A STABILIZED NONCONFORMING QUADRILATERAL FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES EQUATIONS

ZHEN WANG, ZHANGXIN CHEN, AND JIAN LI

Abstract. In this paper, we study a local stabilized nonconforming finite element method for the generalized Stokes equations. This nonconforming method is based on two local Gauss integrals, and uses the equal order pairs of mixed finite elements on quadrilaterals. Optimal order error estimates are obtained for velocity and pressure. Numerical experiments performed agree with the theoretical results.

Key words. Generalized Stokes equations, nonconforming quadrilateral finite elements, optimal error estimates, inf-sup condition, numerical experiments, stability

1. Introduction

Much attention has recently been attracted to using the equal order finite element pairs (e.g., $P_1 - P_1$—the linear function pair and $Q_1 - Q_1$—the bilinear function pair) for the fluid mechanics equations, particularly for the Stokes and Navier-Stokes equations [1, 10, 11, 12]. While they do not satisfy the inf-sup stability condition, these element pairs offer simple and practical uniform data structure and adequate accuracy. Many stabilization techniques have been proposed to stabilize them such as penalty [7, 8], pressure projection [1, 10], and residual [15] stabilization methods. Among these methods, the pressure projection stabilization method is a preferable choice in that it is free of stabilization parameters, does not require any calculation of high-order derivatives or edge-based data structures, and can be implemented at the element level. As formulated in [1, 10, 11, 14], it is based on two local Gauss integrals.

Nonconforming finite elements [4] are popular for the discretization of partial differential equations since they are simple and have small support sets of basis functions. These elements on triangles have been studied in the context of the pressure projection stabilization method [9]. However, due to a technical reason, the nonconforming finite elements on quadrilaterals have not been studied for this stabilization method. In this paper, an argument is introduced to study this class of nonconforming finite elements for the stabilization method of the generalized Stokes equations. As examples, the nonconforming rotated element span $\{1,x,y,x^2 - y^2\}$ [3, 13] and the element span $\{1,x,y,((3x^2 - 5x^4) - (3y^2 - 5y^4))\}$ proposed by Douglas et al. [6] will be analyzed. After a stability condition is proven for the pressure projection stabilization method, optimal order error estimates are obtained for velocity and pressure. Numerical experiments will be performed to check the theoretical results derived.

Received by the editors January 1, 2011 and, in revised form, March 1, 2011.

2000 Mathematics Subject Classification. 35Q10, 65N30, 76D05.

This research was supported in part by the NSF of China (No.11071193 and 10071124), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. SJ08A14) and NSERC/AERI/Foundation CMG Chair and iCORE Chair Funds in Reservoir Simulation.
An outline of this paper is given as follows: In the second section, we introduce some basic notation and the generalized Stokes equations. Then, in the third section, the nonconforming quadrilateral finite elements and the local stabilization method are given. In the fourth section, a stability result is shown. Optimal order error estimates are derived in the fifth section. Finally, numerical experiments are presented in the sixth section.

2. Preliminaries

We consider the following generalized Stokes problem:

\begin{equation}
\begin{aligned}
\sigma u - \nu \Delta u + \nabla p &= f \quad \text{in } \Omega, \\
\nabla \cdot u &= 0 \quad \text{in } \Omega, \\
u \quad u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\end{equation}

where \(\Omega \) represents a polygonal convex domain in \(\mathbb{R}^2 \) with a Lipschitz-continuous boundary \(\partial \Omega \), \(u(x) = (u_1(x), u_2(x)) \) the velocity vector, \(p(x) \) the pressure, \(f(x) \) the prescribed force, \(\nu > 0 \) the viscosity, and \(\sigma \geq 0 \) a nonnegative real number. For a time dependent problem, for example, \(\sigma \) can represent a time step.

To introduce a weak formulation of (2.1), set

\[
X = (H^1_0(\Omega))^2, \quad Y = (L^2(\Omega))^2, \\
M = \left\{ q \in L^2(\Omega) : \int_\Omega qdx = 0 \right\}.
\]

Below the standard notation is used for the Sobolev space \(W^{m,r}(\Omega) \), with the norm \(\| \cdot \|_{m,r} \) and the seminorm \(| \cdot |_{m,r} \), \(m, r \geq 0 \). We will write \(H^m(\Omega) \) for \(W^{m,2}(\Omega) \) and \(\| \cdot \|_m \) for \(\| \cdot \|_{m,2} \) when \(r = 2 \). The spaces \((L^2(\Omega))^m \), \(m = 1, 2, 4 \), are endowed with the \(L^2(\Omega) \)-scalar product \(\langle \cdot, \cdot \rangle \) and \(L^2(\Omega) \)-norm \(\| \cdot \|_0 \), respectively, as appropriate.

Also, the space \(X \) is equipped with the scalar product \(\langle \nabla u, \nabla v \rangle \) and the norm \(| u | \) on \(X \), we sometimes use the same notation for them.

We define the continuous bilinear forms:

\[
a(u,v) = \sigma(u,v) + \nu(\nabla u, \nabla v) \quad \forall u, v \in X, \\
d(v,p) = (\nabla \cdot v, p) \quad \forall v \in X, \ p \in M.
\]

Now, the variational formulation of problem (2.1) is to find a pair \((u,p)\in X \times M\) such that

\begin{equation}
B((u,p),(v,q)) = (f,v) \quad \forall (v,q) \in X \times M,
\end{equation}

where

\[
B((u,p),(v,q)) = a(u,v) - d(v,p) - d(u,q).
\]

The bilinear form \(d(\cdot, \cdot) \) satisfies the inf-sup condition [4]:

\[
\sup_{0 \neq v \in X} \frac{|d(v,q)|}{\|v\|_1} \geq \beta \|q\|_0, \quad q \in M,
\]

where \(\beta \) is a positive constant depending only on the domain \(\Omega \).
3. Nonconforming Quadrilateral Finite Elements

Let \(K_h \) be a quasi-regular partition of \(\Omega \) into convex quadrilaterals. Set
\[
\Omega = \bigcup_j K_j, \quad \Gamma_j = \partial \Omega \cap K_j, \quad \Gamma_{jk} = \Gamma_j \cap K_k, \quad K_j \in K_h.
\]

We denote the centers of \(\Gamma_j \) and \(\Gamma_{jk} \) by \(c_j \) and \(c_{jk} \), respectively. Let \(\hat{K} \) be the reference square \([-1, 1] \times [-1, 1]\) in the \((\xi, \eta)\)-plane. On this reference element, we define the nonconforming rotated element [3, 13]
\[
(3.1) \quad X(\hat{K}) = \text{span}\{1, \xi, \eta, \xi^2 - \eta^2\}
\]
or the element [6]
\[
(3.2) \quad X(\hat{K}) = \text{span}\{1, \xi, \eta, ((3\xi^2 - 5\xi^4) - (3\eta^2 - 5\eta^4))\}.
\]

For every convex quadrilateral \(K \in K_h \) with vertices \((x_i, y_i), \ i = 1, 2, 3, 4, \) there is a unique bilinear mapping \(F_K : \hat{K} \rightarrow K \):
\[
(x, y) = F_K(\xi, \eta) = (F_K^1, F_K^2) = \left(\sum_{i=1}^{4} x_i \phi_i, \sum_{i=1}^{4} y_i \phi_i \right),
\]
where
\[
\phi_1 = \frac{1}{4}(1 - \xi)(1 - \eta), \quad \phi_2 = \frac{1}{4}(1 + \xi)(1 - \eta),
\]
\[
\phi_3 = \frac{1}{4}(1 + \xi)(1 + \eta), \quad \phi_4 = \frac{1}{4}(1 - \xi)(1 + \eta).
\]

Then we define the element on the quadrilateral \(K \in K_h \):
\[
X(K) = \{ v : v = \hat{v} \circ F_K^{-1}, \hat{v} \in X(\hat{K}) \},
\]
where \(X(\hat{K}) \) is defined by either (3.1) or (3.2). With the above notation, we construct the following velocity-pressure finite element spaces:
\[
X_h = \left\{ v \in Y : v|_{K_j} \in X(K_j) \times X(K_j), \int_{\Gamma_{jk}} [v] \ ds = 0, \int_{\Gamma_j} v \ ds = 0 \ \forall j, k \right\},
\]
\[
M_h = \left\{ q \in M : q|_{K_j} \in Q_1(K_j) \ \forall j \right\},
\]
where \([v] = v|_{\Gamma_{jk}} - v|_{\Gamma_{kj}}\) denotes the jump of the function \(v \) across the interface \(\Gamma_{jk} \).

When \(X(\hat{K}) \) is defined by (3.2), the space \(X_h \) can equivalently be defined as follows [6]:
\[
X_h = \left\{ v \in Y : v|_{K_j} \in X(K_j) \times X(K_j), \ v(c_{jk}) = v(c_{kj}), \ v(c_j) = 0 \ \forall j, k \right\}.
\]

Define the energy norm
\[
\|v\|_{1,h} = \left(\sum_j \|v|_{1,K_j}^2 + \sum_j \|v\|_{0,K_j}^2 \right)^{1/2}, \quad v \in X_h.
\]

The two finite element spaces \(X_h \) and \(M_h \) satisfy the approximation property: For \((v, q) \in (H^2(\Omega) \cap X) \times (H^1(\Omega) \cap M)\), there are two approximations \(v_1 \in X_h \) and \(q_1 \in M_h \) such that
\[
(3.3) \quad \|v - v_1\|_0 + h (\|v - v_1\|_{1,h} + \|q - q_1\|_0) \leq Ch^2 (\|v\|_2 + \|q\|_1),
\]
where (and below) \(C > 0 \) is a generic constant independent of the mesh size \(h \).
The operator Π_h has the following properties:

\begin{equation}
\|v - \Pi_h v\|_{1,j} \leq C h^i |v|_{i+1,j}, \quad v \in H^{i+1}(K_j), \quad i = 0, 1,
\end{equation}

\begin{equation}
\|\Pi_h v\|_{1,j} \leq C \|v\|_{1,j}, \quad v \in H^1(K_j).
\end{equation}

The global operator $\Pi_h : X \rightarrow X_h$ is now defined by

$$
\Pi_h v|_j = \Pi_j v \quad \forall v \in X.
$$

The operator Π_h has the following properties:

\begin{equation}
d_h(v - \Pi_h v, q_h) = 0 \quad \forall q_h \in W_h, \quad \|\Pi_h v\|_{1,h} \leq C \|v\|_1 \quad \forall v \in X,
\end{equation}

where $W_h \subset L^2(\Omega)$ denotes the piecewise constant space associated with K_h. As a result, the discrete inf-sup condition holds [4]:

$$
\sup_{v \neq 0 \in X_h} \frac{d_h(v, q)}{\|v\|_{1,h}} \geq \beta \|q\|_0, \quad q \in W_h,
$$

where $\beta > 0$ is independent of h.

As noted, the $X_h \times M_h$ pair does not satisfy the inf-sup condition. However, following [9], we can add a simple local, effective stabilization term $G_h(\cdot, \cdot)$:

$$
G_h(p, q) = \sum_{K_j \in K_h} \left\{ \int_{K_{j,2}} pq \, dx - \int_{K_{j,1}} pq \, dx \right\}, \quad p, q \in L^2(\Omega),
$$

where $\int_{K_{j,i}} pq \, dx$ indicates an appropriate Gauss integral over K_j that is exact for polynomials of degree i ($i = 1, 2$), and pq is a polynomial of degree not greater than two. Thus, for all test functions $q \in M_h$, the trial function $p \in M_h$ must be piecewise constant when $i = 1$. Consequently, we define the L^2-projection operator $\pi_h : L^2(\Omega) \rightarrow W_h$ by

\begin{equation}
(p, q_h) = (\pi_h p, q_h) \quad \forall p \in L^2(\Omega), \quad q_h \in W_h.
\end{equation}

The projection operator π_h has the following properties [9]:

\begin{equation}
\|\pi_h p\|_0 \leq C \|p\|_0 \quad \forall p \in L^2(\Omega),
\end{equation}

and

\begin{equation}
\|p - \pi_h p\|_0 \leq C h \|p\|_1 \quad \forall p \in H^1(\Omega).
\end{equation}

Now, using (3.8), we can define the bilinear form $G_h(\cdot, \cdot)$ as follows:

\begin{equation}
G_h(p, q) = (p - \pi_h p, q) = (p - \pi_h p, q - \pi_h q).
\end{equation}
Finally, the nonconforming finite element approximation of problem (2.1) is to find a pair \((u_h, p_h) \in (X_h, M_h)\) such that

\[(3.12) \quad B_h((u_h, p_h), (v_h, q_h)) = (f, v_h) \quad \forall (v_h, q_h) \in (X_h, M_h),\]

where

\[B_h((u_h, p_h), (v_h, q_h)) = a_h(u_h, v_h) - d_h(v_h, p_h) - d_h(u_h, q_h) - G_h(p_h, q_h)\]

is a bilinear form defined on \((X_h, M_h) \times (X_h, M_h)\). In the subsequent two sections we will establish stability and convergence results for method (3.12).

4. Stability

The stability result will come from the next theorem.

Theorem 4.1. The bilinear form \(B_h((\cdot, \cdot), (\cdot, \cdot))\) satisfies the continuous property

\[(4.1) \quad B_h((u_h, p_h), (v_h, q_h)) \leq C\|u_h\|_{1, h} + \|p_h\|_0\|v_h\|_{1, h} + \|q_h\|_0, \quad \forall (u_h, p_h), \ (v_h, q_h) \in (X_h, M_h),\]

and the coercive property

\[(4.2) \quad \sup_{0 \neq (v_h, q_h) \in (X_h, M_h)} \frac{B_h((u_h, p_h), (v_h, q_h))}{\|v_h\|_{1, h} + \|q_h\|_0} \geq \beta\|u_h\|_{1, h} + \|p_h\|_0, \quad \forall (u_h, p_h) \in (X_h, M_h),\]

where \(\beta\) is a positive constant depending only on \(\Omega\).

Proof. By the continuous property of the bilinear forms \(a(\cdot, \cdot), d(\cdot, \cdot),\) and \(G_h(\cdot, \cdot),\) we can easily obtain the continuous property of \(B_h((\cdot, \cdot), (\cdot, \cdot))\) so it suffices to show the coercive property.

For all \(p_h \in L^2(K_j)\), there exists \(w \in (H^1(K_j))^2\) such that

\[\quad (\nabla \cdot w, p_h)_j = \|p_h\|_{0, j}^2, \quad \|w\|_{1, j} \leq C_0\|p_h\|_{0, j}.\]

Setting \(w_h = \Pi_h w\), we see that

\[(4.3) \quad \|w_h\|_{1, h} \leq C_1\|p_h\|_0.\]

Choosing \((v_h, q_h) = (u_h - \epsilon w_h, -p_h)\) for some constant \(\epsilon > 0\) yet to be determined, we have

\[\quad B_h((u_h, p_h), (u_h - \epsilon w_h, p_h)) = a_h(u_h, u_h) - \epsilon a_h(u_h, w_h) + \epsilon d_h(w_h, p_h) + G_h(p_h, p_h).\]

From (4.3) it follows that

\[\quad \epsilon a_h(u_h, w_h) \leq \frac{\max\{\sigma, \nu\}}{2\gamma} \epsilon C_2\|u_h\|_{1, h}^2 + \frac{\max\{\sigma, \nu\}}{2\gamma} \epsilon C_3\|p_h\|^2_0,\]

where \(\gamma > 0\) is another constant to be determined. Note that, by (3.7),

\[\quad \|p_h\|_0^2 = (p_h, \nabla \cdot w) = (p_h - \pi_h p_h, \nabla \cdot w) + (\pi_h p_h, \nabla \cdot w) = (p_h - \pi_h p_h, \nabla \cdot w) + (\pi_h p_h, \nabla \cdot w_h) = (p_h - \pi_h p_h, \nabla \cdot (w - w_h)) + (p_h, \nabla \cdot w_h),\]

and, by (3.7) and (4.3),

\[\quad \|(p_h - \pi_h p_h, \nabla \cdot (w - w_h))\| \leq \|p_h - \pi_h p_h\|_0 \|

\[\quad \leq C_4 G_h^{1/2}(p_h, p_h) \|p_h\|_0 \leq \frac{1}{2}\|p_h\|_0^2 + \frac{1}{2} C_4^2 G_h(p_h, p_h).\]
we see that
Choosing
Consequently, we obtain
(4.6) \[\frac{1}{2} \| p_h \|^2_0 \leq C_5 G_h(p_h, p_h) + (p_h, \nabla \cdot w_h). \]
Combining (4.4)–(4.6) gives
\[
B_h((u_h, p_h), (u_h - \epsilon w_h, p_h)) \\
\geq \min\{\sigma, \nu\} \| u_h \|_{1,h}^2 - \frac{\max\{\sigma, \nu\}}{2\gamma} \epsilon C_2 \| u_h \|_{1,h}^2 \\\n- \frac{\min\{\sigma, \nu\}}{2} \epsilon C_5 \| p_h \|_0^2 + \frac{1}{2} \epsilon \| p_h \|_0^2 - C_5 \epsilon G(p_h, p_h) + G(p_h, p_h) \\\n\geq \left(\min\{\sigma, \nu\} - \frac{\max\{\sigma, \nu\}}{2\gamma} C_2 \right) \| u_h \|_{1,h}^2 \\\n+ \frac{1}{2} \epsilon \left(1 - \max\{\sigma, \nu\} C_3 \right) \| p_h \|_0^2 + (1 - C_5 \epsilon) G(p_h, p_h). \]
Choosing
\[
\gamma = \frac{1}{2 \max\{\sigma, \nu\} C_3}, \quad \epsilon = \min\left\{ \frac{\min\{\sigma, \nu\}}{2 \max\{\sigma, \nu\}^2 C_2 C_3}, \frac{1}{2 C_5} \right\}, \]
we see that
(4.7) \[|B_h((u_h, p_h), (u_h - \epsilon w_h, p_h))| \geq C_6 (\| u_h \|_{1,h} + \| p_h \|_0)^2. \]
Clearly, using (4.3) and the triangle inequality, we have
(4.8) \[\| u_h - \epsilon w_h \|_{1,h} + \| p_h \|_0 \leq C_7 (\| u_h \|_{1,h} + \| p_h \|_0). \]
Finally, setting \(\beta = C_6/C_7 \), combining (4.7) and (4.8) yields (4.2).

5. Error Estimates

The next lemma will be used [2].

Lemma 5.1. For any \(\phi, w \in X \cup X_h \),
(5.1) \[\sum_j \left| \sum_{j} \left(\frac{\partial w}{\partial n_j}, \phi \right) - \sum_{j} \left(q, \phi \cdot n_j \right) \right| \leq C h \| w \|_2 \| \phi \|_{1,h}, \quad w \in X \cap (H^2(\Omega))^2, \]
(5.2) \[\sum_{j} \left| \sum_{j} \left(q, \phi \cdot n_j \right) - \sum_{j} \left(q, \phi \cdot n_j \right) \right| \leq C h \| q \|_1 \| \phi \|_{1,h}, \quad q \in H^1(\Omega). \]

Set
\[\tilde{B}_h((u, p), (v, q)) = B_h((u, p), (v, q)) + G_h(p, q). \]
We introduce the projection operators \((R_h, Q_h) : (X, M) \rightarrow (X_h, M_h)\) by
(5.3) \[\begin{align*}
B_h((R_h(v, q), Q_h(v, q)), (v_h, q_h)) \\
= \tilde{B}_h((v, q), (v_h, q_h)) \quad &\forall (v_h, q_h) \in (X_h, M_h).
\end{align*} \]
which is well defined by Theorem 4.1 and satisfies the next approximation property, whose proof follows [9].

Lemma 5.2. It holds that, for \((v, q) \in (X \cap (H^2(\Omega))^2, M \cap H^1(\Omega))\),
(5.4) \[\| v - R_h(v, q) \|_0 + b(\| v - R_h(v, q) \|_{1,h} + \| q - Q_h(v, q) \|_0) \leq C h^2 (\| v \|_2 + \| q \|_1). \]
Proof. Using (5.3), we see that
\begin{equation}
B_h((v - R_h(v, q), q - Q_h(v, q)), (v_h, q_h))
= -G_h(q, q_h) \quad \forall (v_h, q_h) \in (X_h, M_h).
\end{equation}
Setting \(E = v - \Pi_h v \) and \((w, r) = (\Pi_h v - R_h(v, q), q - Q_h(v, q))\), where \(q \) is the interpolation of \(q \) in \(M_h \), we have
\begin{equation}
B_h((w, r), (v_h, q_h)) = -B_h((E, q - q)), (v_h, q_h)) - G_h(q, q_h)
\end{equation}
\forall (v_h, q_h) \in (X_h, M_h).
From Theorem 4.1 and the continuous property of \(q \), from approximation properties (3.3) and (3.5), the estimate (5.10), and the regularity

\begin{equation}
\beta(\|w\|_{1,h} + \|r\|_0) \leq \sup_{(v_h, q_h) \in (X_h, M_h)} \frac{B_h((w, r), (v_h, q_h))}{\|v_h\|_{1,h} + \|q_h\|_0},
\end{equation}
From (3.3), (3.5), and the continuous property of \(B_h(\cdot, \cdot) \), it follows that
\begin{equation}
B_h((E, q - q)), (v_h, q_h)) \leq C(\|E\|_{1,h} + \|q - q\|_0)(\|v_h\|_{1,h} + \|q_h\|_0)
\end{equation}
\begin{equation}
\leq Ch(\|v\|_2 + \|q\|_1)(\|v_h\|_{1,h} + \|q_h\|_0).
\end{equation}
Combining (5.6)–(5.8) gives
\begin{equation}
\|w\|_{1,h} + \|r\|_0 \leq Ch(\|v\|_2 + \|q\|_1).
\end{equation}
Therefore, we obtain
\begin{equation}
\|v - R_h(v, q)\|_{1,h} + \|q - Q_h(v, q)\|
\leq (\|v - \Pi_h v\|_{1,h} + \|w\|_{1,h}) + (\|q - q\|_0 + \|r\|_0)
\leq Ch(\|v\|_2 + \|q\|_1).
\end{equation}
Next, we consider the following dual problem, with \((\zeta, \tau) = (v - R_h(v, q), q - Q_h(v, q))\):
\begin{equation}
\begin{cases}
\sigma \Phi - \nu \Delta \Phi + \nabla \Psi = \zeta & \text{in } \Omega, \\
\nabla \cdot \Phi = 0 & \text{in } \Omega, \\
\Phi = 0 & \text{on } \partial \Omega.
\end{cases}
\end{equation}
Because of the convexity of the domain \(\Omega \), the solution of this problem satisfies the regularity property:
\begin{equation}
\|\Phi\|_2 + \|\Psi\|_1 \leq c\|\zeta\|_0.
\end{equation}
Multiplying the first and second equations of (5.11) by \(\zeta \) and \(\tau \), respectively, integrating the resulting equations over \(\Omega \), and using (5.5) with \((v_h, q_h) = (\Pi_h \Phi, \Psi_I)\), we see that
\begin{equation}
\|\zeta\|_0^2 = a_h(\zeta, \Phi) - d_h(\zeta, \Psi) - d_h(\Phi, \tau) - \nu \sum_j \left< \frac{\partial \Phi}{\partial n_j}, \zeta \right>_j + \sum_j \left< \zeta \cdot n_j, \Psi \right>_j
\end{equation}
\begin{equation}
= a_h(\zeta, \Phi - \Pi_h \Phi) - d_h(\zeta, \Psi - \Psi_I) - d_h(\Phi - \Pi_h \Phi, \tau) - G_h(\Psi - \Psi_I, \tau)
+ G_h(\Psi, \tau) - G_h(q, \Psi_I) - \nu \sum_j \left< \frac{\partial \Phi}{\partial n_j}, \zeta \right>_j + \sum_j \left< \zeta \cdot n_j, \Psi \right>_j.
\end{equation}
From the continuous property of the bilinear terms \(a(\cdot, \cdot), d(\cdot, \cdot) \), and \(G_h(\cdot, \cdot) \), the approximation properties (3.3) and (3.5), the estimate (5.10), and the regularity
and we have
\[
|a_h(\zeta, \Phi - \Pi_h \Phi) - d_h(\zeta, \Psi - \Psi_T) - d_h(\Phi - \Pi_h \Phi, \tau) - G_h(\Psi - \Psi_T, \tau)|
\]
\[
\leq C(\|\zeta\|_{1,h} + \|\tau\|_0) (\|\Phi - \Pi \Phi\|_{1,h} + \|\Psi - \Psi_T\|_0)
\]
\[
\leq Ch^2(\|v\|_2 + \|q\|_1) \|\zeta\|_0,
\]
and
\[
|G_h(\Psi, \tau) - G_h(q, \Psi_T)| \leq Ch\|\Psi\|_1\|\tau\|_0 + Ch^2\|q\|_1\|\Psi\|_1
\]
\[
\leq Ch^2(\|v\|_2 + \|q\|_1) \|\zeta\|_0.
\]
In addition, it follows from Lemma 5.1, (5.10), and (5.12) that
\[
\text{Finally, combining (5.13)} - \text{ (5.16) gives (5.4).}
\]

We are now in a position to obtain the error estimates for method (3.12).

Theorem 5.3. Let \((u, p)\) and \((u_h, p_h)\) be the respective solutions of (2.1) and (3.12). Then
\[
\|u - u_h\|_{1,h} + \|p - p_h\|_0 \leq Ch(\|u\|_2 + \|p\|_1).
\]

Proof: Let \((\zeta, \tau) = (R_h(u, p) - u_h, Q_h(u, p) - p_h)\). Using (5.3) and a similar argument as for (5.15) and (5.16), we see that
\[
B_h((\zeta, \tau), (v_h, q_h)) = \tilde{B}_h((u, p), (v, q)) - B_h((u_h, p_h), (v_h, q_h))
\]
\[
= \nu \sum_j \left< \frac{\partial u}{\partial n_j}, v_h \right>_j - \sum_j \left< v_h \cdot n_j, p \right>_j
\]
\[
\leq Ch(\|u\|_2 + \|p\|_1) \|v_h\|_{1,h}.
\]
Consequently, by the triangle inequality, (4.1), (4.2), and Lemma 5.2, we obtain
\[
\|u - u_h\|_{1,h} + \|p - p_h\|_0 \leq C \left\{ \|u - R_h(u, p)\|_{1,h} + \|p - Q_h(u, p)\|_0 \right\}
\]
\[
+ \frac{1}{\beta} \sup_{(v, q) \in (X_h, M_h)} \frac{|B_h((\zeta, \tau), (v, q))|}{\|v_h\|_{1,h} + \|q_h\|_0}
\]
\[
\leq Ch(\|u\|_2 + \|p\|_1),
\]
which implies the desired result (5.17).

Theorem 5.4. Let \((u, p)\) and \((u_h, p_h)\) be the respective solutions of (2.1) and (3.12). Then
\[
\|u - u_h\|_0 \leq Ch^2(\|u\|_2 + \|p\|_1).
\]

Proof. As in the proof of Lemma 5.2, setting \((\zeta, \tau) = (u - u_h, p - p_h)\), multiplying the first and second equations of (5.11) by \(\zeta\) and \(\tau\), respectively, and integrating the resulting equations over \(\Omega\), we see that
\[
\|\zeta\|_0^2 = a_h(\zeta, \Phi - d_h(\zeta, \Psi) - d_h(\Phi, \tau)
\]
\[
-\nu \sum_j \left< \frac{\partial \Phi}{\partial n_j}, \zeta \right>_j + \sum_j \left< \zeta \cdot n_j, \Psi \right>_j.
\]
Using (2.1) and (3.12) with \((v_h, q_h) = (\Pi_h \Phi, \Psi_f)\), it follows that
\[
\|\xi\|^2_0 = a_h(\xi, \Phi - \Pi_h \Phi) - d_h(\xi, \Psi - \Psi_f) - d_h(\Phi - \Pi_h \Phi, \tau) - G_h(\Psi - \Psi_f, \tau) \\
+ G_h(\Psi, \tau) - G_h(p, \Psi_f) - \nu \sum_j \left\langle \frac{\partial \Phi}{\partial n_j}, \xi \right\rangle_j + \sum_j \left\langle \xi \cdot n_j, \Psi \right\rangle_j
\]
(5.21)
\[
+ \nu \sum_j \left\langle \frac{\partial u}{\partial n_j}, \Pi_h \Phi \right\rangle_j - \sum_j \left\langle (\Pi_h \Phi \cdot n_j) \cdot p \right\rangle_j.
\]

Applying an analogous argument as for (5.14)–(5.16), we have
\[
|a_h(\xi, \Phi - \Pi_h \Phi) - d_h(\xi, \Psi - \Psi_f) - d_h(\Phi - \Pi_h \Phi, \tau) - G_h(\Psi - \Psi_f, \tau)| \\
\leq Ch^2(\|u\|_2 + \|p\|_1)\|\zeta\|_0,
\]
(5.22)
\[
G_h(\Psi, \tau) - G_h(p, \Psi_f) \leq Ch^2(\|u\|_2 + \|p\|_1)\|\zeta\|_0,
\]
\[
\left| \nu \sum_j \left\langle \frac{\partial \Phi}{\partial n_j} \cdot \xi \right\rangle_j - \sum_j \left\langle \xi \cdot n_j, \Psi_j \right\rangle \right| \leq Ch^2(\|u\|_2 + \|p\|_1)\|\zeta\|_0.
\]

Note that, by the regularity of the solution \(u\) and \(p\),
\[
\nu \sum_j \left\langle \frac{\partial u}{\partial n_j}, \Pi_h \Phi \right\rangle_j - \sum_j \left\langle (\Pi_h \Phi \cdot n_j) \cdot p \right\rangle_j = \nu \sum_j \left\langle \frac{\partial u}{\partial n_j}, \Pi_h \Phi - \Phi \right\rangle_j - \sum_j \left\langle (\Pi_h \Phi - \Phi) \cdot n_j, p \right\rangle_j.
\]
(5.23)
As a consequence, it follows from Lemma 5.1, (3.5), and (5.12) that
\[
\left| \nu \sum_j \left\langle \frac{\partial u}{\partial n_j}, \Pi_h \Phi \right\rangle_j - \sum_j \left\langle (\Pi_h \Phi \cdot n_j) \cdot p \right\rangle_j \right| \leq Ch(\|u\|_2 + \|p\|_1)\|\Pi_h \Phi - \Phi\|_1, h
\]
\[
\leq Ch^2(\|u\|_2 + \|p\|_1)\|\zeta\|_0.
\]
Finally, combining (5.20)–(5.23) yields (5.19).

6. Numerical Experiments

In this section we present numerical experiments to check the numerical theory developed in the previous sections. In all the experiments, \(\Omega = (0, 1)^2\) is the unit square in \(\mathbb{R}^2\), the exact solution for the velocity \(u = (u_1, u_2)\) and the pressure \(p\) is given as follows:
\[
p = \cos(\pi x_1) \cos(\pi x_2),
\]
(6.1)
\[
\begin{align*}
u_1 &= 2\pi \sin^2(\pi x_1) \sin(\pi x_2) \cos(\pi x_1), \\
\nu_2 &= -2\pi \sin(\pi x_1) \sin^2(\pi x_2) \cos(\pi x_1),
\end{align*}
\]
and the right-hand side \(f(x)\) is determined by (2.1) through this exact solution. Furthermore, the nonconforming finite element given in (3.2) is used.

When \(\sigma = 0\) and \(\nu = 0.1\), the convergence results are given in Table 1. We now fix \(\nu = 0.1\) and vary \(\sigma = 0, 1, 10, 100\); the results are given in Table 2. These convergence results fully agree with the theoretical results we have obtained in the previous two sections.

Table 1. Convergence results.
\[
\begin{array}{ccccccc}
1/h & \|u^h - u\|_{0, \text{rate}} & \|u^h - u^h\|_{0, \text{rate}} & \|u^h\|_{0, \text{rate}} & \|u^h\|_{1, \text{rate}} & \|p^h - p\|_{0, \text{rate}} & \|p\|_{0, \text{rate}} \\
8 & 0.0461 & 0.2981 & 0.1308 & & & \\
12 & 0.0205 & 0.2000 & 0.0602 & & & \\
16 & 0.0116 & 0.1503 & 0.0352 & & & \\
20 & 0.0074 & 0.1203 & 0.0234 & & & \\
24 & 0.0051 & 0.1003 & 0.0168 & & & \\
\end{array}
\]

Table 2. Convergence results for different σ.

\[
\begin{array}{ccccccc}
\sigma & \|u^h\|_{2, \text{rate}} & \|u^h\|_{1, \text{rate}} & \|p^h\|_{2, \text{rate}} & \|u^h\|_{1, \text{rate}} & \|p^h\|_{2, \text{rate}} & \|p^h\|_{2, \text{rate}} \\
0.1 & 1.9954 & 0.9881 & 1.8934 & 1.9985 & 0.9967 & 1.8159 \\
1 & 1.9941 & 0.9887 & 1.9032 & 1.9980 & 0.9969 & 1.8288 \\
10 & 1.9884 & 0.9912 & 1.9540 & 1.9963 & 0.9977 & 1.9134 \\
100 & 1.9596 & 0.9939 & 1.8649 & 1.9869 & 0.9987 & 1.9611 \\
\end{array}
\]

References

Center for Computational Geosciences, Faculty of Science, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
E-mail: yidouyi@163.com

Center for Computational Geosciences and Mathematics, Faculty of Science, Xi'an Jiaotong University, Xi'an, 710049, P.R. China. Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W. Calgary, Alberta, Canada T2N 1N4.
E-mail: zhachen@ucalgary.ca

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, P.R. China. The Department of Mathematics, Baoji University of Arts and Sciences, Baoji 721007, P.R. China.
E-mail: jiaaanli@gmail.com