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Abstract. Natural fractures reside in various subsurface formations and are at various length
scales with different intensities. Fluid flow in fractures, in matrix and between matrix and frac-
tures are following different flow physics. It is thus a great challenge for efficiently modeling and
simulation of fluid flow in fractured media due to the multi-scale and multi-physics nature of the
flow processes.

Traditional dual-porosity and dual-permeability approach represents fractures and matrix as
different continuum. The transfer functions or shape factors are derived to couple the fluid flow
in matrix and fractures. The dual-porosity and dual-permeability model can be viewed as a
multi-scale method and the transfer functions are used to propagate fine-scale information to the
coarse-scale reservoir simulation. In this paper, we perform a detailed study to better understand
the optimal way to propagate the fracture information to the coarse-scale model based on the
detailed fracture characterization at fine-scale.

The Discrete Fracture Modeling (DFM) approach is used to represent each fracture individ-
ually and explicitly. The multiple sub-region (MSR) method is previously used for upscaling
calculations based on fine-scale flow solution by finite volume method on the DFM. The MSR
method is the most appropriate upscaling procedure for connected fracture network but not for
disconnected fractures. In this paper, we propose an adaptive hybrid multi-scale approach that
combines MSR and DFM adaptively for upscaling calculation for complex fractured subsurface
formations that usually involve both connected fracture network and disconnected fractures. The
numerical results suggest that adaptive hybrid multi-scale approach can provide accurate upscaling
results for flow in a complicated geological system.
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1. Introduction

Natural fractures reside in various subsurface formations and are at various
length scales with different intensities. The accurate modeling of flow through
such systems is important for many types of problems, including the management
of energy resources (oil, gas, geothermal) and geologically sequestered CO2, as the
fractures often provide the primary conduits for flow.

Fluid flow in fractures, in matrix and between matrix and fractures are following
different flow physics. Moreover, fracture distribution in subsurface formation usu-
ally displays significant variation in connectivity and size over the formation. Large
and strongly connected fractures are typically located near bedding planes and fault
zones, while small and disconnected fractures are usually located away from those
regions. In addition, as discussed in [16], the dimensions and spatial frequency of
fractures are impacted by the thickness of the confining stratigraphy. The variation
in fracture properties, especially fracture connectivity, requires to model different
fracture zones using different numerical treatments to achieve accurate upscaling
results as discussed in [4, 14, 18].

Received by the editors March 2, 2011 and, in revised form, August 29, 2011.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.

667



668 B. GONG AND G. QIN

The dual-porosity and dual-permeability model starts from the assumption that
fractured porous media can be considered as the overlapping of a matrix continuum
and a fracture continuum, which are locally connected to each other. The basic
assumption in the dual-porosity and dual-permeability approach is that the global
flow occurs only through the fractures and the matrix is only locally connected to
the fracture networks and serves as the storage space for fluids [19]. The dual-
porosity and dual-permeability model can be viewed as a multi-scale method, in
which flow between matrix and fractures occurs on the fine-scale and flow through
fractures on the coarse-scale. Since fracture permeability is extremely higher in
comparison with matrix permeability, an additional assumption in [19] is that the
fine-scale flow in matrix blocks reaches pseudo-steady state instantly after the global
flow starts, at which the time rate of change of pressure is a constant [19]. The
transfer functions or shape factors can thus be derived to couple the fluid flow
in matrix and fractures based on the fracture characterization and are used to
propagate the fine-scale information to the coarse-scale reservoir simulation. The
analytical form of the transfer functions can be derived based on approximated
fracture model [1, 2, 13, 15, 19, 20, 21]. Numerical upscaling procedure needs
to be applied to accurately compute transfer functions based on realistic fracture
characterization.

In previous work, we have performed global flow simulations using discrete
fracture modeling (DFM) for fine-scale reference solutions and multiple subregion
method (MSR) for upscaling treatment [6, 7]. DFM represents each fracture in-
dividually and explicitly, which requires unstructured gridding of fracture-matrix
system using 3D (Delaunay) triangulations and transmissibility evaluation between
each pair of adjacent elements [11]. MSR is a generalized dual-porosity and dual-
permeability approach that numerically calculates the mass transfer between frac-
tures and matrix based on discrete fracture information and multiple subregions
are used to characterize the global flow regime at pseudo-steady state [6, 12].

The assumption of instant pseduo-steady state is not valid if the transient period
is too long, which can happen if the formation contains disconnected or locally
connected fracture network, or if the coarse blocks contain wells. Therefore, the
MSR is an appropriate upscaling procedure when all of the fractures are globally
connected so matrix and fractures exchange fluid locally while large-scale flow only
occurs through the fracture network [12]. The global use of MSR loses accuracy
if reservoir contains large portion of disconnected fractures, or the disconnected
fractures are in key regions such as near-wells. In this paper, we present some
preliminary numerical results using an adaptive hybrid multi-scale approach, which
combines MSR and DFM based on fracture characterization. The numerical results
suggest that adaptive hybrid multi-scale approach can provide accurate upscaling
results for flow in a complicated geological system.

This paper proceeds as follows. First, we briefly review dual-porosity model
and, the DFM and the MSR method for upscaling procedure. Second, the hybrid
methodology is described and the computations for the internal and inter-block
connections are explained for the multi-scale approach that integrates DFM and
MSR. Next the hybrid approach is applied to several cases (2D and 3D) for two-
phase, three-phase and compositional flow examples. These results demonstrate the
improvement in accuracy attainable from the hybrid procedure. We also discuss
computational demands for this approach, which are important to consider because
the hybrid method is more expensive than the global MSR procedure.
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2. Dual-porosity model

The dual porosity model assumes that fractured porous media can be considered
as the overlapping of a matrix continuum that is porous medium with well-defined
porosity and permeability and a fracture continuum, in which they are locally con-
nected to each other. The governing equations can be written for each continuum
by combining the mass conservation and Darcy’s law:

(1) φm

∂ρm

∂t
−∇ · (

kmρm

µ
∇pm) = −τ,

(2) φf

∂ρf

∂t
−∇ · (

kfρf

µ
∇pf ) = q + τ,

where the subscript m and f stand for matrix and fracture, respectively, and k is
the permeability of the subsurface formation. p denotes fluid pressure, ρ and µ are
fluid density and viscosity, respectively.

In the equation (1) and (2), τ is the flux exchange between matrix and fracture,
q is the source/sink term. Notice that q only appears in the fracture flow equation,
which implies another assumption that the global flow occurs only through the
fractures. Matrix is only locally connected to the fracture networks and serves as
the storage space for the fluids. Thus, the fracture flow equation should be solved
globally on coarse scale and the matrix equation should be solved locally on fine
scale. In order to denote this difference, we use γ to represent the coarse scale and
use β to represent the fine scale. Equations (1) and (2) can then be written in a
format similar to asymptotic analysis:

(3) φm

∂ρm

∂t
−∇β · (

kmρm

µ
∇βpm) = 0, (matrix)

(4) φf

∂ρf

∂t
−∇γ · (

kfρf

µ
∇γpf) = q + τ. (fracture)

Since the matrix flow equation is written locally on fine scale, the flux exchange
term τ is defined as the average over matrix blocks on coarse grid:

(5) τ = −
1

Vm

∫
Vm

φm

∂ρm

∂t
dv =

1

Vm

∫
Vm

∇β · (
kmρm

µ
∇βpm)dv.

Consequently, the key issue in dual-porosity model is the accurate approximation
of τ , which involves upscaling treatment and [1, 5] provide detailed discussion on
the numerical solution techniques.

Originally, Warren and Root [19] assume that the fine-scale flow in matrix blocks
reaches pseudo-steady state in which the pressure in the entire system changes with
a constant rate, i.e. ∂p

∂t
= const instantly after the global flow starts. Thus, the

pressure in matrix blocks can be approximated by an average pressure p̄m and

(6) τ = α
km

µ
(pf − p̄m).

In Equation (6), α stands for the transfer function or shape factor. By assuming
regularly spaced fractures, α can be calculated analytically [13, 15, 19, 20, 21].

The assumption of instant pseudo-steady state is not valid if the coarse grid block
is big or the matrix permeability is small, which usually is the case in field-scale
reservoir simulations. Furthermore, complex fracture distribution in real world
makes even harder to compute transfer function analytically. Numerical upscaling
procedure presents the advantages in computing τ .
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3. Discrete Fracture Modeling and Multiple Sub-region Method for Up-
caling

3.1. Discrete Fracture Modeling (DFM). Discrete fracture modeling repre-
sents each fracture as a geometrically well-defined entity using highly resolved un-
structured grids as illustrated in Figure 1. In the DFM, fractures are a collection
of 1D elements that are the edges of matrix elements in 2D cases. Similar method-
ology is extended for 3D DFM. Since its first introduction in the late 1970s, many

Figure 1. Detailed discrete fracture realization to discrete frac-
ture modeling (DFM) [11]

researchers have developed numerical algorithms for solving flow problems based
on DFM such as [3, 8, 10, 17]. Karimi-Fard et al.(2004) presented a finite-volume
algorithm for solving flow problem on DFM and applied a connection list to repre-
sent the unstructured grid. This method is applicable for 2D and 3D systems with
multiphase flow and we use this algorithm for solving flow problems in this paper
[11].

DFM reduces the overall number of elements and significantly simplifies griding
procedure, especially in 3D systems. However, the use of DFM for flow modeling
at the field scale is still too computationally demanding. An appropriate upscaling
strategy needs to be considered for an efficient field-scale simulation.

3.2. Multiple Sub-region Method (MSR) for Upscaling Calculation. Karimi-
Fard (2006) and Gong (2008) introduced a systematic upscaling methodology that
constructs a generalized dual-porosity/dual-permeability model from fine-scale dis-
crete fracture characterizations [6, 12]. This technique, referred to as a multiple sub-
region (MSR) method, introduces local subregions (or subgrids) to resolve dynamics
within the matrix and provides appropriate coarse-scale parameters that describe
fracture-fracture, matrix-fracture and matrix-matrix flow. The construction of mul-
tiple subregions can be viewed as a generalized dual-porosity/dual-permeability ap-
proach when the number of subregions inside each coarse block is reduced to 2 -
one for the fracture and the other for the matrix. In traditional dual-porosity and
dual-permeability approach, the flux exchange τ in (1) and (2) is computed by (6),
where the shape factor or transfer function α is approximated by assuming regular
fracture distribution within coarse blocks. In comparison, MSR is advantageous in
representing a realistic fracture characterization while upscaling the flux exchange
between matrix and fractures since the construction of subregions involves local
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pressure solve based on the actual fracture distribution. Besides, with more than 2
subregions in each coarse block, MSR is capable of modeling transient effects inside
the matrix thus provides a higher degree of accuracy.

The MSR method basically involves two steps. In the first step, a single phase
and single porosity flow problem is solved inside each coarse cell with no-flow bound-
ary condition and a well with constant injection flow rate inside the fracture net-
work. The overall pressure of each coarse cell will increase with time and reach a
pseudo-steady state profile after a transient period [6, 12]. Due to the high perme-
ability of the fracture network, the pressure inside the fractures is approximately
the same and the pressure variation inside the matrix behaves like a diffusion pro-
cess. The shapes of the iso-pressure curves at pseudo-steady state depend only
on the fracture geometry and permeability variation within the coarse cell and are
independent of the injection rate and fluid properties. Sub-regions can then be
identified based on the pseudo-steady state pressure distribution.

Based on the fine-scale pressure solution, each coarse block can be subdivided
into non-overlapping sub-regions,

(7) Ωk =
n⋃

i=1

Ωk
i ,

where Ωk
i stands for the ith sub-region in Ωk. This subdivision is performed by

sorting all of the fine-scale cells in coarse cell k according to their pressure values
from the maximum pressure, pkmax, to the minimum pressure, pkmin. The first sub-
region Ωk

1 is constructed from the fine-scale fracture network. As the solution is
obtained by injecting fluid inside the fracture network, the sub-region Ωk

1 has the
highest average pressure. The remaining matrix cells are then grouped into (n− 1)
groups defining (n − 1) additional subregions. The iso-pressures that define the
borders of each subregion are obtained by minimizing the summation of pressure
variance inside each subregion [6, 12].

The bulk volume V k
i of each sub-region and the average porosity can be computed

once Ωk
i are determined. The average pressure p̄ki and density ρ̄ki can be computed

using pore-volume weighted average. The transmissibility of the sub-region can be
calculated by the mass accumulation within each sub-region at pseudo-steady state.
This quantity, designated A, is computed via:

(8) Ak
i =

∑
j∈Ωk

i

vjφj

∂ρj

∂t

vj is the volume for fine cell j, j ∈ Ωk
i means that for all fine cells in subregion Ωk

i .

At pseudo-steady state,
∂ρj

∂t
is constant and the accumulation term is propor-

tional to the pore volume of the subregion. The flow rate between two subregions
n− 1 and n is equal to the mass accumulation in subregion n:

(9) Qk
n−1,n = Ak

n.

The other inter-subregion flow rates are computed using:

(10) Qk
i,i+1 = Ak

i+1 −Qk
i+1,i+2, i = 1, 2, · · · , n− 2,

which simply states that the net mass flow into (or out of) sub-region Ωk
i is balanced

by the accumulation term.
From the local solution we have the sub-region pressures (p̄ki and p̄ki+1) and

the flow rates between them (Qk
i,i+1). We can thus compute the transmissibility



672 B. GONG AND G. QIN

between adjacent sub-regions using the following equation [6, 12]:

(11) T k
i,i=1 =

Qk
i,i+1µ

ρ̄ki (p̄
k
i − p̄ki+1)

, i = 1, 2, · · · , n− 2.

These transmissibilities combined with the associated sub-region volumes, V k
i ,

and porosities, φ̄k
i , fully define the local matrix-fracture and matrix-matrix flow

model inside each coarse cell along with the connection list that define the linkages
among the sub-regions [6, 12].

The second step in MSR procedure is to compute the transmissibility between
the two adjacent coarse cells Ωk and Ωl based on the fine-scale information. A
steady-state flow problem is solved with a pressure difference imposed between the
two boundaries. The average pressure and fluid properties inside each block, as
well as the flow rate Qk,l through the interface between the blocks, are computed
from the local fine-scale solution. The transmissibility can then be determined via
[6, 12]:

(12) T k,l =
Qk,lµ

ρ(p̄k − p̄l)
.

The mass flow rate Qk,l is computed over the entire interface, though it will be
dominated by flow through the fractures when the fracture network is connected (as
it generally will be for models in which a dual-porosity formulation is applicable).
For those blocks in which the fractures are disconnected, this treatment will provide
a reasonable approximation for T k,l even in cases when the inter-block flow is from
the matrix in block k to the matrix in block l [12].

The geometry of the local subregions, as well as the required parameters for the
coarse-scale model, are determined efficiently from local single-phase flow solutions
using the underlying discrete fracture model. The subregions thus account for the
fracture distribution and can represent accurately the matrix-matrix and matrix-
fracture transfer.

Figure 2. The procedure of multiple sub-region method [7].
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Figure 2 is the outline of the first step of MSR upscaling procedure, in which
the fine-scale DFM is represented by a 4 × 4 Cartesian grid on coarse level. The
bottom left image illustrates the coarse grid with different level of sub-regions inside
each coarse block after the MSR procedure and the subregion grid is represented
by cell groups in different colors inside each coarse block. The geometry of the
local subregions, as well as the required parameters for the coarse-scale model, are
determined efficiently from local single-phase flow solutions using the underlying
discrete fracture model. The subregions thus account for the fracture distribution
and can represent accurately the matrix-matrix and matrix-fracture transfer.

4. Methodology for Hybrid DFM/MSR Procedure

The proposed hybrid method models the coarse blocks that contains disconnected
fractures based on the DFM representation and others using the MSR approach for
upscaling calculations. The subregion geometry, internal transmissibilities between
subregions for MSR coarse cells and transmissibilities between MSR coarse cells
are determined by MSR upscaling procedure as previously described in [6, 12]. The
internal connections for DFM blocks or groups of blocks remain in the fine-scale
form. The transmissibilities are determined directly from the discretization on the
underlying unstructured fine-scale grid. The key issue in the hybrid approach is
thus the evaluation of the transmissibility between the adjacent blocks that are
modeled by DFM and MSR, respectively.

Figure 3 illustrates two adjacent coarse blocks in which the left block contains
connected fractures and the right one contains disconnected fractures. MSR is
applied for upscaling calculations on the left block and DFM for the fine-scale flow
simulation on the right block as illustrated in Figure 4. We will use Figure 3 to
explain the procedure to evaluate the transmissibilities between those two adjacent
blocks that are modeled by MSR and DFM, respectively. The proposed procedure
can be applied in both 2D and 3D scenarios.

Figure 3. Motivation for hybrid method: coarse blocks to be
modeled using MSR (left) and DFM (right)

In Figure 4, the MSR block on the left contains four matrix subregions that are
labeled by different colors and, the DFM block on the right, by contrast, is fully
unstructured and contains 707 triangular cells.

Figure 5 illustrates the linkage between the MSR block k and the DFM block l in
Figure 4, in which each subregion on MSR block is connected to all the correspond-
ing fine-scale elements on DFM block through a physical interface with which they
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Figure 4. Illustration of matrix subregions for MSR block (left)
and fine cells for DFM block (right)

Figure 5. Inter-block connection determination for neighboring
MSR and DFM blocks

share. As illustrated in Figure 5, the 4th subregion in yellow color from the MSR
block is connected to all of the fine cells in the DFM block with which it shares a
physical interface. Connections between other subregions in block k and fine cells
in block l are defined in a similar fashion.

The hybrid model thus involves connections between particular subregions in
MSR blocks and multiple fine cells in DFM blocks. To compute the actual trans-
missibility values, a steady-state single-phase flow problem is solved with a pressure
difference imposed between the two boundaries as illustrated in Figure 5. This solu-
tion is performed on the underlying discrete fracture representation. We designate
the superscript k(i) to denote subregion i in the MSR block k and l(j) to denote
fine cell j in DFM block l. The average pressure and fluid properties inside each
subregion, as well as the flow rate Qk(i),l(j) through the interface between the block-
s, are computed from the local fine-grid solution. The transmissibility can then be
determined via:

(13) T k(i),l(j) =
Qk(i),l(j)µ

ρ(p̄k(i) − p̄l(j))
,

where all quantities are as previously defined. The mass flow rate Qk(i),l(j) is
computed over the shared interface of sub-region i in the MSR block k and fine cell
j in the DFM block l. We then apply equation (13) for the determination of each
of the required transmissibilities.
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Figure 6. Sketch of connection list between one MSR block and
one DFM block (setting corresponds to Figure 5)

The connection list is more complicated in this case than it is for the MSR
procedures described in our previous work [6, 9, 12]. A portion of the connection
list for the case considered above is shown in Figure 6, where the MSR block k is
connected to DFM block l. The MSR block k is divided into one fracture subregion
F 1
k and four matrix subregions M1

k , M
2
k , M

3
k , and M4

k . The DFM block l consists
of 16 fine cells denoted as D1

l , D
2
l ,...D

16
l . Green and red lines represent internal and

inter-block connections respectively. This figure illustrates that the 3rd, 4th, and
5th subregions of MSR block k are connected to 3, 8, and 5 fine cells respectively of
DFM block l. This connection list is input directly into GPRS for flow simulation.
We now present results for several representative cases.

5. Numerical Results

The hybrid method is applied to two 2D cases and a 3D case. In the first
example, fractures are connected throughout the reservoir. We model the injection
and production well blocks using DFM to better resolve the interactions between
the wells and fractures; the other coarse blocks in the model are represented using
MSR. In the second case, fractures are disconnected in one portion of the reservoir
and we use DFM to model these isolated fractures. In the 3D example, the near-well
fractures are disconnected and we use DFM to model them.
Case 1&2: 2D Model with Connected Fractures

As shown in Figure 7, a simple synthetic 2D model containing 32 connected
fractures is considered. An injector and producer are located in the lower left and
upper right corners of the reservoir, and they both intersect fractures. The coarse
blocks that contain wells are labeled in light green color and are the DFM block-
s. MSR are employed for upscaling calculations on the other coarse blocks. Two
simulations are performed, one for an oil-water system and one for miscible gas
injection. For the oil-water flow simulation, we use constant injection rate (500
STB/day) for the injector and constant BHP (4,000 psi) for the producer. For the
miscible gas injection simulation, we use the same 6-component fluid characteriza-
tion for reservoir oil and injected gas as presented in [9], and apply constant BHP
controls for both the injector (12,500 psi) and producer (11,500 psi). Our coarse
model is upscaled to 4× 4 coarse blocks (MSR blocks contain 5 subregions). This
represents a high degree of coarsening and some inaccuracy would be expected in
the global MSR model.
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Figures 8 and 9 display the simulation results for these cases. We present results
for the DFM (reference fine-scale results), global MSR, and hybrid approaches.
For both the oil-water (case 1) and miscible gas injection (case 2) simulations, we
observe that, although the MSR approach yields a model of reasonable accuracy,
the hybrid treatment clearly provides improved accuracy. In fact, the hybrid results
are nearly indistinguishable from the reference DFM results.

Figure 7. Synthetic 2D model with 32 fractures

Figure 8. Oil recovery results for DFM, global MSR and hybrid
solutions for synthetic 2D oil-water flow (case 1)

Case 3: 2D Oil-Water Model with Disconnected Fractures
Figure 10 displays a synthetic model with 35 disconnected fractures in the upper

right portion of the model, which are labeled in light green color, and 36 connected
fractures elsewhere in the reservoir. This case is somewhat artificial but it would be
expected to be a good candidate for the hybrid treatment. We use DFM to model
the four blocks in the upper right corner and MSR (with 5 subregions) for the other
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Figure 9. Oil recovery results for DFM, global MSR and hybrid
solutions for synthetic 2D miscible gas injection (case 2)

Figure 10. Synthetic 2D model with 36 connected fractures and
35 disconnected fractures

twelve blocks. For the wells, we use constant injection rate (500 STB/day)for the
injector and BHP control (4,000 psi) for the producer.

Figure 11 displays simulation results for injector BHP. Due to the disconnected
fractures in the well region, the MSR solution shows significant error relative to
the reference DFM simulation. The hybrid method, by contrast, provides results
in close agreement with DFM solution. The hybrid model also gives more accu-
rate results for oil production rate, as shown in Figure 12. This example clearly
illustrates the potential for loss of accuracy when the MSR procedure is applied
in regions of disconnected fractures and the improved results that can be achieved
using the hybrid procedure.
Case 4: 3D Three-Phase Model



678 B. GONG AND G. QIN

Figure 11. Producer BHP results for DFM, global MSR and hy-
brid solutions for synthetic 2D oil-water flow with disconnected
fractures (case 3)

Figure 12. Oil production rate results for DFM, global MSR and
hybrid solutions for synthetic 2D oil-water flow with disconnected
fractures (case 3)

Figure 13. Synthetic 3D model with 28 intersecting fractures
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The hybrid method is now applied to a 3D three-phase example. Figure 13 rep-
resents a 1000 × 1000 × 200ft3 model containing 28 intersecting fractures. The
fractures are near-vertical though they do have slight inclination. This model is
discretized using 52,059 cells (5,247 triangles are for the fractures and 46,812 tetra-
hedra for the matrix). This simulation domain and fracture configuration is the
same as in the 3D case in [12]. The initial reservoir pressure is 4,783 psi and the sys-
tem is initially saturated with oil and connate water (Swi = Swc = 0.12). Water is
injected at constant rate (1,000 bbl/day) at one edge and fluid is produced from the
opposite edge using a constant BHP (3,500 psi) control as shown in Figure 13. The
bubble point for reservoir fluid is 4,014.7 psi. For this case, the MSR demonstrated
reasonable accuracy compared to DFM when the upscaled model has a coarse grid
of 9× 9× 3 in [12]. We now apply a 4× 4× 1 coarse grid for MSR upscaling. This
coarser MSR model is expected to yield less accurate simulation results. We then
apply the hybrid approach to model the injection and/or production well blocks
using DFM. The other coarse blocks are treated using MSR with 5 subregions.

Figures 14-16 display the simulation results (gas and oil production rates and
pressure at the injector) for the 3D three-phase case. Again, we present results
for the DFM, global MSR, and hybrid approaches. We observe that the MSR
approach using the 4 × 4 × 1 coarse grid shows substantial error, especially at
early time. By resolving the injection and production coarse blocks explicitly using
DFM (“Hybrid 1”), the hybrid treatment clearly provides significantly improved
accuracy. Improvement over MSR is also observed when we only treat the injection
block in DFM (“Hybrid 2”) or production block in DFM (“Hybrid 3”). This set of
cases demonstrated the advantage of the hybrid models in resolving the near-well
regions in finer scale to better represent the actual flow.

Figure 14. Gas production rate results for DFM, global MSR
and hybrid solutions for synthetic 3D three-phase flow (case 4)

6. Discussions

The results shown in the application section demonstrate the improved accuracy
of the hybrid approach. This improvement results from the use of finer resolution
in some regions of the model and therefore leads to increased computational cost,
which we now quantify. Compared to the MSR approach, the increased numerical
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Figure 15. Oil production rate results for DFM, global MSR and
hybrid solutions for synthetic 3D three-phase flow (case 4)

Figure 16. Producer BHP results for DFM, global MSR and hy-
brid solutions for synthetic 3D three-phase flow (case 4)

burden will depend on the number of DFM coarse blocks. Tables 1-4 below sum-
marize the problem size and simulation time for the DFM, global MSR and hybrid
approaches for the four cases studied in this paper. All simulations were performed
on a 2.66 GHz, Intel CoreDuo CPU.

Table 1. Comparison of problem size and simulation time for
DFM, global MSR, and hybrid approaches for case 1

Number of Cells Number of Connections Simulation Time (s)
DFM 4659 7619 92
MSR 80 88 2.2
Hybrid 647 1203 14

It is clear from Tables 1-4 that the hybrid treatment leads to many more cells
and connections. For these examples, the global MSR offers about a two-order



681

Table 2. Comparison of problem size and simulation time for
DFM, global MSR, and hybrid approaches for case 2

Number of Cells Number of Connections Simulation Time (s)
DFM 4659 7619 245
MSR 80 88 3.6
Hybrid 647 1203 35

Table 3. Comparison of problem size and simulation time for
DFM, global MSR, and hybrid approaches for case 3

Number of Cells Number of Connections Simulation Time (s)
DFM 11677 18460 605
MSR 80 88 8
Hybrid 2909 4610 56

Table 4. Comparison of problem size and simulation time for
DFM, global MSR, and hybrid approaches for case 4

Number of Cells Number of Connections Simulation Time (hr)
DFM 52,059 103,944 19.8
MSR 80 88 0.2

Hybrid 1 8,019 16,568 2.6
Hybrid 2 3,552 6,991 0.5
Hybrid 3 3,817 7,565 0.6

of magnitude speed up relative to the reference DFM, while the hybrid procedure
provides only about a one-order of magnitude speed up relative to DFM. The
computational requirements for the hybrid method will directly depend on the
number of fine cells included. The timings in Tables 1-4 suggest that it will be
important to limit the number of regions that are fully resolved, or to model these
regions using a coarse DFM.

7. Concluding Remarks

In this paper, we have proposed an adaptive multi-scale hybrid upscaling pro-
cedure. We presented preliminary numerical results by the hybrid procedure that
represents some reservoir zones using the MSR for upscaling calculations and other
zones using the DFM approach. The hybrid upscaling procedure generalizes the M-
SR representation, which may encounter problems when applied to reservoir regions
with disconnected fractures. In addition, the hybrid approach enables enhanced ac-
curacy in key reservoir zones such as the near-well region. The examples clearly
demonstrate the improved accuracy of the hybrid approach, though the additional
computational costs (relative to global MSR) of using this method are significant.

It will therefore be important to develop procedures for determining appropriate
treatments for reservoir zones in large models. This determination, which was not
considered here, might involve first computing various fracture statistics (such as
length and connectivity measures). These could then be used to prescribe the
appropriate modeling technique for the various reservoir zones. It may also be
possible to incorporate some type of iteration procedure in order to assure self-
consistency in the model. In analogy to local-global upscaling procedures in [4],
this could entail performing a global solution for a simplified problem with the
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initial hybrid model and then using this simulation result to determine the proper
treatment for each reservoir zone.
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