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Abstract. We consider the flow of two-phases in a porous medium and

propose a modified version of the fractional flow model for incompressible,

two-phase flow based on a Helmholtz regularization of the Darcy phase veloci-

ties. We show the existence of global-in-time entropy solutions for this model

with suitable assumptions on the boundary conditions. Numerical experiments

demonstrating the approximation of the classical two-phase flow equations with

the new model are presented.
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1. The two Phase Flow Problem

Many geophysical and industrial processes like enhanced oil recovery and carbon
dioxide sequestration involve the flow of two-phases, say oil and water, in a porous
medium.

The variables of interest are the phase saturations sw and so representing the
saturation (volume fraction) of the water and oil phase respectively. We have the
identity:

(1.1) sw + so ≡ 1.

Hence, we can describe the dynamics in terms of the saturation of either of the
two-phases. We denote the water saturation as sw = s in the discussion below.
Assuming a constant porosity (φ ≡ 1), the two-phases are transported by [4]

(1.2) (sr)t + divx(vr) = 0, r ∈ {w, o}.
Here, the phase velocities are denoted by vw and vo respectively. In view of the
identity (1.1), the two-phase velocities can be summed up to yield the incompress-
ibility condition,

(1.3) divx(v) = 0, v = vw + vo.

The total velocity is denoted by v.
The phase velocities in a homogeneous isotropic medium are described by the

Darcy’s law [4]:

(1.4) vr = −λr∇xpr + λrρrgk, r ∈ {w, o}.
Here, g is the constant acceleration due to gravity, k is the direction in which gravity
acts and ρr is the (constant) density of the phase r. The quantity λr = λr(sr) is
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the phase mobility and pr is the phase pressure. Assume that the capillary pressure
i.e, pc = pw − po is zero, we can sum (1.4) for both phases and obtain

(1.5) v = −λT (s)∇xp+ (λwρw + λoρo)gk,

with p = pw = po being the pressure and λT = λw + λo being the total mobility.
Using (1.5), the gradient of pressure in (1.4) can be eliminated leading to

vw =
λw(s)

λT (s)
v +

λw(s)λo(s)

λT (s)
(ρw − ρo)gk.

Denoting the fractional flow function f as

f(s) =
λw(s)

λT (s)
=

λw(s)

λw(s) + λo(s)
,

and the gravity function g as

g(s) =
λw(s)λo(s)

λT (s)
(ρw − ρo)g,

the saturation equation (1.2) for water can be written down as

(1.6) st + divx(f(s)v + g(s)k) = 0.

Combining the saturation equation with the incompressibility condition (1.3) and
the pressure equation, we obtain the evolution equations for two-phase flow in a
porous medium:

(1.7)

st + divx(f(s)v + g(s)k) = 0,

divx(v) = 0,

v = −λT (s)∇xp+ (ρwλw(s) + ρoλo(s))gk.

The above equations have to be augmented by suitable initial and boundary con-
ditions.

The phase mobility λw : [0, 1] 7→ R is a monotone increasing function with
λw(0) = 0 and the phase mobility λo : [0, 1] 7→ R is a monotone decreasing function
with λo(1) = 0. Furthermore, the total mobility is strictly positive i.e, λT ≥ λ∗ > 0
for some λ∗.

The above equations are a hyperbolic-elliptic system as the saturation equation
in (1.7) is a scalar hyperbolic conservation law in several space dimensions with
a coefficient given by the velocity v. The velocity can be obtained by solving an
elliptic equation for the pressure p.

It is well known that solutions of hyperbolic conservation laws can develop dis-
continuities, even for smooth initial data, [8]. The presence of these discontinuities
or shock waves implies that solutions of conservation laws are sought in a weak sense
and are augmented with additional admissibility criteria or entropy conditions in
order to ensure uniqueness.

As the two-phase flow equations involve a conservation law, we need to define
a suitable concept of entropy solutions for these equations and show that these
solutions are well-posed. The problem of proving well-posedness of global weak
solutions of the two-phase flow equations (1.7) has remained open for many decades.
The main challenge in showing existence is the fact that the velocity field v acts as a
coefficient in the saturation equations. Although conservation laws with coefficients
have been studied extensively in recent years, see [1, 11, 7, 2] and references therein,
the state of the art results require that the coefficient is a function of bounded
variation. Many attempts at showing that the velocity field v in (1.6) is sufficiently
regular, for example is a BV function or has enough Sobolev regularity, have failed.
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Partial results (with strong assumptions on the velocity field or on the solution)
have been obtained in [14, 18] and references therein.

Another approach is to consider a modified version of the two-phase flow equa-
tions. Recalling that the two-phase flow equations (1.7) were derived under the
assumption that the capillary pressure was zero. Adding small but non-zero cap-
illary pressure leads to a viscous perturbation of the saturation equation, see [12].
The viscous problem has been shown to be well-posed in [12] (see also [5, 6, 16, 10]
for mildly degenerate diffusion coefficients). However, the fact that the coefficient of
viscosity can be very small leads to difficulties in numerical approximation of these
equations as the viscous scales have to resolved. Furthermore, sharp saturation
fronts might be artificially smeared due to the added viscosity.

Herein we consider a modified version of the two-phase flow equations and show
that global weak solutions exist for this modified problem. We are motivated by the
fact that the velocity field v in (1.6) needs to be regularized but the sharp fronts
in saturation should not be diffused. Hence, we suggest the following modification
of the Darcy’s law (1.4):

(1.8)
vr = −Λr∇xp+ Λrρrgk, r ∈ {w, o},

−µr∆xΛr + Λr = λr(s).

where µo, µw ∈ (0, 1) are small regularization parameters.
The system (1.8) amounts to a Helmholtz regularization of the velocity field, or

more precisely of the phase mobilities via (1− µr∆x)
−1

[λr(s)]. Observe that this
kind of regularization is quite different from a viscous regularization which makes
the saturation smooth by dissipating energy at small scales. With the Helmholtz
regularization, the saturation equation will still possess shock wave (discontinuous)
solutions, while it is the velocity field that becomes more regular. Consequently, the
new “Helmholtz regularized” two-phase flow model is expected to correctly predict
the underlying flow phenomena. A chief feature of this new model will be that one
can prove rigorously that there exists global-in-time solutions; this is still an open
problem for (1.7).

1.0.1. Motivation for (1.8). In [17] Neumann derived Darcy’s law for single
phase flow in porous media by an averaging the potential flow (Navier-Stokes)
equations

∆v = ∇xp,
where p denotes pressure. We now briefly recap Neumann’s derivation of Darcy’s
law. We assume that the flow takes place in a system of small channels (pores) in
the rock. The continuity equation

divx (v) = 0,

means that the pressure solves the Laplace equation

∆p = 0, for x ∈ the porous space.

The boundary of the porous space consists of the outer boundary, on which we can
impose boundary conditions, and the pore walls, on which it is natural to impose
a no flow condition. Let Ω denote the domain enclosed by the outer boundary, and
Ωφ the porous space.

Let N be some averaging kernel, and let χφ denote the characteristic function
of the pore space, and set

φ =

∫
Ω

N(x− y)χφ(y) dy.
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For simplicity, we assume that the porous medium is homogeneous. Hence, the
porosity φ is independent of x. Next, define the averages

〈f〉 =

∫
Ω

N(x− y)χφ(y)f(y) dy, and 〈f〉∗ =
〈f〉
φ
.

One key point in the derivation of Darcy’s law is the relation

〈∇xf〉 (x) = ∇〈f〉 (x) +

∫
∂Ωφ

N(x− y)f(y)n(y) dS(y).

Since the pressure p solves Laplace’s equation in Ωφ, we have the solution formula

p(x) =

∫
∂Ω∩Ωφ

pb(y)∇xH(x− v) · n(y) dS(y),

where H is the Green’s function on Ωφ ∩ Ω with boundary conditions as indicated
above. Now, p, and thus also v, is linearly dependent on the imposed boundary
condition pb. Neumann then uses a scaling argument to show that

v = A 〈v〉∗ ,
for some symmetric matrix A which is independent of the boundary conditions Φb.
Thus

〈∆v〉∗ =
〈
∆
(
A 〈v〉∗

)〉∗ ≈ 〈∆A〉∗ 〈v〉∗ .
From this we get

〈∆A〉∗ 〈v〉∗ = 〈∇xp〉∗ = ∇x 〈p〉∗ +

∫
∂Ωφ

N(x− y)p(y)n(y) dS(y).

It turns out that 〈∆A〉∗ is invertible, and we call its inverse, K, the permeability.
Furthermore, in many cases, the integral along the boundary of the porous media
vanishes, due to the many twists and turns of the pores. Then we are left with
Darcy’s law

〈v〉 = K∇x 〈p〉 .
The matrix K is called the rock permeability.

For two-phase flow, it is not possible to derive Darcy’s law at this level of rigor.
However, one can motivate it by the following considerations. Assume now that we
have two-phases; oil and water. These are chemically inert, and do not dissolve in
one another, but we assume that on the scale of the pores, oil and water are mixed
well enough to define saturation. On a very small scale, much smaller that the
width of the pore walls, one phase will act similarly to the way the rock acts on the
fluid in the single phase case. See Figure 1 for an illustration of the three scales.
Now we have two velocities vo and vw, each of which satisfies the Navier-Stokes

Darcy scaleSaturation scaleTwo phase scale

rock mixture

Figure 1. The three scales, in the middle scale one can define saturation.
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equation. For a given phase i the other phase will act similarly to the rock in one
phase flow. Under this assumption, Darcy’s law for each phase reads〈

vi
〉
N

= Ki∇x 〈pi〉N , i = w, o,

where we have chosen to indicate the dependence on the averaging kernel N . Next
we assume that the two fluids are uniformly mixed in each direction, so that Ki =
λiI. Thus on the saturation scale we have two velocities and two pressures in each
point of the pore space. The continuity equation for each phase divx

(
vi
)

= 0 now
reads

divx (λ)i∇x 〈pi〉N = 0, x ∈ Ωφ,

with boundary conditions{
λi∇x 〈pi〉N = 0, x ∈ ∂Ωφ,

λi∇x 〈pi〉N = fi, x ∈ ∂Ω ∩ Ωφ.

The phase velocities vi are linearly dependent on fi, so again scale arguments lead
to the relation 〈

vi
〉
N

= Ai
〈〈

vi
〉
N

〉∗
M
,

where M is a different averaging kernel from N . We now assume that the matrices
Ao and Aw are equal. This amounts to saying that the rock does not discriminate
between water and oil. We assume that A is invertible, and can write〈〈

vi
〉
N

〉∗
M

=
〈
A−1λi∇x 〈pi〉N

〉∗
M

=
〈
A−1λ

〉∗
M
〈∇x 〈pi〉N 〉

∗
M

(yet another assumption)

=
〈
A−1λ

〉∗
M
∇x 〈〈pi〉N 〉

∗
M

+
〈
A−1λ

〉∗
M

∫
∂Ωφ

〈pi〉N (y)M(x− y)n(y) dy︸ ︷︷ ︸
=0 by twists and turns

.

Now assume that the saturation, and thus λi, changes rapidly compared with the
size of the support ofM . We are interested in p̃i = 〈〈p〉N 〉M , the continuity equation

for
〈
vi
〉
N

implies that

divx

(〈
A−1λ

〉∗
M
∇xp̃i

)
= 0.

For simplicity, we assume that A−1 = I. We choose M to be the Helmholtz kernel
(1− µ∆x)

−1
, with µ being a small parameter, and finally we end up with the usual

equations describing two-phase flow, but where the equation for the velocity (1.8)
is more regular than is commonly assumed.

1.0.2. Scope of the current paper. In this paper, we consider the two-phase
flow equations (1.7) but the modified version of the Darcy’s law (1.8). The notion
of weak solutions for this modified problem is defined and weak solutions are shown
to exist. Our existence proof proceeds in two steps. First, we define vanishing
viscosity approximations of the modified two-phase flow equations and derive a
priori bounds on the approximation solutions. In particular, compactness results
for the pressure and velocity fields are obtained. The second step is to obtain
compactness for the approximate saturations. Here, we employ a suitably adapted
form of the kinetic formulation for conservation laws (see [20] for a related approach)
and derive compactness for the saturation equation establishing the existence of
global weak solutions for the modified two-phase model.
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In addition to the heuristic motivation for the modified Darcy’s law (1.8), we
provide numerical evidence for the robustness of this approximation. In particu-
lar, the numerical experiments show that the solutions obtained with the modified
problem are close to those of (1.7). Furthermore, these modified solutions con-
verge to the solution of the classical two-phase flow equations as the regularization
parameter µr in (1.8) vanishes.

The rest of this paper is organized as follows: in section 2, we state the modified
two-phase flow model and define weak solutions. A priori estimates on the approxi-
mate solutions are obtained in section 3 and compactness for the saturation in terms
of the kinetic formulation is obtained in section 4. Numerical experiments compar-
ing the classical and modified form of the two-phase flow equations are presented
in section 5.

2. Statement of problem

The modified model for two-phase flows in a porous medium leads to the following
elliptic-hyperbolic system

(2.1)



∂ts+ divx (f(s)v + g(s)k(x)) = 0, t > 0, x ∈ Ω,

divx (v) = 0, t > 0, x ∈ Ω,

v = −ΛT∇xp+ (ρwΛw + ρoΛo)k, t > 0, x ∈ Ω,

−µw∆xΛw + Λw = λw(s), t > 0, x ∈ Ω,

−µo∆xΛo + Λo = λo(s), t > 0, x ∈ Ω,

ΛT = Λw + Λo, t > 0, x ∈ Ω,(
f(s)v + g(s)k

)
· ν = h(t,x), t > 0, x ∈ ∂Ω,

∂νp(t,x) = π(t,x), Λw(t,x) = Λo(t,x) = λ∗
2 , t > 0, x ∈ ∂Ω,∫

Ω
p(t,x)dx = 0, t > 0,

s(0,x) = s0(x), x ∈ Ω,

where

(H.1) Ω is an open connected subset of RN , N ≥ 1, with smooth boundary and
ν is the unit outer normal;

(H.2) f and g are smooth functions, k : RN → RN is a smooth vector field, µw
and µo are positive constants, and h, π : (0,∞) × ∂Ω → R are smooth
bounded maps such that

f(0) = g(0) = g(1) = 0,

h(t,x) ≤ 0,

h(t,x) + λ∗f(1)

(
π(t,x)− ρw + ρo

2
k · ν

)
≥ 0,

−λ∗f ′(ξ)
(
π(t,x)− ρw + ρo

2
k · ν

)
+ g′(ξ)k(x) · ν(x) ≤ 0,

for every t ≥ 0, x ∈ ∂Ω, ξ ∈ R;
(H.3) λw and λo are smooth and non-negative, λ∗ > 0, and λw(·) + λo(·) ≥ λ∗;
(H.4) the initial datum satisfies the condition: 0 ≤ s0 ≤ 1.

If µw = µo = 0 we recover the classical two-phase problem (1.7).
The term g(s)k takes in account the gravitational effects.
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Regarding the assumption (H.2) we remind that in the physical model (1.7), we
have that

ξ ∈ (0, 1)⇒ f ′(ξ) > 0, f ′(0) = f ′(1) = 0,
g′

f ′
∈ L∞(0, 1), k constant,

hence the conditions in (H.2) are satisfied if, for example, π is big compared to h
and k · ν on (0,∞)× ∂Ω.

Definition 2.1. Let s, Λw, Λo, p : (0,∞) × Ω → R and v : (0,∞) × Ω → RN be
functions. We say that (s, Λw, Λo, p, v) is an entropy solution of (2.1) if

i) s ∈ L∞((0,∞) × Ω), Λw, Λo ∈ L∞((0,∞) × Ω) ∩ L∞(0,∞;W 2,r(Ω)), 1 ≤
r <∞, p ∈ L∞(0,∞; W 3,2(Ω)), v ∈ L∞(0,∞;W 2,2(Ω));

ii) Λw, Λo, p, v are distributional solutions of the corresponding equations in
(2.1) and satisfy the corresponding initial and boundary conditions in the
sense of traces;

iii) for every test function ϕ ∈ C∞([0,∞)× RN ) with compact support∫ ∞
0

∫
Ω

(
s∂tϕ+

(
f(s)v + g(s)k(x)

)
∇xϕ

)
dtdx

−
∫ ∞

0

∫
∂Ω

hϕdtdσ +

∫
Ω

s0(x)ϕ(0,x)dx = 0;

iv) for every test function ϕ ∈ C∞([0,∞)× Ω) with compact support and any
C2 convex entropy η∫ ∞

0

∫
Ω

(
η(s)∂tϕ+

(
F(s)v + G(s)k(x)

)
∇xϕ

)
dtdx +

∫
Ω

η(s0(x))ϕ(0,x)dx ≥ 0,

where F and G are the corresponding entropy fluxes defined as follows

(2.2) F(s) =

∫ s

η′(ξ)f ′(ξ)dξ, G(s) =

∫ s

η′(ξ)g′(ξ)dξ, s ∈ R.

Let us point out the fact that the test functions considered in iii) are not sup-
posed to have support contained in Ω.

Our main result is the following theorem.

Theorem 2.1. Assume (H.1), (H.2), (H.3), and (H.4). The initial boundary
value problem (2.1) has a solution in the sense of Definition 2.1.

We use the following approximation of (2.1)

(2.3)



∂tsε + divx (f(sε)vε + g(sε)k) = ε∆xsε, t > 0, x ∈ Ω,

divx (vε) = 0, t > 0, x ∈ Ω,

vε = −ΛT,ε∇xpε + (ρwΛw,ε + ρoΛo,ε)k, t > 0, x ∈ Ω,

−µw∆xΛw,ε + Λw,ε = λw(sε), t > 0, x ∈ Ω,

−µo∆xΛo,ε + Λo,ε = λo(sε), t > 0, x ∈ Ω,

ΛT,ε = Λw,ε + Λo,ε, t > 0, x ∈ Ω,(
f(sε)vε + g(sε)k

)
· ν − ε∂νsε = h(t,x), t > 0, x ∈ ∂Ω,

∂νpε(t,x) = π(t,x), Λw,ε(t,x) = Λo,ε(t,x) = λ∗
2 , t > 0, x ∈ ∂Ω,∫

Ω
pε(t,x)dx = 0, t > 0,

sε(0,x) = s0,ε(x), x ∈ Ω,

where ε is a positive parameter and s0,ε is a smooth approximation of s0.
The existence of a smooth solution (sε,vε,Λw,ε,Λo,ε, pε) for the approximate

problem (2.3) can be proved using the same argument of [12, 18].
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3. A Priori Estimates and Basic Compactness

This section is devoted to some a priori estimates uniform with respect to ε on
the solution (sε,vε,Λw,ε,Λo,ε, pε) of (2.3).

Lemma 3.1 (L∞ estimate on {sε}ε>0). We have that

0 ≤ sε(t,x) ≤ 1 for each t > 0, x ∈ Ω.

Proof. The maps with constant values 0 and 1 are a sub and a super solution for
the first equation in (2.3). Indeed both 0 and 1 solve the equation

∂ts+ divx (f(s)vε + g(s)k) = ε∆xs,

and on the boundary (0,∞)× ∂Ω, thanks to (H.2), we have[
ε∂νs−

(
f(s)vε + g(s)k

)
· ν + h

]∣∣∣
s=0

=h ≤ 0,[
ε∂νs−

(
f(s)vε + g(s)k

)
· ν + h

]∣∣∣
s=1

=− f(1)vε · ν + h

=λ∗f(1)∂νpε −
λ∗
2
f(1)(ρw + ρo)k · ν + h

=λ∗f(1)

(
π − ρw + ρo

2
k · ν

)
+ h ≥ 0.

The claim follows from (H.4) and the comparison principle for parabolic equations.
�

Lemma 3.2 (L∞ estimate on {Λw,ε}ε>0, {Λo,ε}ε>0, {ΛT,ε}ε>0). We have that

0 <
λ∗
2
≤ Λw,ε(t,x) ≤ ‖λw‖L∞(0,1) ,

0 <
λ∗
2
≤ Λo,ε(t,x) ≤ ‖λo‖L∞(0,1) ,

0 < λ∗ ≤ ΛT,ε(t,x) ≤ ‖λw‖L∞(0,1) + ‖λo‖L∞(0,1) ,

(3.1)

for each t > 0, x ∈ Ω.

Proof. The maps with constant values λ∗
2 and ‖λw‖L∞(0,1) are respectively sub and

super solutions for the fourth equation in (2.3): the first inequality is consequence
of the monotonicity of the elliptic operator −µw∆ + 1. The same argument works
also for the second inequality. The last estimate follows from the other two and the
definition of ΛT,ε. �

Lemma 3.3 (Sobolev estimate on {Λw,ε}ε>0, {Λo,ε}ε>0, {ΛT,ε}ε>0). Let 1 ≤ r <
∞ be fixed. The following inequalities hold

‖Λw,ε‖L∞(0,∞;W 2,r(Ω)) ≤ Cr
‖λw‖L∞(0,1)

µw
,

‖Λo,ε‖L∞(0,∞;W 2,r(Ω)) ≤ Cr
‖λo‖L∞(0,1)

µo
,

‖ΛT,ε‖L∞(0,∞;W 2,r(Ω)) ≤ Cr
‖λw‖L∞(0,1)

µw
+
‖λo‖L∞(0,1)

µo
,

(3.2)

where Cr is a positive constant dependent on r but not on µw, µo, and ε.



570 G. M. COCLITE, K. H. KARLSEN, S. MISHRA, AND N. H. RISEBRO

Proof. From (2.3), we know that

−∆Λw,ε =
λw(sε)− Λw,ε

µw
, −∆Λo,ε =

λo(sε)− Λo,ε
µo

.

Thanks to [3, Theorem 8.2], Lemmas 3.1, 3.2, and (H.3)

‖Λw,ε(t, ·)‖W 2,r(Ω) ≤c1
∥∥∥∥λw(sε(t, ·))− Λw,ε(t, ·)

µw

∥∥∥∥
L∞(Ω)

≤c1
‖λw(sε)‖L∞((0,∞)×Ω) + ‖Λw,ε‖L∞((0,∞)×Ω)

µ
≤ 2c1

‖λw‖L∞(0,1)

µw
,

‖Λo,ε(t, ·)‖W 2,r(Ω) ≤c2
∥∥∥∥λo(sε(t, ·))− Λo,ε(t, ·)

µo

∥∥∥∥
L∞(Ω)

≤c2
‖λo(sε)‖L∞((0,∞)×Ω) + ‖Λo,ε‖L∞((0,∞)×Ω)

µo
≤ 2c

‖λo‖L∞(0,1)

µo
,

where c! and c2 are positive constants depending only on r. That proves the first
two inequalities. The last one follows from the definition of ΛT,ε. �

Lemma 3.4 (Sobolev estimate on {pε}ε>0). There exists ρ > 2 independent on µ
and ε such that

‖pε‖L∞(0,∞;W 1,ρ(Ω)) ≤κ,(3.3)

‖pε‖L∞(0,∞;W 3,r(Ω)) ≤
Kr

min{µw, µo}
, 1 ≤ r < ρ(3.4)

for some positive constants Kr and κ independent on µw, µo, and ε.

Proof. Since ρε satisfies the equation (see (2.3))

−divx (ΛT,ε∇xpε) =− divx ((ρwΛw,ε + ρoΛo,ε)k)

=− (ρwΛw,ε + ρoΛo,ε)divx (k)− (ρw∇xΛw,ε + ρo∇xΛo,ε) · k,

(3.5)

the (µw, µo, ε)-independent estimate in Lemma 3.2, (H.2), and [15, Theorem 1]
give (3.3).

Since (3.5) gives

∆pε =
1

ΛT,ε

(
(ρwΛw,ε+ρoΛo,ε)divx (k)+(ρw∇xΛw,ε+ρo∇xΛo,ε)·k−∇xΛT,ε ·∇pε

)
,

and, from (3.2) and (3.3), ∇xΛT,ε ·∇pε is uniformly bounded in L∞(0,∞;Lr(Ω)), 1
≤ r < ρ, from [3, Theorem 8.2], (3.1), and (3.2) we have

(3.6) ‖pε‖L∞(0,∞;W 2,r(Ω)) ≤
Kr

min{µw, µo}
, 1 ≤ r < ρ.

Differentiating (3.5) with respect to xi, i ∈ {1, ..., N}, we get

∆∂xipε =
1

ΛT,ε

(
(ρw∂xiΛw,ε + ρo∂xiΛo,ε)divx (k) + (ρwΛw,ε + ρoΛo,ε)divx (∂xik)

+ (ρw∇x∂xiΛw,ε + ρo∇x∂xiΛo,ε) · k + (ρw∇xΛw,ε + ρo∇xΛo,ε) · ∂xik

− ∂xiΛε∆pε −∇∂xiΛε · ∇pε −∇Λε · ∇∂xipε
)
.

Since, from (3.2) and (3.6), the right hand side is uniformly bounded in L∞(0,∞;Lr(Ω)), 1
≤ r < ρ, from [3, Theorem 8.2], (3.1), and (3.2) we have (3.4). �
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Lemma 3.5 (Sobolev estimate on {vε}ε>0). The following inequality holds

‖vε‖L∞(0,∞;Lρ(Ω)) ≤ Γρ, ‖vε‖L∞(0,∞;W 2,r(Ω)) ≤
Γr

min{µw, µo}
, 1 ≤ r < ρ,

where ρ is the one introduced in Lemma 3.4 and Γr is a positive constant dependent
on r but not on µw, µo, and ε.

Proof. Since
vε = −ΛT,ε∇xpε + (ρwΛw,ε + ρoΛo,ε)k,

and, for every i, j ∈ {1, ..., N},
∂2
xixjvε =− ∂2

xixjΛT,ε∇pε − ∂xiΛT,ε∇∂xjpε − ∂xjΛT,ε∇∂xipε − ΛT,ε∇∂2
xixjpε

+ ∂2
xixj (ρwΛw,ε + ρoΛo,ε)k + ∂xi(ρwΛw,ε + ρoΛo,ε)∂xjk

+ ∂xj (ρwΛw,ε + ρoΛo,ε)∂xik + (ρwΛw,ε + ρoΛo,ε)∂
2
xixjk,

the claim follows directly from Lemmas 3.3 and 3.4. �

Lemma 3.6 (Entropy Dissipation). Let ε > 0 and η ∈ C2(R). The following
inequality holds∫

Ω

η(sε(t,x))dx+ε

∫ t

0

∫
Ω

η′′(sε(τ,x))|∇xsε(τ,x)|2dτdx

≤
∫

Ω

η(s0,ε)dx + ‖η′‖L∞(0,1) ‖h‖L1((0,t)×∂Ω) +K(η)t,

(3.7)

for each t ≥ 0, where

K(η) =
(
‖g‖L∞(0,1) ‖η

′‖L∞(0,1) + ‖g′η′‖L1(0,1)

)
‖k‖W 1,∞(Ω) (|Ω|+ |∂Ω|)

+
(
‖f‖L∞(0,1) ‖η

′‖L∞(0,1) + ‖f ′η′‖L1(0,1)

)
×

× λ∗
(
‖π‖L∞((0,∞)×∂Ω) +

ρw + ρo
2

‖h‖L∞(Ω)

)
|∂Ω|.

In particular, if η(s) = s2

2 , we have
(3.8)

‖sε(t, ·)‖2L2(Ω) + 2ε

∫ t

0

‖∇xsε(τ, ·)‖2L2(Ω) dτ ≤ ‖s0,ε‖2L2(Ω) + 2 ‖h‖L1((0,t)×∂Ω) + K̃t,

for each t ≥ 0, where

K̃ =2
(
‖g‖W 1,1(0,1) ‖k‖W 1,∞(Ω) (|Ω|+ |∂Ω|)

+ ‖f‖W 1,1(0,1) λ∗

(
‖π‖L∞((0,∞)×∂Ω) +

ρw + ρo
2

‖h‖L∞(Ω)

)
|∂Ω|

)
.

Proof. In light of (2.3)

∂tη(sε) + divx (F(sε)vε + G(sε)k)

+
(
g(sε)η

′(sε)− G(sε)
)
divx (k) = ε∆xη(sε)− εη′′(sε)|∇xsε|2,

where F and G are defined in (2.2). Integrating on Ω, since the boundary conditions
in (2.3) say,

vε · ν = −λ∗π + λ∗
ρw + ρo

2
k · ν, on ∂Ω

using Lemmas 3.1, 3.5,

d

dt

∫
Ω

η(sε)dx =− ε
∫

Ω

η′′(sε)|∇xsε|2dx−
∫

Ω

(
g(sε)η

′(sε)− G(sε)
)
divx (k) dx
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+

∫
∂Ω

(
F(sε)vε + G(sε)k

)
· νdσ − ε

∫
∂Ω

∂νη(sε)dσ

=− ε
∫

Ω

η′′(sε)|∇xsε|2dx−
∫

Ω

(
g(sε)η

′(sε)− G(sε)
)
divx (k) dx

+

∫
∂Ω

(
F(sε)− f(sε)η

′(sε)
)
vε · νdσ +

∫
∂Ω

(
G(sε)− g(sε)η

′(sε)
)
k · νdσ

+

∫
∂Ω

hη′(sε)dσ

≤− ε
∫

Ω

η′′(sε)|∇xsε|2dx

+
(
‖g‖L∞(0,1) ‖η

′‖L∞(0,1) + ‖G‖L∞(0,1)

)
‖k‖W 1,∞(Ω) (|Ω|+ |∂Ω|)

+
(
‖f‖L∞(0,1) ‖η

′‖L∞(0,1) + ‖F‖L∞(0,1)

)
×

× λ∗
(
‖π‖L∞((0,∞)×∂Ω) + λ∗

ρw + ρo
2

‖k‖L∞(Ω)

)
|∂Ω|

+ ‖η′‖L∞(0,1) ‖h(t, ·)‖L1(∂Ω) .

An integration with respect to t gives (3.7).

Finally, by choosing η(s) = s2

2 , (3.7) gives (3.8). �

As a consequence of Lemmas 3.3, 3.4, 3.5 we have the following compactness
result.

Lemma 3.7. Let ρ be the exponent introduced in Lemma 3.4. There exist a sub-
sequence {εk}k∈N ⊂ (0,∞), εk → 0, and some functions

s ∈ L∞((0,∞)× Ω),

Λw, Λo ∈ L∞((0,∞)× Ω) ∩ L∞(0,∞;W 2,r(Ω)), 1 ≤ r <∞,
p ∈ L∞(0,∞;W 1,ρ(Ω) ∩W 3,r(Ω)), 1 ≤ r < ρ,

v ∈ L∞(0,∞;Lρ(Ω) ∩W 2,r(Ω)), 1 ≤ r < ρ,

such that

sεk ⇀ s weakly in Lr((0,∞)× Ω), 1 ≤ r <∞,

Λw,εk ⇀ Λw weakly in Lr((0,∞)× Ω) ∩ Lr
′
(0,∞;W 2,r(Ω)), 1 ≤ r′, r <∞,

Λo,εk ⇀ Λo weakly in Lr((0,∞)× Ω) ∩ Lr
′
(0,∞;W 2,r(Ω)), 1 ≤ r′, r <∞,

pεk ⇀ p weakly in Lr
′
(0,∞;W 1,ρ(Ω) ∩W 3,r(Ω)), 1 ≤ r′, r < ρ,

vεk ⇀ v weakly in Lr
′
(0,∞;Lρ(Ω) ∩W 2,r(Ω)), 1 ≤ r′, r < ρ.

4. Kinetic Formulation

Let us pass to the kinetic formulation of the first equation in (2.3).
From (2.3), we know

(4.1) ∂tsε + f ′(sε)∇xsε · vε + g′(sε)∇xsε · k + g(sε)divx (k) = ε∆xsε.

Let η be an entropy. From (4.1) we get

∂tη(sε) +∇xF(sε) · vε +∇xG(sε) · k
+ g(sε)divx (k) η′(sε)− ε∆xη(sε) = −εη′′(sε)|∇xsε|2,

(4.2)

where the entropy fluxes F and G are defined in (2.2)
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Lemma 4.1. The following identity holds in the sense of distributions

∂tχε + divx (f ′(ξ)χεvε) + divx (g′(ξ)χεk)

+ ∂ξ
(
g(ξ)divx (k)χε

)
− 2g′(ξ)divx (k)χε − ε∆xχε = ∂ξmε,

(4.3)

where

(4.4) χε(t,x, ξ) = χ{ξ<sε(t,x)}, mε = εδ{ξ=sε(t,x)}|∇xsε|2, t > 0, x ∈ Ω, ξ ∈ R,

and χ{ξ<s} and δ{ξ=s} are the characteristic function and the Dirac delta associated
to the sets {ξ < s} and {ξ = s}, respectively.

Proof. Let us consider the entropy

η(s) = (s− ξ)+, s, ξ ∈ R.

Since

η′(s) = χ{ξ<s}, η′′(s) = δ{ξ=s},

F(s) = χ{ξ<s}(f(s)− f(ξ)), G(s) = χ{ξ<s}(g(s)− g(ξ)),

(4.2) becomes

∂t(sε − ξ)+ +∇x

(
χ{ξ<sε(t,x)}(f(sε)− f(ξ))

)
· vε

+∇x

(
χ{ξ<sε(t,x)}(g(sε)− g(ξ))

)
· k

+ g(sε)divx (k)χ{ξ<sε(t,x)} − ε∆x(sε − ξ)+ = −mε.

(4.5)

Since

∂ξ∂t(sε − ξ)+ = −∂tχ{ξ<sε(t,x)} = −∂tχε,

∂ξ

(
∇x

(
χ{ξ<sε(t,x)}(f(sε)− f(ξ))

)
· vε
)

=
(
∇x∂ξ

(
χ{ξ<sε(t,x)}(f(sε)− f(ξ))

))
· vε

= −
(
∇x

(
δ{ξ=sε(t,x)}(f(sε)− f(ξ))

))
· vε︸ ︷︷ ︸

=0

−∇x

(
χ{ξ<sε(t,x)}f

′(ξ)
)
· vε

= −f ′(ξ)∇xχε · vε = −divx (f ′(ξ)χεvε) ,

∂ξ

(
∇x

(
χ{ξ<sε(t,x)}(g(sε)− g(ξ))

)
· k
)

=
(
∇x∂ξ

(
χ{ξ<sε(t,x)}(g(sε)− g(ξ))

))
· k

= −
(
∇x

(
δ{ξ=sε(t,x)}(g(sε)− g(ξ))

))
· k︸ ︷︷ ︸

=0

−∇x

(
χ{ξ<sε(t,x)}g

′(ξ)
)
· k

= −g′(ξ)∇xχε · k,

∂ξ

(
g(sε)divx (k)χ{ξ<sε(t,x)}

)
= −g(sε)divx (k) δ{ξ=sε(t,x)} = −g(ξ)divx (k) ∂ξχε,

∂ξε∆x(sε − ξ)+ = −ε∆xχ{ξ<sε(t,x)} = −ε∆xχε,

we differentiate (4.5) with respect to ξ and get

∂tχε + divx (f ′(ξ)χεvε) + g′(ξ)∇xχε · k + g(ξ)divx (k) ∂ξχε − ε∆xχε = ∂ξmε.

Finally, we observe that

g′(ξ)∇xχε · k + g(ξ)divx (k) ∂ξχε

=divx (g′(ξ)χεk)− g′(ξ)χεdivx (k) + ∂ξ
(
g(ξ)divx (k)χε

)
− g′(ξ)divx (k)χε
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=divx (g′(ξ)χεk) + ∂ξ
(
g(ξ)divx (k)χε

)
− 2g′(ξ)divx (k)χε,

therefore we have (4.3). �

Lemma 4.2. There exist

χ ∈ L∞((0,∞)× Ω× R), m ∈M+((0,∞)× Ω× R),

such that (using the same notation of Lemma 3.7 for the subsequence)

χεk
?
⇀ χ weakly-∗ in L∞((0,∞)× Ω× R),(4.6)

mεk ⇀m weakly in M+((0,∞)× Ω× R),(4.7)

0 ≤ χ ≤ 1, ∂ξχ ≤ 0,(4.8)

whereM+((0,∞)×Ω×R) is the set of positive Radon measures on (0,∞)×Ω×R.
Moreover, the following identity holds in the sense of distributions

∂tχ+ divx (f ′(ξ)χv) + divx (g′(ξ)χk)

+ ∂ξ
(
g(ξ)divx (k)χ

)
− 2g′(ξ)divx (k)χ = ∂ξm.

(4.9)

Proof. The existence of χ, m, (4.6), and (4.7) follow from Lemmas 3.1 and 3.6.
Since, from the definition,

(4.10) 0 ≤ χε ≤ 1, ∂ξχε = −δ{ξ=sε(t,x)} ≤ 0,

we have (4.8).
We have now to prove (4.9). Due to (4.7) we have only to show that

(4.11) χεkvεk −→ χv, in the sense of distributions on (0,∞)× Ω× R.

Observe that, from (4.10) and Lemma (3.7), we know

(4.12) χεk ⇀ χ, vεk ⇀ v, weakly in L2((0,∞)× Ω× R).

Since vεk does not depend on ξ, thanks to Lemma (3.5),

(4.13) {vεk}k is uniformly bounded in L2((0,∞);W 1,2(Ω× R)).

We claim that
(4.14)
{∂tχεk}k is uniformly bounded in L1((0, T );W−1,1(Ω× (−a, a))), T, a > 0.

Indeed, from (4.3), we know that

∂tχεk =− divx (f ′(ξ)χεkvεk)− divx (g′(ξ)χεkk)

− ∂ξ
(
g(ξ)divx (k)χεk

)
+ 2g′(ξ)divx (k)χεk + εk∆xχεk − ∂ξmεk ,

(4.15)

Due to (H.2), (4.10), and Lemma (3.5),

{divx (f ′(ξ)χεkvεk)}k bounded in L∞((0,∞);W−1,1(Ω× (−a, a))), a > 0,

{divx (g′(ξ)χεkk)}k bounded in L∞((0,∞);W−1,∞(Ω× (−a, a))), a > 0,

{∂ξ
(
g(ξ)divx (k)χεk

)
}k bounded in L∞((0,∞);W−1,∞(Ω× (−a, a))), a > 0,

{g′(ξ)divx (k)χεk}k bounded in L∞((0,∞)× Ω× (−a, a)), a > 0.

(4.16)

Since

εk∆xχεk − ∂ξmεk =∂ξ(εk(sεk − ξ)+∆xsεk)

=∂ξ(εkdivx ((sεk − ξ)+∇xsεk)− εkχεk |∇xsεk |2)

=divx (εk∂ξ(sεk − ξ)+∇xsεk)− ∂ξ(εkχεk |∇xsεk |2)
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=− divx (εkχεk∇xsεk)− ∂ξ(εkχεk |∇xsεk |2),

thanks to (3.8) and (4.4), we have that also
(4.17)
{εk∆xχεk − ∂ξmεk}k bounded in L1((0, T );W−1,1(Ω× (−a, a))), T, a > 0.

Therefore (4.14) follows from (4.15), (4.16), and (4.17). Due to (4.12), (4.13),
(4.14), and [13, Lemma 5.1] we have (4.11) and the proof is concluded. �

Lemma 4.3. Let η ∈ C2(R). The following identity holds in the sense of distribu-
tions

∂tη(χ) + divx (f ′(ξ)η(χ)v) + divx (g′(ξ)η(χ)k)

+ ∂ξ
(
g(ξ)divx (k)χη′(χ)

)
− 2g′(ξ)η(χ)divx (k) = η′(χ)∂ξm.

(4.18)

Proof. Convolving both sides of (4.9) with a family of mollifiers and the arguing as
in [9, Lemma II.1] we get

∂tη(χ)+divx (f ′(ξ)χv) η′(χ) + divx (g′(ξ)χk) η′(χ)

+ ∂ξ
(
g(ξ)divx (k)χ

)
η′(χ)− 2g′(ξ)divx (k)χη′(χ) = η′(χ)∂ξm.

Since

divx (f ′(ξ)χv) η′(χ) =f ′(ξ)∇xχ · vη′(χ)

=f ′(ξ)∇x(η(χ)) · v = divx (f ′(ξ)η(χ)v) ,

divx (g′(ξ)χk) η′(χ) =g′(ξ)∇xχ · kη′(χ) + g′(ξ)χdivx (k) η′(χ)

=g′(ξ)∇xη(χ) · k + g′(ξ)χdivx (k) η′(χ)

=divx (g′(ξ)η(χ)k) + g′(ξ)(χη′(χ)− η(χ))divx (k) ,

∂ξ
(
g(ξ)divx (k)χ

)
η′(χ) =g(ξ)divx (k) ∂ξχη

′(χ) + g′(ξ)divx (k)χη′(χ)

=g(ξ)divx (k) ∂ξη(χ) + g′(ξ)divx (k)χη′(χ)

=∂ξ
(
g(ξ)divx (k) η(χ)

)
+ g′(ξ)divx (k) (χη′(χ)− η(χ)),

we have (4.18). �

Lemma 4.4. The function χ defined in Lemma 4.2 takes only values 0 and 1. In
particular, there exists a function S ∈ L∞((0,∞)× Ω) such that

(4.19) χ(t,x, ξ) = χ{ξ≤S(t,x)}, a.e. (t,x, ξ) ∈ (0,∞)× Ω× R.

Proof. We use the entropy

η(χ) = χ− χ2

in (4.18) and get

∂t(χ− χ2) + divx

(
f ′(ξ)(χ− χ2)v

)
+ divx

(
g′(ξ)(χ− χ2)k

)
+ ∂ξ

(
g(ξ)divx (k) (χ− 2χ2)

)
− 2g′(ξ)(χ− χ2)divx (k) = (1− 2χ)∂ξm.

(4.20)

Since from (4.8) and the definitions of χ and m, we know

(1− 2χ)∂ξm = ∂ξ((1− 2χ)m) + 2m∂ξχ ≤ ∂ξ((1− 2χ)m),

χ− χ2 ≥ 0,(4.21)

ξ ∈ (−∞, 0) ∪ (1,∞) =⇒ χ(t,x, ξ) = m(t,x, ξ) = 0.(4.22)
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The identity (4.20) gives

∂t(χ− χ2) + divx

(
f ′(ξ)(χ− χ2)v + g′(ξ)(χ− χ2)k

)
+ ∂ξ

(
g(ξ)divx (k) (χ− 2χ2) + (2χ− 1)m

)
≤ 2 ‖g′‖L∞(0,1) ‖divx (k)‖L∞(Ω)︸ ︷︷ ︸

κ

(χ− χ2).
(4.23)

Moreover, in light of (4.22),∫
R
∂ξ
(
g(ξ)divx (k) (χ− 2χ2) + (2χ− 1)m

)
dξ = 0,

therefore, integrating (4.23) with respect to x and ξ and using (H.2)

d

dt

∫
Ω×R

(χ− χ2)dxdξ

≤−
∫

Ω×R
divx

(
f ′(ξ)(χ− χ2)v + g′(ξ)(χ− χ2)k

)
dxdξ

+ κ

∫
Ω×R

(χ− χ2)dxdξ

=

∫
∂Ω×R

(
f ′(ξ)(χ− χ2)v + g′(ξ)(χ− χ2)k

)
· νdσdξ

+ κ

∫
Ω×R

(χ− χ2)dxdξ

=

∫
∂Ω×R

(
− λ∗f ′(ξ)

(
π − ρw + ρo

2
k · ν

)
+ g′(ξ)k · ν

)
︸ ︷︷ ︸

≤0 (cf. (H.2))

(χ− χ2)︸ ︷︷ ︸
≥0 (cf. (4.21))

dσdξ

+ κ

∫
Ω×R

(χ− χ2)dxdξ

≤κ
∫

Ω×R
(χ− χ2)dxdξ.

Thanks to the Gronwall’s inequality and the fact that (χ− χ2)
∣∣
t=0

= 0, we have

χ− χ2 = 0 a.e. (0,∞)Ω× R,

and then χ takes only values 0 and 1.
Finally, (4.19) follows from [19]. �

Proof of Theorem 2.1. Let {εk}k∈N and s be the one of Lemma 3.7. Due to the
the weak convergences Lemmas 3.7 and 4.2, we have S = s, where S is the one
introduced in Lemma 4.4, we have

sεk → s strongly in Lr((0, T )× Ω), T > 0, 1 ≤ r <∞,

indeed

sε(t,x) =

∫
R
χε(t,x, ξ)dξ, s(t,x) =

∫
R
χ(t,x, ξ)dξ.

�
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5. Numerical experiments

In order to test how close the model with µw > 0 and µo > 0 are to the model
with µw = µo = 0, we have performed several numerical experiments.

We have simplified the equations to read

v = ΛT∇p+ (ρwΛw + ρoΛo) k, t > 0, x ∈ Ω,(5.1)

divx (vε) = q, t > 0, x ∈ Ω,(5.2)

st + divx

(
λw(s)

λT (s)
(v + (ρw − ρo)λo(s)k)

)
= q, t > 0, x ∈ Ω,(5.3)

Λw,o − µw,o∆Λw,o = λw,o(s), t > 0, x ∈ Ω,(5.4)

where ΛT = Λo + Λw, λT = λw + λo, k is the vector (0, 1) and the domain Ω is the
rectangle [0, a]× [0, b]. The boundary conditions are(

λw(s)

κT(s)
(vε + (ρw − ρo)λo(s)k)

)
· ν = 0, t > 0, x ∈ ∂Ω,

v · ν = 0, t > 0, x ∈ ∂Ω,(5.5)

Λr,o = λr,o(s), t > 0, x ∈ ∂Ω (in the trace sense),(5.6)

s(0,x) = s0(x), x ∈ Ω.(5.7)

The relative permeabilities of water and oil, λw and λo, are given by

λw,o (sw,o) = s2
w,o,

so that λo(s) = (1 − s)2. The source term q accounts for injection of water and
production of oil. Numerically, we model this term as a sum of “delta-functions”
located at the relevant wells.

We now specify the numerical scheme used to approximate (5.1)–(5.7). Let

D±x kij = ± 1

hx
(ki±1,j − kij) , D±y kij = ± 1

hy
(ki,j±1, − kij) .

We divide Ω into N × M rectangles, such that hx = a/N , hy = b/M . As an
approximation to (5.4), (5.6) we use the scheme

(5.8)

{
Λij − ε

(
D+
xD
−
x +D+

y D
−
y

)
Λij = λ (sij) , 1 < i < N, 1 < j < M,

Λij = λ (sij) , i = 1, N , 1 ≤ j ≤M and j = 1, N , 1 ≤ i ≤ N .

This scheme is used both for Λw
ij ≈ Λw and Λo

ij ≈ Λo. To solve the “pressure
equation”, (5.2) with boundary conditions given by (5.5) we use a finite volume
scheme similar to (5.8). Set

Λi+1/2,j =

{
2

ΛijΛi+1,j

Λij+Λi+1,j
, 1 ≤ i < N, 1 ≤ j ≤M,

0 i = 0 or i = N, 1 ≤ j ≤M,

Λi,j+1/2 =

{
2

ΛijΛi,j+1

Λij+Λi,j+1
, 1 ≤ j < M, 1 ≤ i ≤ N,

0 j = 0 or j = M, 1 ≤ i ≤ N.

Then the discrete analogue of (5.2) reads

(5.9) D−x ΛT
i+1/2,jD

+
x pij +D−y ΛT

i,j+1/2D
+
y pij = qij −D−y γij+1/2,

for 1 ≤ i ≤ N and 1 ≤ j ≤M . Here the gravitational source term is defined by

γi,j+1/2 = ρoΛ
o
i,j+1/2 + ρwΛw

i,j+1/2.
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Given sij , the total velocity is then found by solving (5.8) and (5.9), and defined
by

vxi+1/2,j = ΛT
i+1/2,jD

+
x pij , vyi+1/2,j = ΛT

i,j+1/2D
+
y pij + gi,j+1/2.

Once we have a total velocity on the cell edges, we can use a finite volume scheme
to advance the saturation in time

(5.10) sn+1
ij = snij − h

(
D−x F

x
i+1/2,j +D−y

(
F yi,j+1/2 + F y,grav

i,j+1/2

))
+ hqij .

We have split the numerical flux into the part multiplied by the total velocity, and
the gravitational part. Set f(s) = λw(s)/λT (s) and g(s) = λo(s)f(s). Then the
inter cell fluxes read

F xi+1/2,j (sij , si+1,j) =

{
vxi+1/2,jf (sij) vxi+1/2,j > 0,

vxi+1/2,jf (si+1,j) otherwise,

F yi,j+1/2 (sij , si,j+1) =

{
vyi,j+1/2f (sij) vyi,j+1/2 > 0,

vyi,j+1/2f (si,j+1) otherwise,

F y,grav
i,j+1/2 (sij , si,j+1) = (ρw − ρo) (g (min (si,j+1, 1/2)) + g (max (si,j , 1/2))) .

Having numerical methods for (5.1) – (5.4), we can formulate an “IMPES” method
to find the pressure and saturation as functions of time. As is commonly believed
in the reservoir simulation community, it is sufficient to update the total velocity
less frequently than the saturation. Hence, an algorithm for solving (5.1) – (5.4)
reads as follows:

Algorithm 1 Simple reservoir simulation

given sij , qij , T , N , ε
dt← T/N
for k = 1 to N do

solve (5.8) to get Λw
ij and Λo

ij

solve (5.9) to get vxi+1/2,j and vyi,j+1/2

t← 0
while t < dt do

determine h by a CFL-condition
t← t+ h
update sij by (5.10)

end while
end for

Experiment 1. Our first test is a so-called “quarter five spot”, modeling injection
of water into a oil filled homogeneous horizontal reservoir, with one injection well
in the lower left corner, and one production well in the upper right hand corner. In
this case

ρo = ρw = 0, qij =


1 if i = j = 1,

−1 if i = N and j = M ,

0 otherwise,

T = 0.7, N = 25, sij = 0, for all i, j.

We set a = b = 1 and M = N .
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Figure 2. Solutions to the unregularized and regularized versions
of the two-phase flow equations (2.1) without gravity. The plotted
quantity is the saturation of water. Left: µ = 0 and Right: µ =
0.01 with µ being the regularization parameter in (2.1). Both
solutions are computed with the IMPES scheme on a 200 × 200
mesh.

We compute the approximate solutions for the unregularized version of the two-
phase flow equations (1.6) and the regularized version (2.1) by varying the regu-
larization parameter µo = µw = µ in (2.1). We consider two different values of µ
namely µ = 0 (unregularized problem) and µ = 0.01 and show the water saturation,
computed on a 200×200 mesh at time T = 0.7 in figure 2. The figure shows that the
saturation consists of sharp fronts and including a finger at the upper right hand
corner near the production well. Furthermore, there are very few visible differences
between the saturations for the unregularized and regularized problems.

In order to obtain quantitative comparison of the two models, we vary the reg-
ularization parameter µ by orders of magnitude and compute the L1 norm of the
difference between the regularized and unregularized saturations and pressure. The
relative errors are shown in figure 3. The figure shows that the errors in pressure
are very small and converge to zero as the regularization parameter goes to zero.
Furthermore, the pressure errors are lower on the finer 200 × 200 mesh than the
100 × 100 mesh. The saturation errors are larger than the pressure errors. The
saturation errors do converge to zero for both the coarse and the fine meshes as the
regularization parameter tends to zero. However, the saturation errors are slightly
larger on the finer mesh than on the coarser mesh due to interaction between the
discretization error and the regularization error. The figure illustrates that the
regularized model (2.1) is quite close to the original two-phase flow equations (1.7)
with the difference being very small when the regularization parameter is close to
zero.

Experiment 2. The second test case is intended to test the possible effects of
gravitation. The setup is supposed to model injection of water into a vertical
reservoir initially filled with oil. The injection point is in the top left corner and
the production is in the top right one. Since water is heavier than oil, water will
tend to sink to the bottom of the reservoir, where it will pile up since we impose
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Figure 3. The difference in L1 between unregularized and regu-
larized versions of the two-phase flow equations (2.1) without grav-
ity. The plotted quantity is the log of 1

µ vs. the log of the relative

error. Left: Saturation error and Right: Pressure. We consider
solutions computed with the IMPES scheme on a 100 × 100 and
200× 200 mesh.

no-flow boundary conditions. The parameters for this set up is

ρo = 5.5, ρw = 7, qij =


1 if i = 1, j = M ,

−1 if i = N and j = M ,

0 otherwise,

T = 1.4, N = 50, sij = 0, for all i, j.

We have used a = 2, b = 1, and M = N/2.
We compute the approximate solutions for the unregularized version of the two-

phase flow equations (1.6) and the regularized version (2.1) by varying the regular-
ization parameter µ in (2.1). We consider two different values of µ namely µ = 0
(unregularized problem) and µ = 0.01 and show the water saturation, computed
on a 200× 200 mesh at time T = 0.7 in figure 4. In contrast to the previous exper-
iment, there are qualitative differences between the unregularized and regularized
versions. These differences are visible near the production well. The regularized
version seems to include a finger whereas the unregularized version is yet to form
a finger near the production well. There is a roll-up at the bottom right corner in
the regularized version that is not visible in the unregularized version.

A quantitative comparison in terms of the L1 norm of the differences between
the unregularized and regularized versions is shown in figure 5. The differences in
pressure are very small and tend to zero as µ is reduced. As expected from the
saturation plots, the difference in saturation is greater than in the non-gravitational
case (compare with figure 3). However, the errors tend to zero as µ → 0 showing
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Figure 4. Solutions to the unregularized and regularized versions
of the two-phase flow equations (2.1) with gravity. The plotted
quantity is the saturation of water. Left: µ = 0 and Right: µ =
0.01 with µ being the regularization parameter in (2.1). Both
solutions are computed with the IMPES scheme on a 200 × 200
mesh.

that the regularized model leads to a solution very close to the two-phase flow
equations (1.7), even when gravity effects are included.
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Figure 5. The difference in L1 between unregularized and regu-
larized versions of the two-phase flow equations (2.1) with gravity.
The plotted quantity is the log of 1

µ vs. the log of the relative error.

Left: Saturation error and Right: Pressure. We consider solutions
computed with the IMPES scheme on a 100 × 100 and 200 × 200
mesh.
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6. Conclusion

We consider the flow of two-phases, say oil and water, in a porous medium.
The classical model of this flow involves a elliptic-hyperbolic system, based on
the Darcy’s law. The saturation is governed by a hyperbolic conservation law
and pressure obeys an elliptic equation. The problem of existence of global weak
solutions for this model is still open. The main difficulty being the lack of regularity
of the velocity field.

We propose a modified version of the Darcy’s law via a Helmholtz regularization
of the phase velocities. The resulting model is a hyperbolic-elliptic system with
more regular velocity field. The kinetic formulation of scalar conservation laws is
modified to show compactness of approximating solutions. The limit is shown to
be weak solution of the modified system.

We perform numerical experiments and show that the solutions resulting from
the modified version of the Darcy’s law are very close to those obtained from a
classical two-phase flow system. Furthermore, these approximations converge to
the corresponding classical two-phase flow solution as the regularization parameter
tends to zero. Thus, the numerical experiments provide an a posteriori justification
for the proposed model.

Since the problem of proving existence for the classical version of the two-phase
flow equations presents formidable difficulties, we propose that this modified version
of the Darcy’s law be used. It can be motivated by scaling arguments and we are
able to provide rigorous proof of existence. The main advantage of the proposed
model over non-zero capillary pressure models lies in the fact that the saturation
fronts are not diffused by this model. We plan to conduct more intensive numerical
study of the proposed model and compare it with the classical model in a future
paper.
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