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HYBRID ALGORITHM BASED PARALLEL SOLUTION TO

ELECTROMAGNETIC SCATTERING FOR ARBITRARY

SHAPED CAVITIES
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Abstract. The Radar Cross Section (RCS) prediction for cavities is significant to measure a
target’s radar detection ability. For electrically large, deep, arbitrary shaped cavities, this paper

presents a hybrid algorithm based parallel solution using Message Passing Interface on distributed
memory computers. The meaning of ‘Hybrid’ here is threefold. First, the RCS for cavities is

modeled and calculated with a hybrid algorithm of IPO (Iterative Physical Optics), FMM (Fast

Multipole Method) and Generalized Reciprocit Integral (GRI) combined by a cascading segmen-
tation technique. Second, a hybrid approach is applied to the two phases of parallelization. On

phase of geometrical preprocessing, all parallel processes assume a whole workload to construct the

cavity geometry independently. On the other phase of electromagnetic computing, the workload
is distributed by domain decomposition. Third, the decomposition scheme is hybrid as facets are

decomposed to compute near-field interation while angle samples are used to distribute far-field

interaction. The superposition of electromagnetic measures and permutability of math vector
operations are fully exploited to do partial computation in order to minimize the communication

overhead. The hybrid parallel solution can achieve very good tradeoff between memory and time.

It yields a good load balance while still keeping the parallel code pretty concise. Numerical results
show near-linear scalability and over 90% parallel efficiency.

Key words. Radar Cross Section, Cavity, Parallel, Iterative Physical Optics, Fast Multipole

Method, Hybrid algorithm.

1. Introduction

As a measure of the detection ability of a target in radar systems, the Radar
Cross Section (RCS) has been an important topic in electromagnetic research. The
RCS prediction for cavities is particularly important for its dominance in the tar-
get’s entire RCS. For example, the engine inlet and exhaust ducts may contribute
very significantly to the RCS of modem jet aircraft. Thanks to its significant indus-
trial and military applications, the cavity problem has attracted much attention.
A variety of methods, such as Waveguide Model Analysis, IPO (Iterative Physical
Optics) and FMM (Fast Multipole Method), have been proposed to solve the arbi-
trary shaped cavity problems [1][2][3][4]. For arbitrary shaped and electrically large
cavities, a hybrid algorithm connecting IPO, FMM and GRI (Generally Reciprocal
Integral) with Cascading Segmentation scheme was recognized to be an efficient
way to solve scattering problems. A serial implementation of the hybrid algorithm
was presented by our partners [5]. Tested experiments demonstrated its accuracy
and efficiency in comparison with model reference solutions.

However, when the number of unknowns becomes very large, say tens or hun-
dreds of thousands, it is beyond the capability of the serial version with respect
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to memory requirement or time requirement. Although FMM and its recursive
variant, the multilevel fast multipole algorithm (MLFMA), have been successfully
implemented on various parallel computers and their good performance has been
well reported [6][7][8][9][14], it is not so in the case of the hybrid algorithm for
cavities. Indeed, there have been very few attempts at parallel implementation
for analysis of RCS of cavities. In [13] a parallelization approach of the finite
element-boundary integral-multilevel fast multipole algorithm (FE-BI-MLFMA) is
presented for scattering by large and deep coated cavities loaded with obstacles.
And [11][12] introduces our preliminary work on parallelizing IPO and FMM for
straight cavities. This paper will extend the range of problems that can be solved
by the previous serial implementation and discuss the parallelization based on the
hybrid algorithm to compute RCS of any electrically large, deep and arbitrarily
shaped cavities using the Message Passing Interface (MPI) [15].

The rest of this paper is organized as follows. In Section 2 the primary compu-
tation of the serial hybrid algorithm is briefly reviewed, which provides a basis for
parallelization. In Section 3, the parallel methodology is discussed, followed by a
detailed analysis of communication, computation and storage overhead. Numerical
results are presented in Section 4 to demonstrate the effectiveness of the parallel
solution. Finally comes the summary.

2. Hybrid algorithm for RCS of cavities

To analyze the highly complex high-frequency scattering problem from electri-
cally large open cavities, IPO approach [1] was proposed by F.O.Basteiro etc. in
1995 which iteratively applies the high-frequency asymptotic principles of physi-
cal optics to account for multiple reflections inside the cavity. The IPO algorithm
has been shown as a much efficient and high accurate although numerically inten-
sive approach in analyzing electro-magnetic scattering by very large and complex
cavities. The FMM, an approximation technique which reduces the complexity
of matrix vector product of M order from O(M2) to O(M1.5), was proposed by
Rokhlin at the University of Yale in the end of 80s. It was applied by C.C. Lu,
etc. to accelerate the RCS computing of large and complex objects [7]. And FMM
could also be employed to speed up the iterative process of IPO [5]. The Segmented
approach for analyzing the electromagnetic scattering of arbitrary shaped cavities
[3] was also proposed by F. O. Basteiro etc in 1998. In this approach, the cavity
is divided into two different parts: the front section (typically smooth) and the
complex termination. The front section is subdivided into several sections, see Fig-

ure 1 for an illustration,where W+ =

[
E+

H+

]
,W− =

[
E−

H−

]
are the tangential

components of the incident and reflective electromagnetic field respectively. Each
section is analyzed independently from the rest of the cavity. Genera-lized Reci-
procity Integral (GRI), proposed by Pathak and Burkholder in 1993 [4] for cavity
with complex termination, is applied to the segmented approach to avoid retracing
back, which is quite time-consuming.

For the RCS problem of arbitrary shaped and electrically large cavities with
complex termination, a hybrid algorithm combined IPO, FMM and GRI with Cas-
cading Segmentation technique is more desirable for accuracy and efficiency than
any single method of them [5] . The computation process for the hybrid algorithm
is briefly described as follows.
Step1—Incident Field on Wall (IFW): For section k, the incident magnetic
field on the inner wall induced by electromagnetic fields (or incident wave when
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Figure 1. Cavity model with K sections split.

Figure 2. Domain decomposition of cavity facets.

k = 1) on the section’s cover is obtained using Kirchhoof approximation, formu-
lated as (1).

(1)

Hinc
k (r) =

∫
Sk

n̂k ×H+
k (r′)×∇G0(r − r̂)ds′

+
1

jkZ0
∇×

∫
Sk

E+
k (r′)× n̂k ×∇G0(r − r̂)ds′

Step2—Stable Current on Wall (SCW): For section k, an iterative solution is
applied to the magnetic field integral equation until the stable current on the inner
wall is reached using multiple reflections inside the cavity, refer to (2) where i is
the iteration counter.

(2) J iw,k(r) = 2n̂w.k ×Hinc
k (r) + 2n̂w.k ×

∫
Sw,k

J i−1
w,k (r′)×∇G0(r − r̂)ds′

Step3—Incident field on Next Cover (INC): For section k, the total electro-
magnetic fields on section k+ 1 cover, induced by the stable current from the inner
wall of section k and the electromagnetic fields from the cover of section k, are cal-
culated, using a simplified connection scheme based on Kirchhoof approximation,
see (3). Then, go to step 1 until k < K.
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(3)

H+
k+1(r) =n̂k+1 ×

(∫
Sw,k

Jw,k(r′)×∇G0(r − r̂)ds′ +
∫
Sk

n̂k ×H+
k (r′)×

∇G0(r − r̂)ds′ + 1

jkZ0
∇×

∫
Sk

E+
k (r′)× n̂k ×∇G0(r − r̂)ds′

)
× n̂k+1

E+
k+1(r) =n̂k+1 ×

(
Z0

jk
∇×

∫
Sw,k

Jw,k(r′)×∇G0(r − r̂)ds′ + Z0

jk
∇×

∫
Sk

n̂k×

H+
k (r′)×∇G0(r − r̂)ds′ −

∫
Sk

E+
k (r′)× n̂k ×∇G0(r − r̂)ds′

)
× n̂k+1

Step4—Reflective field on Last Cover (RLC): For the last section (k =
K),the reflective electromagnetic fields on its cover induced by the stable current
from its inner wall are calculated again using Kirchhoof approximation.

(4)

H−K(r) =

∫
Sw,K

Jw,K(r′)×∇G0(r − r̂)ds′

E−K(r) =
Z0

jk
∇×

∫
Sw,K

Jw,K(r′)×∇G0(r − r̂)ds′

Step5—RCS: The GRI is used to obtain the global response of the whole cavity
at the termination, refer to (5).

(5) p̂ · EsP (P ) ≈
∫
SK

(E−K ×H
+
K − E

+
K ×H

−
K) · n̂Kds

The Step3 involves interaction of currents between facets, which is the real com-
bination of IPO and FMM and actually a large scale linear equation system of
three-dimensional complex vector elements. It contributes most to the total com-
putation. The basic principle behind FMM here is to decompose the interaction,
thus the computation of matrix vector product, into two parts: near-field interac-
tion between nearby sources and far-field interaction between well separated ones.
To get such decomposition, the sources are enclosed in many group boxes with the
same size (see Figure 2 for an illustration). Sources from two groups are neighbors
only if the distance between their belonged boxes is in certain range. The near-field
interaction is directly calculated using IPO method while far-field interaction is
more divided into three stages called the aggregation phase, the translation phase
and the disaggregation phase [8]. Equation (2) can be re-formulated as (6), where
Vf ,α,Vs are called aggregation factor, translation factor and disaggregation factor
for the three stage. The factors can be calculated before the iteration for they don’t
change with the currents and incident wave.

(6)

Hfar =

∫
d2k̂Vfmj(k̂)

∑
m′∈Far

αmm′(k̂ · rmm′)
∑
i∈m′

Vsm′i(k̂)J i−1
w,k (r′)

Hnear =
∑

m∈Near

∫
Sw,k,m

J i−1
w,k (r′)×∇G0(r − r̂)ds′

J iw,k = 2n̂w,k ×Hinc
k + 2n̂w,k × (Hnear +Hfar)
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3. Hybrid approach for parallelization

The computation process described above is serial in nature. The next step will
operate on data prepared by its previous steps. For such problem, the principle
of parallelization is to decompose data domain properly and evenly so that partial
computation in each step can be done on partial data as independently as possible.
Thus keeping the integrity of data structures and their correlation is the key prob-
lem for parallelization.

The computer implementation of the hybrid algorithm models the cavity with
roughly triangular flat facets. The electric and magnetic fields are assumed con-

stant on one facet. The integral on unit sphere
∫
d2k̂ is calculated as the numerical

integral on 2L2 angle samples (L is called mode number, depending on the size of
maximum group). The discrete version of above formulae is given in Table 1.To
avoid overburden of mathematic symbols, a general ‘f ’ is used to stand for the

electromagnetic relation and ‘T ’ for geometrical or topological data, while x, y, k̂
denotes a member of wall facets Sw,k, cover facets Sk or angle samples Sa.

3.1. Full replication of geometric topology. From Table 1, it can be recog-
nized that geometric data is heavily involved in single calculation of every step.
Either all cover facets are required or all wall facets are called for. The layout of
geometric structures in parallel processes will decide the design of parallel algorithm
and its efficiency.

In the case of RCS computing, there exist two important geometrical properties
which influence the choice of storage model of geometric data. The first property,
arising from the discretization of integral equations, is that they are stationary in
time. That is, the geometry does not change with time. This property can be used
to generate a good load balancing strategy during the initialization time itself.

However, the second property is not so helpful. It refers to the fact that most
discretization procedures use basis functions with non-trivial support [16]. Such dis-
cretisations make the so called “connection matrix” non-diagonal. The connection
matrix relates the basis functions to geometric description of the object. Therefore,
any decomposition of basis functions across multiple processes will have to ensure
completeness of local data. That is, one need to make sure that if a particular ba-
sis function is assigned to a processor, all the geometric data associated with that
basis function is also available at the same processor. Note that a locally complete
decomposition may still have replication to some extent.

One way to handle this problem is to simply replicate the full geometric struc-
tures in every process. Memory for geometric data structures is O(N),where N is
the number of unknowns and a full replication has the undesirable scaling of O(NP )
where P is the total number of processes. But for cavity problems, generally rang-
ing from hundreds unknowns to a few hundreds of thousands, this approach is very
practical. For example, the memory requirement for geometric data reaches to
300MB for a case of 300 thousands of unknowns in our implementation. It is even
possible to put all geometric data in the memory of a common desktop computer.

3.2. Parallelizing electromagnetic computing. From Table 1, another two
important features can be identified. Firstly, single calculation in each step is
independently from another. Secondly, each step can be formulated as the summa-
tion of certain three dimensional complex vectors on certain facet or angle sample.
Thus, the computing process is proper for parallelizing based on the decomposition
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of facets (noted as FDP, short for Facet Distribution Paradigm) or angle samples
(noted as ADP, short for Angle sample Distribution Paradigm). ADP applies to
the far-field interaction and FDP mostly relates to the near-field contribution. The
distribution patterns of the hybrid parallel algorithm by steps is given in Table 2,
where the superscript of p denotes a subset or a partial value, a capital P denotes
the degree of parallel (in other words, the number of processes),F represents the
complex expressions same as that in Table 1,Nw and Nk stands for the maximum
order of all possible Sw,k and Sk respectively.
FDP

In real applications, the number of facets on wall is much larger than that on
cover, so wall facets Sw,k are chosen as the primary decomposition domain and
cover facets Sk as the second if necessary.

Distributing evenly the facets is to segment the total facets into sections of same
size among processes. This can be achieved by some trivial math calculations, such
as the following C++ code implemented in our software:

quotient = facet number / mpi comm size;
remainder = facet number % mpi comm size;
(my mpi rank < remainder )? my number = quotient + 1:

my number = quotient ;
(my mpi rank< remainder )? my offset = my mpi rank * quotient + my mpi rank:

my offset = my mpi rank * quotient + remainder;

Table 1. Discretized version of the serial hybrid algorithm

Step Discretized computation Required data

1 : IFW Hinc
k (x) =

∑
y∈Sk

f(H+
k (y), E+

k (y)) ∀y ∈ Sk, E+
k (y), H+

k (y)

∀y ∈ Sk, T (y)
∀x ∈ Sw,k, T (x)

2 : SCW J iw,k(x) = Jnear(x) + Jfar(x) ∀x ∈ Sw,k, J i−1
w,k (x)

Jnear(x) = f(Hinc
k (x))

+
∑

x′∈Near
f(J i−1

w,k (x′)) ∀x ∈ Sw,k, T (x)

Jfar(x) =
∑
k̂∈Sa

∑
x′∈Far

f(J i−1
w,k (x′), ∀k̂ ∈ Sα, α, Vs, Vf

α, Vs, Vf )

3 : INC H+
k+1(y) =

∑
x∈Sw,k

f(Jw,k(x)) ∀y′ ∈ Sk, E+
k (y′), H+

k (y′)

+
∑

y′∈Sk

f(H+
k (y′), E+

k (y′)) ∀x ∈ Sw,k, Jw,k(x)

E+
k+1(y) =

∑
x∈Sw,k

f(Jw,k(x)) ∀y′ ∈ Sk, T(y
′)

+
∑

y′∈Sk

f(H+
k (y′), E+

k (y′)) ∀x ∈ Sw,k, T (x), y ∈ Sk+1, T (y)

4 : RLC H−K(y) =
∑

x∈Sw,K

f(Jw,K(x)) ∀x ∈ Sw,K , Jw,K(x)

E−K(y) =
∑

x∈Sw,K

f(Jw,K(x)) ∀x ∈ Sw,K , T (x), y ∈ SK , T (y)

5 : RCS rcs =
∑

y∈SK

f(E−K(y), E+
K(y), H−K(y), ∀y ∈ SK , E+

K(y), H+
K(y), E−K(y),

H+
K(y)) H−K(y)

∀y ∈ SK , T (y)
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Another alternate is to distribute evenly the facet groups. This will speed up
the loop in computing of near-field interaction but may result load imbalance for
steps related to FDP as a result of the size dis-uniformity in groups.
ADP

Splitting the far-field interaction computing by facets groups fails in that too
complex communication would be induced by the correlativity between groups.
Fortunately, the far-field interaction can be transformed as the summation on 2L2

angle samples and computing on one sample is independent of another. Simply
splitting the angle samples into processes is invalidated by the symmetry property

Table 2. Distribution pattern of the hybrid parallel algorithm

Step
Each process

Computation Memory
Geo Whole geometric processing Full geometric data

Pre Preprocessing : Vf (∀k̂ ∈ Spa), α(∀k̂ ∈ Spa)

Vf (∀k̂ ∈ Spa), α(∀k̂ ∈ Spa) Vs(∀k̂ ∈ Spa)

Vs(∀k̂ ∈ Spa)
1 : IFW Hinc

k (∀x ∈ Spw,k) Hinc
k (∀x ∈ Spw,k)

2 : SCW Jnear(∀x ∈ Spw,k) Jnear(∀x ∈ Spw,k)

Jfar(∀x ∈ Sw,k) =
∑
k̂∈Sp

a

F Jfar(∀x ∈ Sw,k,∀k̂ ∈ Spa)

J iw,k(∀x ∈ Spw,k) = Jnear(x)+ J iw,k(∀x ∈ Sw,k)

Jfar(x, ∀k̂ ∈ Sa)

3 : INC H+
k+1(∀y ∈ Sk+1)p =

∑
x∈Sp

w,k

F +
∑

y′∈Sp
k

F E+
k+1(∀y ∈ Sk+1)

E+
k+1(∀y ∈ Sk+1)p =

∑
x∈Sp

w,k

F +
∑

y′∈Sp
k

F H+
k+1(∀y ∈ Sk+1)

4 : RLC H−K(∀y ∈ Spw,K)p =
∑

x∈Sp
w,K

F E−K(∀y ∈ SK)

E−K(y)p =
∑

x∈Sp
w,K

F H−K(∀y ∈ SK)

5 : RCS rcs =
∑

y∈SK

F rcs

Table 3. Communication overhead for the hybrid parallel algorithm

Step Communication Paradigm
Geo / /
Pre / ADP
1 : IFW / FDP
2 : SCW / FDP

/ ADP
One MPI AlltoAll and FDP
One MPI Allgather
for each iteration

3 : INC One MPI Allreduce FDP
when k < K − 1

4 : RLC / FDP
5 : RCS One MPI Reduce /
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Figure 3. Symmetry of angle samples.

Figure 4. Similar angle regions assigned to the same process.

associated with translation factors [17]. This symmetry will reduce the computing
and storage of the large and complex translation factor matrix up to one eighth,
which can lead to quite significant savings. Other seven eighth translation factors
would be obtained on the fly by mapping to their counterparts through symmetry.
Studying the formula of translation factor, 8 samples coming from 8 regions are
revealed to be related to the symmetry, refer to Figure 3.

The decomposition of angle samples has to assign the eight symmetric partic-
ipants to the same process. One straight way is to first allocate one region (noted
as seed region) of the angle sample domain, say {θ = [0, π/2), φ = [0, π/2)},into
each process then to allocate corresponding symmetric parts in the other seven
regions into the same process as their seed, as demonstrated in Figure 4.One note
remarkable is that the integral sampling [0, . . . 2L− 1) with increment of π/L on φ
may lead to its symmetry mapping being across the region boundary. So sampling
on φ will shift to fractional values such as [0.5, . . . 2L− 0.5).The relative difference
of RCS with fractional sampling is less than 0.01% RCS with integral sampling in
experimental results.

3.3. Analysis of the parallel algorithm. Any parallel algorithm needs a model
of communication, a model of computation, and a model of storage. Below an ap-
proximate measure to the three aspects for the parallel algorithm proposed is given.
Computation

Suppose FDP and ADP distribute evenly computations on facets and angle sam-
ples. The computation time for serial version can be formulated approximately as
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follows:

(7) T1 = Tgeo + Tpre +Niwa (K(T1 +NiT2 + T3) + T4 + T5)

where Niwa is the number of incident wave angles for which RCS need to be com-
puted, and Ni is the iteration number to obtain stable current on wall. The hybrid
parallel algorithm induces no computation overhead besides that directly concern-
ing communication. The computation time with P parallel degree may be approx-
imated as:

(8)

Tp = Tgeo +
Tpre
P

+Niwa

(
K

(
T1

P
+Ni(

T2

P
+ Tc2) +

T3

P
+ Tc3

)
+
T4

P
+ T5 + Tc5

)
The parallel efficiency is:

(9) Ep =
T1

TpP
=

ts + tp
(ts + tp/P + tc)P

≈ 1

1 + (tc/tp)P

where ts is the time for the serial part,tp for the parallelized part and tc for com-
munication.

The time complexity for each step can be roughly measured as the number of
float operations parameterized with some physical conditions. In our implementa-
tion ,Tgeo,T5,T4 are evaluated to be the relatively small ones. Experimental results
also show that Tgeo and T5 hold really small ratio in all ‘T ’s (less than 0.05%, refer
to next section). It’s reasonable to ignore the ts.When the number of incident an-
gles to be analyzed and the number of unknowns get larger, the Tpre,T4,Tc5 would
become insignificant, thus:

(10)
tc
tp
≈ Niwa (K(NiTc2 + Tc3) + Tc5)

Tpre/P +Niwa (K(T1/P +NiT2/P + T3/P ) + T4/P )
>

NiTc2 + Tc3
NiT2/P + T3/P

For the pretty large scale problems, the parallel efficiency can be approximated as:

(11) Ep ≈
1

1 + Tc2/T2

It is obvious that the performance of MPI collective communication MPI Alltoall
and MPI Allgather is determining to the parallel efficiency. In practice, it’s not un-
common to yield a parallel efficiency over 95%.

Above analysis is on the presumption of the perfect distribution by FDP and
ADP. In cur-rent implementation, FDP works well but ADP allocates workload not
always equably. More discussions on ADP will present on next section.
Memory

The memory consumption comprises memory for geometric data Mg and mem-
ory for electromagnetic data Mg, Let Nwgt,Nwkt,Nkt,NSN ,NSa be the number of all
wall facet groups, all wall facets, all cover facets, cover facets in the last section, and
angle samples respectively. For the serial implementation they can be estimated as:
Mg = O(40Nwgt + 134(Nwkt +Nkt))
Me = Mes +Mea

where Mes = O(18Nwkt + 12Nwt + 12NSN ), Mea = Nsa(66 + 20Nwg + 2Nwkt). So
the total memory requirement locates at:
M1 = Mg +Me
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Figure 5. Data distributing over processes before communication.

The memory requirement on each parallel process is about:
Mp = Mg +Mes +Mea/P +Mc

A measure named as distribution efficiency Dp is defined to evaluate the dis-
tributing effect on memory just as the parallel efficiency on computing time.

(12) Dp =
M1

MpP

It can be seen that the parallel algorithm proposed distributes only that portion
of memory associated with angle samples over processes. The distribution efficiency
falls over a relatively wide range depending on the number of facets, angle samples
and processes. In our experiments, it can range from 50%∼97%, finding more in
next section.
Communication

There have only communication operations in step 2, 3 and 5 as indicated in
Table 3 .The communication involved in step 3 and 5 is simple but that in step 2
is somewhat sophisticated.

With the distribution paradigm of FDP, each process is responsible for calculat-
ing the incurred currents on some part of the wall facets at each iteration in step 2.
For this pur-pose, each process has to collect the integrate far-field interaction, the
near-field interaction and the previous iterative currents for that part of facets. Be-
fore any communication, the related data spreads out over processes as illustrated
in Figure 5 ,where the absent data from one process is denoted by the gray region.

After communication and calculation, the distribution of related data should
reach to such a view as showed in Figure 6.

Communication is required on two occasions:
1) Each process needs the remainder of the far-field interaction for its assigned

fa-cets from other processes. To this end, one way is to initiate one MPI Reduce
operation for each process. Another possible way is to start one MPI AlltoAll oper-
ation for all processes. The latter way can cut down much communication initiation
time, and thus is adopted by the parallel system.

2) Each process needs the currents for all the facets. This can be reached sim-
ply by one MPI Allgather operation for all processes.

The communication operations all involve MPI collective communication. Let
Tc2, Tc3, Tc5 be the communication time in step 2 (for one iteration step), 3 and
5 respectively. In our implementation, the time for buffer preparing, data packing
and unpacking is negligible because communication buffers are allocated in advance
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Figure 6. Data distributing over processes by end of iteration.

and data (un-)packing is simple.Tc2 is equal to the time for one MPI Alltoall with
Nw data elements plus one MPI Allgather with Nw/P data elements. Tc3 accounts
for one MPI Allreduce with 2Nk data elements by MPI SUM operation. Tc5 just
consists of one MPI Reduce with one data element by MPI SUM operation.

The finishing time for a MPI collective communication is quite difficult to be
estimated exactly. The specific send-receive algorithm used, network bandwidth
and hardware infra-structure all exert their influence. The communication time for
MPI Alltoall or MPI Allgather increases nearly linear with number of data elements
and remarkably with the number of processes. This is attested by experiments done
by both other researchers [18] and our colleagues. For example, MPI Alltoall with
1000 integers spent 0.21s on 8 processes and up to 10s on 32 processes testing on
ZiQiang3000 cluster at Shanghai Uni-versity, which has 174 computing nodes, two
3.06GHz Intel Xeon CPUs and 2GB memory per node, and Infiniband internet-
worked. Its Linpack performance reaches to 1.51 TFLOPS [19].

The complexity estimation for communication time might be expressed as:
Tc2 = O(NwP

2 +NwP ) < O(2NP 2)
Tc3 = O(2NkP

2) < O(2NP 2)
Tc5 = O(P )

The memory requirement of communication mainly resides at the buffer for
maximum data elements to be sent or received. That is about the double memory
amount for storing a spatial complex vector for each wall facet. Thus, memory
overhead for communication can be estimated as:

Mc = O(12Nw) < O(12N)
One note remarkable is that it’s better to allocate communication buffers from

the heap as global variables rather from the function stack as local variables in
order to timesaving on allocation and keeping from stack overflow on runtime.

4. Experimental results and discussions

This section will present some experimental results to demonstrate the validity
of the parallel algorithm proposed in this paper.

The first thing to be made sure is that the RCS values obtained by the parallel
hybrid algorithm should be consistent with that computed by the serial version.
Below just one case of a circular straight cavity CS06 with N = 604, Ni = 10, φ
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Figure 7. Comparison of RCS results for case CS06.

Figure 8. Comparison of RCS results for case CF104.

Figure 9. Comparison of computing time ratio on each step for
case CS06 and RS13.

polarization is presented in Figure 7 to demonstrate the correctness of the paral-
lel algorithm implemented.Figure 8 presents another test case CF104 with N =
104444, Ni = 10, φ polarization to show the consistence of RCS results by dividing
the cavity into one, two or three sections.

The parallel solution adopts a hybrid algorithm of serial geometric processing
and pa-rallel electromagnetic computing. To verify the reasonableness of this hy-
bridism, an expe-rimental measure on the computing time of each step is given in
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Figure 9 . It shows that Tgeo, T5, T4 are revealed to be in the minority. This holds
true for all examples tested. And Tgeo will weigh even more less when the number
of unknowns becomes larger.

Estimate results about memory consumption and distribution efficiency for six
cases are given in Table 4 ,where ‘CS’ denotes circular straight cavity, ‘CF’ for
circular flexural cavity, and ‘RS’ for rectangle straight cavity. It can be seen that
communication induces less than 5% memory overhead. The absolute value is in-
dependent of parallel degree.Table 4 also helps to testify that a full replication of
geometric data structures (vertexes, edges, area, normal, and topology relations
inclusive) on each process is acceptable even when the number of unknowns goes
up to four hundred thousand. The distribution efficiency for memory is somewhat
variable. It changes with several factors such as the cavity shape, the angle sample
number and the parallel degree. A range of distribution efficiency from 60% to 97%
is yielded for the cases listed in Table 4.

It is well known that the parallel efficiency Ep is the key performance measure to
be assessed. The efficiency Ep is measured over 90% for two small scale problems
which serial time T1 can be obtained by experiments, see Figure 10 .Because most
test cases go beyond one processor as regard to memory or computing time, the
scalability η is instead evaluated as an alternate to the original Ep The scalability
[20][21] in this paper is defined as

(13) ηJ =
ITI
JTJ

× 100%

TI is the execution time with I processors and TJ is the execution time with J

Table 4. Estimation of the distribution efficiency for six cases

Case M1(MB) Mgeo/M1(%) Mc/Mp(%)
DP (%)

P = 4 P = 8
CS06 : N = 648, 4.84 7.74 1.90 77.62 60.07

K = 1
RS13 : N = 13270, 179.11 4.11 1.18 86.68 73.86

K = 1
RS27 : N = 27134, 474.23 3.17 0.94 89.39 78.53

K = 1
CF104 : N = 104444, 5651.43 1.02 0.23 96.31 91.90

K = 2
RF200 : N = 200880, 12740.26 0.84 0.18 96.94 93.23

K = 3
CS391 : N = 391840, 21930.97 0.96 0.22 96.53 92.35

K = 3

processors. Figure 11 shows the scalability of three cases RS27, CF104 and RF200
(refer to Table 4 ), where the value of I in ηJ takes the previous neighboring value
of J available in data sheet. The scalability for the three cases reaches nearly above
90%. The results are not bad although the scalability drops a bit as the degree of
parallel increases mainly because of the communication overhead being larger.

One disadvantage to the scalability or parallel efficiency in our implementation
is that the computation about far-field interaction often introduce load imbalance
on processes by the current ADP method. Angle samples are divided into rectangles



398 XIAO-LI ZHI, WEI-QIN TONG, YUE HU, PENG CHEN, AND JUN-GAO HU

Figure 10. Parallel efficiency for case CS06 and RS13.

Figure 11. Scalability for case RS27, CF104 and RF200.

of not always same number of samples by the implemented partitioning algorithm.
Non rectangle partitioning of angle samples has been scheduled as the near-future
work.

5. Summary

A hybrid algorithm combining IPO, FMM and GRI by Cascading Segmentation
tech-nique is adopted as an efficient and accurate way to compute RCS of arbitrary
cavities. The RCS problem of cavities is computation intensive and memory inten-
sive. To extend the range of problems that can be solved by the serial version of
the hybrid algorithm, a parallel implementation using Message Passing Interface
is presented in this paper. The parallel solution tries to distribute computation
workload and memory requirement evenly on some distributed memory processes
to deal with the embarrassingly scaling of cavity problems.

The parallel algorithm is somewhat hybrid in that it applies a serial approach
and a pa-rallel approach to the two phases of RCS analysis respectively. In the
phase of geometrical preprocessing, the whole geometry dissected data is provided
for each process so that the topology can be constructed independently. This is val-
idated by the relatively small geo-metrical memory requirements and the extensive
involvement of geometric information in next phase. A full replication of geometric
data structures cuts down much communication and helps to greatly speed up the
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subsequent parallel computation. In the phase of elec-tromagnetic computing, a
hybrid parallelization technique is used. The near-field electro-magnetic interac-
tion workload is distributed based on the domain decomposition of wall facets and
cover facets, while angle samples based domain decomposition is used to distri-bute
far-field workload.

This parallel algorithm introduces almost no extra computation to that in se-
rial version although certain overhead is introduced in communication time and
communication buffer (generally less than 5%). The communication time increases
remarkably with the number of processes. In test cases, although several or even
tens of seconds might be consumed by communication in one iteration, it is still
relatively small and optimal as hundreds or thousands of seconds may be spent by
the iterative computation even with a small cavity problem of thousand unknowns.
The superposition of electromagnetic measures and permutability of math vector
operations helps achieve minimal communication overhead by independent partial
computation before the last reduction operation.

The parallel solution can be used to solve any electrically large, deep and ar-
bitrary shaped cavities. Complexity analysis indicates good distribution of com-
putation workload. The distribution of memory requirement is to some extent
dependent on the target problem. By leveraging memory, the hybrid parallel solu-
tion cuts down much communication overhead and yields very good performance.
Experiment results show near-linear scalability and over 90% parallel efficiency.
The parallel efficiency may be further improved with better infrastructure network
and better algorithm to partition angle samples.
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