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SUPERCONVERGENCE OF STABILIZED LOW ORDER FINITE

VOLUME APPROXIMATION FOR THE THREE-DIMENSIONAL

STATIONARY NAVIER-STOKES EQUATIONS

JIAN LI, JIANHUA WU, ZHANGXIN CHEN, AND AIWEN WANG

Abstract. We first analyze a stabilized finite volume method for the three-dimensional stationary
Navier-Stokes equations. This method is based on local polynomial pressure projection using low
order elements that do not satisfy the inf-sup condition. Then we derive a general superconvergent
result for the stabilized finite volume approximation of the stationary Navier-Stokes equations
by using a L2-projection. The method is a postprocessing procedure that constructs a new
approximation by using the method of least squares. The superconvergent results have three
prominent features. First, they are established for any quasi-uniform mesh. Second, they are
derived on the basis of the domain and the solution for the stationary Navier-Stokes problem by
solving sparse, symmetric positive definite systems of linear algebraic equations. Third, they are
obtained for the finite elements that fail to satisfy the inf-sup condition for incompressible flow.
Therefore, this method presented here is of practical importance in scientific computation.

Key words. Navier-Stokes equations, stabilized finite volume method, local polynomial pressure
projection, inf-sup condition.

1. Introduction

The development of stable mixed finite element methods is a fundamental compo-
nent in search for efficient numerical methods for solving the Navier-Stokes equa-
tions governing the flow of an incompressible fluid by using a primitive variable
formulation. The importance of ensuring the compatibility of the component ap-
proximations of velocity and pressure by satisfying the inf-sup condition is widely
understood. It is well known that numerous mixed finite elements satisfying this
stable condition have been proposed over years. However, elements that do not
satisfy the inf-sup condition can be of practical values; some of them are very at-
tractive and usable in many occasions. In particular, the lower order mixed finite
elements are of practical importance in scientific computation because they are
computationally convenient. However, the violation of the inf-sup condition for the
Navier-Stokes equations often leads to unphysical pressure oscillations.

In order to make fully use of these lower order mixed finite elements, a popular
strategy is to use stabilized techniques to circumvent or ameliorate the compatibil-
ity condition. Some of these techniques have been studied during the past decades
for the lower order finite elements [1, 4, 5, 6, 7, 13, 18, 19]. However, most of the
stabilized techniques necessarily introduce stabilization parameters either explic-
itly or implicitly. In addition, some of them are conditionally stable and achieve
suboptimal accuracy depending on the choice of the stabilization parameters with
respect to the solution regularity [18, 19]. Thus insensitivity to such parameters is
important if a method is to be competitive.
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On the other hand, the finite volume method has been a very popular method
in fluid computation. The finite volume method is intuitive in that it is directly
based on conservation of physical properties over volumes or dual volumes. It has
flexibility similar to that of the finite element method for handling complicated
geometries but its theoretical analysis is much more complex than the latter [3, 8,
10, 11, 14, 17, 22, 25, 26].

In this paper, the idea of a stabilized finite volume method based on local polyno-
mial pressure projection is derived from [17, 21] for the three dimensional stationary
incompressible flow by using lower order finite elements. The well-posedness and
optimal error estimates of this method are stated for the stationary Navier-Stokes
equations. The main purpose is to establish a general superconvergent result for
the finite volume approximation of the three-dimensional stationary Navier-Stokes
equations by using a L2-projection method proposed recently in [24]. This super-
convergent result for the stationary Navier-Stokes equations can be applied to any
finite element with regular but nonuniform partitions and is introduced by using
the L2 projection in a solution postprocessing manner. The method is demon-
strated to generate a convergent scheme for finite element spaces that fail to satisfy
the inf-sup condition especially for the incompressible flow. The post-processing
technique of superconvergence has the feature that it can yield the superconver-
gent result anywhere in the domain and even up to the boundary. Moreover, this
method has been developed as multi-scale process by capturing coarse information
of given problem with lowest order finite element and then projecting the first finite
solution on coarse mesh with high order piecewise polynomial in order to obtained
more effective approximation solution. Therefore, this post-processing method is
of practical importance in scientific computation.

We emphasize that the analysis requires to take special care of the trilinear term
and the lower order convergence order O(h) between the base functions of the finite
element method and finite volume method. Here an equivalence between the finite
element method and the finite volume method and an additional duality argument
are applied to analyze the postprocessing of the stabilized finite volume method for
the stationary Navier-Stokes equations based on the finite element theoretic results.
The main results are summarized in Theorems 4.1 and 4.2. The error estimates
for velocity are superconvergence if s ≥ 2 in the H1-norm. The superconvergence
for pressure can be made in the case of t > 0. However, no improvement has been
made for the velocity in the L2-norm.

The remainder of the paper is organized as follows. In the next section, the
stabilized finite element approximation of the Navier-Stokes problem is given with
some basic statements. The stabilized finite volume approximations are analyzed
and optimal estimates are stated in §3. Error estimates of superconvergence for the
stabilized finite volume solution (uh, ph) are derived in §4.

2. Stabilized Finite Element Approximation

Let Ω be a bounded domain in R3, assumed to have a Lipschitz-continuous
boundary Γ and to satisfy a further condition stated in (A1) below. The stationary
Navier-Stokes equations are considered as follows.

−ν∆u +∇p+ (u · ∇)u+
1

2
(div u)u = f, div u = 0 in Ω,(2.1)

u|∂Ω = 0,(2.2)

where u(x) = (u1(x), u2(x), u3(x)) represents the velocity of a viscous incompress-
ible fluid, p = p(x) the pressure, ν the fluid viscosity, and f(x) = (f1(x), f2(x), f3(x))
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the prescribed force. Note that the term (div u)u/2 is added to ensure the dissipa-
tivity of the Navier-Stokes equations [23].

In order to introduce a variational formulation, we set

X =
(

H1
0 (Ω)

)3
, Y =

(

L2(Ω)
)3
, M = L2

0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

q dx = 0

}

.

As mentioned above, a further assumption on Ω is presented:
(A1) Assume that Ω is regular in the sense that the unique solution (v, q) ∈

(X,M) of the steady Stokes problem

−∆v +∇q = g, div v = 0 in Ω, v|∂Ω = 0,

for a prescribed g ∈ Y exists and satisfies

‖v‖2 + ‖q‖1 ≤ C‖g‖0,
where C > 0 is a constant depending on Ω. Here, ‖ · ‖i denotes the usual norm of

the Sobolev space Hi(Ω) or
(

Hi(Ω)
)3

for i = 0, 1, 2 [2].

We denote by (·, ·) and ‖ · ‖0 the inner product and norm on L2(Ω) or
(

L2(Ω)
)3
,

respectively. The spaces H1
0 (Ω) and X are equipped with their usual norm and

scalar product ‖u‖1 = ‖∇u‖0 and (∇u,∇v). In addition, there holds

‖u‖0 ≤ C0‖u‖1, u ∈ H1
0 (Ω) or X.(2.3)

In order to present the discrete variational problem of (2.1) and (2.2), the contin-
uous bilinear forms a(·, ·) on X ×X and d(·, ·) on X ×M , respectively, are defined
by

a(u, v) = ν((u, v)) ∀u, v ∈ X, d(v, q) = −(v,∇q) = (q, divv) ∀v ∈ X, q ∈M,

and a generalized bilinear form on (X,M)× (X,M) is defined by

B((u, p); (v, q)) = a(u, v)− d(v, p) + d(u, q).

Then there hold the following estimates for the term B((·, ·); (·, ·)) [15, 23]:
|B((u, p); (u, p)) = ν‖u‖21,(2.4)

|B((u, p); (v, q))| ≤ C(‖u‖1 + ‖p‖0)(‖v‖1 + ‖q‖0),(2.5)

β0(‖u‖1 + ‖p‖0) ≤ sup
(v,q)∈(X,M)

|B((u, p); (v, q))|
‖v‖1 + ‖q‖0

,(2.6)

for all (u, p), (v, q) ∈ (X,M) and constant β0 > 0.
A trilinear term is defined by

b(u; v, w) = ((u · ∇)v, w) +
1

2
((divu)v, w)

=
1

2
((u · ∇)v, w) − 1

2
((u · ∇)w, v) ∀u, v, w ∈ X,

and satisfies [15, 23]

b(u; v, w) = −b(u;w, v),(2.7)

|b(u; v, w)| ≤ C1‖u‖1‖v‖1‖w‖1,(2.8)

for all u, v, w ∈ X and

|b(u; v, w)|+ |b(v;u,w)|+ |b(w;u, v)| ≤ C1‖u‖1‖v‖2‖w‖0,(2.9)

for all u ∈ X, v ∈
(

H2
0 (Ω)

)3
, w ∈ Y , where C0, C1, . . . are positive constants

depending only on the domain Ω.
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Now, the mixed variational form of (2.1) and (2.2) is to seek (u, p) ∈ (X,M)
such that

B((u, p); (v, q)) + b(u;u, v) = (f, v) ∀(v, q) ∈ X ×M.(2.10)

The existence and uniqueness results can be found in [15, 23].
We introduce a finite dimensional subspace pair (Xh,Mh) ⊂ (X,M), which is

characterized by Kh, a partition of Ω into tetrahedra in R3, assumed to be regular
in the usual sense and satisfy the usual inverse inequality and the approximation
property (2.19) [9, 12, 15].

A stable and accurate solution to (2.10) requires that (Xh,Mh) satisfies the
discrete inf-sup condition

sup
vh∈Xh

d(vh, qh)

‖vh‖1
≥ β1‖qh‖0,(2.11)

where β1 > 0 is a constant independent of h. However, it is not valid for the
following lower order finite element pairs:

Xh = {v ∈ X : vi ∈ P1(K), i = 1, 2, 3, ∀K ∈ Kh},
Mh = {q ∈M : q ∈ Rj(K), j = 0, 1 ∀K ∈ Kh},

where Rj(K), j = 0, 1, is the set of polynomials of degree j defined on K. For-
tunately, the local polynomial pressure projection method efficiently stabilizes the
lower order finite element pairs by using the local L2-projection [5]:

Πj =

{

Π0 : L2→R1, j = 0,

Π1 : L2→R0, j = 1.

Under the above notation, the variational formulation of the problem (2.10) reads
as follows: Find (ūh, p̄h) ∈ (Xh,Mh) such that, for all (v, q) ∈ (Xh,Mh),

B((ūh, p̄h); (v, q)) + b(ūh; ūh, v) +G(p̄h, q) = (f, v),(2.12)

where the stabilization term G(·, ·) is defined by

G(p̄h, q) = (p̄h −Πj p̄h, q −Πjq),

with the following properties:

(p, qh) = (Πhp, qh) ∀p ∈M, qh ∈ Rj ,(2.13)

‖Πjp‖0 ≤ C‖p‖0 ∀p ∈M,(2.14)

‖p−Πjp‖0 ≤ Ch‖p‖1 ∀p ∈ H1(Ω) ∩M.(2.15)

The following stabilization theorem establishes the weak coercivity of (2.12) for the
lower order finite element pairs [5, 16].

Theorem 2.1 (Stability and convergence). Let (Xh,Mh) be the above lower

order finite element space pairs. Then there exists a positive constant β2, indepen-
dent of h, satisfying

|Bh((u, p); (v, q))| ≤ C(‖u‖1 + ‖p‖0)(‖v‖1 + ‖q‖0) ∀(u, p), (v, q) ∈ (X,M),

(2.16)

β2(‖ūh‖1 + ‖p̄h‖0) ≤ sup
(vh,qh)∈(Xh,Mh)

|Bh((ūh, p̄h); (vh, qh))|
‖vh‖1 + ‖qh‖0

∀(ūh, p̄h) ∈ (Xh,Mh),

(2.17)

|G(p, q)| ≤ C‖p‖0‖q‖0 ∀p, q ∈M,(2.18)
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where

Bh((u, p); (v, q)) = B((u, p); (v, q)) +G(p, q).

By the fixed-point theorem for the classical Galerkin method, there exists the unique
finite element solution (ūh, p̄h) for (2.12) such that [16]

‖u− ūh‖0 + h(‖u− ūh‖1 + ‖p− p̄h‖0) ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖0).(2.19)

3. Stabilized Finite Volume Approximation

This section is concentrated on the stabilized finite volume approximation for the
three-dimensional stationary Navier-Stokes equations. Based on the finite element
partition Kh, we connect the barycenter in each element K ∈ Kh and the midpoint
on each of the edges of K, and construct the control volumes in R2 by connecting
all these barycenters and midpoints. Likewise, we first choose an arbitrary point Q
in the interior of each tetrahedron in Kh and then connect Q with the barycenters
Qijk of its 2D faces ∆PiPjPk by straight lines (see Fig. 1). On each face ∆PiPjPk,
we connect Qijk by straight lines with the middle points of the segments PiPj ,
PjPk, and PkPi, respectively. Then the contribution of Kh to a control volume in

K̃h of a vertex P in Kh is the volume surrounding Q by these straight lines; for
example, the contribution from one simplex to a control volume in K̃h with the
interfaces γ12 and γ13 is shown in Fig. 1.

Fig.1. Comparison of the dual volumes in Rd, d = 2, 3.

Associated with K̃h, the dual finite element space is defined by

X̃h =
{

ṽ ∈
(

L2(Ω)
)3

: ṽ|K̃ ∈
(

P0(K̃)
)3 ∀K̃ ∈ K̃h; ṽ|∂K̃ = 0

}

.

Obviously, the dimensions of Xh and X̃h are the same since they have the same
degree of freedoms and vertexes. Furthermore, there exists an invertible linear
mapping Γh : Xh→X̃h such that, for

vh(x) =

N
∑

j=1

vh(Pj)ϕj(x), x ∈ Ω, vh ∈ Xh,(3.1)

we have

Γhvh(x) =

N
∑

j=1

vh(Pj)χj(x), x ∈ Ω, vh ∈ Xh,(3.2)

where N denotes the set of all vertices of element K ∈ Kh except from those on
∂Ω, and {ϕj}Nj=0 and {χj}Nj=0 indicate the bases of the finite element space Xh and
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the finite volume space X̃h, respectively. The latter are the characteristic functions
associated with the dual partition K̃h:

χj(x) =

{

1 if x ∈ K̃j ∈ K̃h,

0 otherwise.

Furthermore, the mapping Γh has the following properties [22, 26]:
∫

K

(vh − Γhvh)dx = 0,(3.3)

‖Γhvh‖0 ≤ C2‖vh‖0, ‖vh − Γhvh‖0,r,K ≤ C3hK‖vh‖1,r,K ,(3.4)

where hK is the diameter of the element K.
The above idea of connecting the trial and test spaces in the Petrov-Galerkin

method through the mapping Γh was first introduced in [26] in the context of elliptic
problems. The main procedure is presented as follows: Multiplying equation (2.1)

by Γhvh ∈ X̃h and integrating over the dual elements K̃ ∈ K̃h, multiplying equation
(2.2) by qh ∈ Mh and integrating over the primal elements K ∈ Kh, and applying
Green’s formula for both equations, we obtain the following bilinear forms for the
finite volume method:

A(uh,Γhvh) = −ν
N
∑

j=1

vh(Pj) ·
∫

∂K̃j

∂uh
∂n

ds, uh, vh ∈ Xh,

D(Γhvh, ph) = −
N
∑

j=1

vh(Pj) ·
∫

∂K̃j

phn ds, vh ∈ Xh, ph ∈Mh,

(f,Γhvh) =
N
∑

j=1

vh(Pj) ·
∫

K̃j

f dx, vh ∈ Xh,

where n is the unit normal outward to ∂K̃j . Using a technique similar to that in
the trilinear form of the finite element method in the previous section, we define
the trilinear form b(·; ·, ·) : Xh×Xh×X̃h → ℜ of the finite volume method [21, 23]:

b(uh; vh,Γhwh) =

(

(uh · ∇)vh +
1

2
(div uh)vh,Γhwh

)

∀uh, vh, wh ∈ Xh.

Now, the new stabilized finite volume method for the Navier-Stokes equations
(2.1) and (2.2) is: Find (uh, ph) ∈ (Xh,Mh) such that

Ch((uh, ph), (vh, qh)) + b(uh;uh,Γhvh) = (f,Γhvh) ∀(vh, qh) ∈ (Xh,Mh),(3.5)

where we define the bilinear form Ch(·, ·) on (Xh,Mh)× (Xh,Mh):

Ch((uh, ph), (vh, qh)) = A(uh,Γhvh) +D(Γhvh, ph) + d(uh, qh) +Gh(ph, qh).(3.6)

The next results establish a relationship between the finite element and finite
volume methods [11, 17, 27] with respect to the linear terms:

A(uh,Γhvh) =a(uh, vh) ∀uh, vh ∈ Xh,(3.7)

D(Γhvh, qh) =− d(vh, qh) ∀(vh, qh) ∈ (Xh,Mh).(3.8)

Thus we will pay more attention to the difference of the trilinear term b(·; ·, ·) be-
tween the two methods. Moreover, the following result on the continuity and weak
coercivity of the bilinear form Ch(·, ·) can be directly deduced from the relationship
between the two methods and Theorem 2.1.
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Lemma 3.1 (Stability). It holds that

|Ch((uh, ph), (vh, qh))| ≤ C (‖uh‖1 + ‖ph‖0) (‖vh‖1 + ‖qh‖0)
∀(uh, ph), (vh, qh) ∈ (Xh,Mh).(3.9)

Moreover,

sup
(vh,qh)∈(Xh,Mh)

|Ch((uh, ph), (vh, qh))|
‖vh‖1 + ‖qh‖0

≥ β3 (‖uh‖1 + ‖ph‖0)

∀(uh, ph) ∈ (Xh,Mh),(3.10)

where β3 > 0 is independent of h.
We are now in a position to show the well posedness of system (3.5). For this

we define the mesh parameter

h0(h) =
4C0C2C3C4

ν2
| log h|1/2h‖f‖0.

Theorem 3.2 (Existence and uniqueness). For each h > 0 such that

0 < h0 ≤ 1/2,(3.11)

system (3.5) admits a solution (uh, ph) ∈ (Xh,Mh). Moreover, if the viscosity

ν > 0, the body force f ∈ Y , and the mesh size h > 0 satisfy

1− 4C1C1C2

ν2
‖f‖0 > 0,(3.12)

then the solution (uh, ph) ∈ (Xh,Mh) is unique. Furthermore, it satisfies

‖uh‖1 ≤ 2C0C2

ν
‖f‖0, ‖ph‖0 ≤ 2β−1

3 C0C2‖f‖0
(

1 +
2C0C1C2‖f‖0

ν2

)

.(3.13)

Proof. For fixed f ∈ Y , we introduce the set

BM =

{

(vh, qh) ∈ (Xh,Mh) : ‖uh‖1 ≤ 2C0C2

ν
‖f‖0,

‖ph‖0 ≤ 2C0C2

β3
‖f‖0

(

1 +
2C0C1C2‖f‖0

ν2

)}

.

The mapping Th : (Xh,Mh) → (Xh,Mh) is defined by

Th(ṽh, ph) = (uh, ph)

such that

Ch((Thṽh, ph), (vh, qh)) + b(ṽh;Thṽh,Γhvh) = (f,Γhvh), (vh, qh) ∈ (Xh,Mh).

(3.14)

Then, substituting (vh, qh) = (uh, ph) ∈ (Xh,Mh) into (3.14) and using (2.7), we
see that

Ch((uh, ph), (uh, ph)) + b(ṽh;uh,Γhuh − uh) = (f,Γhuh).(3.15)

Obviously,

|Ch((uh, ph), (uh, ph))| ≥ ν‖uh‖21.(3.16)

Nothing that

‖φh‖L∞ ≤ C4| log h|1/2‖φh‖1,(3.17)
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and using the Cauchy-Schwartz inequality, we have

|b(ṽh;uh,Γhuh − uh)| ≤
(

‖ṽh‖L∞‖uh‖1 +
√
3

3
‖ṽh‖1‖uh‖L∞

)

‖Γhuh − uh‖0

≤ 2C3C4| log h|1/2h‖ṽh‖1‖uh‖21

≤ 4C0C2C3C4

ν
| log h|1/2h‖f‖0‖uh‖21

≤ νh0‖uh‖21,(3.18)

|(f,Γhuh)| ≤ ‖f‖0‖Γhuh‖0 ≤ C0C2‖f‖0‖uh‖1.(3.19)

Thus we see that

ν (1− h0) ‖uh‖1 ≤ C0C2‖f‖0.(3.20)

By a direct computation,

‖uh‖1 ≤
2C0C2

ν
‖f‖0.(3.21)

Now, we deduce from (3.10), and the same approach as for (3.18) and (3.19)
that

‖uh‖1 + ‖ph‖0 ≤ β−1
3 sup

(vh,qh)∈(Xh,Mh)

Ch((uh, ph), (vh, qh))
‖vh‖1 + ‖qh‖0

≤ β−1
3 (νh0‖uh‖1 + C1‖ṽh‖1‖uh‖1 + C0C2‖f‖0)

≤ 2β−1
3 C0C2‖f‖0

(

1 +
2C0C1C2‖f‖0

ν2

)

.(3.22)

Since the mapping Th is well defined, there exists a solution to system (3.5) by
Brouwer’s fixed point theorem.

To prove uniqueness, assume that (u1, p1) and (u2, p2) are two solutions to (3.5).
Then we see that

Ch((u1 − u2, p1 − p2), (vh, qh)) + b(u1 − u2;u1,Γhvh) + b(u2;u1 − u2,Γhvh) = 0.

(3.23)

Using the same approach as for (3.18) and (2.8) and setting (vh, qh) = (u1−u2, p1−
p2) = (e, η), we see that

ν‖e‖21 +G(η, η) ≤C1‖u1‖1‖e‖21 + 2νh0‖e‖21

≤
(

2C0C1C2

ν
‖f‖0 + 2νh0

)

‖e‖21

≤4C0C1C2

ν
‖f‖0‖e‖21,(3.24)

with 4C3C4| log h|1/2h ≤ C1. Then it follows that

0 ≤ ν

(

1− 4C0C1C2

ν2
‖f‖0

)

‖e‖21 ≤ 0.(3.25)

Thus u1 = u2. Next, applying (3.10) to (3.23) yields that p1 = p2. Therefore, it
follows that (3.5) has a unique solution. #

We state the error estimates for the finite volume method for the three-dimensional
stationary Navier-Stokes equations. A similar proof can be given as in the R2 case
[21].
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Theorem 3.3 (Convergence). Let (u, p) ∈ (X,M) and (uh, ph) ∈ (Xh,Mh)
be the solution of (2.10) and (3.5), respectively. Then it holds

‖u− uh‖1 + ‖p− ph‖0 ≤ Ch(‖u‖2 + ‖p‖1 + ‖f‖0),(3.26)

‖u− uh‖0 ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖1).(3.27)

4. Superconvergence by L2-Projection

In this section, the main results are shown about the stabilized finite volume
method for the stationary Navier-Stokes equations by using the L2-projection. The
optimal L2- and H1-norm error estimates are obtained for the velocity and the
optimal L2-error estimate is derived for the pressure.

The postprocessing technique introduced by Wang and Ye [24] is to project the
finite volume solution to another finite element space with a different mesh. The
difference in the two mesh sizes can be used to achieve superconvergence after the
postprocessing procedure.

Let τi, i = 1, 2, be another two finite element partitions with mesh sizes τi,
respectively, where h << τi (i = 1, 2). Assume that τi and h have the following
relation:

τi = hαi , i = 1, 2,

where α1, α2 ∈ (0, 1). The parameters αi will play an important role later in achiev-
ing superconvergence for the stabilized finite volume approximation (uh, ph). Let
Xτ1 and Mτ2 be any two finite element spaces consisting of piecewise polynomials
of degree s and t, respectively, associated with the partitions τ1 and τ2.

Next, we introduce the notation of L2-projections. Let Qτ1 :
(

L2(Ω)
)2→Xτ1 and

Qτ2 : L2(Ω)→Mτ2 be defined by

(Qτ1u, vh) = (u, vh) ∀u ∈
(

L2(Ω)
)2
, vh ∈ Xτ1 ,(4.1)

(Qτ2p, qh) = (p, qh) ∀p ∈ L2(Ω), qh ∈Mτ2 .(4.2)

We will provide error estimates for u − Qτ1uh and p − Qτ2ph in the following
theorems.

In order to analyze the bound of u − Qτ1uh, the dual problem to consider for
the stationary Navier-Stokes equations is to seek (Φ,Ψ) ∈ X×M such that for any
φ ∈ Y

B((v, q); (Φ,Ψ)) + b(v;u,Φ) + b(u; v,Φ) = (v,Qτ1φ),(4.3)

whose solution satisfies the regularity

‖Φ‖2 + ‖Ψ‖1 ≤ C‖Qτ1φ‖0.(4.4)

The L2-norm error estimate for the velocity of the finite volume approximation
of the stationary Navier-Stokes equations is more difficult than that of the finite
element method since a complicated trilinear term is involved and the test func-
tion and the trial function are defined in different finite dimensional spaces with
different meshes. Below an additional duality argument is applied to analyze the
L2-norm estimate for the velocity under the Petrov-Galerkin system. Moreover,
noting that the postprocessed solution of the velocity and pressure are separately
derived without using the so-called inf-sup condition.

Theorem 4.1. Under the assumptions of Theorems 3.2 and 3.3, if τ1, h, and
α1 are taken as

τ1 = O(hα1 ) with α1 =
2

s+ 1
,
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then the postprocessed solution Qτ1uh satisfies the following error estimates:

‖u−Qτ1uh‖i ≤ Ch
2

1+θi (‖u‖s+1 + ‖p‖1 + ‖f‖1), i = 0, 1,(4.5)

with θi given by

θi =
i

1 + s− i
.

Proof. Multiplying equation (2.1) by Γhvh ∈ X̃h and integrating over the dual

elements K̃ ∈ K̃h, multiplying (2.2) by qh ∈ Mh and integrating over the finite
elements K ∈ Kh, and using (3.5), we see that

A(u − uh,Γhvh) +D(Γhvh, p− ph) + d(u − uh, qh) +G(p− ph, qh)

+b(u− uh;u,Γhvh) + b(u;u− uh,Γhvh)− b(u− uh;u− uh,Γhvh) = G(p, qh).

(4.6)

Substituting (vh, qh) = (Φh,Ψh) into (4.6) and using (4.3) with (v, q) = (Φ,Ψ), we
find that

(e,Qτ1φ) =a(e,Φ− Φh)− d(Φ− Φh, η) + d(e,Ψ−Ψh)−G(η,Ψh) +G(p,Ψh)

+ a(e,Φh)−A(e,Γh) + d(Φh, η)−D(Γh, η)

+ b(e;u,Φ− ΓhΦh) + b(u; e,Φ− IhΦ)− b(e; e,ΓhΦh).(4.7)

Due to the definition of the L2-projection Qτ1 , the Cauchy-Schwartz inequality, and
the property of the finite element approximation, we have

(e,Qτ1φ) = (Qτ1e, φ),(4.8)

|a(e,Φ− Φh)− d(Φ− Φh, η) + d(e,Ψ− Ψh)−G(η,Ψh) +G(p,Ψh)|
≤C(‖e‖1 + ‖η‖0)(‖Φ− Φh‖0 + ‖Ψ−Ψh‖0 + ‖Ψh −ΠjΨh‖0)
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)(‖Φ‖2 + ‖Ψ‖1)
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Qτ1φ‖0
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖φ‖0,(4.9)

|b(e;u,Φ− ΓhΦ) + b(u; e,Φ− ΓhΦ)|
≤C‖e‖1‖u‖2‖Φ− ΓhΦh‖0
≤C‖e‖1‖u‖2(‖Φ− Φh‖0 + ‖Φh − ΓhΦh‖0)
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Φ‖2
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Qτ1φ‖0
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖φ‖0.(4.10)

Also, noting that

‖φh‖L4 ≤
√
2‖φh‖3/40 ‖φh‖1/41(4.11)

and using the Cauchy-Schwartz inequality and the inverse inequality, it follows that
[21]

b(e; e,ΓhΦh) =|b(e; e,Φ− ΓhΦ) + b(e; e,Φ)|
≤C‖e‖L4‖∇e‖0‖Φ− ΓhΦ‖L4 + c0‖e‖1‖e‖1‖Φ‖1
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Φ‖2
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Qτ1φ‖0
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖φ‖0.(4.12)
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In addition, we deduce from (2.1) and (3.3) that

|a(e,Φh)−A(e,ΓhΦh) + d(Φh, η)−D(ΓhΦh, η)|
=|(f − (u · ∇)u −Πj(f − (u · ∇)u),Φh − ΓhΦh)|
≤Ch2‖f‖1‖Qτ1φ‖1 ≤ Ch2‖f‖1‖φ‖0.(4.13)

Combining (4.8)–(4.13) with (4.7), we obtain

‖Qτ1e‖0 ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖1).(4.14)

The gradient term can be estimated by the inverse inequality as follows:

‖∇τ1(Qτ1e)‖0 ≤ Cτ−1
1 ‖Qτ1e‖0 ≤ Cτ−1

1 h2(‖u‖2 + ‖p‖1 + ‖f‖1).(4.15)

The definition of Qτ1 gives

‖u−Qτ1u‖0 + τ1‖u−Qτ1u‖1 ≤ Cτs+1
1 ‖u‖s+1,(4.16)

which, together with (4.15), yields (4.5). #
In order to analyze the error p−Qτ2ph in the L2-norm, the same duality argument

as for Theorem 4.1 is used: For some given ψ ∈ L2(Ω), we define

B((v, q); (ω, ξ)) + b(v;u, ω) + b(u; v, ω) = (q,Qτ2ψ),(4.17)

for all (v, q) ∈ X ×M . It satisfies the regularity

‖ω‖2 + ‖ξ‖1 ≤ C‖Qτ2ψ‖1.(4.18)

Then a similar result can be derived for the pressure component.
Theorem 4.2. Assume that τ2, h, and α2 are taken as

τ2 = O(hα2) with α2 =
2

t+ 2
,

then the postprocessed solution Qτ2ph satisfies the following error estimate:

‖p−Qτ2ph‖0 ≤ Ch
2(t+1)
t+2 (‖u‖2 + ‖p‖t+1 + ‖f‖1).(4.19)

Proof. Subtracting (4.6) from (4.17) by taking (v, q) = (e, η) in (4.17) and
(v, q) = (Ihω, Jhξ) in (4.6), we obtain

(η,Qτ2ψ) =B((e, η); (ω − ωh, ξ − ξh)) + b(e;u, ω − Γhωh) + b(u; e, ω − Γhωh)

+ a(u, ωh)−A(u,Γhωh)− d(ωh, p)−D(Γhωh, p)

+ b(e; e, ωh − Γhωh)− b(e; e, ωh) +G(p, ξh).(4.20)

Similar to the proof in Theorem 4.1, we have

(η,Qτ2ψ) =(Qτ2η, ψ),(4.21)

B((e, η); (ω − ωh, ξ − ξh)) ≤C(‖e‖1 + ‖η‖0)(‖ω − ωh‖1 + ‖ξ − ξh‖0)
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)(‖ω‖2 + ‖ξ‖1)
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Qτ2ψ‖1
≤Ch2τ−1

2 (‖u‖2 + ‖p‖1 + ‖f‖0)‖ψ‖0,(4.22)

|G(p, ξh)| =G(p, ξh − ξ) +G(p, ξ)

≤C‖p−Πjp‖0(‖ξh − ξ‖0 + ‖ξ −Πjξ‖0)
≤Ch2‖p‖1‖ξ‖1 ≤ Ch2‖p‖1‖Qτ2ψ‖1
≤Ch2τ−1

2 ‖p‖1‖ψ‖0.(4.23)
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As for the trilinear terms, it follows by the same approach as for (4.12) that

|b(e;u, ω − Γhωh) + b(u; e, ω − Γhωh)|
≤C‖e‖1‖u‖2‖ω − Γhωh‖0
≤C‖e‖1‖u‖2(‖ω − ωh‖0 + ‖ωh − Γhωh‖0)
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖ω‖2
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Qτ2ψ‖1
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)τ−1

2 ‖ψ‖0,(4.24)

b(e; e,Γhωh)

=|b(e; e, ωh − Γhωh) + b(e; e, ωh)|
≤C‖e‖L4‖∇e‖0‖ω − Γhωh‖L4 + c‖e‖1‖e‖1‖ωh‖1
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖ω‖2
≤Ch2(‖u‖2 + ‖p‖1 + ‖f‖0)‖Qτ1ψ‖1
≤Cτ−1

2 h2(‖u‖2 + ‖p‖1 + ‖f‖0)‖ψ‖0.(4.25)

Similarly,

|a(u, ωh)−A(u,Γhωh)− d(ωh, p)−D(Γhωh, p)|
=|(f − (u · ∇)u −Πj(f − (u · ∇)u), ωh − Γhωh)|
≤Ch2‖f‖1‖Qτ1ψ‖1 ≤ Ch2‖f‖1‖ψ‖0.(4.26)

The definition of Qτ2 gives

‖p−Qτ2p‖ ≤ Cτ t+1
2 ‖p‖t+1.(4.27)

Finally, combing (4.21)–(4.27) with (4.20) yields the desired result. #
Observed from Theorems 4.1 and 4.2, there is a superconvergence result for

the velocity in the H1-norm if s ≥ 2 and one for the pressure in the L2-norm in
the case t ≥ 1. However, no improvement can be made for the velocity in the
L2-norm. Furthermore, the postprocessed solutions of the stabilized finite volume
method provided in Theorems 4.1 and 4.2 achieve the same supconvergence results
as the stabilized finite element method in the R2 case [20] for the three-dimensional
Navier-Stokes equations studied in the present paper.
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