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Abstract. This paper examines two-phase flow in porous media with heterogeneous capillary
pressure functions. This problem has received very little attention in the literature, and constitutes
a challenge for numerical discretization, since saturation discontinuities arise at the interface
between the different homogeneous regions in the domain. As a motivation we first consider a
one-dimensional model problem, for which a semi-analytical solution is known, and examine some
different finite-volume approximations. A standard scheme based on harmonic averaging of the
absolute permeability, and which possesses the important property of being pressure continuous
at the discrete level, is found to converge and gives the best numerical results. In order to
investigate two-dimensional flow phenomena by a robust and accurate numerical scheme, a recent
multi point flux approximation scheme, which is also pressure continuous at the discrete level, is
then extended to account for two-phase flow, and is used to discretize the two-phase flow pressure
equation in a fractional flow formulation well suited for capillary heterogenity. The corresponding
saturation equation is discretized by a second-order central upwind scheme. Some numerical
examples are presented in order to illustrate the significance of capillary pressure heterogeneity in
two-dimensional two-phase flow, using both structured quadrilateral and unstructured triangular
grids.
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1. Introduction

The study of two-phase flow in porous media has significant applications in areas
such as hydrology and petroleum reservoir engineering. The flow pattern is mainly
governed by the geometric distribution of absolute permeability, which may be
anisotropic and highly heterogeneous, the form of the relative permeability and
capillary pressure functions and gravity [4]. The corresponding system of partial
differential equations describing the flow consists of an elliptic and an essentially
hyperbolic part, usually denoted the pressure- and saturation equation, respectively.
This system is rather challenging, and quite a lot of research has been devoted to
its solution during the last decades.

In recent years several discretization methods that can treat unstructured grids
in combination with discontinuous and anisotropic permeability fields have been
developed for the elliptic pressure equation. Important examples are the flux-
continuous finite volume schemes introduced in e.g. [11, 12, 25, 13, 15, 5, 6], which
have been termed multi point flux approximation methods (MPFA) schemes, and
the mixed finite element (MFE) and related schemes, e.g., [1, 2, 9, 20, 18]. The MFE
and related methods solve for both control-volume pressure and cell face velocities
leading to a globally coupled indefinite linear system (saddle point problem), while
the more efficient MPFA methods only solve for control-volume pressure and have
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a locally coupled algebraic system for the fluxes that yield a consistent continuous
approximation, while only requiring one third the number of degrees of freedom
of the mixed method when compared on a structured grid (and a quarter in three
dimensions). The latter methods are clearly advantageous, particularly for time-
dependent problems, as the extra degrees of freedom required by the mixed method
add further computational complexity and a severe penalty to simulation costs. For
the saturation equation some higher order schemes have been employed, as well as
various types of so called fast tracking schemes, but the standard first order upwind
scheme is still widely used in commercial simulators.

However, the main body of research literature devoted to two-phase flow in
porous media concerns flow in the absence of capillary pressure, or assumes a ho-
mogeneous capillary pressure function in the domain. Obviously, there are a number
of flow cases for which these assumptions are valid, but this observation is neverthe-
less noticeable since heterogeneity in capillary pressure may often have a significant
effect on the flow pattern, and in certain cases it can be as important as absolute
permeability heterogeneity [19].

From the very sparse literature devoted to capillary pressure heterogeneity in
porous media, we would like to mention the work of Yortsos and Chang [27]. They
studied analytically the capillary effect in steady-state flow in one-dimensional (1D)
porous media. They assumed a sharp, but continuous transition of permeability
to connect different permeable media of constant permeabilities. The paper by
van Duijn and de Neef [26] on the other hand, provided a semi-analytical solu-
tion for time-dependent countercurrent flow in 1D heterogeneous media with one
discontinuity in permeability and capillary pressure. Niessner et al. [24] discuss
the performance of some fully implicit vertex-centered finite volume schemes, when
implementing the appropriate interface condition for capillary heterogeneous me-
dia. The recent paper by Hoteit and Firoozabadi [19] presents an MFE method for
discretising the pressure equation together with a discontinuous Galerkin method
for the saturation equation. They introduced a new fractional flow formulation
for two-phase flow, which is suited for applying MFE in media with heterogeneous
capillary pressure. Some numerical examples are presented, including a comparison
with the 1D semi-analytical solution from [26], demonstrating good performance of
the numerical scheme.

The simulation of two-phase flow in porous media with capillary pressure het-
erogeneity represents a challenge for the actual numerical discretization. This is
particularly due to the fact that saturation discontinuities arise at the interface be-
tween the different homogeneous regions of the domain, as a result of the require-
ment of capillary pressure continuity. Moreover, since these are rather involved
nonlinear problems, very few analytical results are known, making it more difficult
to gain confidence in the results produced by the numerical schemes. Clearly, as
discussed in [26], the capillary pressure may also actually become discontinuous at
the interface in some situations. This depends on the form of the capillary pres-
sure curve (the entry pressure) together with the actual type of two-phase flow in
the problem. In the more usual situations where a wetting phase is displacing a
non-wetting phase, this phenomenon will not occur. Moreover, since this partic-
ular situation does not introduce any new fundamental issues with respect to the
numerical treatment of these problems, we only consider examples with capillary
pressure continuity at the interface in this paper.

As noted in [19] MPFA methods have not yet been demonstrated to be of value
for heterogeneous media with contrast in capillary pressure functions. This fact
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is a prime motivation for the present paper. We examine a standard scheme in
1D based on harmonic averaging of the absolute permeability as well as a more
direct “naive” type of discretization and present detailed comparisons with the
semi-analytical solutions from [26]. The scheme based on harmonic averaging of
the absolute permeability, which can be considered as a ”1D MPFA scheme”, is
found to converge and gives the best numerical results.

The ”1D MPFA scheme” moreover, naturally provides a discrete approximation
with a built-in pressure continuity. From the numerical results obtained in the
1D model problem, this property is considered to be important for the numerical
treatment of these problems. Only recently, some multidimensional MPFA schemes
with this property have been developed and tested for one-phase elliptic problems
[13, 14, 16]. In this paper we extend the schemes from [13] and [16], which are
developed for cell-centered quadrilateral and triangular grids, respectively, to two-
phase flow problems, and also present some numerical examples. We use the recent
fractional flow formulation from [19], and moreover, solve the saturation equation
by using the second-order central upwind scheme from [23].

The paper is organised as follows. Section 2 gives a description of the two-phase
flow model, whereas Section 3 discusses two different implicit pressure explicit sat-
uration (IMPES) formulations suitable for the numerical solution of this model.
In Section 4 we study a 1D model problem using some different discretizations,
and compare with semi-analytical solutions. Section 5 describes a recent discrete
pressure continuous 2D MPFA scheme and its extension to two-phase flow. Fur-
thermore, Section 6 briefly describes the central-upwind scheme used in the dis-
cretization of the saturation equation. Some numerical examples are presented
in Section 7, that illustrate two-phase flow behavior with and without capillary
pressure heterogeneity. Finally, conclusions follow in Section 8.

2. The two-phase flow model

In this section we present the governing equations for immiscible two-phase flow
in a domain Ω of a porous medium. The mass balance equation for each of the fluid
phases reads

(1) φ
∂(ρisi)

∂t
+∇ · (ρi~ui) = ρiqi, i = w, o,

where φ is the porosity of the medium, i = w indicates the wetting phase (e.g.
water) and i = o indicates the nonwetting phase (e.g. oil). Moreover, ρi, si, ~ui and
qi are, respectively, the density, saturation, velocity and external flow rate of the
i-phase. The phase velocity is given by Darcy’s law

(2) ~ui = −kri
µi

K∇(pi − ρigZ), i = w, o,

where K is the absolute permeability tensor of the porous medium, g is the gravita-
tional constant and Z is the depth, i.e. the negative of the actual z-coordinate when
the z-axis is in the vertical upward direction. pi, µi and kri are, respectively the
pressure, viscosity and relative permeability of the i-phase. Moreover, the capillary
pressure is given by

(3) Pc(~x, sw) = po − pw,

where ~x denotes the spatial coordinate vector, and the saturation constraint reads
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(4) sw + so = 1.

It is useful to introduce the phase mobility functions

λi(~x, si) =
kri
µi

, i = w, o,

the total mobility

λ(~x, s) = λw + λo,

and the total velocity

~u = ~uw + ~uo,

where s = sw. Finally, the so called fractional flow functions fi are defined as

fi(~x, s) =
λi

λ
, i = w, o.

Usual boundary conditions for this model are the no-flow boundary conditions

(5) ~ui · ~n = 0, i = w, o,

where ~n is the outer unit normal to the boundary δΩ of Ω. Alternatively, the flow
rate(s) or oil pressure and water saturation may be prescribed at various parts of
δΩ.

3. IMPES formulations

We now reformulate the equations of Section 2 such that they become applica-
ble for the IMPES formulation. Assuming the the fluids are incompressible, the
equations (1) and (4) give rise to the following equation for the total velocity ~u

(6) ∇ · ~u = qw + qo ≡ q.

Using (6) together with equations (3) and (2) we obtain an elliptic equation for the
pressure p = po, which reads

(7) −∇ · (λK∇p) = −∇ · (λwK∇Pc + (λwρw + λoρo)g∇Z) + q,

where the corresponding total velocity is given as

(8) ~u = −K(λ∇p− λw∇Pc − (λwρw + λoρo)g∇Z).

Again using the assumption of incompressibility, an evolution equation for the
saturation s = sw is obtained from equations (1) and (2) which reads

(9) φ
∂s

∂t
+∇ · (Kfw(s)λo(∇Pc + (ρw − ρo)g∇Z) + fw(s)~u) = qw.

Observe that Pc 6= 0 gives us a convection-diffusion equation for the saturation s.
The IMPES solution strategy now goes as follows. For a given initial saturation

s(~x) = s0(~x), we solve the pressure equation (7), and then solve the saturation
equation (9) based on the computed velocity field to update the saturation s. In
the classical IMPES method the pressure and saturation fields are updated with the
same frequency. However, since the saturation field usually changes more rapidly
in time than the pressure field, it is natural to employ smaller time steps when
solving the saturation equation.
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In the improved IMPES method proposed by Chen et al. [10] the pressure
equation is updated with a (possibly) variable time-step ∆tp, whereas the smaller
variable inner time-steps ∆ts, used for the saturation equation, is determined by
the relation

(10) ∆ts =
DSmax

(∂s∂t )max

,

where (∂s∂t )max denotes the maximum value of ∂s
∂t in the grid, and DSmax is the

maximum variation of the saturation to allow. The latter quantity obviously needs
to be specified from the outside. Note that the time-step determined by (10) ob-
viously also must obey the CFL condition required by the underlying numerical
scheme for the saturation equation.

By using this approach Chen et al. [10] obtained a considerable improvement
of the classical IMPES method, and were i.a. able to solve a benchmark coning
problem, previously unattainable for the classical IMPES formulation, 6.7 times
faster than a comparative sequential solution method. We remark that Chen et al.
[10] did not study problems including capillary pressure effects, which may seriously
limit the usefulness of the IMPES formulation, due to the strict CFL conditions
enforced by the usual explicit methods, e.g., Runge-Kutta methods, employed for
the time-discretization of the saturation equation.

However, in this paper we are interested in a somewhat different fractional flow
formulation, recently introduced by [19], which is also applicable for the IMPES
solution strategy. In order to simplify the notation we first define the potentials

(11) Ψi = pi − ρigZ, i = w, o,

and also the capillary pressure potential

(12) Ψc = Pc − (ρo − ρw)gZ.

The idea in the new fractional flow formulation ([19]) is to introduce the velocities

(13) ~ua = −λK∇Ψw,

and

(14) ~uc = −λoK∇Ψc.

It is now easily established that

~u = ~ua + ~uc,

and, moreover, that
~uw = fw(s)~ua.

Equipped with this information, the pressure- and saturation equations in this new
fractional flow formulation, may be expressed as

(15) −∇ · (λK∇Ψw) = ∇ · (λoK∇Ψc) + q,

and

(16) φ
∂s

∂t
+∇ · (fw(s)~ua) = qw.

where the potential Ψw and the water saturation s are the unknown variables, and
the velocity ~ua is given in equation (13). It should be noted that equation (16), in
contrast to equation (9), is a pure convective equation. The capillary pressure effects
are then exclusively connected to the pressure equation (15) in this formulation and
does not at first sight influence the CFL condition in equation (16). However, the
velocity ~ua (produced from the pressure equation) is obviously a major contributor
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Figure 1. Computed solutions on different grids at time T = 2.
Top left: 25 cells. Top right: 50 cells. Bottom left: 100 cells.
Bottom right: 200 cells.

to the CFL requirement, and will thus nevertheless tighten the CFL requirement
accordingly dependent on the degree of capillarity in the problem.

In this paper we employ the new fractional flow formulation, i.e. equations (15)
and (16) above, for the simulation of two-phase flow with capillary pressure. Even
though the old standard fractional flow formulation in principle could be used as
well, the new formulation has some clear advantages. Obviously, the need for any
nonlinear (Newtonian) iterations is eliminated, which is an advantage especially
from the implementation point of view. Moreover, the new formulation also facili-
tates a much more straightforward implementation of the requirement of capillary
pressure continuity at the interfaces between the different regions in the domain.
Using the standard formulation, this task would have been more challenging, since
it would also interact with the nonlinear iterative solution process.

4. Discretization in a 1D medium with a discontinuous capillary pressure

function

Very few analytical solutions are known in heterogeneous porous media when
capillarity is the driving force. In the paper [26], van Duijn and de Neef considered
a 1D spontaneous imbibition model problem with a single discontinuity in perme-
ability and capillary pressure. They searched for similarity solutions which amounts
to transforming the original partial differential equation into an ordinary differen-
tial equations. More precisely, they obtained two ordinary differential equations
(ODEs) that must fulfill two matching conditions at the discontinuity, and further
produced a semi-analytical solution by solving the ODE problem numerically. For
the purpose of testing the 1D discretizations discussed in this section, which serves
as a motivation for the 2D MPFA finite-volume scheme presented in Section 5 and
6, we employ this semi-analytical approach.
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The model problem we are interested in takes the form of a nonlinear diffusion
equation given by

(17)
∂s

∂t
+

∂

∂x

(

k(x)fw(s)λo(s)
∂Pc(x, s)

∂x

)

= 0, x ∈ [−L,L].

This equation is obtained from (9) by neglecting the gravity, setting total velocity
and source term equal to zero, as well as assuming constant porosity φ to be 1 for
the sake of simplicity only. Initial data s0(x) = s(x, t = 0) is given as

(18) s0(x) =

{

1, x < 0;
0, x > 0.

Furthermore, the permeability k(x) is given by

(19) k(x) =

{

kl, x < 0;
kr, x > 0.

and fw(s) is the water fractional flow function fw(s) =
λw(s)

λw(s)+λo(s)
with the mobil-

ities λw and λo defined as λi =
kri(s)
µi

for i = w, o. Moreover, the capillary pressure

function Pc is given by

(20) Pc(x, s) =
1

√

k(x)
J(s),

where J(s) is the Leverett function. Here we have implicitly set porosity φ and
interfacial tension σ to be 1, for simplicity reasons only. In the following we also
assume that the viscosity is characterized by M = µo

µw
= 1. We consider the van

Genuchten model, see [26] and references therein, where relative permeability and
capillary pressure are given by

J(s) = (s−1/m − 1)1−m

krw(s) = s1/2(1− [1− s1/m]m)2(21)

kro(s) = (1 − s)1/2(1 − s1/m)2m,

where 0 < m < 1 is a constant to be specified. In the numerical experiments carried
out below we have used the following values

(22) kl = 4.2025, kr = 0.5625, m =
2

3
.

Following the procedure outlined in [26] we solve for the similarity solution which
we shall refer to as the analytical solution. This solution is used to evaluate the
numerical approximation.

We consider a simple finite volume discretization for the numerical solution of
the initial-value problem (17) and (18) with data as specified above. We discretize
the spatial domain Ω = [−L,L] into N non-overlapping gridblocks Ωi:

[−L,L] := Ω = ∪N
i=1Ωi, Ωi = [xi−1/2, xi+1/2], ∆xi = xi+1/2 − xi−1/2.

We assume, for simplicity, a regular grid with ∆xi = ∆x. Similarly, we consider
a constant time step size ∆t. Given the water saturation sn ≈ s(x, tn) at time tn,
we must solve for the updated saturation sn+1 at time tn+1. For that purpose we
consider the discrete scheme

(23)
sn+1
i − sni

∆t
+D−

(

ki+1/2[fwλo]
n
i+1/2D+P

n
c,i

)

= 0, i = 1, . . . , N,
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Harmonic Arithmetic
∆x ‖E(s)‖1 q ‖E(s)‖1 q
0.1600 0.1463 - 0.1351 -
0.0800 0.0332 - 0.0595 -
0.0400 0.0236 0.49 0.0390 0.61
0.0200 0.0178 0.41 0.0243 0.68
0.0100 0.0106 0.75 0.0133 0.87

Table 1. Estimated L1-error, ‖E(s)‖1 = ∆x
∑

i |si−sref(xi)|, and
convergence order, q, where sref is the reference solution obtained
by solving the ODE system resulting from (17)–(19) and si refers
to the numerical solution based on (23).

where D+ and D− are the discrete differential operators applied on a sequence {ai}
and defined by

D+ai =
ai+1 − ai

∆x
, D−ai =

ai − ai−1

∆x
.

Note that we have used a simple forward Euler discretization in time (explicit
scheme). Consequently, we must also choose the time step according to the CFL
condition

∆t

∆x2
max(

√

kl,
√

kr)max
i

[fw(si)λo(si)J
′(si)] ≤

1

2
.

The average [fwλo]i+1/2 is obtained by taking an arithmetic average. For the av-
erage ki+1/2 of the permeability function at the cell interface i+ 1/2 we check two

different approaches: (i) arithmetic average kA; (ii) harmonic average kH .

(24) kAi+1/2 =
ki + ki+1

2
, kHi+1/2 =

2kiki+1

ki + ki+1
.

We have computed solutions at time T = 2 on three different grids corresponding to
N = 25 cells, N = 50 cells, and N = 75 cells on a domain corresponding to L = 2.
We refer to Fig. 1 for the results. The comparison between using kA and kH reveals
that the harmonic averaging tends to give approximate solutions that lie closer to
the analytical solution. Finally, we have also computed the solution on a finer grid
of N = 200 cells by using the scheme with harmonic averaged permeability kH

demonstrating (virtually) convergence to the analytical solution. We refer also to
Table 1 for estimates of the error measured in L1-norm as the grid is refined. It
seems that the rate of convergence is approaching 1. This relatively low rate of
convergence is expected and must be understood in light of the severe discontinuity
present in the solution.

It is well known (see e.g. [12]) that MPFA schemes in fact are generalizations of
the scheme with harmonic averaging of the absolute permeability in higher spatial
dimensions. Thus it is clear that the scheme which employs kH automatically fulfills
the requirement of continuity in capillary pressure at x = 0. However, for the sake
of completeness of the paper, we present the arguments for this fact. For simplicity,
we first consider the standard prototype pressure equation

(25)
d

dx
(k

dp

dx
) = 0,

where p is the pressure. We are now interested in the discrete flux approximation
produced by the one-dimensional MPFA scheme at xi+1/2. The MPFA approach
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assumes piecewise linear pressure approximations i.e. such that

(26) p = pL(x) = pi + aL(x− xi), ∀x ∈ [xi, xi+1/2],

and

(27) p = pR(x) = pi+1 + aR(xi+1 − x), ∀x ∈ [xi+1/2, xi+1].

Invoking the requirements of flux and pressure continuity at xi+1/2 i.e.

(28) ki
dpL
dx

(xi+1/2) = ki+1
dpR
dx

(xi+1/2), pL(xi+1/2) = pR(xi+1/2),

it is easily found that aL = 2ki+1

ki+1+ki
(pi+1−pi

∆xi
) and aR = 2ki

ki+1+ki
(pi−pi+1

∆xi
). The

discrete flux at xi+1/2 may thus be expressed as 2kiki+1

ki+1+ki
(pi+1−pi

∆xi
), clearly showing

the appearence of the harmonic average of the permeability kHi+1/2 as claimed above.

Now looking at the term ∂
∂x

(

k(x)fw(s)λo(s)
∂Pc(x,s)

∂x

)

in (17). When this term is

treated explicitly with respect to the saturation as in equation (23), it is clear that
we can employ the same arguments with respect to the MPFA approximation as
for the prototype pressure equation (25). Thus we can conclude that the capillary
pressure is continuous at x = 0, when using the above scheme with kH . Note that
the fact that [fwλo]i+1/2 is approximated by an arithmetic average, obviously does
not alter this conclusion.

Certainly, the more “naive” type of scheme which employs kA, does not fulfill
the requirement of continuity in capillary pressure at x = 0, and it is reasonable
to expect that this fact explains the difference in the quality of the approximations
revealed in Fig. 1. Even though the difference between these two approximations
is relatively small, particularly for the fine grid with 100 cells, it is nevertheless
important, since the only difference between these two numerical schemes in this
particular example, is the flux approximation at x = 0. Realistic multidimensional
examples on the other hand, requires reasonably coarse grids and can have numer-
ous regions of capillary pressure heterogeneities throughout the domain, as well as
significantly larger discontinuities than used in the present example, further empha-
sizing the importance of using numerical approximations fulfilling the requirement
of capillary pressure continuity given by the continuous model.

However, standard multidimensional MPFA schemes are only pointwise pres-
sure continuous at the discrete level. Only recently, some multidimensional MPFA
schemes which are pressure continuous at the discrete level, have been developed
and tested for one-phase elliptic problems [13, 14, 16]. These schemes are clearly
favorable in cases with capillary pressure discontinuitues, and will thus be extended
to two-phase flow in this paper.

5. A MPFA finite-volume discretization of the pressure equation

Two MPFA schemes fulfulling the property of being pressure continuous at the
discrete level, henceforth denoted MPFA full pressure support (FPS) schemes, were
recently presented in [13, 14] and [16] for cell-centered quardilateral and triangular
grids, respectively. For completeness of presentation we present the MPFA FPS
scheme for the one-phase pressure equation in case of cell-centered unstructured
triangular grids. More details can be found in [16]. We then briefly comment on
the extension of the scheme to two-phase flow.

5.1. Notation. We now introduce appropriate notation for describing the family
of unstructured cell-centred flux-continuous MPFA schemes employed in the paper.
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5.1.1. Grid Cell. The grid (i.e. the collection of control-volumes or cells) is
defined by the triangulation of the vertices (or corner points) j. Each grid cell is
assigned a grid point (nodal point) xi, which here is equal to the cell centroid (see
Figure 2(a)). In the cell-centered formulation presented here flow variables and
rock properties are distributed to the grid cells and are therefore control-volume
distributed (CVD). The value of the numerical solution in the cell is denoted by
Φi = φi(xi). Two adjacent grid cells are termed neighbours if they share the same
cell interface or cell edge. The permeability (conductivity) tensor K is assumed to
be piecewise constant, with respect to cell values (see Figure 2(c)). The control-
volume is denoted Ωi for i = 1, ..., NE, where NE is the number of control-volumes
(or cells) in the grid, and its corresponding boundary is δΩi.

5.1.2. Cluster. In the cell centered formulation continuous flux and pressure con-
straints are imposed locally with respect to each cluster cj of cells that are attached
to a common grid vertex j. The degree of the cluster cj is defined as the number

of cell interfaces that meet at the vertex and is denoted by N j
d . For each interior

vertex the number of cells in the cluster is also equal to N j
d . An example of a cell

cluster with three cells and corresponding dual grid cell is shown in Figure 2(b).

5.1.3. Dual-Cell. For each cell cluster cj , a dual-cell is defined as follows: For
each cell edge attached to the vertex of the cluster, connect the edge mid-point
ek to the grid points (i.e. cell centres) of the two neighboring cells within the
cluster that share the common edge (one cell centre if the edge is a boundary). It
is not generally necessary to choose ek as the mid-point, but in this paper other
possibilities are not considered. The dual-cell will then be defined by the resulting
polygon comprised of the contour segments connecting the N j

d cell mid-points as
indicated by the dashed lines in Figure 2(b).

5.1.4. Sub-Cell. Subcells result when the dual-cells overlay the primal triangular
grid. Each triangle (control-volume) is then comprised of three quadrilateral sub-
cells. Each sub-cell is defined by the anti-clockwise loop joining the parent triangle
cell-centre, triangle right-edge mid-point, central cluster vertex, triangle left-edge
mid-point and back to the triangle centre as illustrated in Figure 2(d). The volume

of the dual-cell is seen to be comprised of N j
d sub-cells, where each sub-cell of a

parent triangle is attached to the same distinct vertex and thus cluster cj .

5.1.5. Sub-Interface. The edge point ek divides a cell interface into two seg-
ments, the term sub-interface will be used to distinguish each of the two segments
from the total cell interface.

5.1.6. Local Interface Pressures. In the MPFA methods, the following two
continuity conditions should be fulfilled for every sub-interface: flux continuity and
pressure continuity. One of the main advantages of the this type of formulation is
that it involves only a single degree of freedom per control-volume, in this case the
primal grid cell pressure Φi, while maintaining continuity in pressure and normal
flux across the control-volume faces. This is achieved by introducing local interface
pressures that are expressed in terms of the global pressure field via local algebraic
flux continuity conditions imposed across control-volume faces. In the MPFA FPS
scheme full pressure continuity along each sub-interface in the grid is ensured by
introducing an auxiliary interface pressure at the common grid vertex of the cluster
as well as on each sub-interface (at point ek) belonging to the dual-cell, thus yielding

N j
d+1 interface pressures per dual-cell. Referring to Figure 3, the interface pressures
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Figure 2. (a) Triangular control-volume with cell-centered nodal
point. (b) Dual-cell (dashed lines) defined for cell cluster contain-
ing 3 sub-cells at vertex j. (c) Piecewise constant permeability
over triangular control volumes. (d) The sub-cells in a dual-cell.
Shade indicates sub-cell.
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Figure 3. The interface pressures indicated by squares at posi-
tions A, B, C and D in the cell cluster.

are denoted ΦA,ΦB, ΦC and ΦD, respectively. We remark that in the previous
so called triangle pressure support formulations (TPS) (see e.g. [15]), the local
interface pressures at the vertices were not employed, and the pressure is thus only
point-wise continuous.
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Figure 4. Left: The direction of the fluxes indicated by arrows at
the sub-interfaces. Right: Quadrature parametrization indicating
point-wise flux evaluation for a given value of the parameter q.

5.2. Formulation in transform space. We express the pressure equation in
terms of a general curvilinear coordinate system with respect to dimensionless
transform space coordinates (ξ, η) following [11]. Choosing Ω to represent an ar-
bitrary control volume comprised of surfaces that are tangential to constant (ξ, η)
respectively, the integral form of the pressure equation is written as

(29) −
∫

Ω

∇̃ · (T∇̃φ)dτ̃ = 0,

where ∇̃ = ( ∂
∂ξ ,

∂
∂η ) and the general tensor T is defined via the Piola transform

(see e.g. [7])

(30) T =| J | J−1KJ−T ,

where J is the Jacobian of the curvilinear coordinate transformation and | J |=
xξyη − yξxη is the determinant of the Jacobian. T is thus a function of both the
geometry- and cartesian permeability tensors, respectively, and its components are
given by

T11 = (K11y
2
η +K22x

2
η − 2K12xηyη)/| J |

T22 = (K11y
2
ξ +Kyyx

2
ξ − 2K12xξyξ)/| J |

T12 = (K12(xξyη + xηyξ)− (K11yηyξ +K22xηxξ))/| J |
(31)

Equation (29) can also be written as

(32) −
∫

Ω

(
∂F1

∂ξ1
+

∂F2

∂ξ2
)dτ̃ = 0,

where the local flux is given by

(33) Fi = −
∫ 2

∑

j=1

Ti,jφξjdΓi,

where Ti,j are defined in Eq. (31), ξj used as a subscript denotes partial differenti-
ation in the ξj-direction, ξ1 = ξ and ξ2 = η.

We now introduce a local right-handed (ξ, η)-coordinate system in each sub-cell,
and the problem is then to solve the following integrated pressure equation for a
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triangular grid

(34) −
3

∑

s=1

(

∫

δΩ̃s
i

(T s∇̃φ) · ~ns
tdΓ) = 0,

where the superscript s is connected to a given (quadrilateral) sub-cell within the

triangle (see Figure 2(d)), ~ns
t is the transform space sub-cell normal vector and δΩ̃s

i

denotes the outer boundary of the sub-cell in transform space.
In general the sub-cell tensor can be defined via the isoparametric mapping

(35) ~r = (1− ξ)(1 − η)~r1 + ξ(1 − η)~r2 + ξη~r3 + (1− ξ)η~r4

where ~r = (x, y), ~ri, i = 1, ...4 are the subcell corner position vectors and 0 ≤ ξ, η ≤
1, with ~r1 and ~r3 corresponding to the cell-centre and dual-cell centre respectively
and ~r2 and ~r4 correspond to the mid-points of the triangle edges connected to the
dual-cell centre. As a result each quadrilateral subcell is transformed into a unit
quadrant in transform space. The tensor is then approximated in a local coordinate
system aligned with the two faces of the dual-cell connected to the given sub-cell.

5.3. The MPFA FPS approximation. Assuming a bi-linear approximation
within each sub-cell (Figure 3), the pressures in the three sub-cells may be written
in the local (ξ, η)-coordinate-system as

(36) φ1 = Φ1 + (ΦA − Φ1)ξ + (ΦC − Φ1)η + (ΦD +Φ1 − ΦA − ΦC)ξη,

(37) φ2 = Φ2 + (ΦB − Φ2)ξ + (ΦA − Φ2)η + (ΦD +Φ2 − ΦB − ΦA)ξη,

and

(38) φ3 = Φ3 + (ΦC − Φ3)ξ + (ΦB − Φ3)η + (ΦD +Φ3 − ΦC − ΦB)ξη.

Physical space flux continuity conditions are defined with respect to each cell
cluster. We define the fluxes in a counter-clock wise manner with respect to the
sub-interfaces of each cluster. Now let D denote the cluster vertex in the illustrative
cluster shown in Figure 4(left). We let FA be the flux out of cell 1 through the
sub-interface at AD, FB be the flux out of cell 2 through the sub-interface at BD
and FC be the flux out of cell 3 through the sub interface at CD (see Figure 4(left)).

Introducing a quadrature parametrization q such that 0 ≤ q ≤ 1 (see Fig-
ure 4(right)), the point-wise flux continuity is accommodated along each of the
lines AD, BD and CD, respectively.

Utilizing equation (33), the three flux continuity equations then read

FAD = −(T11|1AD(q)(ΦA − Φ1) + (ηT11)|1AD(q)(ΦD +Φ1 − ΦA − ΦC)

+ T12|1AD(q)(ΦC − Φ1) + T12|1AD(q)(ΦD +Φ1 − ΦA − ΦC))

= T12|2AD(q)(ΦB − Φ2) + T12|2AD(q)(ΦD +Φ2 − ΦB − ΦA)

+ T22|2AD(q)(ΦA − Φ2) + (ξT22)|2AD(q)(ΦD +Φ2 − ΦB − ΦA),

(39)

FBD = −(T11|2BD(q)(ΦB − Φ2) + (ηT11)
2
BD(q)(ΦD + Φ2 − ΦB − ΦA)

+ T12|2BD(q)(ΦA − Φ2) + T12|2BD(q)(ΦD +Φ2 − ΦB − ΦA))

= T12|3BD(q)(ΦC − Φ3) + T12|3BD(q)(ΦD +Φ3 − ΦC − ΦB)

+ T22|3BD(q)(ΦB − Φ3) + (ξT22)
3
BD(q)(ΦD +Φ3 − ΦC − ΦB),

(40)
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and

FCD = −(T11|3CD(q)(ΦC − Φ3) + (ηT11)
3
CD(q)(ΦD +Φ3 − ΦC − ΦB)

+ T12|3CD(q)(ΦB − Φ3) + T12|3CD(q)(ΦD +Φ3 − ΦC − ΦB))

= T12|1CD(q)(ΦA − Φ1) + T12|1CD(q)(ΦD +Φ1 − ΦA − ΦC)

+ T22|1CD(q)(ΦC − Φ1) + (ξT22)
1
CD(q)(ΦD +Φ1 − ΦA − ΦC).

(41)

Note that the notation AD(q) etc. serves to indicate the dependence of the
flux continuity point on the quadrature parametrization. Note that AD(0) = A

and AD(1) = D, while 0 < q < 1 extracts points ~P along the line AD such that
~P = ~A+ q( ~D − ~A) (and of course analogously along the lines BD and CD).

However, in order to close the above equation system (39), (40) and (41) an
additional equation is needed. For that purpose we utilize the integral form of the
partial differential equation over an auxillary dual-cell (see Figure 5(left)) i.e.

(42) −
∮

δΩ̃d
jAUX

(T∇̃φ) · ~ntdΓ = 0,

where Ω̃d
jAUX

denotes the (transform space) auxillary dual-cell connected to a vertex
with index j. The actual size of the auxillary dual cell control-volume is a further
degree of freedom to be chosen within the scheme, and is parameterized by the
variable c where 0 ≤ c ≤ 1. Note that for c = 0 we obtain the usual dual-cell, while
the auxillary control-volume tends to zero as c → 1. Yet another free parameter is
needed to specify this scheme. We let p be the quadrature parametrization needed
for the point-wise flux evaluation needed at the sub-interfaces in the auxillary dual-
cell in equation (42). p should be chosen such that c ≤ p < 1. Discretisizing
equation (42) following the above sub-cell approach, we then obtain a dual-cell
equation which reads

T11|1C1(c,p)(ΦA − Φ1) + (ηT11)
1
C1(c,p)(ΦD +Φ1 − ΦA − ΦC)

+ T12|1C1(c,p)(ΦC − Φ1) + (ξT12)
1
C1(c,p)(ΦD +Φ1 − ΦA − ΦC)

+ T12|11A(c,p)(ΦA − Φ1) + (ηT12)
1
1A(c,p)(ΦD +Φ1 − ΦA − ΦC)

+ T22|11A(c,p)(ΦC − Φ1) + (ξT22)
1
1A(c,p)(ΦD +Φ1 − ΦA − ΦC)

+ T11|2A2(c,p)(ΦB − Φ2) + (ηT11)
2
A2(c,p)(ΦD +Φ2 − ΦB − ΦA)

+ T12|2A2(c,p)(ΦA − Φ2) + (ξT12)
2
A2(c,p)(ΦD +Φ2 − ΦB − ΦA)

+ T12|22B(c,p)(ΦB − Φ2) + (ηT12)
2
2B(c,p)(ΦD +Φ2 − ΦB − ΦA)

+ T22|22B(c,p)(ΦA − Φ2) + (ξT22)
2
2B(c,p)(ΦD +Φ2 − ΦB − ΦA)

+ T11|3B3(c,p)(ΦC − Φ3) + (ηT11)
3
B3(c,p)(ΦD +Φ3 − ΦC − ΦB)

+ T12|3B3(c,p)(ΦB − Φ3) + (ξT12)
3
B3(c,p)(ΦD +Φ3 − ΦC − ΦB)

+ T12|33C(c,p)(ΦC − Φ3) + (ηT12)
3
3C(c,p)(ΦD +Φ3 − ΦC − ΦB)

+ T22|33C(c,p)(ΦB − Φ3) + (ξT22)
3
3C(c,p)(ΦD +Φ3 − ΦC − ΦB)

= 0,

(43)

where the notation C1(c, p), 1A(c, p) etc serves to indicate the dependence of the
parameters c and p on the position of the discrete flux evaluation on the half edges in
the auxillary dual cell, which are parallel with the lines C1, 1A (see Figure 5(right))
etc. in transform space. Note that C1(0, 0) = C, 1A(0, 0) = 1 (where 1 in this last
equation obviously means the triangle centroid of cell 1 in Figure 5(right)).

The equations (39), (40), (41) and (43) now define a linear system of equations in
terms of dual-interface pressures and the primal cell-centered pressures for all cells
connected to the cluster vertex. This system may generally be written as follows

(44) MfΦf = McΦc,
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Figure 5. Left: Example range of auxillary control volumes
(dashed) centered around the vertex D and depending on the pa-
rameter c. Right: Fluxes out of auxillary dual cell and quadrature
parametrization indicating point-wise flux evaluation for a given
value of the parameter p at the sub-interfaces in the auxillary dual-
cell.

where Mf and Mc are matrices. In this particular case of a three cell cluster
Φf = (ΦA,ΦB,ΦC ,ΦD)T and Φc = (Φ1,Φ2,Φ3)

T . Obviously this may be done
analogously for an arbitrary cell cluster. Thus the interface pressures can be ex-
pressed in terms of the primal cell-centered pressures via equation (44), which is
performed in a preprocessing step thus eliminating them from the discrete system.

5.4. Flux and finite volume approximation. Utilizing the above local alge-
braic flux contiuity conditions, the discrete flux F across a cell sub-interface in the
grid may be written as a linear combination of grid cell centre values Φi in the dual
grid:

F = −
∑

i∈Nj
F

tiΦi,(45)

where N j
F is the index set of grid points involved in the flux approximation and

N j
F contains a maximum of N j

d cells. The coefficients ti resemble conductances
and are called the transmissibilities associated with the flux interface. Since the
flux must be zero when Φi is constant for all i ∈ N j

F , all consistent discretizations
must satisfy the condition

∑

i∈Nj

F
ti = 0. The net flux across each cell-interface

(triangle-edge) is comprised of two sub-interface fluxes, calculated by assembling
contributions from the two dual grid cells corresponding to the two triangle-edge
vertices.

Finally the discrete divergence over the primal triangle cells is then comprised of
assembled fluxes that are algebraically linear functions of the primal cell-centered
pressures. This defines the so called MPFA FPS scheme recently presented in [16],
for elliptic problems.

5.5. Extensions to account for two-phase flow. Untill now we have presented
the discretization methodology for the one-phase flow pressure equation. However,
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the extension needed to treat the present two-phase flow flux term i.e.

−
∮

δΩi

(λ(s)K∇Ψw) · ~ndS

is indeed very limited. Let λv represent the total mobility at the vertex v in the grid,
which can be found by the interpolation procedure i.e. equation (56), described in
Section 6 below. Since the mobility λ is a scalar quantity, a two-phase flow sub-
interface flux Ftf can then be written as

(46) Ftf = λvF,

where F is the flux given in equation (45), which obviously is supposed to belong
to the cluster with vertex v. Alternatively, from an implemenation point of view,
it is sufficient to multiply the transmissibilities in equation (45) with λv.

5.6. Approximating the capillary pressure flux. The capillary pressure flux,
which is a right hand side contribution in the integrated form of the pressure equa-
tion, reads

∮

δΩi

(λoK∇Ψc) · ~ndS.

It can be approximated by the MPFA FPS scheme as follows. Assume that a
saturation field is given in the control-volume cell centers such that we know the
cell centered capillary pressures, and consider the scheme described in Section 5.3
(except that the transmissibilites must be multiplied with λov, where v again is an
index identifying the vertex). Due to the construction of the MPFA FPS algorithm
the capillary pressure field will be continuous (which is physically correct) and the
capillary pressure flux over a given sub-interface Ftcp simply reads

(47) Ftcp = λovF,

where the flux F (given in equation (45)) now can be computed explicitly from
known cell-centered capillary pressure potentials Ψc.

Remark 1. As noted in the introdution, there are in fact cases i.a. depending on
the entry pressure and the type of flow, where the capillary pressure may be dis-
continuous at interfaces between different rock types (even if continuity in capillary
pressure is the usual situation). See [26] for a more detailed discussion. In such
cases the MPFA FPS scheme will have to be modified, by introducing a double set
of auxillary pressures in the formulation. Additional equations will then be needed
to close the local equation system. Such equations may be found from knowledge
of the saturation values in some parts of the domain. However, we emphasize that
this situation can not occur in the cases considered in this paper where water is
displacing oil, and, moreover, do not introduce any new fundamental issues with
respect to the numerical treatment of these problems,

5.7. Computing the velocity ~va. When Ψw is found by solving the pressure
equation (15) using the MPFA FPS scheme, the velocity ~va = −λK∇Ψw, or more
precisely the flux of ~va over a given interface in the grid, must be computed in order
to be used as input in the saturation equation (16). This can be done by computing
each of the sub-interface fluxes, which in this case can be computed explicitly from
equation (46).
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Figure 6. Notation in a triangular grid.

6. Discretization of the saturation equation

The relatively recent so called central-upwind schemes for hyperbolic conser-
vation laws were introduced in [22]. These schemes extend the central schemes
developed by Kurganov and Tadmor in [21], and in fact coincide for a scalar PDE
such as the saturation equation. The central-upwind schemes belong to the class of
Godunov-type central schemes, and their construction is based on the exact evolu-
tion of picewise polynomial reconstructions of the approximate solution, achieved
by integrating over Riemann fans. Their resolution is comparable to the upwind
schemes, but in contrast to the latter, they do not employ Riemann solvers and
characterisitic decomposition, which makes them both simple and efficient for a
variety of multidimensional PDE systems.

For the case of unstructured triangular grids a (second-order) central-upwind
scheme was recently presented in [23]. In this paper we employ the scheme from
[23] for the spatial semi-discretization of the saturation equation. In the following
we present some details pertaining to this discretization.

Consider as an example the scalar conservation law

(48)
∂s

∂t
+

∂f(s)

∂x
+

∂g(s)

∂y
= 0.

In order to introduce some necessary notation, let us denote the control volumes
in the triangulation by Vj , with corresponding areas ∆Vj . For a given index j, the
neighbouring control volumes of Vj are termed Vjk, k = 1, 2, 3. Moreover, the joint
edge between Vj and Vjk is denoted by Ejk and is assumed to be of length hjk.
Finally, the outward unit normal to Vj on the kth edge is njk, and the midpoint of
Ejk is Mjk (see Figure 6).

Now let

(49) s̄nj ≈ 1

∆Vj

∫

vj

s(~x, tn)dV

be the cell average on all the cells {Vj}, which are assumed to be known at the time
tn, and let

(50) s̃n(x, y) =
∑

j

snj (x, y)χj(x, y)

be a reconstructed piecewise polynomial, where χj(x, y) is the characteristic func-
tion of the control volume Vj , s

n
j (x, y) is a two-dimensional polynomial yet to be
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determined and, finally, snjk(x, y) denotes the corresponding polynomial that is re-
constructed in the control volume Vjk.

Discontinuities in the interpolant sj along the edges of Vj (where we for simplicity
omit time dependence n and spatial dependence (x, y)) propagate with a maximal
inward velocity and a maximal outward velocity ainjk and aoutjk , respectively. For
convex fluxes in the scalar case these fluxes can be estimated as

ainjk(Mjk) = −min{∇F (sj(Mjk)) · njk,∇F (sjk(Mjk)) · njk, 0},

aoutjk (Mjk) = max{∇F (sj(Mjk)) · njk,∇F (sjk(Mjk)) · njk, 0},
where F = (f, g).

Now the algorithmic development of the central-upwind scheme goes as follows.
The above local speeds of propagation are used to determine evolution points that
are away from the propagating discontinuities. An exact evolution of the recon-
struction at these evolution points is followed by an intermediate piecewise poly-
nomial reconstruction and finally projected back onto the original control volumes,
providing the cell averages at the next time step s̄n+1

j .
A semi-discrete scheme is then obtained at the limit

(51)
d

dt
s̄n = lim

∆t→0

s̄n+1 − s̄n

∆t
.

Fortunately most of the terms on the right-hand side of (51) vanish in the limit as
∆t → 0, leaving only the integrals of the flux functions over the edges of the cells,
which must be determined by an appropriate quadrature. We follow [23] and use a
simple midpoint quadrature, which leads to the following semi-discrete scheme

(52)
d

dt
s̄n = − 1

∆Vj

3
∑

k=1

hjk

ainjk + aoutjk

[(ainjkF
out
jk +aoutjk F in

jk ) ·njk −ainjka
out
jk (soutjk − sinjk)],

where we have employed the notation soutjk = sjk(Mjk), sinjk = sj(Mjk), F in
jk =

F (sinjk) and F out
jk = F (soutjk ). We refer to [23] for more details about this scheme,

which can be applied to systems of conservation laws in an analogous manner.
The particular second-order reconstruction used in this paper is taken from [8].

The first step is to compute a least-squares estimate of the gradient of a scalar
field f on the triangle Vj , which is denoted by ∇̃jf . ∇̃jf is computed by following
the algorithm reported in [3]. The gradient Djf are then limited component by
component as

(53) Djf = MM(∇̃jf, ∇̃j1f, ∇̃j2f, ∇̃j3f),

where ∇̃jkf is the least-squares gradient estimate on Vjk and MM is the common
multivariable MinMod limiter function defined by

(54) MinMod(x1, x2, . . .) :=







minj{xj} if xj > 0 ∀j,
maxj{xj} if xj < 0 ∀j,
0 otherwise.

Furthermore, the gradients Djf is used to construct a piecewise linear reconstruc-
tion for the point values of each triangle edge Ejk as follows

(55) uj(~x) = ūj +MM(Dju · (~x− ~xj),Djku · (~x− ~xj)),

where Djku is the limited gradient estimate on Vjk , ~xj is the center of Vj and
~x ∈ Ejk. As noted in [8], this double use of the MinMod limiter minimizes spurious
oscillations while preserving the second-order accuracy of the reconstruction.
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Figure 7. Left: The domain in example 1. The middle layer is
least permeable. Right: The domain in example 2. The circular
inclusion is least permeable.

Figure 8. The unstructured triangulation used in example 2.

6.1. Interpolation of the mobility. In Sections 5.5 and 5.6 an interpolation of
the mobility (λ or λ0, respectively) from the cell-centered values is needed at the
vertices in the grid. This is done by the following formula

(56) λv =

∑

i:Vi∈Vvi
(λi∆Vi)

∑

i:Vi∈Vvi
(∆Vi)

,

where λv is the mobility at the vertex v and Vvi denotes the set of triangles neigh-
bouring this same vertex.

7. Computational examples

In the following we present two examples demonstrating effects of capillary pres-
sure heterogeneity in two-phase flow using a structured cartesian grid and an un-
structured triangulation, respectively. Here we consider a capillary pressure func-
tion of the form

(57) Pc(s) = − φ√
k
ln(s),
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Figure 9. Example of solution fields from example 1. Top row:
Homogeneous capillary pressure. Bottom row: Heterogeneous cap-
illary pressure. Left column: t = 0.03. Right column: t = 0.07.

where k is the absolute permeability and the capillary pressure curves are truncated
to a finite large value at s = 0, in order to avoid infinity values at that point. Further
we use quadratic Corey-type relative permeability curves i.e.

(58) krw(s) = s2, kro(s) = (1− s)2.

Moreover for simplicity reasons only, we put φ = 1, µw = µo = 1, L∗ = 1 and
k∗ = 1, where L∗ and k∗, respectively, are chosen as the characteristic length and
absolute permeability in the problems below. We would like to emphasize that
these examples are totally synthetic, their purpose being only to illustrate some
flow phenomena connected to the presence of capillary pressure heterogeneity in
two spatial dimensions. Computations using real reservoirs are outside the scope
of this paper.

The computations on triangular grids in Example 2 below are performed by using
the MPFA FPS scheme presented above, while the computations on the structured
grid in Example 1 employs the corresponding scheme for quadrilaterals [13]. The
application of these recent MPFA FPS schemes in the following two-phase flow
computations are particularly important for two reasons. Firstly, it was found in
a recent study [17], that the previous classes of MPFA schemes, which are only
pointwise continuous in pressure and flux, do not exhibit convergent behavior for
time-dependent diffusion problems on triangular grids. Secondly, as thoroughly
discussed in Section 4, a full pressure continuity at the discrete level is important
in order to mimic the important requirement of capillary pressure continuity at the
continuous level in problems with capillary pressure heterogeneity.
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Figure 10. Example of solution fields from example 2. Top
row: Homogeneous capillary pressure. Bottom row: Heterogeneous
capillary pressure. Left column: t = 1.0. Right column: t = 2.0.

7.1. Example 1. We consider displacement of oil by water in the 0.5× 1
3 layered

rectangular domain, initially filled with oil, which is shown in Figure 7 (left). The
isotropic permeability is equal to 0.01 in the middle layer and 1 otherwise. Water is
injected uniformly through the left vertical boundary, and the boundary conditions
are as follows. The two horizontal boundaries are closed, and the oil pressure
difference between the right and left vertical boundaries is put to 1. Moreover, we
impose a saturation equal to 1 at the left vertical boundary, whereas the saturation
is put to 0 at the right vertical boundary.

Numerical computations (with a 50 × 75 structured rectangular grid) are per-
formed using both a capillary homogeneous (k is put to 1 in equation (57)) and
capillary heterogeneous domain. Results are presented in Figure 9 for two differ-
ent simulation times. The flow behavior with homogeneous capillary pressure is as
expected essentially governed by the permeability field such that the displacement
process is very much delayed in the middle low permeability layer, and, moreover
exhibits a smooth behavior typical of standard diffusion problems.

The simulation results in the case of capillary pressure heterogeneity on the other
hand, demonstrates a substantially more complex flow behavior. In particular,
we observe saturation discontinuites that have arosen at the two boundaries of
the middle low permeability layer. Furthermore, it is clearly seen that water has
penetrated the low permeable domain to a much wider extent than in the case with
homogeneous capillary pressure.

7.2. Example 2. The 2× 2 quadratic domain with a circular inclusion as well as
the unstructured grid with 3738 triangles is shown in Figure 7 (right) and Figure 8,
respectively. The isotropic permeability is equal to 0.01 in the circular inclusion and
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1 otherwise. The four boundaries are closed in this example. Water is injected at
the lower left corner in the domain (source strength equal to 1), which is otherwise
filled with oil. A corresponding sink (with source strength equal to −1) is placed
at the upper right corner.

Numerical computations (with the triangulation shown in 7 (right)) are again
performed using both a capillary homogeneous (k is put to 1 in equation (57)) and
capillary heterogeneous domain. Results are presented in Figure 10 for two different
simulation times.

Again we observe the significant difference in flow behavior between the two
cases. The case with homogeneous capillary pressure displays a smooth solution
field very much influenced by the low permeable circular inclusion, and in particular
obtain an earlier water breakthrough than the case with heterogeneous capillary
pressure. In the latter case saturation discontinuites are formed at the boundaries
of the circular inclusion, and moreover, the circular inclusion is again much more
penetrated by water, thus leading to a later water breakthrough. Obviously, such
effects can be even more important when simulating complex real reservoirs.

8. Conclusions

The present paper concerns two-phase flow in porous media with heterogeneous
capillary pressure functions. This problem has received very little attention in the
literature, despite its importance in real flow situations. Moreover, the problem also
constitutes a challenge for numerical discretizations, since saturation discontinuities
arise at the interface between the different homogeneous regions in the domain.

Examining a one-dimensional model problem, for which a semi-analytical solu-
tion is known, it is found that a standard scheme based on harmonic averaging
of the absolute permeability, and which possesses the important property of be-
ing pressure continuous at the discrete level, gives the best numerical results. A
recent two-dimensional multi point flux approximation scheme, which is also pres-
sure continuous at the discrete level, is then extended to account for two-phase
flow, such that we obtain a robust an accurate discretization of the two-phase flow
pressure equation. We solve the two-phase flow model in an implicit pressure ex-
plicit saturation setting, using a recent fractional flow formulation, which is well
suited for capillary pressure heterogeneity. The corresponding saturation equation
is discretizized by a second-order central upwind scheme.

We present a few numerical examples in order to illustrate the significance of cap-
illary pressure heterogeneity in two-dimensional two-phase flow, using both struc-
tured quadrilateral and unstructured triangular grids. It is i.a. found that capillary
heterogeneity can have a significant effect on water breakthrough. Thus it should
be reasonable to expect that capillary pressure heterogeneities can have an even
more pronounced effect in complex real reservoirs, which further emphasizes the
importance of an accurate and reliable numerical treatment of these rather involved
nonlinear problems.
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