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LOCAL VELOCITY POSTPROCESSING FOR MULTIPOINT
FLUX METHODS ON GENERAL HEXAHEDRA

MARY WHEELER, GUANGRI XUE, AND IVAN YOTOV

Abstract.  The authors formulated in [32] a multipoint flux mixed finite
element method that reduces to a cell-centered pressure system on general
quadrilaterals and hexahedra for elliptic equations arising in subsurface flow
problems. In addition they showed that a special quadrature rule yields O(h)
convergence for face fluxes on distorted hexahedra. Here a first order local
velocity postprocessing procedure using these face fluxes is developed and an-
alyzed. The algorithm involves solving a 3 X 3 system on each element and
utilizes an enhanced mixed finite element space introduced by Falk, Gatto, and

Monk [18]. Computational results verifying the theory are demonstrated.
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1. Introduction

A major motivation for defining accurate locally conservative numerical meth-
ods for elliptic equations with tensor coeflicients is the increasing interest in the
modeling of subsurface flow and transport in porous media. Subsurface systems or
geosystems may be natural, such as aquifers and fossil fuel reservoirs, or artificial,
such as landfills and nuclear waste sites and are seen today as resources that must
be managed. Geosystems are complex, however, for they involve multiple physical
and chemical processes operating across multiple spans of time (from nanoseconds
to centuries) and space (from nanometers to kilometers) and involve highly varying
heterogeneities.

Effective management of a geosystem must be based on conceptual and numer-
ical models of the geosystem. An important example of geosystem applications is
CO3 sequestration, which is the long-term isolation of carbon dioxide from the at-
mosphere in geological reservoirs. Geologic sequestration by injection of CO5 into
deep brine aquifers and reservoirs represents one of the most promising approaches
for reducing the increases in atmospheric CO4, which have been blamed for recent
trends in global warming and alarming changes in weather patterns. The basis for
this potential is the huge global storage capacity existing in geologic formations and
the availability and close proximity of potential injection sites to power generation
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FIGURE 1. Hexahedral meshes in Frio COs demonstration site

plants. Another example is the disposal of nuclear wastes. The safe disposal of nu-
clear waste in geologic media is a complex problem that requires extensive modeling
and simulation to assess the long-term performance of the disposal system. The
calculations have to address the response of the site over thousands of years and
incorporate multiscale and multiphysics coupling to various extents depending on
the geologic medium. Predictive computational simulation is essential for providing
the information needed to make decisions on site selection, design, and operation
of repositories long before the repository response can be measured. In addition,
uncertainty quantification will play a major part in the modeling and simulation of
the repository response. Other examples include methane gas migration, bioreme-
diation, management of groundwater systems, geothermal systems, increasing oil
and gas production, and COy injection for enhanced oil and gas recovery.

Although each geosystem mentioned above has its unique physics that require
site-specific models, all geosystem models will have at their base certain general
capabilities to which site-specific capabilities can be added. These general capa-
bilities include multiscale and multiphysics models and numerical algorithms for
approximating the pertinent physical, chemical, geological, and biological processes
characteristic of these systems. Effective modeling of geosystems necessitates the
formulation of accurate and efficient locally conservative algorithms for computing
velocities and pressures on general grids [16, 13]. Using hexahedra involves fewer
degrees of freedom than tetrahedral grids and can accurately represent geological
layers as shown in Figure 1, the Frio COs demonstration site. In addition, as dis-
cussed above, geosystem models involve modeling different processes such as diffu-
sion/dispersion and reactive transport and thus requiring accurate velocities within
elements and on faces. Examples include parabolic equations, streamline methods,
and using higher order discontinuous Galerkin approximations for transport.

Here we consider multipoint flux mixed finite element (MFMFE) discretizations
for Darcy flow on general hexahedral grids. The method is motivated and closely
related to the multipoint flux approximation (MPFA) method [1, 2, 15, 14]. In
the MPFA finite volume formulation, sub-edge (sub-face) fluxes are introduced,
which allows for local flux elimination and reduction to a cell-centered scheme.
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Similar elimination is achieved in the MEMFE variational framework, by employing
appropriate finite element spaces and special quadrature rules. Our approach is
based on the BDM; (8] in 2D or the BDDF; [7] and CD; [11] spaces in 3D with
a trapezoidal quadrature rule applied on the reference element. This approach
allows for rigorous analysis of the numerical error [34, 20, 32, 29, 33] for simplicial,
quadrilateral, hexahedral, and triangular prismatic grids. A related formulation
based on a broken Raviart-Thomas space is developed in [21, 22] on quadrilaterals.

A major difficulty in MFE approximations on hexahedra is due to the fact that
standard velocity spaces such as the lowest order Raviart-Thomas space do not con-
tain the constant vector on physical elements [25, 27, 26]. Optimal approximation
and superconvergence properties in some MFE methods can be obtained under
a grid restrictions to h2-perturbed parallelograms or parallelepipeds [17, 34, 20].
Highly distorted quadrilaterals and hexahedra are treated using enriched Raviart-
Thomas spaces in [6, 18] or composite-element techniques in [23, 27]. All of these
methods require solving saddle point problems in their standard forms.

In [32], we developed an accurate MFMFE method on highly distorted hexahedra
using a non-symmetric quadrature rule and an enhanced BDDF; space. The space
does not contain constant velocity vectors and therefore does not have optimal
approximation properties. However, we found that on element faces the space does
have approximation properties and we employed techniques from the analysis of
mimetic finite difference (MFD) methods [10, 24] to establish first order convergence
for the pressure at the cell centers and the normal velocity on the element faces.
The analysis applies to hexahedra with non-planar faces. In this paper, we develop
an efficient local post-processing technique for the MFMFE method on hexahedra
based on the enriched space introduced in [18]. This results in first order accurate
velocities in the interior of the elements. Such velocities are suitable for transport
of chemical species in subsurface simulations and saturation equation in multiphase
flow simulations [28, 30]. In fact, the postprocessing works for any method that
gives accurate face velocities on hexahedra, more precisely with velocity satisfying
condition (2.26) in Theorem 2.2. For example, the MPFA O-method in physical
space [1] is shown to be closely related and in some cases equivalent to the MFMFE
method [22, 3], so the postprocessing also applies to the MPFA O-method.

This paper is divided into five additional sections. In Section 2, we discuss the
multipoint flux method for the non-symmetric formulation, reduction to a cell cen-
tered pressure system, and a brief summary of convergence results. In Section 3, an
enhancement of the FGM mixed finite element for general hexahedra formulated by
Falk, Gatto, and Monk [18] is introduced. Convergence results are established for
these enhanced spaces. These new spaces combined with an appropriate quadrature
rule allow one to obtain a cell-centered pressure scheme with accurate face fluxes
that can then be postprocessed to accurate velocities in the interior of the elements.
The local postprocessing of velocities is formulated and analyzed in Section 4. Sec-
tion 5 provides computational examples that verify the theoretical accuracy of the
postprocessing. In Section 6 we summarize the results of the paper. Three appen-
dices that provide bases for the velocities and the matrix representation of the local
postprocessing have been added for completeness.
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2. Multipoint flux mixed finite element method

Single phase incompressible flow in porous media is governed by coupled Darcy’s
law and continuity equation:

(2.1) u=—-KVp,
(2.2) V-u=f,

where p is the pressure, u is the Darcy velocity, K represents the rock permeability
divided by fluid kinematic viscosity, and f is the source term. We consider the
system (2.1)—(2.2) in a domain Q C R3 with Lipschitz continuous boundary. For
simplicity we assume homogeneous Dirichlet boundary conditions

p=0 on 0f,

although more general boundary conditions can also be treated. We assume that
K is a symmetric and uniformly positive definite tensor with L>°(Q2) components
satisfying, for some 0 < ko < k1 < 00,

(2.3) kotTe < €TK(x)€ < k1&T¢, V¥x €Q, and V€ € R®.

Let T, be a conforming, shape-regular, quasi-uniform partition of Q [12], con-
sisting of hexahedra with possibly non-planar faces. Let W%’LOO consist of functions
¢ such that ¢|p € W*(E) for all E € Tj. Here k is a multi-index with integer
components and W#°(E) denotes the Sobolev space of functions whose derivatives
of order k belong to L>=(E). Let || - ||z be the norm in the Hilbert space H"(£2)
with functions whose derivatives of order k belong to L?(€2). The norm in L?(Q) is
denoted by ||-||. Let X < (2) Y denote that there exists a constant C', independent
of the mesh size h, such that X < (>) CY. The notation X ~ Y means that both
X <Y and X 2 Y hold.

We assume that for any F € T}, there exists a trilinear bijection mapping Fg :
E - E, where E is the reference cube. Denote the Jacobian matrix by DFg and
let Jp = |det(DFg)|. Denote the inverse mapping by Fy', its Jacobian matrix by
DF;*', and let Jp1 = |det(DF,")|. We have that

1
—1iy —1/g _
DE5 () = (DFp) ' (8), T (%) = oz
Using the above mapping definitions and the classical formula, for scalar ¢(x) =
o(x), Vo = (DFP;l)TngS, it is easy to see that, for any face e; C F, the unit normal
vector and Jacboian matrix are
1
(2.4) n; = J—JE(DFE?I)Tﬁi, Je, = |Jp(DF5 ") hy|gs,
€4
where 1; is the unit normal vector with respect to the reference face é;, and | - |gs is

the Euclidean norm in R3. Also, the shape regularity and quasi-uniformity of the
grids imply that, for all E € Ty,

25 IDFellg e Sh IDFg o008 SATY,
. HJEHO,OO,E ~ h?, ||JF§1||07<>07E ~h7?, [ ello,00,e = *.

The velocity and pressure finite element spaces on any physical element E are
defined, respectively, via the Piola transformation

1
(2.6) V& Vviv=—DFgvoF. 1,
JE
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and the scalar transformation
w<—>u§:w:u§oF§1.
The Piola transformation preserves the normal components of the vectors:
(2.7) von,=—v-ngoFy'.
Je
The finite element spaces Vj, and W}, on T, are given by
Vi={veHdivi0): vipev, vEV(E), VEET ),

(2.8) o
Wh:{weLQ(Q): wlp o w, © € W(E), VEeTh},

where V(E) and W (FE) are finite element spaces on the reference element, E.

The velocity space V(E) on the reference cube is defined by enhancing the
BDDF; spaces [20]:
(2.9)
(P L, B -2 ., R 2 T, B3 S2 T
V(F)=BDDF,(E) + 7cur1(zy ,0,0)" + 7cur1(0,yz ,0)" + ?curl(0,0,:c Z)

+ Sycurl(24%2,0,0)T 4 S5(0,2922,0)T + S5(0,0, 2292) 7,

where the BDDF,(E) space [7] is defined as

(2.10)
BDDF,(E) =(P,(E))® + Ercurl(242,0,0)" + Eycurl(0, &32,0)” + Escurl(0,0, 292)"

The pressure space on the reference cube is defined as
W(E) = Py(E).

In above equations, R;,S;, E;,G; (i = 1,...,3) are real constants, Py denotes the
space of polynomials of degree at most k, and (&, §, 2)T denotes a point in the
reference element. The enhancement of the BDDJF space is needed to obtain a
space with four degrees of freedom (DOF) per face, rather than three in the original
formulation. This allows to associate a degree of freedom with each vertex of the
face, which is needed in the reduction to a cell-centered pressure stencil as described
later in this section.

The multipoint flux mixed finite element (MFMFE) method [32, 31] is defined
as follows: find uy, € Vy, and p;, € W}, such that

(2.11) (K 'up,v)g — (pn, V- v) =0, Vv € Vp,
(2.12) (V-up,w) = (f,w), Yw € W,

A key ingredient in the MFMFE method is the numerical quadrature rule for
(K71, )g. The integration for the velocity mass matrix on any element E is

performed by mapping to the reference element F and applying a quadrature rule
defined on E. Using (2.8) and (2.6), for all q, v € V},, we have

1 . o N
(Kﬁlq, Vg = (J—EDF}?;KI(FE(X))DFEq7 v) = (MEgq,v) g,
E
where

(2.13) Mp(%) = —

7o DFE (K™ (Fe(%) DF(%).
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Define a constant matrix K g such that fg is the mean value of K% on E, where
Eg and K% denote the elements on the i-th row and j-th column of matrix K g
and K respectively. Let 1 .. denote the center of mass of E. Replacing DFE and
K by the constant matrices DFT( ) and K g respectively, we define

(2.14) Mp(X) = —=DFE (¢ ;)K 5 DFp(%).

JE( )

In addition, we use (-, ')Q £ to denote the trapezoidal rule on E:
8
(2.15) (@¥)g.p =g D_alk) - v(®),

where r; are the vertices of element E.
The quadrature rule on an element E is defined as

A8
- ~ .. E o Nara aa
(2.16) (K 'a,V)o.p = (Mpd, V) 5 = % > Mp(E)ar:) - (&)
i=1
Mapping back to the physical element F, we have the quadrature rule on E:

(2.17) (K 'q,V)o. = Z Jp () (DF5 YT (0) DFE (8, 1)K 5 a(r) - v(r,).

i=1
Note that the trapezoidal rule for the modified integrand induces a non-symmetric
quadrature rule unless the Jacobian matrix DFg is constant. This is related to a
non-symmetric inner product used in mimetic finite difference methods [19, 24]. A
similar quadrature rule on quadrilateral elements was introduced in [22], where the
mean value of K1 was used. Our analysis in [32] applies also in that case with an

extra term involving the difference between 7;31 and K 51, which is of order O(h).
The global quadrature rule on €2 is defined as

(K 'a,v)e= > (K 'a,v)on
E€Th

Remark 2.1. The symmetric version of the method based on Mg from (2.13) has
been shown to work well for simplicial grids and smooth or h?-perturbed quadrilateral
and hexahedral grids [34, 20, 33]. Furthermore, it is always coercive, while the non-
symmetric method has a coercivity condition (2.19) that may not be satisfied in some
extreme cases. However, the performance of the symmetric method deteriorates on
rough grids and we do not consider it in this paper. Instead, we focus on the non-
symmetric method, which provides first order accurate fluxes on element faces on
general hexahedra. This is due to the fact that the non-symmetric quadrature rule
based on (2.14) satisfies some critical properties on the physical elements that are
key ingredients in the error analysis. The reader is referred to [32] for details.

2.1. Reduction to a cell-centered pressure system. The choice of trapezoidal
quadrature rule implies that on each element, the velocity DOF associated with a
vertex become decoupled from the rest of the DOF. As a result, the assembled
velocity mass matrix in (2.11) has a block-diagonal structure with one block per
grid vertex. The dimension of each block equals the number of velocity DOF
associated with the vertex. In particular,

(2.18) (K 'q,v)g = Z (K 'q,v)o.r = Z vIM.q.,
EE€T, ceCp
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FIGURE 2. Interactions of the velocity degrees of freedom in the
MFMFE method

where Cj, denotes the set of corner or vertex points in Ty, v := {(v -n.)(xc)}<,

with a similar definition for q., X. is the coordinate vector of point ¢, n. is the
number of faces that share the vertex point ¢, and M, is an n. X n. matrix, see [32]
for further details. For example, n. = 12 for logically rectangular hexahedral grids,
see Figure 2. Inverting each local block in the mass matrix in (2.11) allows for
expressing the velocity DOF associated with a vertex in terms of the pressures at
the centers of the elements that share the vertex (there are eight such elements in
Figure 2). Substituting these expressions into the mass conservation equation (2.12)
leads to a cell-centered system for the pressures. The stencil is 27 points on logically
rectangular hexahedral grids. The local linear systems and the resulting global
pressure system are positive definite and therefore invertible under a mild restriction
on the shape regularity of the grids and/or the anisotropy of the permeability, see
(2.19) below.

2.2. Convergence of the MFMFE method. For the analysis of the non-symmetric
MFMFE method, we require some properties of the bilinear form (K ~!-,-)¢ defined
on the space Vy,.

Lemma 2.1 ([32]). Assume that M, is uniformly positive definite for all ¢ € Cy:
(2.19) RPeTe <eTMLE, VE € R

Then the bilinear form (K‘l-, o is coercive in Vy, and induces a norm in Vy,
equivalent to the L?-norm:

(2.20) (K~ 'v,v)g = |[V|]?, Vv EVy.
If in addition
(2.21) ETMIM.£ < ho¢TE, VE e R,

then the following Cauchy-Schwarz type inequality holds:
(2.22) (K™'a,v)q S lldllllvll Va,v e Vy,
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Conditions (2.19) and (2.21) impose mild restrictions on the element geometry
and the anisotropy of the permeability tensor K, see [22, 24].

Recall the canonical interpolation operator in the space V3. The reference in-
terpolant IT : (H*(E))? — V(E) is defined by

(2:23) Ve C OB, ((11q—@) fe,qi)e =0, Va1 € Qi(8),

where Q1 is the space of bilinear functions. The global operator I : VN(H!(Q))3 —
V;, on each element FE is defined by the Piola transformation:

(2.24) Iiq < [q, Iq=1§.

Note that (2.7) and (2.23) imply that IIq-n is continuous across element interfaces,
which gives IIq € Vy,.

Theorem 2.1 ([32]). Let K € W%LOO(Q) and K1 € W%(Q) . If (2.19) and
(2.21) hold, then the pressure py, and the velocity uy, of the non-symmetric MEMFE
method (2.11)—(2.12) satisfy

(2.25) 1P = pall + [TTa — ws || S A(fuly + [|pll2)-

Theorem 2.2 ([32]). Let K € W%OO(Q) and K~! € W%OO(Q) If (2.19) and
(2.21) hold, then the velocity uy, of the non-symmetric MEMFE method (2.11)—
(2.12) satisfies

1/2
(2.26) ( D lu—wp) -neI?n;) S A2 (s + [pll)-

EcTy,

We remark that the shape regularity assumption on the mesh implies that
|E|/|OE| =~ h; hence the above theorem gives O(h) convergence for the face fluxes.

3. The enhanced FGM mixed finite element method

The FGM mixed finite element space on general hexahedra [18] was constructed
to be H(div)-conforming and contain the space of constants on any physical ele-
ment E. This results in an O(h) convergent mixed finite element method. This is
the mixed velocity space with the fewest known DOF with such property. Here we
introduce an enhanced FGM, which will be used in our postprocessing procedure.

3.1. The enhanced FGM space. The FGM space Sy [18] consists of all vectors
0 = (41,12, 43)" on E of the form:

3.1
Gy = Ay + B1@ + C1§ + D12 — (B + Go)ify + (B3 — Gs)i2 + G1&? + Hzi?j) — Hod?2,
iy = Ag + Bod + Cofj + Doz + (Ey — G1)§d — (B3 + G3)§2 + Gog® — Hz@y? + H19°2,
i3 = A + Bsi + Csi) + D3z — (E1 4+ G1)22 4 (Eo — G2)2i) + G322 + Hyi3? — Hyjj32,

—~

where A;, B;, C;, D;, E;, G;, H; are constants. For & € SO, the 21 DOF are given
by
(@-n,4)e, Vije Pi(é), VecCIE,

(4, 1)z, Ve R, where R denotes the span of the vectors

#10=(0,1/2—-2,9-1/2)T, t9:=(1/2—%,0,2—1/2)", #3:= (1/2—9,2—1/2,0) .
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The space Sy can also be written as
(3.2)
So = BDDF(E) + H1(0,5%%, 924" + Ho(—222,0,25%)" + Hs (32§, —29%,0)"

= BDDF.(E) + %curl(g)QéQ, 0,0)T + %curl(o, #2:2,0)7 + %curl(o, 0,2%9%)7,
We are now ready to define the enhanced FGM space as
(3.3) V*(E) :=So UV(E),
where V(E) is the enhanced BDDF space defined in (2.9). For € V*(E), there
are 27 DOF given by

o (0-1,4)e, V4EQi(6), VeCIE,
e (u,f);, VFER.

The following lemma estaplishes the unisolvence of the V* (E) The proof is
similar to the unisolvence of S¢ in [18] and is given here for completeness.
Lemma 3.1. Any v € V*(E) is uniquely determined by the DOF in V*(E).
Proof. Tt is enough to show v = 0 if the DOF are all zero. By definition, we can
write v := (01, 02,03) € V*(E) as

0, = 11 — Rofj3 + S33%% — 25,03,
(3.4) Dy = Gy — Rad2 + S129° — 253292,
U3 = Gi3 — Ry2G + Say3° — 251292,
where 0 := (1111112, a3)T € Sy given in (3.1). Note that the face DOF imply that
v-n=0ondFE. If v-n =0 on the face £ = 0, then A; = Cy = D; = Ry = 0.
Similarly, using the DOF on faces § = 0 and 2 = 0, gives Ay = Bo = Dy = R3 =0
and A3 = B3 = C3 = Ry = 0. The conditions v-n =0 on faces £ =1, § = 1, and
2z =1, give the following:
B +G1=0, —FEy—Gy+H3=0, E3—G3—Hy+S53=0, Sy3=0
Co+Ge=0, E1—Gy—Hs+5 =0, —F3—Gs+H; =0, S53=0,
D3s+G3=0, —F1—Gi1+Hy=0, Ey—Gy—H;+5,=0, S1=0.
Solving the above equations in terms of Hy, Ho, and Hj gives
By, = (Hs — H2)/2, Ey=(Hy+ Hs)/2, Gy = (H2— H3)/2,
Cy=(H,— H3)/2, Es=(Hy+ Hs)/2, Gy=(Hs— Hy)/2,
Ds = (Hy — Hy)/2, Es=(H1+ Hs)/2, Gs=(Hy— Hs)/2.
Hence, if the 24 DOF of v on the faces are zero, v has the form
01 =2(1—2)[H2(2 - 1/2) — Hs(y — 1/2)],
(3.5) by = §(1 —9) [Hs(2 —1/2) — H1(2 — 1/2)],
03 = 2(1—2) [Hi(§ — 1/2) — Ha2(2 — 1/2)].
If the remaining three DOF are zero, it is easy to verify that Hy = Ho = H; = 0. O
X The glqbal spaces Yf*l and W} are defined similarly to (2.8). The operator
I : (HY(E))* — V*(E) is defined by
1"V — V) g, G1)e =0, Ve COE, 41 € Qu(é)
(Vv —v,#) 5, =0, Vie€R.

—~
—~
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The global operator II* : V* N (H'(2))> — V; on each element E is defined by the
Piola transformation:

(3.7) I*v v, II*v =1*v.

Lemma 3.2. For q € (H'(Q2))?,

(3.8) la—1"qllz < hlalve, VE € Th.

Proof. The proof is similar to the one in [18], using the fact that II* preserves the
constant vectors. O

Lemma 3.3. For q € (HY(E))?,
(3.9) IMallz < llalle + hlalie-

(3.10) IV-Tdlle S IV - dlle-

Proof. The proof is based on a scaling argument for the Piola transformation. We
refer to [32] for details. O

3.2. Convergence of the enhanced FGM mixed finite element method.
The enhanced FGM mixed finite element is defined as follows: find uj € V; and
py, € Wy, such that

(3.11) (K=}, v) — (p};, V- v) =0, Vv e Vi,
(3.12) (V- up,w) = (f,w), Ywe W,
Following the classical mixed finite element theory [9], we have the following result.

Theorem 3.1. There exists a unique solution {uj,p;} of the enhanced FGM
method (3.11)~(3.12) that satisfies

(3.13) lu— | < hlali,
(3.14) lp = pill < Afuly + [[pll)-

Remark 3.1. Since II* has no interpolation estimate under the divergence norm,
u; has no divergence error estimate as well.

The rest of this section is devoted to establishing the convergence of the velocity
on the element faces. We start with several auxiliary lemmas needed in the analysis.

Lemma 3.4 ([32]). For any element E € Ty,
(3.15) lall; = 2 ?llalle,  Va e (L(E))?,

(3.16) lal, 5 S (W|lalle +h*?lale), Vae (H'(E))?.

Lemma 3.5. The following trace inequality holds

(3.17) v -nele <A Y23|v|p, VveVi, VeedE.

Proof. Using the trace inequality [4, 5] on the reference element E, we have
[V -aelle S VIg + ¥l 5 < V]

where we also used the norm equivalence on reference element in the second in-
equality. The result follows from (3.15), (2.7), and (2.5). O

Lemma 3.6. For any constant vector qg on F,

(3.18) Ve COE, II"qo-n.=qp-n..
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Proof. In [32], Lemma 3.6 and Remark 3.2 show that the Piola image of a constant
vector on a physical element has a linear normal component in the reference element.
Thus f{*qo -N, = Qo - N, since the enhanced FGM space has a bilinear normal
component in the reference element. O

Lemma 3.7. Foru e (H*(E))?,
(3.19) l(w=T"w) - nfle S AY?ulm, Ve € OF.

Proof. Let q be any constant vector on E. Lemma 3.6 implies that

(3.20) [[(u—1T"u) -n.lle = [[(u—qo) - ne — (II"u—1I"qo) - nclle
' <[[(u—qo) - nelle + 1" (0 — qo) - nele

Using the trace inequality for Lipschitz domains [4, 5],

(3.21) Ve COE, |glle Sh ?|glle+h|ohe, Vo HY(E),
we have
(3.22) [(u—aqo) nelle A Y2lu—qolle + h*lu— qol1.e.

The trace inequality (3.17) gives that
(3.23) |IT"(u=qo)-nclle S ™2 (u=qo)l|s S h™"?u—ao| e+h"*la—ao|,

~

where we have also used (3.9) in the last inequality. Taking qo to be the L?-
projection of u into the space of constant vectors on E in (3.20)—(3.23) yields
(3.19) O

Theorem 3.2. The solution {u},p}} of the enhanced FGM method (3.11)—(3.12)
satisfies

1/2
(3.24) < > lla—up)- ne|§E> < 0Pl

E€Th
Proof. The triangle inequality gives
[(u =) - nefle < [[(u—IT"u) nefle + [|(ITu —ug) - ne e
S hY 2l g+ V2T - u) |

where we have used (3.19) and (3.17) in the second inequality. The assertion of the
theorem follows by combining the above inequality with (3.8) and (3.13).
O

4. Local velocity postprocessing

4.1. Definition of the method. The MFMFE method gives accurate face veloci-
ties, see Theorem 2.2. We use these face velocities as Neumann boundary conditions
for the local auxiliary problem (2.1)—(2.2) in each element E:

(4.25) = -KVp, inE,
(4.26) Vod=f, in B,
(4.27) a-n.=uy-n., onodk.

This problem satisfies the solvability condition

(4.28) /Efdxz/aEﬁ-neds,

due to the local mass conservation property of the MFMFE method.
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We use the enhanced FGM finite element method to solve this problem. Denote
(4.29) ViolE) :={veEVL(E)| v-ng=0o0n0kE}.

We seek P(up) := 1, € V; with @1 -n. = up, - n. on OF and p, € Wj,(E) such
that

(4.30) (K", v)e = (pn, V- V)5 =0, Vv €V, o(E),
(4.31) (V- -up,w)p = (f,w)g, YweW,(E).

The theory of the enhanced FGM method, see Theorem 3.1, implies that the
above problem has a unique solution. Furthermore, by (4.27), (4.28), and (4.29),
the above equations are equivalent to

(4.32) (K~'ay,v)p =0, Vv e V;(E).
4.2. Convergence of the postprocessed velocity.

Lemma 4.1. For any v € V}(E), there exists vo € V}, o(E) and vi € V,(E) such
that

(4.33) vV =vq+ V.
Proof. It is enough to show the existence on the reference element E. Let v, €
V(FE) be the solution of

(V1-fig,4)e = (V- De, e, Vi € Qu(e), Ve € OE.
The unisolvence of enhanced BDDJF; implies the existence and uniqueness of v1.
Next, let Vo € V*(E) be the solution of

(Vo - fig, §)e = 0, Vg € Qi(e), Ve € OF,
(Vo,B) = (V — ¥1,1) 3, Vi € R.
Lemma 3.1 implies that such v( exists and is unique. By definition, it is easy to

see that
v=vg+vy, and Vo-ng=0ondkE.

Lemma 4.2. The following trace inequality holds:
(4.34) v -nellog =~ h~Y2?|v|]g Vv eV,
Proof. Since the DOF on V), are all defined on the element faces, ||V - fgl|,z is a
norm in V(E). Norms equivalence on the reference element E gives
19 fiellop = ¥l 5 ¥ € V(E).
Now, (4.34) follows from (2.7), (2.5), and the scaling estimate (3.15). O

Theorem 4.1. The velocity uj, of the enhanced FGM mized finite element method
(3.11)—(3.12) and the postprocessed velocity P(uy,) of (4.30)-(4.31) satisfies

(4.35) [, = P(un)|| < Allaf + [Ip[l2)-

Proof. By Lemma 4.1, there exists uj, 5,up0 € V} o(E) and uj, ;,0p1 € Vi(E)
such that

(4.36) u;, =u;,o+u,; and Uy =00+ Up1-
Taking v|g € V}, ((E), v=0o0n Q\ Ein (3.11) gives
(4.37) (K~'aj,v)p =0, VveV;(E).
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Subtracting (4.32) from this equation yields

(4.38) (K~ '(uj, —az),v)p =0, VveV;(E)
Taking v = uj,  — Un,0 € V} ((E) in (4.38), we have that
(4.39)

Iy 0 = tnolll S (K~ (uj g — no),uf g — Uho)e
= (K 'y —an1),uwp o —0no)e S upy — @nallsllug g — anolle-
This implies
(4.40) [u, — e < |lupo —nolle + lup: — Wnalle S llupy — anale,

thus it is enough to estimate |[u}, ; —@p,1]| 5. Since uj, ; —51 € Vi (E), Lemma 4.2
gives, for all e € OF,

ks = il S A2y — ) - melle = B2 (0~ wn) el
< W2 wj) - mlle A2 - ) e

where we used the fact that on any face e, u;’;’l ‘ne = uj -n, and U1 - N =
Uy, - n. = uy, -0, in the equality. A combination of (4.40), (4.41), Theorem 3.2, and
Theorem 2.2 completes the proof.

(4.41)

d
Theorem 4.2. The postprocessed velocity P(uy) of (4.30)-(4.31) satisfies
(4.42) lu=P(up)| < Aluh + [Ip[l2)-
Proof. The assertion of the theorem follows from (3.13), Theorem 4.1, and
[lu=P(un)|| < flu—uj || + [[uj, = P(an)]-
O

5. Numerical experiments
We solve the problem (2.1)—(2.2) with a given analytical solution
p(z,y, z) = sin(rz) sin(my) sin(wz)

and a full permeability tensor

3 25 21
K=| 25 5 32
21 32 4

We consider three hexahedral meshes as shown in Figure 3. The first mesh is
an h-perturbed grid given in [27]. The second mesh is generated by randomly
perturbing positions of vertices in a uniform cubic mesh. More precisely, the new
grid points are determined by

Tnew = Told + 771h7 Ynew = Yold + 772h7 Znew = Zold + 773h,

where Zoid, Yoid, Zold are the uniform mesh points, h is the mesh size of the uniform
mesh, and 7; (i=1,2,3) are random numbers between —0.25 and 0.25. The third
mesh is an h-perturbed fishbone-like mesh from [18]. The first mesh gives planar
faces and the others give non-planar faces.

In Table 1, we test the convergence of the enhanced BDDF; and enhanced FGM
interpolations. Both [ju — ITu|| and |ju — IT*u|| are approximated by the 27-point
Gaussian quadrature rule on the reference cube. On the first mesh, ||[u — Iul|
has first order convergence, but the convergence on the second and third meshes
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FIGURE 3. Mesh 1: an h-perturbed mesh [27] (top-left); Mesh 2:
a randomly h-perturbed hexahedral mesh (top-right); and Mesh 3:
an h-perturbed mesh [18] (bottom).

deteriorates. As Lemma 3.2 predicts, ||u — IT*u|| has first order convergence on all
three meshes.

Table 2 shows the convergence of both the original MEFMFE and the postpro-
cessed solution. The error in the face velocities is measured in the norm

E|
VI = > > Hllv-nelli-

E€T), ecOE

The L? norm on the face e is calculated with the 9 point Gaussian quadrature
rule on the reference square. Other L? norms such as ||p — pxl, |[u — uyl, and
[[lu — P(up)| are approximated by the 27-point Gaussian quadrature rule on the
reference cube. As predicted by Theorem 2.2, it is first order convergent on all
meshes. Due to the first order convergence of the interpolant on the first mesh,
we do get first order convergence for the original and postprocessed velocity. On
the second and third meshes, the convergence of ||u — uy|| deteriorates, while the
postprocessed velocity P(uy,) has first order convergence, as Theorem 4.2 predicts.

6. Conclusions

A velocity postprocessing of face fluxes computed using the multipoint flux mixed
finite element has been introduced. The algorithm involves first using the MFMFE
for computing fluxes on faces followed by solving a 3x 3 system on each element. The
latter involves utilizing an enhancement of the mixed finite element space introduced
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TABLE 1. Convergence of interpolation

[u — Tlul|
1/h || Mesh 1 Mesh 2 Mesh 3
4 3.21E4-00 1.93E+4+00 2.20E+00

8 1.62E+00 0.99 6.16E-01 1.65 7.77E-01 1.50
16 || 8.33E-01 0.96 2.77E-01 1.15 3.77E-01 1.04
32 || 4.25E-01 0.97 1.95E-01 0.51 2.63E-01 0.52
64 || 2.15E-01 0.98 1.74E-01 0.16 2.32E-01 0.18
128 || 1.08E-01 0.99 1.69E-01 0.04 2.23E-01 0.06

[u—1T"ul
1/h || Mesh 1 Mesh 2 Mesh 3
4 || 2.99E400 1.89E+400 2.12E+00

8 1.42E+00 1.07 5.75E-01 1.72 7.09E-01 1.58
16 || 7.04E-01 1.01 2.12E-01 144 2.85E-01 1.31
32 || 3.54E-01 0.99 9.56E-02 1.15 1.32E-01 1.11
64 || 1.78E-01 0.99 4.60E-02 1.05 6.48E-02 1.02
128 || 8.90E-02 1.00 2.28E-02 1.01 3.22E-02 1.01

by Falk, Gatto, and Monk [18]. The resulting postprocessed velocities are shown
to be first order. Computational results verifying the theory are presented.

Appendix Basis functions for the new finite elements

Al Basis functions for the enhanced BDDJF; space. Recall that in the
MFMFE method, equivalent DOF are chosen leading to a cell-centered stencil for
the pressure. Let ¥ := (1, 92,93)T € V(£) and denote the DOF as

On the face 2 =10
On the face 2 =10
On the face g =0 :
On the face y =1:
On the face 2=10:

On the face 2 =1:

w
<>
~—
I
>
w
—_
—
—_
~
&
=
—
<>

Let the corresponding 24 nodal basis functions of V(E) be v; (i = 1,...24), i.e.,
N;(Vi) =05, j=1,...,24,

where d;; is the delta function. Solving the above equation gives the 24 basis
functions.
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TABLE 2. Convergence of solution

Mesh 1
1/h || llp = pall [u—uplz, [ — [[u—P(up)|l

4 2.74E-01 3.89E4-00 3.39E4-00 3.39E+4-00

8 1.51E-01 0.86 1.81E+00 1.10 1.73E400 0.97 1.73E400 0.97
16 || 7.93E-02 093 8.82E-01 1.04 8.79E-01 0.98 8.79E-01 0.98
32 || 4.05E-02 097 4.39E-01 1.01 4.44E-01 0.99 4.44E-01 0.99
64 || 2.06E-02 098  2.19E-01 1.00 2.24E-01 0.99 2.24F-01 0.99
128 || 1.03E-02 0.99 1.10E-01  0.99 1.12E-01 1.00 1.12E-01 1.00

Mesh 2
1/h || llp = pall [u—unlz, [ — [[u—P(up)|l

4 2.56E-01 3.56E4-00 2.49E+00 2.47E400

8 1.27E-01 1.01 1.35E400 1.40 1.07E+00 1.22  1.05E+00  1.23
16 || 6.41E-02 0.98 6.04E-01 1.16 5.23E-01 1.03 4.96E-01 1.08
32 || 3.22E-02 0.99 3.53E-01 0.77 2.97E-01 0.82 2.46E-01 1.01
64 || 1.61E-02 1.00 1.68E-01 1.07 2.07E-01 0.52 1.23E-01 1.00
128 || 8.07E-03 1.00 8.77E-02 094 1.79E-01 0.21 6.21E-02 0.99

Mesh 3
1/h || llp = pall [u— =, [ — g [u—P(u)|l

4 2.73E-01 4.26E+00 2.76E+00 2.73E400

8 1.35E-01 1.02 1.74E400 1.29 1.20E+00 1.20 1.18E+00 1.21
16 || 6.72E-02 1.00 7.92E-01 1.14 5.92E-01 1.02 5.46E-01 1.11
32 || 3.36E-02 1.00 3.83E-01 1.05 3.47E-01 0.77 2.66E-01 1.04
64 || 1.68E-02 1.00 1.89E-01 1.02 2.57E-01 0.43 1.32E-01 1.01
128 || 8.39E-03 1.00 9.43E-02 1.00 2.30E-01 0.16 6.57E-02 1.01

On the face z = 0:

Gy —y—r—ataebys—ays 1, yA—y?/A, 22— y2/2+ a2 — 22T,
Vo=[y—my—yz+ayz, v/A—y/4, yz/2—y2/2)",
V3 = [yZ — XYz, y2/47 y/47 y22/2 - yz/2]Ta

Vo=lz—xz—yz+ayz, y/d—y?/4, yz/2—2/2 —y2?/2+ 22/2] .

On the face z = 1:

- ay -zt ays P ylh 22— 22—y j2 4 2T,
xy —wyz, y/A—y?/4, y2?/2—yz/2)",
XYz, y/4 - y2/47 yZ/2 - yz2/2]Ta

Vs = |
Ve = |
v =
Ve =[xz —wyz, vP/A—y/d, 2/2—yz/2+y2?/2 - 22/2)T.
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On the face y = 0:
=[x/2 —x2/2+2%2/2—22)2, ay—y—z—x+aztyz—ayz+1, z/4—22/4)T,
=[x2/2 —x/2 —2%2/2 + 22/2, = —ay—az+ayz, z/4—2%/4]7,
= [2%2/2 — x2/2, xz—ayz, 2°/4—z/4]7,

Vie = [x2/2 — 2%2/2, z—xz—yz+ayz, 22/4—z/4]7.

On the face y = 1:

Viz = [x2/2 —2/2 — 2%2/2+ 2%/2, y—wy —yz+ayz, 2°/4—z/4]7,
Vig = [#/2 —x2/2 + 222/2 — 2% )2, xy —xyz, 22/4—z/4)T,

Vis = [x2/2 — 2%2/2, xyz, z/4—22/4]7,

Vie = [2%2/2 —x2/2, yz—wyz, z/4—2%/4)T.

On the face z = 0:

\717:[:0/47:02/4 y/2 —xy/2+xy?/2 —y?)2, xy—y—z—x+xz+yz—ayz+1)7T,
= [2?/4—x/4, 2y/2—2y?/2, x—wy— w2+ Y2,

vlg—[ﬁ/ a4, a2y, ay— )T,

Voo = [z/4— 2[4, wy/2—y/2—ay?/2+97/2, y—ay—yz+ayz]”.

On the face z = 1:

Vor = [2%/4 —x/4, xy/2—y/2 —xy? /2 +y?/2, z—xz—yz+ayz]T,

Voy = [x/4 — 22 /4, xy?)2 —xy/2, 2z —2yz]T,

Voz = [x/4 — 22 /4, xy/2 —2y?)2, xyz]T,

[02/4 = x4, y/2 = wy/2+2y?/2 = y*/2, yz —ayz]".

A.2 Basis functionsA for the enhanced FGM space. Define three additional
DOF for the space V*(FE)

Nos(¥) := (V,F1) 5, Nag(V) := (V,F2) 5, Noz(V) := (V,T3) 5.
The 27 nodal basis functions v (i =1,...,27) of V*(E) are found by solving
N;(vi)=10di;, j=1,...,27.

K2

Vo4 =

On the face = 0:

[ Tay/d—y—2—Tx/d+ Toz/A+yz — 322y /4 — 3222 /4 + 322 /4 — xyz + 1
Vi=| 3y/4—3xy/4—yz/A+ 3wy? /4 + y*2 /4 — 3y? /4 ;
3z/4 — 3xz/4 —yz /4 + 3222 /4 + y2? /4 — 322 /4

y— Tay/4+ 3xz/4 — yz + 322y /4 — 322 /4 + 2y2

Vs = | 3zy/4—3y/A+yz/4—3wy? /4 —y*2z/4+ 3y? /4 :

2/2 = 3xz/A+ yz/d+ 3w22 /4 — y2? /4 — 22/2

3z/4 — 3wy/4 — 3wz /4 + yz + 32y /4 + 32%2 /4 — 322 /4 — xyz

Vi = | 3ay/4—y/2 —yz/4— 3xy? )4+ yPz/4+y?)2 ,
3w2/4—2/2 —yz /4 — 3w22 /4 + y2? /4 + 22/2

2+ 3xy/4 — Twz/4 — yz — 322y /4 + 3222 /4 + xyz

Vi=| y/2 - 3zy/d+yz/4+ 3y /4 — y? 2 /4 — y?)2

| 322/4—3z/4+ yz/4 — 3x2? /4 — yz? /4 + 322 /4
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On the face z = 1:

[ 2/4 — xy/4 — x2/4 — 322y /4 — 32%2 /4 + 322 /4 + 2y=
Vi=| yz/4—3zy/4+ 3xy?/4 — y?2 /4 ,
yz/4 — 3wz /4 + 3w2? /4 — y2? /4

ry/4+ 3xz/4+ 322y /4 — 3222 /4 — 2y2

Vi = | 3zy/4—yz/4—3xy?/4+ 9?2 /4 ,
2/4—3wz/4—yz/4+ 3w2? /4 +y2? /4 — 22 /4

3x/4 — 3xy/4 — 3x2/4 + 322y /4 + 3222 /4 — 322 /4 + wy2
Vi=| 3zy/d—y/d+yz/4—3xy? /4 —y /A +y? /4 ,
3xz/4—z/4+yz/4 — 3w22 /4 — y2? /4 + 2% /4

3wy/4+ w2/4 — 322y /4 + 3222 /4 — xyz

Vi=| y/4—3xy/d —yz/4+3xy? /4 + v 2 /4 — y? /4

| 3zz/4—yz/4—3x2? /4 + yz? /4

On the face y = 0:

[ 3x/4 — 3xy/4 — x2/4 + 322y /4 + 222 /4 — 322 /4

Vo= | Toy/A—Ty/A— 2 — x4+ 22+ Tyz/4 —32y?/4 — 3y%2 /4 + 3y% /4 —zyz + 1 |,
32/4 — x2/4 — 3yz /4 + x2% /4 + 3y22 /4 — 322 /4

3zy/4 — 3z /4 + x2/4 — 322y /4 — 222 /4 + 322 /4

Vio= | = —Try/4—xz+3yz/4+ 3wy?/4 — 3y?2 /4 + 2yz |,

2/2+ x2/4 — 3yz/4 — 222 /4 + 3y2? /4 — 222

3xy/4 —x/2 — x2/4 — 322y /4 + 2?2 /4 + 22 /2

Vii = | 3y/4—3azy/4+ xz — 3yz/4+ 3xy? /4 + 3yPz /4 — 3y* /4 —xyz |,
3yz/4—xz)d — 2/2 + 2224 — 3y2? /4 + 222

r/2 —3zy/4+ x2/4 + 322y /4 — 222 /4 — 2%/2

Vi, = | z+3wy/d —x2 — Tyz/4 — 32y /4 + 3y°2 /4 + zy2

| 22/4—32/4+3yz/4— 222 /4 — 3yz* /4 + 322 /4

On the face y = 1:

xz/4 — 3zy/4 + 3%y /4 — 2?2 /4

Vis = | y/4—ay/d—yz/4—3xy? /4 — 3y?2/4 + 3y /4 + zyz |,
xz/4 — 3yz /4 — 22 /4 + 3yz?/4

3zy/4 — x2/4 — 322y /4 + 222 /4

Vi = | xy/4+ 3yz/4+ 32y /4 — 3y*z /4 — zy2 ,

2[4 —x2/4—3yz/4+ 1224+ 3yz? /4 — 22 /4

3zy/4 — x/d+ x2/4 — 322y /4 — 2?2 /A + 22 /4

Vis = | 3y/4—3xy/4 —3yz/4+ 3xy? /4 + 3y22/4 - 3y /A +ayz |,
xz/4 — 2/4+ 3yz /4 — 122 /4 — 3y2? /4 + 2% /4

x/4 —3zy/4 — x2/4 + 322y /4 + 222 /4 — 2% /4

Vie = | 3xy/4+yz/4— 32y?/4 + 3y*z /4 — zy2

3yz/4 —xz/4+ 122 /4
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On the face z = 0:

[ 3x/4 —xy/4 — 3wz/4+ 2%y /4 + 3022 /4 — 322 /4

Vi, = | 3y/4—ay/4—3yz/4+ xy? /4 + 3y32/4 — 3y?/4

| wy—y—Tz/4d— x4 Tez/A+ Tyz/4— 302 /4 — 3y2? /44 322 /4 —xyz + 1
[ 2y/4 —3x/4+ 3w2/4 — 2%y /4 — 3022 /4 + 322 /4

Vis= | y/2+ay/4 - 3yz/4—ay? /44 3y°2/4 - y?/2 ,

T —ay — Trz/4+ 3yz/4 + 3222 /4 — 3yz2 /4 + zy=

3x2/4 —xy/4 — x/2 + 2%y /4 — 3%z /4 + 2% /2

Vip=| Byz/4—ay/d—y/2+ 2y’ /4 - 3y’2/4+ y?/2 :
3z/4+xy — 3wz/4 — 3yz/4+ 3222 4+ 3yz? /4 — 322 /4 — xyz
x/2 +ay/4 — 3xz/4 — 2%y /4 + 3222 /4 — 2% /2

Vi = | wy/4—3y/4+3yz/4—xy® /4 - 3y*z/4+ 3y? /4

|y —ay +3wz/4—Tyz/4 — 3022 [4+ 3yz? /4 + xyz

On the face z = 1:

[ zy/4 — 3x2/4 — 2%y /4 + 3222 /4

Vi = | zy/4—3yz/4—xy?/4+ 3y?2/4 ,
2/4 —xz/4 —yz/4 — 3222 /4 — 3yz? /4 + 322 /4 + zy=
3xz/4 — wy/4 + 2Py /4 — 3222 /4

Vip = | y/A—ay/4—3yz/A+ay?/A+3yPz/A— P /4 |

w2 /4 + 3yz/4+ 3222 /4 — 3y2? /4 — xy2

ry/d — x4+ 3xz/4 — 2%y /4 — 322 /4 + 2% /4

Vig = | wy/d—y/A+3yz/d—ay? /4= 3yPz/4 4y /4 :
3z/4 — 3xz/4 — 3yz /4 + 3x22 /4 + 3y2? /4 — 322 /4 + xyz
x/4 —xy/d — 3xz/d+ 2%y /4 + 322 /4 — 2% /4

Vi, = | —wy/4+3yz/4+ xy?/4 — 3yz/4

| 3zz/4+yz/4—3x2?/4+ 3yz? /4 — xyz

Additional three DOF inside the element:

0
Vi = | 18y — 36yz + 36y%z — 18y? |,
| 36yz — 18z — 36y2? + 1822
[ 182 — 3622 + 36222 — 1822
Vig=10 ,
| 36xz — 18z — 362> + 1822
[ 182 — 362y + 3622y — 1822
Vi, = | 36zy — 18y — 36zy? + 1832
0

A.3 Local postprocessing. Write the MFMFE solution on the reference ele-

ment F as
24
u, = g WVs.
i=1

Since the MFMFE and the enhanced FGM spaces have the same face DOF, the
postprocessed velocity on the reference element can be written as

Plup) = g WVE + Uos Vs + a6 Vag + U7 Vs

i=1
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Let
1
-1 ._ T 7-—1
Ky = 7DFEK DFg.
Then 195, Gog, and g7 is the solution of the following 3 by 3 system:
—1lox  ox —1lox  ox —1lox  o* ~
(ICEIVQS’VQS)E (ICEIVQG’VQS)E (ICEIV277V25)E U2s
—lox o —lox o —lox o 5
(’CE1V25aV26)E (ICE1V26aV26)E (’CE1V277V26)E U26
- Sk Sk - Sk Sk - Sk it 3 ~
(Kg V35 V37) g (K V36, V37)p  (Kg V37,V37)5 U27
24 —1lox ox ~
Zéjl(K:E Vi Vis) pli
_ 1Ak ok N
== Zéil(KE Vi Vi6) pli
—lox ox ~
> im1 (Kg Vi, ¥37) gt
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