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Abstract. This paper presents numerical results on the development of compositional fluid

mixing simulators in porous media. These simulators integrate geological processes (source rock

maturation, hydrocarbon generation, migration, charge/filling, etc.) and reservoir processes (flu-
id mixing through Darcy’s flow, advection, and diffusion, gravity segregation, etc.). The model

governing equations are written with a proper choice of solution variables so that numerical mass

conservation is preserved for all chemical components. The approximation procedure uses the fi-
nite volume method for space discretization, the backward Euler scheme in time, and an adaptive

time stepping technique. The traditional simulator for solving the isothermal gravity/chemical

equilibrium problem is deduced as a special example of the simulators presented here. Extensive
numerical experiments are given to show segregation and instability effects for multiple compo-

nents.

Key words. compositional gradients, reservoir simulation, fluid mixing, advection, diffusion,

gravity segregation, numerical experiment, instability

1. Introduction

Compositional variations with depth have been observed in hydrocarbon reser-
voirs. These variations result from a variety of sources and typically indicate
nonequilibrium states. They can be observed in systems in equilibrium when chem-
ical potential gradients are balanced by gravitational potential gradients [8, 10, 13,
14, 21, 22, 24]. Temperature gradients can also contribute to compositional varia-
tions. Compositional variations in hydrocarbon reservoirs play an important role
in reservoir delineation. The ability to forecast horizontal compositional variations
helps the petroleum engineer to determine whether a given pair of producing wells
drain the same reservoir, for example. Their other important applications include
the study of the interplay of heterogeneity, advection, diffusion, gravity, viscosity,
reservoir segmentation, and other forces that may affect the distribution of chemical
components in reservoirs [4, 15].

In particular, the application to reservoir segmentation has increasingly become
important due to exploration demands of new energy resources. Common assump-
tions are that there is a high chance of reservoir connectivity if

• Reservoir fluids are in pressure equilibrium;
• Fluids have similar or continuous PVT (pressure, volume, and temperature)

properties;
• Fluids have similar geochemical compositions;
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• There are no significant changes in lithological characteristics from core and
well log interpretation;
• Seismic reflectors are continuous;
• There is a common hydrocarbon-water contact.

Thus one needs to understand how similarities and differences can be interpret-
ed from these diverse data sets when assessing reservoir segmentation. On one
hand, multiple processes that affect fluid properties include reservoir charge/filling,
fluid mixing through Darcy’s flow, advection, and diffusion, gravity segregation,
biodegradation, fractionation, and differential leakage of gas vs. oil. On the other
hand, distinct time scales (key to understanding the relative significance of fluid
data to reservoir segmentation studies) occur for different processes:

• Charge/filling of reservoirs: geological time–several millions of years;
• Biodegradation: thousands to hundreds of thousand of years;
• Molecular diffusion: 1 to 100 million years;
• Pressure diffusion: hundreds or even thousands of years;
• Convective flow: thousands to million years.

Therefore, one needs process-driven simulators to isolate the effects of each of these
processes to evaluate reservoir fluid data in the interpretation of compartmentaliza-
tion. We have been developing a software package that will integrate geological pro-
cesses (source rock maturation, hydrocarbon generation, migration, charge/filling,
etc.) and reservoir processes (fluid mixing through Darcy’s flow, advection, and
diffusion, gravity segregation, etc.). In the current paper instability problems (fin-
gering phenomena) due to the interplay of advection, diffusion, and gravity are
especially studied for multiple components. The literature is rich in the study of
instability problems [9, 20, 23]. However, most of the studies dealt with viscous
fingering and gravity segregation for two fluid components in a different setting.

The model equations governing the flow and transport of chemical components
are written with a proper choice of solution variables so that numerical mass con-
servation is preserved for all these components. The approximation procedure here
uses the finite volume method for space discretization, the backward Euler scheme
in time, and an adaptive time stepping technique. Extensive numerical experiments
are given to show segregation and instability effects for multiple components.

The rest of the paper is organized as follows. In the next section, we present the
governing differential equations. Then, in the third section, we show that Gibbs’
formulation can be treated as a special example of the mathematical formulation
developed here. In the fourth section, the choice of the primary variables is given,
and remarks about the approximation procedure used are made. In the fifth section
extensive numerical experiments are presented. Finally, we draw several concluding
remarks in the last section. Nomenclature is provided at the end of this paper.

2. Governing Differential Equations

We consider a gas or liquid phase that consists of Nc chemical species, where
there is no viscous dissipation and chemical reaction and the only external force is
due to gravity. Conservation of mass of each component in the fluid mixture is

(2.1)
∂(φxiξ)

∂t
= −∇ · (xiξu + Ji) + qi, i = 1, 2, . . . , Nc,

where φ is the porosity, ξ and u are the fluid molar density and velocity, and xi,
qi, and Ji are the mole fraction, the source/sink term, and the diffusive mass flux
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of the ith component, respectively. Darcy’s law for the fluid is

(2.2) u = − 1

µ
k (∇p− ρg∇z) ,

where k is the permeability tensor, µ, p, and ρ are the fluid viscosity, pressure, and
mass density, respectively, g is the gravitational constant, and z is the depth.

The equation of conservation of energy is

(2.3)
∂(ρbcbT )

∂t
+∇ · (ρcpuT ) = ∇ · (kT∇T ) + qT ,

where T , ρb, cb, cp, kT , and qT are the temperature, bulk density, bulk specific heat
capacity, heat capacity of the fluid, fluid/rock thermal conductivity, and source/sink
term, respectively. For more details for these equations, the reader can refer to
[1, 2, 5].

The unknowns in equations (2.1)–(2.3) are the mole fractions x = (x1, x2, . . . , xNc),
pressure p, and temperature T . The mole fraction balance implies

(2.4)

Nc∑
i=1

xi = 1.

The fluid viscosity has the following dependence:

µ = µ(p, T, x1, x2, . . . , xNc),

which can be obtained, for example, from the correlation of Lohrenz et al. [12]
with the input data: the critical pressure, critical temperature, critical volume,
and molecular weight of each component. The molar density

ξ = ξ(p, T, x1, x2, . . . , xNc
)

can be calculated using the equations of state of Peng-Robinson or Redlich-Kwong-
Soave. The method of volume translation is widely used for correcting volumetric
deficiencies of the original PR [19] and RKS [18] equations. The fluid mass density
is calculated as follows:

(2.5) ρ = ξW ≡ ξ
Nc∑
i=1

xiWi,

where W is the total molecular weight and Wi is the molecular weight of the ith
component. Set

J = (J1,J2, . . . ,JNc)
t
,

where the superscript t indicates the transpose of a vector or matrix. Then the
diffusive mass flux of each component in equation (2.1) takes the form

(2.6) Ji = −φξ

∑
j

DM
ij ∇xj + DT

i ∇T + Dp
i∇p

 ,

where DM
ij , DT

i , and Dp
i are the molecular, thermal (the Soret effect), and pressure

(gravity segregation) diffusions of component i [7], respectively. Note that the
diffusive fluxes satisfy

Nc∑
i=1

Ji = 0.
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Following [7], each Ji is given by, i = 1, 2, . . . , Nc − 1,
(2.7)

Ji = −φξaiNc
DiNc

{
Wixi
Lii

Nc−1∑
k=1

Lik

Nc−1∑
j=1

Wjxj +WNc
xNc

δjk
Wj

Nc−1∑
l=1

∂ ln fj
∂xl

∇xl

+
WkTi

T
∇T

+
Wixi
RTLii

Nc−1∑
k=1

Lik

Nc−1∑
j=1

xjvj +
WNc

xNc

Wk
vk −

1

ξ

∇p},
where Lik is a phenomenological coefficient, δjk denotes the Kronecker symbol, R is
the gas constant, fi and vi are the fugacity and partial molar volume of component
i, and the coefficients aiNc

, DiNc
, and kTi (the thermal diffusion ratio) are defined

by, i = 1, 2, . . . , Nc − 1,

aiNc =
WiWNc

W 2
, DiNc

=
W 2RLii

ξW 2
i W

2
Nc
xixNc

, kTi =
WixiWNcxNcL

′
i

WRTLii
≡ αTixixNc ,

with L′i being another phenomenological coefficient and αTi called the thermal dif-
fusion factor of component i. For information on the phenomenological coefficients
Lik and L′i, the reader may refer to [16, 17].

3. Isothermal Gravity/Chemical Equilibrium

The formulation for computing compositional variations under gravity for an
isothermal system was first given by Gibbs [8]. In this section we show that Gibbs’
formulation for this type of system can be treated as a special example of the
mathematical formulation developed in the previous section. The constraint of
chemical equilibrium is

(3.1) dµi +Wigdz = 0, i = 1, 2, . . . , Nc,

(3.2) dµi +Wigdz = Qi
dT

T
, i = 1, 2, . . . , Nc,

where µi is the chemical potential of component i. Equations (2.4) and (3.1) provide
compositions (x1, x2, . . . , xNc

) and pressure p at any depth z once they are specified
at a reference depth. An interesting fact is that the Gibbs equation (3.1) can be
obtained using (2.7) and the condition of mechanical equilibrium

(3.3) dp = −ρgdz.

For an isothermal system at the steady state,

Ji = 0, i = 1, 2, . . . , Nc.

Applying (2.7) in the z-direction, we see that

(3.4)

Nc−1∑
k=1

Lik

Nc−1∑
j=1

Wjxj +WNc
xNc

δjk
Wj

Nc−1∑
l=1

∂ ln fj
∂xl

dxl
dz

+
1

RT

Nc−1∑
k=1

Lik

Nc−1∑
j=1

xjvj +
WNc

xNc

Wk
vk −

1

ξ

 dp

dz
= 0.
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Note that this equation must hold for any combination of the compositions (x1, x2, . . . , xNc
).

In particular, for a fixed j = k and xm = 0 for all m’s except possibly for m = j or
Nc, equation (3.4) reduces to

(3.5)
Wjxj +WNcxNc

Wj

Nc−1∑
l=1

∂ ln fj
∂xl

dxl
dz

+
1

RT

(
xjvj +

WNcxNc

Wj
vj −

1

ξ

)
dp

dz
= 0,

which, together with equations (2.5) and (3.3), implies

(3.6) RT

Nc−1∑
l=1

∂ ln fj
∂xl

dxl
dz
− g(ρvj −Wj) = 0, i = 1, 2, . . . , Nc − 1.

This equation is exactly the condition (3.1) by noting that

∂µj

∂xl
= RT

∂ ln fj
∂xl

,
∂µj

∂p
= vj .

We remark that the chemical equilibrium constraint (3.1) (segregation equation)
holds only for an isothermal system. For nonisothermal systems, this constraint is
no longer valid because of nonzero entropy production. Furthermore, transience is
not solved so there is no driving force, as noted earlier. In this paper we will use
the more general, transient governing equations developed in the previous section.
These equations include the effects of advection, diffusion, and gravity segregation.

4. Choice of Primary Variables and Numerical Methods

Traditionally, mole fractions x = (x1, x2, . . . , xNc
) and pressure p are chosen to

be the primary variables (primary unknowns). Then the time discretization requires
that the time derivative term be rewritten as follows:

φ
∂(xiξ)

∂t
= φ

(
ξ + xi

∂ξ

∂xi

)
∂xi
∂t

+ φxi
∂ξ

∂p

∂p

∂t
.

In numerical experiments we have observed that this formula causes a numerical
error in mass conservation. To conserve mass numerically, we choose the primal
variables to be the partial molar densities ri = xiξ, the pressure p, and the tem-
perature T . From equation (2.1), the former satisfies

(4.1)
∂(φri)

∂t
= −∇ · (riu + Ji) + qi, i = 1, 2, . . . , Nc.

The molar density ξ is evaluated from the equations of state. After ξ and ri are
obtained, the mole fractions xi are computed from xi = ri/ξ, i = 1, 2, . . . , Nc.

The approximation procedure uses the finite volume method for space discretiza-
tion, the backward Euler scheme in time, and a sequential implicit solution scheme
for solving the partial molar density, pressure, and temperature equations. The
pressure equation can be obtained from the mass conservation equations (2.1) and
the mole fraction balance equation (2.4) [1, 2]. Furthermore, a simple algorithm
for adaptive time stepping is used in the selection of time steps. It attempts to
use as large time steps as possible while accuracy is preserved [2]. The main pa-
rameters that affect the choice of time steps are the maximum allowable pressure,
partial molar density, and temperature changes, their minimum time steps, and
their maximum allowable variations [2]. Both Dirichlet and/or Neumann bound-
ary conditions and initial conditions can be specified for pressure, partial molar
densities, and temperature.
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5. Numerical Experiments

In this section numerical results are presented. The interplay of advection, dif-
fusion, and gravity segregation was reported in [4]; here special attention is paid
to the study of gravity segregation for multiple components and their instability.
Hence the temperature T is fixed in all three examples. In the first two examples,
we study a mixture of binary components, and in the final example a mixture of
six components. The first example focuses on the study of compositional equilibri-
um, the second one on the instability study for two components using the present
methodology, and the last on instability for multiple components.

5.1. Example 1A. A rectangular reservoir is initially filled with two fluid compo-
nents (Fig. 5.1). The left-hand half of this reservoir is filled with a heavy component
and the right-hand half with a light component. The two parts of the reservoir have
a density difference, which results in the light component moving up to the top half
of the reservoir and the heavy component to the bottom half until equilibrium is
reached in a horizontal position (Fig. 5.2). No-flow boundary conditions are used
for the pressure and partial molar density equations. The reservoir length is 1,000
m, and the rock porosity is 0.2.

t = 0 yr

Figure 5.1. Initial mole fraction of Example 1.

The simulation results match very well with the analytic solution(
2x

H

)2

=
16

3
F 2 kh

kv

(t/t0)2

1 + t/t0
, t0 =

4

3

φHµF

kvg∆ρ
,

where
kh = 100 (md) : the horizontal permeability;
kv = 100 (md) : the vertical permeability;
H = 100 (m) : the height;
µ = 1 (cp) : the fluid mixture viscosity;
F = 1 : a function of the viscosity;
∆ρ = 10 kg/m3 : the density difference,
2x (m) : the width of the mixing interface.

For this example we have observed that the mass conservation error is within
0.0024% after 50, 000 yr (see Fig. 5.3).

5.2. Example 1B. When the molecular diffusion, gravitational diffusion, and nat-
ural convection are all present, it takes much time to attain compositional equilibri-
um. With the same set of data and meshes as above, a molecular diffusion constant
is now introduced: 1.7 × 10−10m2/s. For the resulting problem, the simulation
predicts a total equilibrated system at about 400 Myr (see Figs. 5.4 and 5.5, where
the mole fractions of the heavy component are shown and the magnitude of the
color is given in the last figure of Fig. 5.4).
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t = 500 yr

t = 2, 000 yr

t = 6, 000 yr

t = 9, 000 yr

t = 15, 000 yr

t = 50, 000 yr

Figure 5.2. Mole fractions of Example 1 at different times.

Figure 5.3. Mass conservation error of Example 1.

5.3. Example 2. As another example we consider a non-zero boundary condition
for the mole fraction equations. The boundary condition for the pressure equation
is a zero flux (no flow). The boundary conditions for the mole fraction equations
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t = 2 Myr

t = 20 Myr

t = 80 Myr

t = 400 Myr

0 1

Figure 5.4. Equilibrium time of Example 1.

Figure 5.5. Reaching equilibrium of Example 1.

are a zero flux on the side vertical boundaries and constant fractions on the top
and bottom boundaries. The molar density is a linear function of a mole fraction:

ξ = ξmax + (ξmin − ξmax)x1.

Let Rac be the chemical Rayleigh number defined by [6, 11]

Rac =
gkβ∆x1ξ̄H

Dµ
,
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with β =
1

ξ̄

∂ξ

∂x1
and ξ̄ = 0.5(ξmin + ξmax).

Figure 5.6. Mole fractions for a small Rac.

It is known that the fluid system is stable for a small Rac and it becomes unstable
when Rac gets larger. In Fig. 5.6, the mole fractions are obtained with a small
Rac = 9.78, and in Fig. 5.7, they correspond to a large Rac = 978. We have
observed that for the present example instability occurs as Rac ≥ 40.

5.4. Example 3. In the final example a mixture of six components (components:
C1, C2, . . ., C6) is studied. They initially fill a rectangular reservoir with the heav-
iest component at the top of this reservoir (see the first figure in Fig. 5.8, where
the blue color is the lightest), with molecular weights in the range 16.04, 36.37,
66.90, 121.97, 209.44, and 349.49. Other critical property data are given in Ta-
ble 5.1, where ac, ωa, and ωb are the acentric factor and EOS parameters for each
component, and the binary interaction parameters are given in Table 5.2. No-flow
boundary conditions are used for all equations. During the process of reaching e-
quilibrium in an ultimate horizontal position, instability occurs at the interface of
any two components (Fig. 5.8). Our nonlinear numerical simulation clearly shows
the existence of multiple unstable interfaces. This is the first time to observe such
a phenomenon for a fluid mixture of multiple components when the Peng-Robinson
equations of state and the Lohrenz viscosity correlation are used in the composi-
tional study. A major deficiency of current compositional commercial codes used to
simulate gas injection is their failure to model the effect of unstable displacements
caused either by adverse mobility ratios or by multicomponent gravity segregation.
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Figure 5.7. Mole fractions for a large Rac.

Table 5.1. Critical property data for Example 3.

Tc (F) -115.78 133.28 353.74 655.19 874.55 1130.59

pc (psi) 673.10 684.02 514.52 426.90 260.72 164.33

Zc 0.28980 0.28103 0.27069 0.27192 0.23750 0.20873

W 16.04 36.37 66.90 121.97 209.44 349.49

ac 0.00800 0.12465 0.22692 0.35436 0.55555 0.83181

ωa 0.45723552 0.46571033 0.46630977 0.59811429 0.40070859 0.39639026

ωb 0.07779607 0.07933397 0.07891004 0.10686607 0.05566172 0.06999792

Table 5.2. Binary interaction parameters for Example 3.

C1 C2 C3 C4 C5 C6

C1 0.000000 0.000112 0.006113 0.039906 0.048827 0.055951

C2 0.000112 0.000000 0.007478 0.009804 0.009804 0.009804

C3 0.006113 0.007478 0.000000 0.000000 0.000000 0.000000

C4 0.039906 0.009804 0.000000 0.000000 0.000000 0.000000

C5 0.048827 0.009804 0.000000 0.000000 0.000000 0.000000

C6 0.055951 0.009804 0.000000 0.000000 0.000000 0.000000

The present study will provide a fundamental basis for correctly incorporating the
effect of unstable displacements in the multiphase, multicomponent compositional
simulators [3].
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Figure 5.8. Mole fractions of Example 3 at different times.

6. Concluding Remarks

In this paper numerical simulation of multicomponent fluid mixing in porous
media is presented. The effects of advection, diffusion, and gravity segregation to
predict the development of compositional gradients in petroleum columns are stud-
ied. Special attention is paid to the gravity segregation for multiple components and
the associated instability problem. The particular features of this fluid mixing sim-
ulator is that the primary unknowns are properly chosen so a conservative scheme
can be designed, a finite volume method is used in the space discretization so flex-
ible and adaptive grids can be adopted, and an adaptive time stepping technique
is utilized so large time steps are possible while accuracy is preserved. The future
work is to study the effects of pressure and thermal diffusion effects and extend
the single phase, multicomponent fluid mixing to the multiphase, multicomponent
case.

Acknowledgments. The authors would like to thank Drs. Changrui Gong,
Guanren Huan, Wenjun Li, and Joe Zhou for their assistance in coding the fluid
mixing simulator.
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Nomenclature

Symbol Quantity Unit

cb Bulk specific heat capacity L2/(Tt2), Btu/(lbm-R)
(J/(kg-K))

cp Fluid heat capacity L2/(Tt2), Btu/(lbm-R)
(J/(kg-K))

DM
ij Molecular diffusion coefficient L2/t, ft2/D (m2/d)

Dp
i Pressure diffusion coefficient L3t/M, ft2/(D psi)

(m2/(d kPa))
DT

i Thermal diffusion coefficient L2/(tT), ft2/(D R)
(m2/(d k))

D Diffusion/dispersion L2/t, ft2/D (m2/d)
F Function of viscosity dimensionless
g Gravitational acceleration L/t2, ft/D2 (m/d2)
Ji Diffusion/dispersion of component i M/L2t, lbm/(ft2D)

kg·mole/(m2d)
k Permeability tensor L2, darcy (µm2)
k Permeability L2, darcy (µm2)
kh Horizontal permeability L2, darcy (µm2)
kT Bulk thermal conductivity ML/(Tt3), Btu/(ft-D-R)

(J/(m-d-K))
kv Vertical permeability L2, darcy (µm2)
Nc Number of components dimensionless
p Pressure M/(Lt2), psi (kPa)
qi Source/sink of component i M/(L3t), lbm/(ft3D)

kg·mole/(m3d))
qT Heat source/sink M/(Lt3), Btu/(ft3D)

(J/(m3d))
ri Partial molar density of component i mole/L3, mole/ft3

(mole/m3)
T Temperature T, R (K)
t Time t, D (d)
u Darcy’s velocity of fluid L/t, ft/D (m/d)
W Molecular weight M/mole
Wi Molecular weight of component i M/mole
x Spatial variable (x1, x2, x3) L, ft (m)
x Mole vector mole
xi Mole fraction of component i fraction
z Depth L, ft (m)
µ Viscosity of fluid M/(Lt), cp (Pa·s)
ξ Molar density of fluid mole/L3, mole/ft3

(mole/m3)
φ Porosity fraction
ρ Fluid density M/L3, lbm/ft3 (kg/m3)
ρb Bulk density M/L3, lbm/ft3 (kg/m3)
∂
∂t

Time derivative t−1, D−1 (d−1)

∂
∂xi

Spatial derivative L−1, ft−1 (m−1)

∂2

∂x2
i

2nd spatial derivative L−2, ft−2 (m−2)

∇ Gradient operator L−1, ft−1 (m−1)
∇· Divergence operator L−1, ft−1 (m−1)
∆ Laplacian operator L−2, ft−2
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