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A HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM

BASED ON SPACE TRANSFORMATION SEARCH AND A

MODIFIED VELOCITY MODEL

SONG YU, ZHIJIAN WU, HUI WANG, ZHANGXIN CHEN, AND HE ZHONG

Abstract. Particle Swarm Optimization (PSO) has shown its fast search speed in many com-
plicated optimization and search problems. However, PSO often easily falls into local optima
because the particles would quickly get closer to the best particle. Under these circumstances,
the best particle could hardly be improved. This paper proposes a new hybrid PSO (HPSO) to
solve this problem by combining space transformation search (STS) with a new modified velocity
model. Experimental studies on 8 benchmark functions demonstrate that the HPSO holds good
performance in solving both unimodal and multimodal functions optimization problems.
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1. Introduction

Particle swarm optimizer (PSO), which was firstly introduced by Kenedy and
Eberhart in 1995[1,2], emulates the flocking behavior of birds to solve optimization
problems. In PSO, each potential solution is considered as a particle. All particles
have their own fitness values and velocities. These particles fly through the D-
dimensional problem space by learning from the historical information of all the
particles. A potential solution is represented by a particle that adjusts its position
and velocity according to equation (1) and (2):

(1) υ
(t+1)
id = ωυ

(t)
id + c1r1(p

t
id − xt

id) + c2r2(p
t
gd − xt

id),

(2) x
(t+1)
id = x

(t)
id + ν

(t+1)
id ,

where t is the time index, i is the particle index, and d is the dimension index. pi is
the individual best position. pg is the known global best position. ω is the inertia
weight described in [3]. c1 and c2 are the acceleration rates of the cognitive and
social parts, respectively. r1 and r2 are random values different for each particle i

as well as for each dimension d.The position of each particle is also updated in each
iteration by adding the velocity vector to the position vector.

One problem found in the standard PSO is that it could easily fall into local
optima in many optimization problems. One reason for PSO to converge to local
optima is that particles in PSO can quickly converge to the best position once the
best position has no change. When all particles become similar, there is a little
hope to find a better position to replace the best position found so far. In this
paper, a new hybrid PSO algorithm called HPSO is proposed. It avoids premature
convergences and allows STS-PSO [4] to continue searching for the global optima
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by applying space transformation-based learning and to break away from local op-
timal with a new disturbing factor and a convergence monitor. Our HPSO has been
tested on both unimodal and multi-modal function optimization problems. Com-
parison has been conducted among HPSO, standard PSO and STS-PSO. The rest
of this paper is organized as follows: Section 2 presents the new HPSO algorithm.
Section 3 describs the benchmark continuous optimization problems used in the
experiments, and gives the experimental settings. Section 4 presents and discusses
the experimental results. Finally, Section 5 concludes with a summary.

2. HPSO ALGORITHM

2.1. Space Transformation Search (STS). Many evolutionary optimization
methods start with some initial solutions, called individuals, in an initial popula-
tion, and try to improve them toward some optima solution(s). The process of
searching terminates when some predefined conditions are satisfied. In some cases,
the searching easily stagnates, when the population falls into local optima. If the
stagnation takes places too early, the premature convergence of search is caused.
Under these circumstances, the current search space hardly contains the global
optimum. So it is difficult for the current population to achieve better solutions.
However, Space transformation search, based on opposition learning method[5],
originally introduced by Hui Wang [4], has proven to be an effective method to
cope with lots of optimization problems. When evaluating a solution x to a given
problem, we can guess the transformed solution of x to get a better solution x′. By
doing this, the distance of x from optima solution can be reduced. For instance,
if x is -10 and the optimum solution is 30, then the transformed solution is 40.
But the distance of x′ from the optimum solution is only 20. So the transformed
solution x′ is closer to the optimum solution. The new transformed solution X∗ in
the transformed space S can be calculated as follows:

(3) x∗ = k(a+ b)− x,

where x ∈ R within an interval of [a, b] and k can be set as 0,0.5,1 or a random
number within [0, 1].

To be more specific, we put it in an optimization problem, Let X = (x1, x2, xn)
be a solution in an n-dimensional space. Assume f(X) is a fitness function which
is used to evaluate the solution’s fitness. According to the definition of the STS,
X∗ = (x∗

1, x
∗
2, x

∗
n)is the corresponding solution ofX in the transformed search space.

If f(X∗) is better than f(X), then update X with X∗; otherwise keep the current
solution X . Hence, the current solution and its transformed solution are evaluated
simultaneously in order to continue with the fitter one. The interval boundaries
[aj(t), bj(t)] is dynamically updated according to the size of current search space.
The new dynamic STS model is defined by

(4) X∗
ij = k[aj(t) + bj(t)] −Xij ,

(5) aj(t) = min(Xij(t)), bj(t) = max(Xij(t))

i = 1, 2, ..., PopSize, j = 1, 2, ...n

2.2. Modified Velocity Model. In the PSO, particles are attracted to their
corresponding previous best particles pbesti and the global best particle gbest.
With the movement of particles, particles are close to pbesti and gbest, and then
pbesti −Xi and gbest−Xi becomes small. According to the updating equation of
velocity, the velocity of each particle become small. Once the pbesti or gbest fall
into local minima, all the particles will quickly converge to the positions of them.
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The cognitive part and social part of each particle will be near to 0 because of
Xi = pbesti = gbest. As a result, the velocity of each particle tends to 0, and the
updating equation of position is invalid. Finally, all the particles will be stagnate
and hardly escape from local optima.

In order to avoid this situation, this paper proposes a new modified velocity
model to perturb the position of particles by monitoring each pbesti and gbest.
If the pbesti or gbest has no changes in a predefined number of generations, it is
considered to be trapped into local optima. To help it escape from local optima, we
conduct a disturbance to the particle to help the trapped particle jump to another
position accordingly, if the Monitor pbesti > T1, the cognitive part of PSO turns
to be:

(6) c1r1(p
t
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where Monitor pbesti records the number of times the pbest did not change, and
the T1 is the predefined threshold, and d1 is a random number within [0,1]. If the
Monitor gbest > T2, the social part of PSO turns to be:
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whereMonitor gbest records the number of times the gbest did not change, and the
T2 is a predefined threshold, and d2 is a random number within [0,1]; Accordingly
the equation (1) can be modified to be:
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3. Numerical Experiments

3.1. Test Functions. A comprehensive set of benchmark functions [6], including
8 different global optimization problems, have been chosen in our experimental
studies. According to the properties, they are divided into two classes: unimodal
functions (f1 − f4), multimodal functions (f5 − f8). All the functions used in this
paper are to be minimized. The description of the benchmark functions and their
global optimum(s) are listed in Table 2.

3.2. Experiment Setup. There are three variant PSO algorithms including the
proposed HPSO used in the following experiments. The algorithms and parameters
settings are listed below: The standard PSO (PSO);A space transformation search
PSO (STS-PSO); Our Hybrid PSO (HPSO);

For PSO, STS-PSO and HPSO, w = 0.72984, c1 = c2 = 1.49618, and the maxi-
mum velocity Vmax is set to the half range of the search space on each dimension.
For all algorithms, the population size is set to 40 and the maximum number of
evaluations is set to 200,000. The accuracy of functions f1 − f4, f7, f8 is set to
1e-15 and that of functions f5, f6 is set to 0. If the fitness value of the best fitness
found by all particles so far (best fitness) reaches to the fixed accuracy, the current
population is considered to obtain the global optimum, and then the algorithm is
terminated. The probability of STS ps is set to 0.25. All the experiments are con-
ducted 50 times with different random seeds, and the average results throughout
the optimization runs are recorded.
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Table 1. The main steps of HPSO.

Begin

n = dimensional size;
P = current population;
TP = the transformed population of P ;
t = the generation index;
[aj(t), bj(t)] = the interval boundaries of the jth dimension in current population;
ps = the probability of STS;
best fitness = the fitness value of the best particle found by all particles so far;
accuracy = fixed accuracy level;
MAXNE=the maximum number of evaluation;
while(bestf itness > accuracy&&NEMAXNE);
if (rand(0, 1) < ps);
update the dynamic interval boundaries [aj(t), bj(t)]incurrent population according to equation 5;
for i = 1 to PopSize

Calculate the transformed particle TPi of Pi according to equation 4;
The velocity of TPi keeps the same with Pi;
Calculate the fitness value of particle TPi;
for end

select PopSize fittest particles in P and TP as a new population;
Update pbest,gbest in the new population if needed;
else

for i = 1 to PopSize
if (Monitor pbesti >= T1)
d1 = random[0,1];
else d1 = 1;
if (Monitor gbest >= T2), d2 = random[0, 1]; else d2 = 1;
Calculate the velocity of particle P (i) according to equation 8;
Update the position of particles P (i) according to equation 2;
Calculate the fitness value of particle P (i);
update pbest if needed
if (pbest changed), Monitor pbesti = 0;
else Monitor pbesti + +;
for end

Update gbest if needed;
if (gbest changed), Monitor gbest=0;
else Monitor gbest + +;
while end

End

Table 2. minimum values of the function, and X Rn is these
search space.
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3.3. Experimental Results. Table 3 shows the comparison among PSO,STS-
PSO, HPSO for function f1 to f8, where ”Mean” indicates the mean best function
values found in the last generation, and ”NFC” stands for the average number of
function calls over 50 trials.The convergence characteristics in terms of the best
fitness value of the median run of each algorithm for each algorithm for each test
function are presented in Figure 1. From the result, it is obvious that HPSO
performs better than standard PSO and STS-PSO. The significant improvement
achieved by HPSO can be contributed to the space transformation search and the
disturbing factor. The space transformation search method adds the changing
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Table 3. The comparison results among PSO, STS-PSO and HPSO.

Function PSO STS-PSO HPSO
Mean NFC Mean NFC Mean NFC

f1 9.23e-16 39644 8.81e-16 57069.3 3.52e-16 22600
f2 8.48e-16 105972 9.16e-16 90714.7 8.44e-16 39708
f3 9.05e-16 44100 8.99e-16 57853.3 6.57e-16 23800
f4 3.23e-06 200000 1.45e-04 200000 7.97e-16 48694
f5 1.15 123560 0 15228 0 5210
f6 46.3153 200000 56.746 200000 0 22200
f7 1.41334 200000 9.59e-13 200000 9.56e-13 200000
f8 2.3e-2 200000 9.34e-16 46400 7.66e-16 24200

Figure 1. Performance comparision among PSO, STS-PSO and
HPSO on f1-f8. The horizontal axis is the average number of fun-
tion calls and the vertical axis is the average best fitness value(log)
over 50 trials.

probability of particles, and the modified velocity model proposed in this paper
improves the accuracy of convergence. Therefore, HPSO gets better solutions than
the standard PSO and STS-PSO.
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Figure 1. Performance comparison among PSO, STS-PSO and
HPSO on f1-f8. The horizontal axis is the average number of func-
tion calls and the vertical axis is the average best fitness value(log)
over 50 trials(con’t).

4. Conclusion

The idea of HPSO is to improve PSO based on space transformation search
method and a new velocity model with convergence monitor to help avoid local
optima and accelerate the convergence of PSO. The new proposed velocity model
is to monitor the changes of fitness values of each pbesti and gbest. If a pbesti
or gbest has no improvements in a predefined generations, it is considered to fall
into local minima and at the same time we present some disturbances to these
particles to break away the local optima. By combining these methods , HPSO is
able to find better solutions than other improved PSO. HPSO has been compared
with the standard PSO, STS-PSO on both 4 unimodal functions and multimodal
functions. The results have shown that HPSO has faster convergence rate on those
simple unimodal functions and superior global search ability on those multimodal
functions compared to other PSO.

However, according to no free lunch theory[7], in some cases, this hybrid PSO
can still not avoid premature convergence, in some more complex problems. This
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will be an important work to continue. Besides the 8 multimodal functions, more
test functions will be selected in further work.
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