. The wavenumber is computed as
ki = ni2π/L, where L is the length of aquifer in the respective direction, hence ni
is the number of periods of the perturbation within the aquifer length L.

In all the simulations, the linear relative permeability curves shown in Fig 2
are used. To include the effect of residual trapping, we selected the end points
of the curves such that they correspond to residual saturation values measured in
laboratory experiments [3]. Capillary forces were neglected to be consistent with
the derivation of the VE equations presented above for a sharp interface model.
Values selected for other fluid properties, such as density and viscosity, are those
reported in other studies that simulated CO2 migration in large scale domains [14]
and are summarized in Table 2.

3.2. Two-dimensional application. We first present simulations that consider
CO2 migration along a two-dimensional vertical cross-section of an aquifer. Table 3
summarizes the parameters that define the aquifer and grid geometries for this set of
problems. In this set of simulations, the mean direction of the aquifer forms an angle
θ with the x axis. Boundary conditions specify no-flow through the top, bottom
and left sides of the domain while a constant hydrostatic pressure is applied at the
right boundary of the domain. We generated sixteen different aquifer geometries
assuming a single sinusoidal perturbation with four different values of the relative
amplitude ax0 = [0.05, 0.10, 0.15, 0.20] and four different number of periods nx0 =
[10, 20, 40, 80]. In addition, a base case was simulated that considers a flat aquifer.

3.2.1. Comparison of VE and 3D solutions. Figs 3 and 4 provide comparisons
of simulated CO2 migration using the ECL-VE and ECL-3D models for two of the
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cross-section geometries. These two scenarios represent the range in amplitudes
examined. The amplitude factor used in Fig 3, a = 0.05 is 1/4 of that used in Fig
4; but both figures use the same value of frequency, nx0 = 40.

In Fig 3, we observe that the two solutions agree well for the smallest amplitude
case. In general, the VE solution for the mobile CO2 region matches the location
of the 3D interface over the extent of the plume. The slight separation between
the solutions is caused by the vertical discretization used in the 3D simulation,
which does not match the flat contours of saturation of the CO2 that has collected
beneath the domes of the caprock topography. The orientation of the vertical cells
leads to an unrealistic jagged CO2 interface. The plume tip for the VE solution
also extends farther ahead of the 3D solution at late time (1300 years), however this
difference is also likely attributed to discretization and other numerical artifacts of
both the VE and 3D simulations.

The model comparison for the second geometry (Fig 4) is qualitatively similar
to the smaller amplitude geometry discussed above. Along the trailing edge of
the mobile interface, and where the CO2 has collected in the caprock domes, the
solutions are nearly identical. However, the differences at the plume tip after 1300
years are greater for this case than observed in Fig 3c. This larger discrepancy is
expected for a perturbation with larger amplitude because, as the caprock elevation
changes more abruptly, the ability to capture the migration on the left edge of each
dome (spill points) becomes increasingly difficult. This is particularly true for
the 3D model because of the more irregular numerical grid that must be used to
sufficiently discretize the rapidly changing caprock surface.

It is useful to compare the solution of the VE-based simulators, ECL-VE and
VESA, to better understand the behavior of VE models for the systems studied
here. Fig 5 shows a comparison of the interfaces of the mobile CO2 region after
1300 years estimated by the two simulators. The solutions are identical over the
entire extent of the CO2 plume. Based on the agreement between the VE solvers,
we believe that differences of these solutions with those of the three-dimensional
ECL-3D simulation are most likely due to the limited vertical resolution of the
latter, which is particularly important to capture abrupt changes in the caprock
elevation, as discussed above.

3.2.2. Plume speed and migration distance. Fig 6 shows CO2 saturation after
100 and 1300 years for three aquifer configurations. In all cases, we observe that
initially the plume spreads laterally from the source zone, with the upslope and
downslope edges moving almost equal distances in both directions. Then as buoy-
ancy forces become more dominant, the entire plume migrates along the caprock
boundary in the dip direction. For the cases with varying caprock geometry, the
leading edge of the plume follows the contours of the caprock, filling successive
domes as it progresses updip. At the trailing edge, the CO2 becomes immobilized
by the topography, in the varying geometry cases. In all cases, some portion of
the CO2 is trapped in the residual phase, but the relative amount decreases with
higher values of amplitude.

It is clear from comparing the simulations with different sinusoidal amplitudes
that CO2 migrates more slowly as the amplitude of the irregularity increases. On
the other hand, the amount of structurally trapped CO2 increases with the am-
plitude of the caprock height variability. Note that CO2 is only trapped due to
residual trapping (light blue areas) in the flat aquifer case, and most of the initial
volume is still mobile after 1300 years. However, for the aquifer with ax0 = 0.15,
all the initial CO2 volume is completely trapped either by residual trapping or in
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structurally trapped pools beneath the irregular caprock surface. The volume of the
aquifer that is available for structural CO2 trapping is given by the space between
the top of the aquifer and horizontal lines that are tangent to the caprock surface
at adjacent (upslope) local minimum points.

Figs 7 and 8 show the position of the plume tip simulated with ECL-VE versus
time as function of the relative amplitude and number of periods of the caprock
oscillations, respectively. Fig 7 shows that caprocks with higher frequencies results
in slower migration speeds. As the oscillation frequency increases from zero for a
flat aquifer to higher values of nx0 for a given amplitude, the curves that describe
the tip position versus time appear to converge to a unique curve, hereafter referred
to as the effective curve, as the number of periods approaches infinity. While the
difference between the flat aquifer and the effective curves does depend on the
oscillation amplitude, the convergence rate of the curves towards the effective one
is independent of the magnitude of the fluctuation. For example, the difference
between the curves that correspond to nx0 = 40 and nx0 = 80 is similar for all the
amplitudes considered. This means that oscillations with higher frequencies would
not result in additional reductions of the plume migration speed.

Fig 8 shows that CO2 advances slower for larger oscillation amplitudes. More-
over, as the amplitude becomes larger the volume of CO2 that is trapped beneath
the aquifer caprock increases. For some of the simulations the initial CO2 volume
has been completely trapped before the end of the simulated period so that the
plume tip remains at the same position (curves for ax0 = 0.15 and ax0 = 0.2 in Figs
8c and 8d). In these cases, we observe that the final migration distance is similar
for all caprocks with the same amplitude. For example, we observe in Fig 7d that
the maximum distance traveled is between 4 and 5 km from the injection point for
all frequencies of the case with amplitude ax0 = 0.2. The difference in these four
cases can be related to the difference in distance traveled by CO2 collected in one
individual period for a low frequency case (i.e. nx0 = 10) versus several individual
periods for a higher frequency case (i.e. nx0 = 80).

The effect of amplitude on the upslope velocity, amount of CO2 trapped by the
topography, and maximum distance traveled is consistent with the use of a sinu-
soidal function to represent an irregular caprock. This relationship is expected
because the total volume of CO2 that can be trapped per unit length of aquifer
only depends on the amplitude of the oscillation and not its frequency. Further-
more, in contrast to the convergent behavior of the curves in Fig 7, there is no
evidence of convergence with respect to amplitude, as indicated by the constant
separation between curves that correspond to different amplitudes in Fig 8. Hence,
the reduction in the plume migration speed due to increasing amplitudes does not
have a limit, and one can expect that larger oscillations will result in even lower
plume speed and shorter migration distances due to larger trapped CO2 volume.

3.3. Three-dimensional application. It is reasonable to expect that the effects
of caprock topography on the plume speed and migration distance observed in
the two-dimensional cross sections presented above also occur in three-dimensional
scenarios. This was the main motivation to set up an additional set of simulations
that considers fully three-dimensional aquifers. The parameters used to define the
grid and aquifer geometries and the initial plume are listed in Table 4. For the ECL-
3D simulations, the cell size and dimensions of the domain result in a numerical
grid that has 300 x 300 x 50 cells, which correspond to a 4.5 million cells grid. The
ECL-VE simulations solve the same system on a 300 x 300 grid, or a total of 90,000
cells.
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The large dimensions of the 3D grid result in much longer run times for ECL-3D
than for the 2D cross-section simulations, thus we only consider two 3D aquifers: i)
an aquifer with flat caprock, and ii) an aquifer with irregular caprock generated by
the superposition of sinusoidal perturbations in the x and y directions. This three-
dimensional domain is also simulated using the ECL-VE model for comparison.
The sinusoidal functions were generated assuming that ten wave periods fit in the
domain in each direction and with relative amplitudes of ax = ay = a = 0.05. The
dip direction of the aquifers forms a 0.286◦ angle (0.5% slope) with the x axis.

The ECL-VE and ECL-3D models compared well for the three-dimensional
aquifers, and therefore only the ECL-VE results will be reported here. To view
the ECL-VE results more effectively, 3D CO2 saturations are reconstructed from
the VE solution for the mobile and residual CO2 interfaces and then projected
onto a 3D image. To produce the needed data set, saturation values are assigned
to each cell in the three-dimensional grid according to the value of the calculated
CO2 thickness for the corresponding grid columns. Thus, reconstructed saturation
values in cells that intersect the VE solution for the CO2-brine interface have a
value smaller than 1, which is due to the irregular vertical grid spacing of the 3D
grid.

Fig 9 shows a top view of reconstructed CO2 saturation values from the ECL-
VE simulations. This figure shows the simulated CO2 plumes after 1000 years.
While saturation contours are smooth and continuous for the flat aquifer, they
are discontinuous and irregular for the case of varying caprock geometry. This
occurs because of the of CO2 pools that accumulate in the local dome features of
the caprock topography. It is clear that the plume moves slower in the aquifer
with sinusoidal caprock than in the flat aquifer, by about 50%. At the end of the
simulated time, the CO2 in the irregular caprock case is completely trapped by
structural features or in the residual phase, whereas the majority of CO2 in the flat
caprock case remains mobile.

Fig 10 shows reconstructed CO2 saturation values along two vertical cross-
sections of the 3D domain. The accumulation of CO2 beneath the irregular caprock
is evident in this figure. This figure also shows the greater extent of plume spread-
ing from the initial square condition for the flat caprock case. This result implies
not only enhanced structural trapping obtained by an irregular caprock, but also a
reduction in the plume footprint caused by the caprock roughness. Projected plume
footprint may potentially be an important factor in consideration of potential CO2

storage sites.

4. Conclusions

This manuscript has been concerned with the vertical equilibrium assumption
when modeling two-fluid-phase flow. The particular system analyzed is injection
of supercritical CO2 into a saline aquifer. The first element of the problem an-
alyzed was the governing flow equations. The equations of mass and momentum
transfer were derived from the standard microscale continuum equations. The aver-
aging procedure employed converted these equations to two-dimensional differential
equations at the lateral macroscale while full integration is over the vertical direc-
tion. The assumption of vertical equilibrium was employed to derive the megascale
static condition for each fluid phase. Equations were developed that describe the
two phase flow in three different regions: one fully saturated with brine, one with
brine at residual saturation, and one with CO2 at residual saturation.
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The equations resulting from the derivation here are equivalent to previously
published VE models (e.g. [22, 39]), despite the fact the starting point of the aver-
aging procedure in those models was with the macroscale porous media equations.
There are some other differences as well, notably the presentation in [22] described
a drainage-only case and included additional processes, such as compressibility and
flow across the top and bottom boundaries, that were not included in our model.
However, by starting with the microscale equations, we are able to explicitly identify
the key simplifying assumptions needed to arrive at the standard VE formulation
described by others and implemented in the ECLIPSE simulator. This achieve-
ment implies that if the standard VE model fails to describe the system of interest,
we can backtrack and identify the assumption or assumptions that were violated.
This process that would not be possible from the formulation presented in previous
studies alone.

The equations describing flow in these regions were solved using the ECLIPSE
simulator run in fully three dimensional mode (ECL-3D) and in the vertical equilib-
rium mode (ECL-VE). The ECL-VE simulations were verified by both comparison
to ECL-3D and to another vertical equilibrium model, VESA. In all cases, agree-
ments were very excellent. The verified model was used to study the effect of
caprock geometry on the lateral migration of a buoyant CO2 plume. The variable
height of the aquifer was synthesized as having a sinusoidal variability. Simulations
were performed to examine the importance of the amplitude and period of the si-
nusoidal surface. These simulations demonstrated that CO2 can be trapped in the
caps at the surface such that migration is retarded or even halted, depending on
the amount of CO2 and the storage capacity of the caps.

The results of this analysis indicate that the VE formulation can be effective
for simulating the CO2 migration in a confined aquifer with variable thickness
with reduced computer requirements in comparison to the full three-dimensional
simulation. For example, the ECL-3D simulator took, on average, 55 times more
time than the ECL-VE simulator to run the 2D simulations discussed in Section
3.2. The VE equations developed here describe the problem well, and the fact
that all assumptions required to derive them are stated provides the opportunity to
examine more complex problem (e.g., those with variable density or with capillary
fringes between study regions).
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Appendix A. Averaging Theorems

To obtain the vertically averaged equations, we will make use of averaging the-
orems from the [3, (2, 0), 1] family [25] to transform three-dimensional mass and
momentum conservation equations at the pore scale to vertically megascopic, lat-
erally macroscopic two-dimensional porous media equations.
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The averaging theorems to be employed involve a spatial integration region, Ω,
of height b and cylindrical cross section of macroscale radius ∆r. The orientation
of the vertical direction is considered to be constant as denoted by a unit vector Λ
that is tangent to the averaging cylinder axis. The region of a cylinder occupied
by a phase denoted as the α phase is designated as Ωα. The ends of the cylinder
intersect the phases present. The portion of the end region area that intersects the
α phase is denoted as Ωαend.

The porous medium is composed of phases and interfaces between phases, as well
as common curves where three phases meet. These are all referred to as entities. We
will be concerned with averaging of phase properties. For convenience, a subscript
will be used to indicate a microscale property while a superscript will denote a
property averaged to the larger scale. The larger scale is macroscopic in the lateral
directions and megascopic in the vertical direction and will be referred to as the
averaged scale. In facilitating the integration from the microscale to the averaged
scale, we will make use of an averaging operator notation defined according to

(69) 〈Fκ〉Ωα,Ωβ ,W =

∫
Ωα

WFκ dr

∫
Ωβ

W dr

.

where Fκ is a microscale property of entity κ being averaged to the macroscale, Ωα
is the domain of integration of the numerator, Ωβ is the domain of integration of
the denominator, and W is a weighting function applied to the integrands in the
definition of the averaging process. Omission of the third subscript on the averaging
operator implies a weighting of unity. Although the bracketed quantity on the left
side of the equation provides the needed specification of an average quantity, it can
be clumsy to work with at times. Therefore, simplified notation will be employed
for some averages that arise such that the intrinsic entity average is

(70) Fα = 〈Fα〉Ωα,Ωα ,

and the density weighted entity average is

(71) Fα = 〈Fα〉Ωα,Ωα,ρα .

Additionally some macroscale properties will be presented with a double overbar

for the subscript such as Fα. This notation indicates that the macroscale average
is defined in some unique manner for the variable of interest, and the definition
will be provided. Finally, the density of an entity α (i.e., the volume fraction of a
phase, the area per volume of an interface, or the length per volume for a common
curve) is defined as

(72) εα = 〈1〉Ωα,Ω
One additional useful notation convention is the employment of ′ to denote a two
dimensional quantity for the lateral directions. For example, fα′ is the lateral
components of a vector property of entity α; ∇′ is a gradient operator in the lateral
directions; and ∂′/∂t is a partial time derivative of a quantity that depends only
on the lateral spatial dimensions.

With these considerations, the averaging theorems may be expressed as follows
[25]. For the average of a time derivative of a phase property theorem T[3, (2, 0),
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1] is:
(73)

b

〈
∂fα
∂t

〉
Ωα,Ω

=
∂′(bεαfα)

∂t
−
∑
κ∈Icα

b〈nα·vκfα〉Ωκ,Ω −
∑
ends

b〈nα·wendfα〉Ωαend
,Ω .

For the divergence operator, the averaging theorem D[3, (2, 0), 1] is expressed:

(74) b〈∇·fα〉Ωα,Ω = ∇′·(bεαfα′) +
∑
κ∈Icα

b〈nα·fα〉Ωκ,Ω +
∑
ends

b〈nα·fα〉Ωαend
,Ω .

The gradient of a microscale quantity is averaged using theorem G[3, (2, 0), 1] as:

(75) b〈∇fα〉Ωα,Ω = ∇′(bεαfα) +
∑
κ∈Icα

b〈nαfα〉Ωκ,Ω +
∑
ends

b〈nαfα〉Ωαend
,Ω .

When fα is 1, eqns (73) and (75) become, respectively:

(76) 0 =
∂′(bεα)

∂t
−
∑
κ∈Icα

b〈nα·vκ〉Ωκ,Ω −
∑
ends

b〈nα·wend〉Ωαend
,Ω , ,

and

(77) 0 = ∇′(bεα) +
∑
κ∈Icα

b〈nα〉Ωκ,Ω +
∑
ends

b〈nα〉Ωαend
,Ω .

Appendix B. Notation

Roman letters.

A cross-sectional area of the averaging cylinder
b height of a region over which integration occurs
F general function
f general function
f general vector function
g gravity vector
H vertical coordinate of upper boundary of flow domain
h vertical coordinate of interface between saturated brine and residual

brine
hi vertical coordinate of interface between saturated brine and residual

CO2

I identity tensor
Icα set of entities that form the surface bounding phase α

K̂ conductivity, inverse of resistance tensor R
k̂ relative permeability tensor
nn outward normal vector from n phase on its boundary
nw outward normal vector from w phase on its boundary
p fluid pressure

Qα′′ average lateral Darcy velocity of the α phase over the full height of the
flow region

qα Darcy velocity averaged over a section, macroscale velocity scaled by
the volume fraction

R̂ resistance tensor
Sα vertically averaged saturation of phase α
sα saturation of α phase in a region
t time
t stress tensor
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v velocity
W weighting function
wend velocity of the end of the averaging cylinder
z vertical coordinate orthogonal to the bottom of the formation

Greek letters.

∆r radius of averaging cylinder
ε porosity
εn volume fraction of the n phase
εw volume fraction of the w phase
εα volume fraction of an α phase
θ constant slope angle of bottom of flow region relative to horizontal
Λ unit vector positive upward in the z direction normal to the base of the

flow region
µ̂ dynamic viscosity
ρ mass density
τ viscous stress tensor
Ω spatial domain of the cylindrical averaging volume
Ωα spatial domain of the α phase contained in a cylindrical averaging vol-

ume
Ωαend

surficial domain of the α phase in the surface at the end of a cylindrical
averaging volume

Ωκ domain of entity κ appears here when κ is a boundary surface of a phase

Subscripts and superscripts.

bot property evaluated at the bottom of the averaging region
H evaluated at the top of the flow region where z = H
h evaluated at the interface where z = h
hi evaluated at the interface where z = hi
n non-wetting, or CO2 phase qualifier [subscript (microscale) and super-

script (macroscale)]
reff effective relative permeability over the flow domain
res residual
top property evaluated at the top of the averaging region
w wetting, or brine, phase qualifier [subscript (microscale) and superscript

(macroscale)]
0 evaluated at bottom of flow domain where z = 0
1 refers to property of region 1, 0 ≤ z ≤ hi
2 refers to property of region 2, hi ≤ z ≤ h
3 refers to property of region 3, h ≤ z ≤ H

Greek subscripts (for microscale) and superscripts (for macroscale).

α qualifier referring to an entity [subscript (microscale) and superscript
(macroscale)]

β qualifier referring to an entity [subscript (microscale) and superscript
(macroscale)]

κ qualifier referring to an entity [subscript (microscale) and superscript
(macroscale)]
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Symbols.

∇′ surface gradient operator
∇′· surface divergence operator
∂′/∂t partial time derivative in a surface

above a superscript refers to a density weighted macroscale average
above a superscript refers to a uniquely defined macroscale average with
the definition provided in the text

′ vector tangent to a surface
′′ surface tensor orthogonal to the z coordinate
〈Fκ〉Ωα,Ωβ ,W general average of a property associated with entity κ,

=

( ∫
Ωα

WFκ dr

)
/

(∫
Ωβ

W dr

)
〈Fα〉Ωα,Ωα macroscale volume average of an α phase property over the phase, =

Fα =

( ∫
Ωα

Fα dr

)
/

( ∫
Ωα

dr

)
〈Fα〉Ωα,Ωα,ρα density weighted macroscale average of a property of a phase over

that phase, = Fα =

( ∫
Ωα

ραFα dr

)
/

( ∫
Ωα

ρα dr

)
Tables

Table 1. Identification of characteristics of the three regions being considered.

Region z Phase Saturation Mobile?

1 0 ≤ z ≤ hi
w sw = 1 yes
n sn = 0 no

2 hi ≤ z ≤ h
w sw = 1− snres yes
n sn = snres no

3 h ≤ z ≤ H w sw = swres no
n sn = 1− swres yes

Table 2. Parameters used in all simulations.

Parameter Symbol Value Unit

CO2 density @ SC ρn 696 kg/m3

Brine density @ SC ρw 1000 kg/m3

CO2 viscosity µ̂n 5 · 10−5 Pa·s
Brine viscosity µ̂w 3 · 10−4 Pa·s
CO2 residual saturation snres 0.0947 -
Brine residual saturation swres 0.1970 -
Brine compressibility β 4.5 · 10−10 Pa−1

Porosity ε 0.2 -

Permeability (isotropic & constant) K̂ 100 mD
Aquifer slope θ 0.57 (=1.0) ◦ (%)
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Table 3. Parameters used to define the aquifer and grid geome-
tries in 2D application.

Parameter Symbol Value Unit

Lateral extent (x) Lx 20 km
Lateral extent (y) Ly 1 m
Average thickness (z) H0 100 m
Lateral spacing (x) ∆x 20 m
Lateral spacing (y) ∆y 1 m
Average spacing (z) ∆z 2 m
Initial plume width (x) ∆Wx 1000 m
Initial plume width (y) ∆Wy 1 m

Table 4. Parameters used to define the aquifer and grid geome-
tries in 3D application.

Parameter Symbol Value Unit

Lateral extent (x) Lx 15 km
Lateral extent (y) Ly 15 km
Average thickness (z) H0 100 m
Lateral spacing (x) ∆x 50 m
Lateral spacing (y) ∆y 50 m
Average spacing (z) ∆z 2 m
Initial plume width (x) ∆Wx 1000 m
Initial plume width (y) ∆Wy 1000 m
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Figure 1. Aquifer system composed of brine (region 1), residual
CO2 and brine (region 2), and CO2 and residual brine (region 3).
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(a) After 10 years. (b) After 500 years.

(c) After 1300 years.

Figure 3. Comparison of simulated saturations with ECL-3D and
plume thickness computed with ECL-VE for relative amplitude
a = 0.05 and nx = 40 periods. The white line indicates the position
of the residual CO2 interface (i.e. hi) and the yellow line shows the
boundary of the mobile CO2 volume. Vertical scale is exaggerated
by a factor 20.

(a) After 10 years. (b) After 500 years.

(c) After 1300 years.

Figure 4. Comparison of simulated saturations with ECL-3D and
plume thickness computed with ECL-VE for relative amplitude
a = 0.20 and nx = 40 periods. The white line indicates the position
of the residual CO2 interface (i.e. hi) and yellow line shows the
boundary of the mobile CO2 volume. Vertical scale is exaggerated
by a factor 20.



774 REFERENCES

Figure 5. Comparison of numerical solutions computed with
ECL-VE and VESA solvers for a = 0.20 and nx = 40 after 1300
years. Red and blue lines show computed position of mobile CO2

interface and the black lines correspond to the top and bottom of
the aquifer. The vertical axis shows relative elevation with respect
to an arbitrary datum level.

(a) After 100 years.

(b) After 1300 years.

Figure 6. Brine saturation for flat (top) and sinusoidal aquifers
with wave number nx = 20 and amplitude a = 0.05 (middle) and
a = 0.15 (bottom). Light blue colors show areas with residual
CO2. Vertical exaggeration is 20×.
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(a) a = 0.05
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(b) a = 0.10
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(c) a = 0.15
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(d) a = 0.20

Figure 7. Plume tip position versus time for different values of
relative amplitude a using the ECL-VE model.
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(a) nx = 10
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(b) nx = 20
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(c) nx = 40
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Figure 8. Plume tip position versus time for different values of
the number of periods nx using the ECL-VE model.
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Figure 9. Top view of CO2 saturations after 1000 years for flat
(left) and sinusoidal (right) caprocks. Saturation values were
mapped onto a three-dimensional grid from two-dimensional ECL-
VE simulations.

Figure 10. CO2 saturation in vertical cross-sections after 1000
years for flat (left) and sinusoidal caprocks (right).


