
INTERNATIONAL JOURNAL OF c© 2012 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 9, Number 2, Pages 401–409

VECTOR-MATRIX MULTIPLICATION IN TERNARY OPTICAL

COMPUTER

YI JIN, XIAN-CHAO WANG, JUN-JIE PENG, MEI LI, ZHANG-YI SHEN, AND SHAN
OU-YANG

Abstract. This paper proposes a new means to complete the optical vector-matrix multiplication
(OVMM). The OVMM is implemented on a novel optical computing architecture, ternary optical
computer (TOC) by using modified signed-digit (MSD) number system. In addition, this study
realizes optical addition in three steps, independent of the length of the operands, by four trans-
formations in MSD, and discuses the multiplication of two MSD numbers in detail. A preliminary
experimentation about the OVMM is performed on TOC. It illustrates that the proposed method
for OVMM is feasible and correct.
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1. Introduction

Optical vector-matrix multiplication (OVMM) was proposed by Lee et al. in
1970[1]. Since then, many optical means have been put forward to implement
OVMM[2-23]. However, most of them are analog computing systems only using
light intensity, so their apparatus and experimental conditions are very sensitive to
noise. In order to improve the accuracy, some algorithms and technologies were
applied to OVMM, such as digital multiplication by analog convolution[7, 12],
twos complement arithmetic[7, 11], error-correcting codes [6, 9], time-and-space
integrating[12, 23], and digital partitioning[9]. In 2009, Li et al realized binary
OVMM in ternary optical computer(TOC)[22]. However, Li’s work was short of
application because every element in the matrix and vector was only one bit.

On the other hand, numerical redundant representations have been used in no-
carry addition or other arithmetic operations in the past several decades. It is most
worth to mention that in those redundant representations, the modified signed-digit
(MSD) number system is often used in optical computing[24, 25, 26]. The MSD,
using three digits, -1, 0, and 1 with radix-2, has been proved to be well suited for
realizing no-carry addition and other arithmetic operations. In the number system,
the carry propagation occurs only between the neighboring positions in the addition
operation and the results can be obtained through three logical steps by four logic
operations. Therefore MSD is a parallel computing means. This paper will propose
a method for immplementing OVMM via MSD number system in TOC.

The remainder is organized as follows. Section 2 discusses the main technological
foundations. Section 3 is the theory of the proposed method. Section 4 gives an
experiment to verify the method. And the last section is a summary.
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Figure 1. Architecture of the optical part in TOC.

2. Foundations

2.1. Optical Core of TOC Experimental System. The principle and archi-
tecture of TOC was proposed by Jin[28, 29]. In TOC, three steady states of light, no
intensity light (NIL), horizontal polarization light (HPL) and vertical polarization
light (VPL), are used to represent tri-valued information. In 2007 an experimental
TOC system was built in Shanghai University. In the experimental system there is
an optical core made up of a light source, 5 pieces of vertical polarizer (VP1, VP2,
VP3, VP4 and VP5), 2 pieces of horizontal polarizer (HP1 and HP2), 3 monochro-
matic liquid crystal arrays (L1, L2 and L3) and 1 photoreceptor array (D), shown in
Figure 1. The core can be divided functionally into four components,a light source
(S) , an encoder (E, including VP1, L1, VP2 and L2), a processor (O, containing
VP3, HP1, L3, VP4, HP2, VP5 and L3), and a decoder (D).

The optical processor (O) has four partitions from top to down, which are called
respectively VV, VH, HV, and HH, shown in Figure 1. Each partition has the same
structure: two pieces of polarizer holding a liquid crystal array in between, seeming
like a sandwich. If the partition has a vertical polarizer in the front and a horizontal
one in the back, it is called a VH partition. Other namings of the partitions follow
similar rules.

2.2. Decrease-Radix Design Principle. In 2007, reference[30] proposed the

decrease-radix design principle (DRDP). With this principle, each of nn2

n-valued
arithmetic unit without carry or borrow can be constructed by combining several
simplest hardware units if there exists a special one (it is called D state in our
work) included in the n physical states used to represent information. The sort of
the simplest hardware units is n2 (n− 1), and they are called the basic operating-
units(BOUs).

Applying the DRDP to TOC, we can get the results as follows:

• Any two-input tri-valued logic processor can be reconfigured by no more
than 6 BOUs at any moment. And the total of the two-input tri-valued
logic processors is 19683.

• There are 18 kinds of BOUs in total.
• Each BOU is made of a liquid crystal pixel and a piece of polarizer on each
side of it(see “O” in Figure 1).
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2.3. MSD Addition. MSD was proposed by Avizienis in 1961[27], and was first
used on optical computing by Draker in 1986. A number x can be represented in
MSD by the following equation:

(1) x =
∑

i

xi2
i, xi ∈ {1, 0, 1},

where 1 denotes -1. In this paper, only MSD integer arithmetic operations are
discussed. A number has several expression forms in MSD. For example,
(4)10 = (100)2 or MSD = (1100)MSD = (11100)MSD,
and
(−4)10 = (1100)MSD = (11100)MSD.

From the example, we can know that MSD is a number system with redundancy.
The redundancy provides the possibility of no-carry addition in MSD. No-carry ad-
dition can be implemented by using four logical operations, called T, W, T′, and
W′ transformations, whose truth tables are shown in Table 1. The MSD addition
can be explained by an example as follows.

T 1 0 1 W 1 0 1 T´ 1 0 1 W´ 1 0 1

1 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1
1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0

TABLE 1. Truth tables of four transformations used in MSD addition.

Assume two MSD numbers x and y, x = 110110, y = 10010000.

Step 1: Carry out logical operations T and W on x and y, and obtain their
results, t and w, in parallel.
By T, t = 10110110φ.
By W, w = φ10100110.
Where φ is a padded zero.

Step 2: Carry out logical operations T′ and W′ on t and w, and obtain their
results, t′ and w′, in parallel.
By T′, t′ = 000100100φ.
By W′, w′ = φ111001010.

Step 3: Carry out logical operation T on t′ and w′, and obtain the final sum
s of x and y.
s = 0110000010.

From the example, we can find that the no-carry addition can be implemented
by four transformations in three logic steps which are independent of the length of
operands. And the four kinds of logical operation units can be reconfigured by a
large number of BOUs in TOC at any moment by DRDP. So the no-carry addition
can be implemented by hardware in TOC.

2.4. MSD Multiplication. If a = an−1 . . . a1a0 and b = bn−1 . . . b1b0, their prod-
uct p is governed by the following equation:

(2) p = ab =

n−1
∑

i=0

pi2
i =

n−1
∑

i=0

abi2
i

It is clear that if bi is 0, pi is also 0; if bi is 1, pi is a; and if bi is 1, pi is -a. So
all pi(i = 0, . . . , n − 1) can be written out immediately from ai and bi in parallel
by using a transformation. This transformation is also a tri-valued logic operation
and marked with M. And then, the multiplication will be completed by adding
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up all abi2
i(i = 0, . . . , n − 1). Thus the multiplication will be implemented in

parallel by hardware of TOC because all additions can be achieved by using the
MSD additions in Section 2.3. An example is used to describe the operating process.

M 1 0 1

1 1 0 1
0 0 0 0
1 1 0 1

TABLE 2. Truth tables of M transformation.

Assume a = (14)10 = (1110)MSD, b = (9)10 = (1011)MSD then

p = ab =
∑

i

pi2
i =

∑

i

abi2
i = (1110)MSD × (1011)MSD

= (1110)MSD × 1 + (1110)MSD × 1φ+ (1110)MSD × 0φφ+ (1110)MSD × 1φφφ

= 1110 + 1110φ+ 0φφ+ 1110φφφ.

Where the padded φs indicate (× 2i). In other words,

p = ab =
∑

i

pi2
i =

∑

i

abi2
i

= (p0 × 20 + p1 × 21) + (p2 × 22 + p3 × 23)

= (1110 + 1110φ) + (0φφ + 1110φφφ).

And then, the additions in two brackets can be completed via MSD means in
parallel. After this, the last addition will be also completed by MSD addition.
Because the TOC has a large number of data-bits, all sums ( pi2

i + pi+12
i+1) can

be completed in different regions of data-bits of optical processor in one machine
instruction.

3. MSD Vector-Matrix Multiplication

If α is a 1×N row vector and β is a N × N matrix , their product ψ is also a
row vector and expressed as follows:

(3) ψ = αβ = (ψ1, ψ2, . . . , ψN ) = (

N
∑

i=1

αiβi1,

N
∑

i=1

αiβi2, . . . ,

N
∑

i=1

αiβiN ).

Obviously, from (3), all products αiβij(i, j = 1, . . . , N) can be computed with the
MSD multiplication and adding them up can be achieved with the MSD addition.
Therefore the vector-matrix multiplication can be completed via a MSD means.
The process of computing one of the vector-inner-products (VIPs) is shown in
Figure 2. In Figure 2, ψi

j,k is the jth partial sum of Step i in computing the VIP

ψk(k = 1, . . . , N). And q in Figure 2 is the maximum step-order in computing
partial sums. It is easy to understand that q is equal to log2N − 1 or the greatest
integer which is less than log2N . The broken-line boxes are padded 0 when the
total of partial sums is odd in each step of computing the next-step partial sums.

From the Figure 2, it can be seen that it is uncorrelated to compute all partial
sums in each step. Therefore, all partial sums in the same step can be computed in
parallel on a supercomputer or an optical computer. On the other hand, the TOC
experimental system has three hundred data-bits and next-generation TOC system
will have thousands of data-bits. Consequently, all partial sums in a computing
step can be computed in parallel for normal task by utilizing these data-bits of
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Figure 2. The process of computing a VIP, that is, the element
ψk of vector-matrix product.

TOC. So the vector-matrix multiplication can be completed in ⌈log2N⌉ steps if all
the αiβij(i, j = 1, . . . , N) are available.

4. Details of Implementing OVMM on TOC and the Experimental Re-

sults

The technique of computing a vector-matrix multiplication by TOC can be de-
scribed through an experiment as follows. In the experiment the vector α and
matrix M are as follows:

α =
(

α1 α2

)

=
(

3 1
)

10
=

(

11 11
)

MSD
,

β =

(

β11 β12
β21 β22

)

=

(

−1 2
−2 −3

)

10

=

(

11 10
10 11

)

MSD

,

and

ψ = αβ =
(

11 11
)

MSD
×

(

11 10
10 11

)

MSD

.

The process of computing all the VIPs can be divided into two sequential parts.
The former one computes all products of αiβij and the latter one computes all VIPs
ψj(j = 1, 2) from the products.

4.1. Computing the Products of αi and βij in TOC. In the experiment there
are four products of αi and βij , that is, α1β11, α2β21, α1β12, and α2β22. As αi

and βij(i, j = 1, 2) are two bits, each product needs two 4-bit M. In other words,
eight 4-bit M units are needed in total. Because the TOC has enough data-bits,
the eight 4-bit M units will be structured in different areas of the optical processor
in TOC(see Section 2.1). After all data being input, the eight 4-bit M units will
be completed in one operation clock. Therefore, it is a parallel computing which is
very different from electric computer.

Following M transformation, MSD addition is activated to compute the products
of αi and βij . For each βij being two bits, each product only needs one addition.
Consequently, independent four additions will be needed. And each addition se-
quentially needs a 4-bit T and a 4-bit W, a 4-bit T′ and a 4-bit W′, and a 4-bit
T. In other words, computing all products successively needs four 4-bit T and four
4-bit W, four 4-bit T′ and four 4-bit W′, and four 4-bit T. These additions can
be achieved in different areas of the optical processor of TOC in parallel in three
operation clocks. The concrete steps taken to compute these products are as follows.



406 Y. JIN, X. WANG, J. PENG, M. LI, Z. Y. SHEN, AND S. OUYANG

Figure 3. Output of optical processor in each step taken to com-
pute the products of corresponding elements. To observe,real-line
boxes mark the BOUs used by the first bit in each part, broken-line
boxes mark the BOUs which light can pass through(LPBOU), and
each BOU consists of 16 neighboring pixels. If the LPBOU is in
VV or HV, the output is VPL which denotes 1; if the LPBOU is
in VH or HH, the output is HPL which denotes 1 ; if there is no
LPBOU, the output is NIL which denotes 0.

Step 1: In the O, construct eight 4-bit M units. Input the operands to cor-
responding M units. Run these M units on the optical processor. Get the
output from the O. They are displayed in Figure 3(a). The results of the
M units are 0011, 0110, 0000, 0110, 0000, 0110, 0011, and 0110. Store the
results into registers and recover data bits used by these M units.

Step 2: In the O, construct four 4-bit T units and four 4-bit W units. Input
the results of Step 1 to corresponding T and W units. Run these T and
W units on the optical processor. Get the outputs from the O. They are
displayed in Figure 3(b). The four group results of T are 0101,0110, 0110
and 0101, and those of W are 0101, 0110, 0110 and 0101.

According to the MSD addition, each group results of T transformation
need padding one zero as its least significant bit. We get 01010, 01100,
01100, and 01010 after padding zeros. And the new results are 1010, 1100,
1100, and 1010 after the frontal zero of each group being canceled. Store
the results into registers and recover the data bits used by these T and W
units.

Step 3: In the O, construct four 4-bit T′ units and four 4-bit W′ units. Input
the results of Step 2 to corresponding T′ and W′ units. Run these T′ and
W′ units on the optical processor. Get the outputs from the O. They are
displayed in Figure 3(c). The results of T′ are 0000, 0100, 0000 and 0000,
and those of W′ are 1111, 1010, 1010 and 1111. Similarly, the results of T′
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are altered into 0000, 1000, 0000, and 0000. Store the results into registers
and recover data bits used by these T′ and W′ units.

Step 4: In the O, construct four 4-bit T units. Input the results of Step 3 to
corresponding T units. Run these T units on the optical processor. Get the
outputs from the O. They are displayed in Figure 3(d). The results of T
are 1111, 0010, 1010 and 1111. Store the results into registers and recover
the data bits used by these T units.

Now, all products of αi and βij have been computed in four steps. They are,
respectively, as follows:

α1β11 = (1111)MSD = (−3)10, α2β21 = (0010)MSD = (−2)10,

α1β12 = (1010)MSD = (6)10, α2β22 = (1111)MSD = (−3)10.

4.2. Computing the VIPs in TOC. According to Section 3, there are two VIPs,
ψ1 and ψ2, to be computed in the experiment. And

ψ1 = α1β11 + α2β21, ψ2 = α1β12 + α2β22.

Therefore, independent two MSD additions will be conducted in the O. The steps
are given as follows.

Step 5: For each addition, construct a 4-bit T unit and a 4-bit W unit. Input
the products of Step 4 to corresponding T and W units. Run these T and
W units on the optical processor. Get the outputs from the O. They are
shown in Figure 4(a). The results of T and W are 1101, 0101 and 1101,
0101, respectively. After being padded with zeros, the results are 11010,
01010 and 01101, 00101. Store the results into registers and recover the
data bits used by these T and W units.

Step 6: For each addition, construct a 5-bit T′ unit and a 5-bit W′ unit.
Input the results of Step 5 to corresponding T′ and W′ units. Run these T′

and W′ units on the optical processor. Get the outputs from the O. They
are shown in Figure 4(b). The results of T′ and W′ are 01000, 00000 and
10111, 01111, respectively. Store the results into registers and recover data
bits used by these T′ and W′ units.

Step 7: For each addition, construct a 5-bit T unit. Input the results of Step
6 to corresponding T units. Run these T units on the optical processor.
The final outputs of O are displayed in Figure 4(c).

(a) T and W transromation (b) T′ and W′ transromation (c) The two VIPs

Figure 4. Outputs of optical processor in each step taken to com-
pute VIPs from the products of corresponding elements.

From the last outputs of O, the results are 00111, 01111. That is

ψ = αβ = (ψ1 ψ2) = (00111 01111)MSD = (−5 3)10.
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The experiment demonstrates the feasibility and correctness of the proposed
OVMM on TOC.

5. Conclusions

This paper has implemented a method for OVMM by five transformations—T,
W, T′, W′ and M—in MSD number system on TOC experiment platform. In the
OVMM, seven steps are needed to compute a 1× 2 row vector and a 2× 2 matrix
whose elements are all 2 bits. The OVMM has two obvious advantages as follows:

• It obtains the partial sums and VIPs in parallel.
• It is easily expanded to thousands of bits.

The operating speed isn’t discussed in detail because of the limitation of ex-
perimental condition. At the same time, the utilization of hardware is also not
considered here.
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