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Abstract. We study the dynamics of two-phase flow with gravity and point
out three different transport mechanisms: non-cyclic advection, solenoidal ad-
vection, and gravity segregation. Each term has specific mathematical prop-
erties that can be exploited by specialized numerical methods. We argue that
to develop effective operator splitting methods, one needs to understand the

interplay between these three mechanisms for the problem at hand.
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1. Introduction

Numerical approximation of multiphase flow in heterogeneous reservoirs gener-
ally give rise to large systems of nonlinear equations that need to be solved to
advance the solution forward in time. Developing a successful simulator therefore
depends more on the robustness and efficiency of the nonlinear solvers than on the
quality of the underlying discretization. This has led to widespread use of fully im-
plicit formulations which promise unconditional stability. In practical simulations,
however, robust implementations of fully implicit schemes must limit the length of
the time step, depending on the complexity of the grid, the geology, fluid physics,
discretization scheme etc. With increasingly large and complex reservoir descrip-
tions, there is a growing demand for faster yet stable and predictable simulation
technology. To achieve higher efficiency, solvers tend to exploit special features of
the flow physics and possibly use some form of sequential operator splitting.

The key idea of operator splitting for an evolutionary problem is to divide the
model equations into a set of subequations that each model some parts of the
overall dynamics that can be conquered using a simpler or more effective solution
method. An approximation to the evolutionary solution is then constructed by
solving the subequations independently, in sequence or parallel, and piecing the
results together. Formally, we want to solve a Cauchy problem of the form

dQ

(1) TCHAQ =0, QO)=Qo,

where A is an abstract and unspecified operator. The equation has the formal
solution Q(t) = exp(—tA)Qo. Assume now that we can write A = A; +---+ Ay,
in some natural way and that we know how to solve the subequations

dQ

(2) E“FAj(Q):O, j=1...,m
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more effectively that solving (1). Introducing a time step At, and setting ¢, = nAt,
the operator splitting can formally be written as

3) Qltnsn) = e tn14Qq » [edAn =2 ] ().

Numerical methods are obtained by replacing the abstract operators e~ 24 by
numerical approximations. This way, one can combine numerical methods that
have been developed to solve a particular class of evolutionary problems in a fairly
straightforward manner, reusing specialized, highly efficient, and well-tested solvers.
In particular, operator splitting enables easy replacement of one scheme with an-
other scheme for the same elementary operator. Moreover, the use of operator
splitting may also reduce memory requirements, increase the stability range, and
even provide methods that are unconditionally stable.

One of the first operator splitting methods used within reservoir simulation, was
the alternating direction implicit (ADI) method [30, 10], in which multi-dimensional
flow problems were successfully reduced to repeated one-dimensional problems that
could be effectively solved using the Thomas algorithm. Today, this method is sel-
dom used. Instead, it is common to use operator splitting methods that split the
computation of flow and transport into separate steps, e.g., methods such as IM-
PES, IMPSAT, sequential splitting, and sequentially fully implicit. Such splittings
are essential for the development of specialized and highly efficient methods like
multiscale pressure solvers [12] and streamline methods [9]. Operator splitting is
used not only to separate flow and transport, but may also be used to separate
different physical effects within a transport (or flow) equation. In particular, many
previous studies have focused on splitting methods for parabolic transport equa-
tions designed to effectively capture the balance and interaction of viscous and
capillary forces, see [15, 20] and references therein.

There are often several ways to decompose an evolution operator. A good start-
ing point is to have effective and specialized solvers for parts of the problem, e.g., an
effective pressure solver, an effective solver for advective flow, etc. Designing an op-
timal solution strategy, however, will also require a good understanding of how the
different physical effects act together to form the overall dynamics of the problem
so that one can: (i) optimize the operator decomposition into ’clean’ subproblems
that can be solved as effectively as possible, and (ii) efficiently piece together the
resulting subsolutions without creating undesired artifacts in the approximate so-
lution. Moreover, operator splitting can be used to accommodate the intuitive
principle that each physical effect should (ideally) be evolved using its appropriate
time constant.

In this paper, we discuss operator splitting for transport equations of the form

(4) ¢S +V - (f(S)7+ h(S,7)g) = .

involving only advective and gravitational forces. Our motivation for doing so is
to understand how to utilize efficient advective solvers developed for the special
case that the vector field is associated with potential flow and the hyperbolic char-
acteristics of the system are always positive. The primary example is streamline
simulation [9], but similar principles are used in methods for flow-based ordering
[1, 23, 28]. In streamline simulation, the transport equation (4) is split into an
advective and a gravity segregation part [18, 17, 6, 3]

(5) ¢S+ V- (f(S)8) =q, ¢3S+ V- (h(S,E)g) = 0.
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If we let Aqqy and A,eq denote the corresponding operators, approximate solutions
of (4) can be constructed using the following operator splitting:

(6) S(t + At) ~ [(Aseg(At/n))n (Aadv(m/m))m} S(t),

where m and n are two positive numbers (in most cases n < m). The transport
mechanisms in the two equations in (5) act along curves in three-dimensional space
that trace flow paths (streamlines and gravity lines, respectively) given by

dz  U(¥) dr ¢

(7) d7 - ¢(f) arn % = @

Each equation can therefore usually be computed efficiently using Lagrangian co-
ordinates. The advective equation has only positive characteristics (also for more
complex models with more than two phases and/or components) and the single-
point upwind method therefore gives a nonlinear triangular system with only one
nonzero subdiagonal. Alternatively, one can use a highly efficient and uncondition-
ally stable front-tracking method [19]. The segregation equation has both positive
and negative characteristics along gravity lines and will in most cases also have a
spatially discontinuous flux function. The standard approach within reservoir sim-
ulation is to use a mobility-weighted upwind approximation, in which the upwind
direction is determined independently for each phase. This discretization is not al-
ways correct for discontinuous K; fortunately, the correct Godunov method is only
slightly more complicated [27]. Alternatively, one can use an unconditionally sta-
ble front-tracking method for problems with spatially discontinuous flux [16]. The
power of streamline methods is that streamlines change slowly in time compared to
the dynamics of saturation fronts. For advection-dominated problems, streamline
methods have been proven to be (significantly) more efficient than conventional
methods [2, 31, 9].

Using streamlines involves a mapping from Eulerian to Lagrangian coordinates
and back again, which may introduce numerical dissipation and lack of mass con-
servation [22]. To guarantee mass conservation, one may alternatively work directly
in Eulerian coordinates and exploit unidirectional flow property of the advective
flow equation to construct nonlinear Gauss—Seidel type iterations for implicit finite-
volume discretizations [28, 29]. This may both increase the robustness and reduce
the runtime significantly compared to standard (non)linear solvers

A key design assumption in both streamline and flow-based ordering methods,
is that the total velocity is close to a potential flow. If not, the total velocity field
will contain a rotational component that may introduce large irreducible blocks
in the nonlinear systems for finite-volume schemes [29] and cause streamlines to
spiral or form loops. This will significantly deteriorate the efficiency of streamline
and reordering methods, even if the rotational velocity component is orders of
magnitude smaller than the advective part in most of the domain. To complicate
matters, the rotational part of the velocity field is moving with the fluid since it is
governed by the density difference.

The main purpose of the paper is to discuss the dynamics of systems involving
advective and gravitational forces. In particular, we are interested in systems hav-
ing (large) density differences, e.g., as seen in simulation of COs storage. Through
the use of two simple examples, we will show that more insight about the system
behavior can be derived if one, instead of splitting the transport into advection
and gravity segregation, considers all three different contributions to the dynamics:
non-cyclic advection, solenoidal (rotational) advection, and gravity segregation. In
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particular, we show that the three different transport mechanisms in many cases
occur at different timescales and hence can be exploited differently based on the
understanding of the flow physics. Our qualitative analysis naturally suggests a
general family of new splitting methods that isolate the rotational part of the ve-
locity in separate splitting steps, thereby reducing its negative impact on the time
step and the overall simulation efficiency. If all three steps are used, the new meth-
ods require an additional pressure solve with a different right-hand side to compute
the solenoidal velocity, but the associated cost is low for many types of linear solvers
since preprocessing, preconditioning, or factorizations of the coefficient matrix may
be reused. However, only may also utilize disparity in timescales to design simpler
splitting methods that achieve very high efficiency in special cases, e.g., if one of
the steps can be assumed to take effect instantaneously.

2. Discussion of dynamics

To keep the discussion as simple as possible, we consider incompressible flow of
two immiscible fluids with different densities. The mathematical model is stated
using a fractional flow formulation that separates the evolution into an elliptic
flow equation for pressure and fluid velocity and a transport equation with strong
hyperbolic characteristics for fluid saturations

(8) V-i=gq  T+AK[Vp—(Auwpw+ Anpn)d] =0
Sy " _
(9) ¢W+Vfw(v+)\n(Pw*Pn)K9):(Jw~

Here, p is the fluid pressure, ¢ is the total Darcy velocity, S is the saturation of the
wetting phase, K and ¢ are the absolute permeability and porosity, respectively, p,
are the phase densities of the wetting (w) and non-wetting (n) phase, A, denote
phase mobilities, and g is the acceleration of gravity. The total mobility, fractional
flow, and source terms are defined by A = Ay, + Ay, f = A/, and ¢ = qu + ¢n,
respectively. Throughout this paper, we use no-flow boundary conditions for each
of the equations in (8) and (9). In the following, we will assume that the flow
equation (8) can be solved (e.g., by a finite-volume method) to give a flux field
with one scalar value v;; associated with each interface between two cells ¢ and j.

The dynamics of the incompressible two-phase system is generally driven by
three different mechanisms. To see this, we first use the fundamental theorem of
vector calculus to introduce a decomposition of the total Darcy velocity that is
reminiscent of a Helmholtz decomposition; that is, we write the velocity as a sum
of a non-cyclic (curl-free) vector field and a solenoidal (divergence-free) vector field,
U = Upe + Uprot. In our model, the non-cyclic and the solenoidal velocities satisfy the
following pressure equations

(10) V  Upe = g, Une + AKVD,e =0,

(]-]-) v : 777‘015 = 07 777"015 + )\Kvprot = )\K()\wpw + )\npn)g

We will later come back to how the two vector fields in the decomposition can be
computed efficiently.

Introducing the non-cyclic and the solenoidal velocities in the transport equation,
we obtain the following equation

(12)  60Su+ V[ fu(S)Tnc + fu(S)Trot + fu(S)An(S) (b — pa)KT] = au,
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from which we see that there are three different contributions to the flux: The first
term, fo,(8)Une, represents pure viscous forces driven by the gradient of a poten-
tial. If this is the only flux contribution, the transport equation (12) will have a
unidirectional flow property (or causality principle) which ensures that perturba-
tions travel along streamlines from fluid sources or inflow boundaries to fluid sinks
or outflow boundaries. If the fluxes are computed from (10) using a monotone
method, no streamlines will reenter a grid cell they have passed through earlier. In
this case, the transport equation can be discretized using a standard single-point
upwind discretization

(13) (8" — 8"+ AtV F(S"TH) =q.

Here, ® = diag(¢;) where ¢; is the porosity in cell 4, S is the vectors of volume-
average saturations per cell, f the vector of fractional flow values per cell, g the fluid
sources per cell, and V is the the upwind flux matrix. A particularly efficient solver
can be developed by observing that the directed graph formed by considering grid
cells as vertices and the fluxes over each cell interface as directed edges is acyclic
and can be flattened by a topological sort. Using this reordering, the upwind flux
matrix can be rearranged to a lower triangular form by a symmetric permutation of
the rows and columns using Tarjan’s algorithm [11]. Hence, the nonlinear system
(13) can be computed using a highly efficient nonlinear Gauss—Seidel approach, in
which the solution is computed cell-by-cell (using e.g., Ridder’s method), see [28]
for more details..

The second term, f,,(S)¥o¢, represents gravity-induced advection, which has a
circular behavior similar to that of a convection cell. When ¥,.,; is nonzero, the
directed graph associated with the total velocity will generally not be acyclic and
may contain cycles consisting of cells that have a circular dependence in (13). In the
worst case, streamlines may also be cyclic and reenter cells they have passed through
earlier. The cycles are easy to detect using a topological sort of the reverse flux
graph and once they are detected, the nonlinear system in (13) can be rearranged
into a block-triangular form with circularly dependent cells appearing as matrix
blocks on the diagonal. A nonlinear Gauss—Seidel algorithm may still be used
to solve (13), but now the local block systems must be solved using a Newton—
Raphson type method, which may significantly affect the overall efficiency of the
overall method. The rotational contribution to the total velocity depends upon the
saturation distribution, and the larger this contribution is, the tighter the coupling
will be between the flow and the transport equation.

The third flux term in (12) represents gravity segregation that acts along one-
dimensional lines parallel to the gravity vector g. Along each such gravity line, the
characteristics will generally point in both directions corresponding to the lighter
fluid moving upwards and the heavier fluid moving downwards. In streamline and
other related methods, the gravity step is therefore typically accounted for in a
separate step [18, 17, 6, 3]. We will come back to such operator splittings in the
next section. First, however, we consider an example that illustrates the non-cyclic
and rotational parts of the dynamics.

Example 1. Consider two fluids with densities 100 and 1000 Kg/m?3, linear rela-
tive permeability curves, and viscosities equal 1 cP for both fluids. The domain is
homogeneous with permeability 100 mD covering the unit square. In the upper-right
corner, a fluid source injects the lighter fluid at a rate of 0.01 m? /day, whereas fluid
is produced at the same rate from a sink in the lower-left corner. Initially, the sat-
uration of the light fluid is zero in the whole domain. The injection of fluid result
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i a flow that is driven by a linear combination of buoyancy forces and a pressure
gradient, but with a strong buoyancy dominance. Figure 1 shows the saturation field
and the decomposition of the total Darcy velocity. We observe that the strength of
the solenoidal component increases as more light fluid enters the domain.

Let us now reverse the flow and ingect the light fluid in the lower-left corner and
produce fluids from the upper-right corner. Moreover, to increase the influence of
gravity we reduce the injection rate to 0.001 m3 /day. Figure 2 shows the saturation
field, the total velocity, the solenoidal velocity, and the cells that are part of a
cycle in the directed flux graph and hence mutually dependent. (The non-cyclic
velocity is identical to the one shown in Figure 1 and is therefore not plotted.)
Here, the advective flow that is imposed by the source-sink pair is so weak that the
flow is almost fully segregated. A sharp interface forms between the fluids with a
corresponding jump in density that yields a strong solenoidal contribution to the
total velocity field. As a result, we observe that large irreducible blocks form when
the light fluid accumulates at the top boundary. After one hundred days, 89 of
400 grid cells are connected in one irreducible diagonal block. This will significantly
reduce the efficiency of a nonlinear Gauss—Seidel method. After three hundred days,
there are two irreducible blocks with 341 grid cells in the first block and four cells
in the second.

The example above shows that the rotational part may give a significant con-
tribution to the total velocity field for cases with large density differences. The
appearance of loops and spirals in the velocity field is inconvenient when trac-
ing streamlines, e.g., because one often ends up discarding such streamlines, or
alternatively, needs to impose periodic boundary conditions in the 1D transport
solver. This makes the solution of transport along streamlines unappealing in re-
gions dominated by gravity. Similarly, the efficiency of nonlinear Gauss—Seidel
solvers is reduced when there are large loops in the velocity field, for which all the
corresponding unknowns in (13) must be solved for simultaneously. In fact, since
optimal ordering is based on a reduction of the flux matrix V' in (13) to (block)-
triangular form using a topological sorting algorithm [28, 29, 11], the algorithm is
sensitive to small reverse fluxes that are caused by gravitational effects.

In the next example, we will illustrate how timescales of the three different
transport mechanisms and hence the overall system dynamics are affected by het-
erogeneity and anisotropy in the permeability field.

Example 2. We consider a wvertical cross-section of a reservoir described by a
220 x 85 Cartesian grid with petrophysical parameters sampled from the first xz-
slice of Model 2 from the SPE 10 benchmark [7]. The reservoir is initially filled with
a fluid with density 1000 Kg/m? into which a lighter fluid with density 100 Kg/m?
is injected at a constant rate of one pore volume per 20000 days from a source
evenly distributed in the grid cells at the left boundary. On purpose, the density
difference is large and the injection rate is small to exaggerate the effects of gravity.
Reservoir fluids are produced by a sink evenly distributed in the cells along the right
boundary. The fluid mobilities are specified using Corey-type relative permeabilities
with exponent two and a viscosity of 1 centi Poise for both fluids. For simplicity,
we set gravity to 10 m/s*. For the porosity, we use a lower cut-off value of 0.001.

We consider two permeability realizations: the first is isotropic and uses only K,
from the original model, whereas the second uses the original, anisotropic (K., K.,)
permeability field. Figure 3 shows the solution for the isotropic model after 5000
and 10000 days. From the streamline plots, we see that the velocity field is quite
irreqular and that the local direction of flow changes with time. This is reflected in
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t=5000 days t=10000 days

F1GURE 3. Constant rate injection in all layers of a vertical cross-
section with isotropic permeability. The plots show the saturation
of the injected fluid (top), streamlines of the total velocity (mid-
dle), and the strongly connected grid cells in red (bottom).

t=5000 days t=10000 days

———

FIGURE 4. Constant rate injection in all layers of a vertical cross-
section with anisotropic permeability.

the plot of cells that belong to strongly connected components in the corresponding
directed flux graph; the loops seem to follow the saturation fronts. It is worth
noting that for a loop to appear in the total velocity, the strength (or timescale) of
the non-cyclic advection and the solenoidal advection must locally be of the same
magnitude. For higher injection rates, the non-cyclic advection will have a shorter
timescale than the solenoidal advection for the domain as a whole. The timescales
for the different parts of the dynamics are reported in the upper part of Table 1.
Figure 8 shows the corresponding solutions for the anisotropic model. In this
case, the vertical permeability is significantly smaller than the horizontal permeabil-
ity; more than half of the cells have a large anisotropy ratio (K./K, in the range
of 10%), which presumably models shale layers. This is reflected in a total velocity
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TABLE 1. The maximal time step in days for an explicit method
for different parts of the dynamics of the transport equations for
the two models of Example 2.
Model Time (days) Non-Cyclic Rotational Segregation
isotropic 5000 5.0 89 0.23
10000 5.0 95 0.48
anisotropic 5000 24 7700 0.75
10000 31 7000 0.75

less affected by gravity, with fewer and smaller loops. From the lower part of Ta-
ble 1 we see that the timescale of segregation is only slightly increased by the reduced
vertical communication; this timescale is determined roughly by the density differ-
ence, fluid viscosity, and the largest z-permeability. The timescale for the solenoidal
advection, on the other hand, is significantly increased because of the shale layers
that dramatically decreases the effective permeability along any closed streamline.
As a consequence, the number of loops in the total velocity field is reduced; it is
unlikely that the local timescales for non-cyclic advection and solenoidal advection
are of the same magnitude. However, we remark that in a three-dimensional model,
where the pressure gradient and velocity will decrease with distance from the wells,
these timescales will likely be of the same magnitude in some parts of a reservoir
even in the presence of small vertical permeability.

3. Improved operator-splitting methods

In the previous section, we argued how the presence of rotational components in
the total velocity will reduce the efficiency of the nonlinear Gauss—Seidel method
for the advective part. Likewise, loops or spirals will complicate tracing of stream-
lines as well as setting appropriate boundary conditions for the one-dimensional
transport equations along each streamline. To remedy these problems, and to ac-
commodate that the gravity segregation and the non-cyclic and solenoidal advection
may occur on different time scales, we split the advection into two subequations
and end up with three transport equations

(14) POS +V - (fw(S)ﬁnc> = Quw,
(15) $0,S + V - (fu(S)Tror) = 0,
(16) 0015 + V| £u(S)Aa(S)(pu — pu)K3G| =0

If we let Ay, Apot, and Agey denote the corresponding operators, approximate
solutions of (9) can be constructed using the following three-step operator splitting:

(17)  S(t+At) ~ [(Aseg(At/n))n(Amt(At/m))m(Anc(At/é))g]S(t),

where m, n, and ¢ are three positive numbers. The main advantages of (17) are
that each subequation is solved using an optimal scheme with an optimal time step,
and that the rotational part of the velocity is removed from the advective velocity
to enable the use of highly efficient schemes available for non-cyclic flows. There
are, of course, many other ways to sequence the operators to better preserve the
interaction of the three physical mechanisms. For instance, the order of A., and
Ao can be interchanged or the operators can be combined if one does not want to
exploit the one-dimensional structure of (16).
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FIGURE 5. Realistic reservoir model from offshore Norway. The
plot shows the saturation field after ten years of water injection,
computed using equally-spaced pressure steps of length 2.5 years.

The operator splitting (17) assumes that the pressure equation is solved twice
with different right-hand sides (see (10) and (11)). Fortunately, this is not twice as
expensive as solving (8). First of all, we only have to generate the system matrix
once. Furthermore, any preconditioning or factorization of the system matrix may
be reused for the second pressure solve. It is also worth noting that the coupling
between the pressure equation and the saturation equation through saturation-
dependent mobilities can be quite severe in regions where the flow is dominated
by gravitational effects. In these regions, the velocity field changes as fast as the
saturation fronts move. By splitting the velocity field in a non-cyclic part and a
rotational part, we can quantify the degree with which the gravitational effects
induce tighter coupling in the operator splitting.

In the rest of this section, we present numerical experiments that illustrate the
use of operator splitting on two representative models, by also shows the importance
of understanding the dynamics of the problem when applying operator splitting.
The emphasis of our first example is to demonstrate that the new gravity splitting
is applicable to realistic reservoir models with complex, twisted, and deformed grid
cells; sealing and partially sealing faults; thin and eroded layers; barriers, etc.

Example 3. The model in this example is based on a real-field model from off-
shore of Norway. We use the original geology and reservoir geometry, described
as a corner-point grid with approximately 44 000 active cells, but have modified the
fluids and wells. We have filled the original gas cap with oil to make the model
more suitable for an incompressible formulation. Initially, the reservoir is in near
hydrostatic equilibrium with the original oil-water contact preserved. We inject wa-
ter in some of the original wells. Furthermore, we use Corey relative permeability
curves with Corey exponent four and viscosities 0.318 cP and 1 cP for oil and wa-
ter, respectively. The density difference used is 174 kg/m?®. Figure 5 shows the
water saturation after ten years of injection.

Our first objects of interest are the timescales associated with gravity segregation
and non-cyclic and rotational advection. Table 2 reports the maximum time step
fulfilling a CFL restrictions for the three substeps. We see that the non-cyclic
advection step has the most severe time-step restriction, whereas the maximal time
steps for the gravity segregation and rotational advection are one and two orders
of magnitude higher, respectively; the upper bound on the rotational step increases
with time, but stabilizes around 200 days for longer times.
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TABLE 2. Estimated time step restrictions for each of the splitting
steps (14), (15), and (16) for the model shown in Figure 5.

Time (years) 0.25 0.5 0.75 1.0 1.25 2.5 5.0 7.5
Ane (days) 1 1 1 1 1 1 1 1
Arot (days) 46 79 82 85 87 120 200 213
Aseq (days) 6 6 6 6 6 6 6 6

TABLE 3. Number of cycles (IV), number of cells in the largest
cycle (max), and the total number of cells involved in cycles for
the model in Figure 5 for fluxes computed with a two-point method
with pressure steps At equal 2.5 and 0.25 years.

At Time ﬁrat 7= 6nc + _"rot
years years N max #cells N max #cells
2.5 2.5 26 37835 38133 18 188 410
5 27 38912 39390 10 178 356
7.5 13 39913 40820 15 186 404
0.25 0.25 9 31709 32489 34 443 728
1.0 8 36763 36920 22 202 594
2.0 9 37856 38002 19 195 563
2.25 9 38092 38246 20 193 570

In our opinion, the table shows that it may be feasible to use explicit transport
solvers for this model: a step length of six days for the segregation is not too bad,
and a step length of one day is close to acceptable for the (non-cyclic) advective
step. On the other hand, the model resolution is quite coarse, in particular near the
wells, and a further lateral refinement in the near-well regions would worsen the
restriction on the advective step, but not affect the gravity step significantly.

Next, we consider the possibility of accelerating implicit temporal discretizations
using a nonlinear Gauss—Seidel method. As a measure of the complexity of the
nonlinear problem, we report some statistics on the cycles that appear in the flux
graph, or more precisely, the number and size of the irreducible diagonal blocks
in the upwind flur matriz V' from (13). The irreducible blocks are identified by
permuting V' to a block-diagonal form using Tarjan’s algorithm [11]. Table 3 reports
the number of cycles, the number of cells in the largest cycle, and the total number
of cells involved in cycles observed for two different sizes of the pressure step. These
quantities give a good picture of the difficulties of the nonlinear problem which would
ultimately limit the efficiency of implicit methods for long time steps. If the flux
is computed using a monotone two-point fluz-approrimation scheme, there are no
cycles in the fluzx field corresponding to U,., whereas the total velocity has 400-500
cells involved in cycles. Isolating the rotational component in a separate step will
therefore improve the efficiency of the advective step. The rotational velocity, has
cycles covering almost the complete domain, but may be solved efficiently using a
single explicit step because of the large time constant.

In general, having as few cycles as possible is highly favorable when using a
streamline or a nonlinear Gauss—Seidel method to accelerate the advective step. So
far, we have only considered a two-point scheme for solving the pressure equation(s).
It is well-known that this scheme is inconsistent and hence ill-suited for rough ge-
ometries or strongly anisotropic permeability tensors. If one, on the other hand,
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TABLE 4. Number of cycles (N), number of cells in the largest
cycle (max), and the total number of cells involved in cycles for
the model in Figure 5 for fluxes computed with a mimetic method
with pressure step of 0.25 years.

Time ﬁnc 17rot v = 17710 + 17rot

years N max  #cells| N max #cells N max  #cells
0.25 424 3314 9038 98 33451 35314 | 453 2245 8697
0.50 433 3268 9514 76 36277 37720 | 423 3274 10272

uses a convergent scheme, such a multipoint or mimetic method, one will inevitably
obtain flux fields with cycles, even without gravity as for Uy in (10). There seems
to be a close relation between cycles in the velocity field and monotonicity of the
pressure, see e.g., Figure 8 in [T . Unfortunately, unless certain assumptions are
imposed on the underlying grid and permeability field or both, there exists no (con-
vergent) monotone method with local stencil that guarantees monotone pressure [?
J. On the other hand, our experience is that no