
INTERNATIONAL JOURNAL OF c© 2012 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 9, Number 2, Pages 351–370

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE

VIRTUAL MACHINE TO MULTIPLE VIRTUAL MACHINE

SYSTEMS

KEJIANG YE, JIANHUA CHE, QINMING HE, DAWEI HUANG, AND XIAOHONG JIANG

Abstract. Virtualization technology is widely used in server consolidation, high performance
computing, and cloud data center due to its benefits on high resource utilization, flexible manage-
ability, and dynamically scalability. However, it also introduces additional performance overheads.
It’s worthy to evaluate the overheads and to find the bottleneck of virtualization in different scenar-
ios. In this paper, we propose a combinative evaluation method to analyze the performance from
single virtual machine to multiple virtual machine systems that measures and analyzes both the
macro-performance and micro-performance. By correlating the analysis results of two-granularity
performance data, some potential performance bottlenecks come out.

Key words. Virtualization, Performance, VMM, HPC, Virtual cluster.

1. Introduction

Virtualization technology has recently become increasing popular in wide areas,
such as server consolidation [1, 2], high performance computing (HPC) [3, 4], and
modern cloud data center [5, 6]. Single virtual machine system virtualized on single
physical machine is a basic form. While multiple virtual machine system virtualized
on single or multiple physical machines is a more common scenario (see Figure 1).
It is obvious that virtualization brings many benefits such as flexible resource man-
agement, high reliability, performance isolation, and OS customization. In a typical
virtualization system, resource virtualization of underlying hardware and concur-
rent execution of virtual machines are in the charge of virtual machine monitor
(VMM) or hypervisor [7]. By creating the same view of underlying hardware and
platform APIs from different vendors, virtual machine monitor enables virtual ma-
chines to run on any available physical machines. However, virtual machine monitor
also complicates the implementation of traditional computer architectures and de-
presses the performance of some specific operations, so it’s significant to assess the
performance of virtualization in both single virtual machine and multiple virtual
machine system.

Currently, there are several mature virtualization solutions (typical virtual ma-
chine monitors) for x86 system using different implementation methods, such VMware
[8] and KVM [9] for full virtualization, Xen [10] for both para-virtualization and full
virtualization, and OpenVZ [11] for operating system level virtualization. Different
virtualization solutions have different strengths and weaknesses. For example, full
virtualization supports both Linux and Windows virtual machines but the perfor-
mance is relatively poor, while para-virtualization cannot support Windows virtual
machine but the performance is better. It is necessary to choose a most appropriate
virtualization method for particular purposes. Further, in the multiple virtual ma-
chine system, such as HPC virtualization system, different forms of communication

Received by the editors October 12, 2009 and, in revised form, April 28, 2010.
This research was supported by the National 973 Basic Research Program of China under grant

NO.2007CB310900 and National Natural Science Foundation of China under grant NO. 60970125.

351

352 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

Physical Machine

VM

PM

VM

PM PM PM

VM VM VM VM

(a) (b)

Virtualization Virtualization

Figure 1. Typical virtualization scenarios: (a) the single virtual
machine system on single physical machine; (b) the multiple virtual
machine system on single or multiple physical machines.

between virtual machines is a major performance bottleneck, such as MPI (Mes-
sage Passing Interface) communication, network communication, etc. How can the
virtualization affect the communication efficiency is an important issue. Based on
the above analysis, it is essential to analyze the performance overheads of single
virtual machine system (such as processor virtualization, memory virtualization,
disk I/O virtualization, network virtualization, etc.), compare the virtualization
efficiency of different typical virtual machine monitors, and investigate the various
communication overheads in multiple virtual machine system.

The performance of applications running in virtual machines is different from
that in the native environment due to the existing of virtual machine monitor.
A lot of work has been done in the performance evaluation on single virtual ma-
chine system focusing on the performance of CPU, memory, disk I/O, and network
[10, 12–15], and the performance issues of server consolidation [1, 2, 16]. However, to
our knowledge, there is still relatively few work focus on the performance evaluation
of multiple virtual machine system, especially the HPC virtualization system. Some
of the researchers have investigated into virtualization performance of HPC appli-
cations [4, 17–19]. However they didn’t perform a deep analysis on the performance
overheads and bottleneck of the network I/O processing mechanism in multiple vir-
tual machine system. What’s more, they only focused on the macro performance
evaluation and didn’t refer to micro performance analysis such as profiling analysis
from the hardware architecture perspective.

In this paper, we firstly study the component virtualization overheads of single
virtual machine system (such as the virtualization efficiency of processor, memory,
disk I/O, network I/O, etc) by comparing the performance of different virtualization
technologies, i.e. para-virtualization, full virtualization, and operating system level
virtualization. Then we create two 16-node virtual clusters, and do a comprehensive
performance evaluation of multiple virtual machine system (i.e. HPC virtualization
system) to investigate the virtualization efficiency for HPC applications, includ-
ing floating point computing performance, memory bandwidth performance, data
transfer rate, network bandwidth and latency. Especially, we present a detailed
assessment of various communication overheads with HPC applications running in
virtual cluster. Besides, we also investigate the micro performance for both single
virtual machine and multiple virtual machine systems. For single virtual machine
system, we investigate some specific operations such as system call and context
switch. While for multiple virtual machine system, we analyze the profiling data

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS353

collected from the hardware events when running HPC applications in multiple vir-
tual machine environment using Oprofile/Xenoprof toolkit [20]. We focus on three
hardware events CPU CLK UNHALTED, INST RETIRED, and LLC MISSES on
Intel platform to gather CPU cycles, instruction number, and L2 cache misses re-
spectively which are helpful for explaining the performance bottleneck.

Experimental results show that: 1) disk I/O is a performance bottleneck and
the latencies of process create and context switch are two main factors that baf-
fle the performance of single virtual machine system; 2) the optimized network
I/O processing mechanism in Xen’s para-virtualized cluster can achieve better effi-
ciency compared to full virtualized cluster since the Front-End/Back-End network
I/O mechanism of para-virtualization can cause fewer traps than emulated I/O
mechanism of full virtualization and performs better performance in inter-domain
communication; 3) the MPI and network communication overheads in multiple vir-
tual machine system are the main bottleneck for full virtualized cluster, which cause
huge L2 cache miss rate.

The rest of the paper is structured as follows. In Section 2, we introduce the
background of typical virtual machine monitors, network I/O virtualization in Xen,
and the background of HPC virtualization. In Section 3, we present our experimen-
tal setup, macro benchmarks and micro performance analysis and profiling tools for
both single and multiple virtual machine system. In Section 4 and 5, we perform
a detailed evaluation and analysis on the virtualization overheads and bottleneck
of single virtual machine system and multiple virtual machine system respectively.
Section 6 presents the related work. Finally we give our conclusion and future work
in Section 7.

2. Background & motivation

2.1. Typical virtual machine monitors. KVM [9] (Kernel-based Virtual Ma-
chine) is a virtual machine monitor based on full-virtualization and hardware-
assisted virtualization technology such as Intel VT or AMD-SVM. KVM implements
virtualization by augmenting traditional kernel and user mode of Linux with a new
process mode named guest. Guest mode has no privilege to access the I/O devices.
KVM consists of two components: kernel module and user-space. Kernel module
manages the virtualization of memory and other hardware through a character de-
vice /dev/kvm and kill command. With /dev/kvm, each virtual machine may have
its own address space. A set of shadow page tables are maintained for translating
guest address to host address. User-space takes charge of the I/O’s virtualization
with a lightly modified QEMU.

Xen [10] is a para-virtualized hypervisor that needs kernel modifications of host
and guest operating systems, but no changes to application binary interface(ABI)
so that existing applications can run without any modification. Guest domains can
manage hardware page table with read-only privilege, but update operation should
be validated by Xen. Regarding system calls, Xen allows guest domains to register
fast handlers directly accessed by physical processor bypassing ring 0. From its 2.0
version, Domain0 hosts most unmodified Linux device drivers and controls resource
allocation policies and guest domain management. To achieve I/O virtualization,
Xen designs a shared memory and asynchronous buffer-descriptor ring model and
two communication mechanisms: synchronous call and asynchronous event. Now,
Xen also supports full virtualization by the hardware assistant of virtualization.

OpenVZ [11] is an operating system container that requires the same kernels of
host and guest operating systems. It includes a custom kernel and several user-level

354 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

tools. The custom kernel is a modified Linux kernel with virtualization, isolation,
checkpoint and resource management. The resource manager comprises three com-
ponents: fair CPU scheduler, user beancounters and two-level disk quota. OpenVZ
implements a two-level CPU scheduler that the OpenVZ scheduler see to the CPU
time slice’s assignment based on each container’s CPU unit value, and the Linux
scheduler decides the process to execute in this container. OpenVZ controls con-
tainer operations and system resources with about 20 parameters in user beancoun-
ters.

2.2. Network I/O virtualization in Xen. Xen implements the network virtual-
ization by using two I/O rings to perform the data transfer between DomU (virtual
machine) and Dom0 (driver domain). The first ring is responsible for processing
outgoing packets while the second ring is responsible for processing incoming pack-
ets. The process of network packet processing is described as follows: (1) The NIC
receives a packet request and generates an interrupt; (2) VMM forwards the inter-
rupt to the Dom0 (driver domain); (3) Dom0 DMAs the packet into the reception
I/O ring; (4) Dom0 copies data directly from the back-end driver to the front-end
driver in DomU via shared memory; (5) The back-end driver in DomU requests
the VMM to send a virtual interrupt to notify the DomU of the new packet; (6)
The packet is processed in the DomU. This Front-End/Back-End virtualized net-
work I/O mechanism with shared memory can efficiently improve the network I/O
performance.

Figure 2 shows the Front-End/Back-End virtualized network I/O mechanism in
Xen. The Dom0 runs a modified version of OS that uses native driver to manage
hardware devices. Other VMs (DomU) communicate with Dom0 to transmit and
receive packets through shared memory I/O channels.

Hardware Device

NIC CPU Memory Disk

Xen Hypervisor

Application Application

Shared Memory

Native Drivers

(NIC Driver)
Back-End Drivers

Front-End Drivers

(NIC Driver)

TCP/IP Stack

Dom0 (Driver Domain) Dom1

TCP/IP Stack

Application

Front-End Drivers

(NIC Driver)

TCP/IP Stack

Dom2

Figure 2. The Front-End/Back-End virtualized network I/O in Xen.

2.3. HPC virtualization. Applying virtualization technology into the HPC area
can greatly improve the efficiency, such as efficient virtual machine management,
high fault tolerance, etc. However, there are several requirements should be satisfied
to ensure the virtualization efficiency in HPC system: (1) The virtualization perfor-
mance overheads should not seriously affect the application performance, especially

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS355

the performance-critical HPC applications; (2) The virtualization technology should
effectively improve the management efficiency such as fast creating and shutdown
VM, fast clone and migrate VM, and flexible distribution of virtualized resources;
(3) The virtualization technology should ensure the reliability and security of HPC
system, such as rapid recovery from crashes, fast reconfiguration VM, and good
isolate between VMs.

3. Experimental methodology

3.1. Experimental setup. The single virtual machine experiments are performed
on Dell OPTIPLEX 755 with Intel Core2 Quad CPU at 2.4GHz and 2GB physical
memory. Each virtual machine is allocated with 1VCPU and 1GB virtual memory.
While the multiple virtual machine experiments are performed on Dell 2900 Pow-
erEdge server, with 2 Quad-core 64-bit Xeon processors at 1.86GHz and 6GB RAM
which is more powerful to support multiple virtual machines. We use Ubuntu Linux
8.10 AMD64 with kernel 2.7.12 as host and guest operating system, and OpenVZ in
patched kernel 2.7.12, Xen 3.3 and KVM-72 as virtual machine monitor. The vir-
tual machines used for multiple virtual machine system are allocated with 2VCPUs
and 256MB memory. The MPI environment used is MPICH 2.1.0.8.

In order to ensure the data precision, each of the showed experiment results was
obtained via running benchmark five times on the same configuration, the highest
and lowest values for each test were discarded, and the remaining three values were
averaged.

3.2. Macro benchmarks. We choose a number of benchmarks for the macro
performance evaluation of single virtual machine performance, SPECCPU 2006 for
the CPU virtualization evaluation, RAMSPEED 3.4.4 for the memory virtualization
evaluation, Bonnie++ 1.03 for the Disk I/O virtualization evaluation, NetIO126 for
the network I/O virtualization evaluation, and SPECJBB 2005 for the Java server
virtualization evaluation.

We choose the HPC Challenge Benchmark suite (HPCC) [21] for the macro per-
formance evaluation of multiple virtual machine system, i.e. HPC virtulization.
The HPCC suite is a comprehensive set of synthetic benchmarks designed to pro-
file the performance of several aspects of a cluster. The testing applications used in
our study are listed as follows: HPL measures the floating point rate of execution
for solving a linear system of equations; DGEMM measures the floating point rate
of execution of double precision real matrix-matrix multiplication; FFT measures
the floating point rate of execution of double precision complex one-dimensional
DDF (Discrete Fourier Transform); FTRANS measures the rate of transferring for
large arrays of data from multiprocessor’s memory; STREAM measures the mem-
ory bandwidth and the corresponding computation rate for simple vector kernel;
RandomAccess measures the rate of integer random updates of memory; and Net-
work latency measures the communication latency and Bandwidth measures the
communication bandwidth.

There are three running modes in HPCC: single means that a single processor
runs the benchmark, star means all the processors run separate independent copies
of the benchmark with no communication, mpi means all processing elements run
the benchmark in parallel using explicit data communications. In our experiments,
three problem sizes were evaluated, they are 1000MB, 2000MB, 3000MB. The block
and grid sizes used are common-block : 80, 100, 120; grid: 2*2, 1*4, 4*1.

356 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

3.3. Micro performance analysis and profiling tools. LMbench [22] is a suite
of simple, portable, ANSI/C micro benchmarks for UNIX/POSIX. In general, it
measures two key features: latency and bandwidth. LMbench is intended to give
system developers insight into basic costs of key operations. We use this perfor-
mance analysis tool to analyze the performance bottleneck of single virtual machine
system.

OProfile is a system profiling tool for Linux. It is capable of profiling all parts
of a running system, from kernel to shared libraries and binaries. It is an ideal tool
for profiling entire systems to determine bottlenecks in real-world systems. Xeno-
prof [13, 20] is an extended OProfile tool that is a system-wide statistical profiling
toolkit implemented for Xen virtualization environments. It allows coordinated
profiling of multiple VMs in a system to obtain the distribution of hardware events
such as clock cycles, instruction number, and cache misses. This is useful for find-
ing the performance bottleneck and can help optimize the performance of Xen. In
this paper, we use the above tools to gather the events like CPU cycles, instruc-
tion number and L2 cache misses. Based on the profiling data, we can find the
bottlenecks of running HPC applications in Xen virtualization environment. We
use Oprofile 0.9.3 with Xen patch as our data gather tool. We set CPU counter
frequency with 100000. This means that Oprofile will generate a sample for every
100000 occurrences of a specific event such as LLC miss.

4. Performance study of single virtual machine system

In this section, we firstly measure the overall performance of single virtual ma-
chine system from macro perspective. Then we analyze the micro performance
using a micro performance analysis tool - LMbench. After that, we give a correla-
tion analysis based on the experimental discoveries.

4.1. Macro performance measurement. The macro performance mainly means
the overall performance of a subsystem or whole system. We measure the virtual-
ization overheads of processor subsystem, file subsystem, network subsystem, and
java server in three virtual machine monitors which represent three typical virtual-
ization technologies, i.e. operating system-level virtualization, para-virtualization,
and full-virtualization respectively.

401.bzip2

403.gcc

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

0 5 10 15 20
 Ubt on Kvm Ubt on Xen Ubt on Ovz Ubt on Phy

SPEC CINT_BASE 2006

Figure 3. The result of CINT2006 in four environments.

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS357

410.bwaves
416.gamess

433.milc
434.zeusmp
435.gromacs

436.cactusADM
437.leslie3d
444.namd
447.dealII
450.soplex
453.povray
454.calculix

459.GemsFDTD
465.tonto
470.lbm

482.sphinx3

0 5 10 15 20

 Ubt on Kvm
 Ubt on Xen
 Ubt on Ovz
 Ubt on Phy

SPEC CFP_BASE 2006

Figure 4. The result of CFP2006 in four environments.

4.1.1. Processor virtualization. As shown in Figure 3 and Figure 4, KVM dis-
plays a low score regardless of CINT2006 or CFP2006 especially on 410.bwaves
benchmark (about 50% degradation), while OpenVZ and Xen are almost accor-
dant to native environment. 410.bwaves numerically simulates blast waves in three
dimensions, which presumes amount of data exchange. Therefore, KVM spends
many time to switch among guest, kernel, and user when updating the nonlinear
damped periodic system’s matrix data. Although KVM still need to improve its
efficiency for computing-intensive workloads, processor virtualization is not already
the performance bottleneck of virtualization systems.

4.1.2. Memory virtualization. The speed in four environments (KVM, Xen,
OpenVZ, and Physical machine) discloses a basic harmony on four memory access
operations regardless of integer or float point number as shown in Figure 5. The
result of four integer operations is almost the same as four float operations, but
the speeds of Copy and Scale are lower than Add and Triad, which mainly because
copy and scale involve more data moving. Generally, the presence of virtualization
layer doesn’t cumber the performance of memory access operations, especially their
memory access speed or bandwidth.

4.1.3. Disk I/O virtualization. The bandwidth of three disk I/O operations
(put block, rewrite, get block) in KVM is lowest as shown in Figure 6, because
KVM implements its virtualized disk I/O based on QEMU. Xen batches guest
domains’ I/O requests and accesses the physical device with relative driver. After
being moved into physical memory with DMA, the I/O data will be transferred to
guest domains by memory page flipping. OpenVZ’s second level scheduler, i.e. the
Jens Axboe’s CFQ I/O scheduler allots all available I/O bandwidth according to
each container’s I/O priority, so it holds the best block read and write performance
when only hosting one container.

358 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

Copy Scale Add Triad -- Copy Scale Add Triad
0

500

1000

1500

2000

2500

3000

3500

4000

RamSpeed/SMP
S
pe

ed
(m

by
te
s/
s)

INTEGER FLOAT
 Ubt on Phy Ubt on Ovz Ubt on Xen Ubt on Kvm

Figure 5. The speed of memory access in RAMSMP.

put_block rewrite get_block
0

10000

20000

30000

40000

50000

60000

70000

80000

S
pe

ed
(k
by

te
s/
s)

 Ubt on Phy Ubt on Ovz Ubt on Xen Ubt on Kvm

Bonnie++(File Size=5GB,RAM Size=1GB)

Figure 6. The bandwidth of three disk I/O operations in Bonnie++.

4.1.4. Network I/O virtualization. The speeds of transmitting and receiving
data packets in four environments display an orderly sequence as shown in Figure 7
and Figure 8. OpenVZ has the best performance of TCP transmission due to its
efficient virtual network device (venet). Xen can have a very close transmitting
speed to native environment regardless of the packet size because the packet pay-
load is transmitted with a scatter-gather DMA. Different from OpenVZ and Xen,
KVM transmits data packets through a network interface simulated by QEMU.

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS359

1k 2k 4k 8k 16k 32k
10200

10250

10300

10350

10400

10450

10500
S
pe

ed
(k
by

te
s/
s)

Packets Size(bytes)
 tx of Ubt on Phy tx of Ubt on Ovz tx of Ubt on Xen tx of Ubt on Kvm
 rx of Ubt on Phy rx of Ubt on Ovz rx of Ubt on Xen rx of Ubt on Kvm

TCP in NetIO

Figure 7. The TCP result of NetIO, tx is transmit, and rx is receive.

1k 2k 4k 8k 16k 32k
0

2000

4000

6000

8000

10000

S
pe

ed
(k
by

te
s/
s)

Packets Size(bytes)
 tx of Ubt on Phy tx of Ubt on Ovz tx of Ubt on Xen tx of Ubt on Kvm
 rx of Ubt on Phy rx of Ubt on Ovz rx of Ubt on Xen rx of Ubt on Kvm

UDP in NetIO

Figure 8. The UDP result of NetIO, tx is transmit, and rx is receive.

Therefore, transferring a data packet in KVM is expensive. When receiving a data
packet, OpenVZ will cost some time in moving data from the network device to the
container. Xen implements the packet transferring in main memory. Consequently,
Xen obtains a fast receiving speed.

The case of UDP transmission is something different. OpenVZ and Xen have
the almost same performance as native environment no matter transmitting or
receiving a data packet. KVM gives a declining receiving speed when packet size

360 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

is increased from 1 to 32 kilobytes, mainly because of its serious packets losing. In
fact, the packet losing ratio of KVM arises from about 53% to 99% along with the
packet size increasing, which implies its inferior efficiency of UDP transmission.

4.1.5. Java server virtualization. As for their capabilities of sustaining a vir-
tual machine to act as java server, Xen wins the highest score when the number of
warehouses is under 4 as shown in Figure 9. It is because Xen deals with various
java transactions using para-virtualization. But OpenVZ keeps a higher score than
Xen when the number of warehouse exceeds 3, perhaps thanks to OpenVZ’s nicer
ability to support more concurrent processes. KVM exposes the worst score owing
to its emulating manner to deal with java transactions. However, all their perfor-
mance falls behind native environment, clarifying the need of further improvement
on processing efficiency of these java transactions.

1 2 3 4 5 6 7 8
0

5000

10000

15000

20000

25000

30000

35000

S
co

re

WareHouse

 Ubt on Phy Ubt on Ovz Ubt on Xen Ubt on Kvm

SPEC JBB 2005

Figure 9. The result of SPECjbb2005 test.

4.2. Micro performance analysis. The micro-performance mainly means the
performance of some specific operations or instructions. We measure the virtual-
ization overhead of some operations like system call and context switch in three
virtual machine monitors. Table 1 shows the results.

4.2.1. System operations virtualization. As implementing common system
operations with the host’s APIs, OpenVZ holds a similar latency as native environ-
ment except for process fork. KVM shows a latency close to native environment
and better than OpenVZ and Xen in several system calls and signal install, but
longer delay than OpenVZ and Xen in process create. As process fork involves
memory allocation and hardware page table update, KVM has to wait for available
address space and shadow page table update. It is a long trip to remap guest ad-
dress to host address with shadow page table. Xen discards shadow page table and
allows guest domain itself to register a local page table and some common signal
or exception handlers with MMU. This enables guest domains to batch hardware
page table updates with a single hypercall and less TLB flushing times.

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS361

4.2.2. Context switch. OpenVZ switches a container’s processor context by re-
sorting to the host kernel, so it owns a proximal latency. Xen execute a hypercall
at least to change the page table base, which incurs some extra overhead. As KVM
needs to remap the shadow page table for context switch, it cost the most time.

Table 1. System operations time and context switch latency in µs

Ubt Ovz Xen KVM C. Swit. Ubt Ovz Xen KVM

syscall 0.1164 0.1165 0.5699 0.1179 2p0k 1.01 1.75 3.91 4.87

read 0.2237 0.2848 0.9219 0.2268 2p16k 1.67 2.29 4.7 6.39

write 0.2151 0.2722 0.8714 0.2162 2p64k 1.41 1.49 4.37 5.46

stat 0.9223 1.2904 1.835 0.9461 4p0k 1.29 1.78 4.43 5.55

fstat 0.2275 0.2304 0.8257 0.2314 4p16k 1.98 2.44 5.16 6.44

open/close 1.839 2.3595 4.1215 1.8672 4p64k 1.57 1.97 4.76 6.04

sigl insl 0.2404 0.2434 0.789 0.2487 8p0k 3.81 2.04 5.41 5.87

sigl hndl 1.5389 1.6534 3.6856 6.872 8p16k 2.28 2.65 6.17 6.77

pipe 4.7132 4.7898 14.959 12.522 8p64k 1.89 2.17 5.76 6.97

fork+exit 134.318 188.212 473.82 849 16p16k 2.38 2.83 6.4 7.95

fork+exec 490.727 481.364 1279 2203.3 16p64k 1.93 2.29 5.88 7.59

fork+sh 1065 1770.3 2731 4877 64p64k 4.47 8.26 8.58 15.11

4.3. Correlation Analysis. Performance bottleneck usually means all key fac-
tors that block multiple facets of computer systems. Therefore, one needs to cor-
relate all analysis results to identify the performance lagging factors. From the
macro-performance data, we can find that the overhead of processor virtualization
in relatively mature virtual machine monitors is minimal, but disk I/O appears a
large performance loss. Hence, disk I/O should be a performance bottleneck of
virtualization systems. From the micro-performance data, we can find that the
latencies of process create and context switch in virtualized environment fall be-
hind native environment with a huge degree, which implies two main factors that
baffle the performance of virtualization systems. Therefore, we may preliminarily
determine hardware page table update, interrupt request and I/O are three main
performance bottlenecks for common virtualization systems. As most high-cost
operations involve them, it’s critical for researcher and developer to optimize the
handle mechanism of hardware page table update, interrupt request and I/O.

5. Performance study of multiple virtual machine system

In the above section, we have evaluated the performance overheads of single vir-
tual machine system from the virtualization efficiency of processor, memory, disk
I/O, network I/O, and java server, and analyzed the performance bottleneck from
micro operations or instructions level analysis. While in this section, we evalu-
ate the performance characterization of multiple virtual machine system (which is
more typical in real scenarios) from the virtual cluster efficiency of floating point
computation, memory bandwidth, data transfer rate, and network communication.
We create two 16-node virtual clusters with MPI environment for the running of
HPC applications. Combined with the micro profiling data analysis, some potential
performance characterization comes out.

362 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

5.1. Macro performance measurement. To simulate the multiple virtual ma-
chine environment (HPC environment), we create two 16-node virtual clusters based
on Xen virtual machine monitor, one is for para-virtualization, the other is for full
virtualization. Figure 10-17 show the detailed macro results using HPCC bench-
mark from different aspects with various running processor number (i.e. thread
number). We classify the results into computational performance, memory perfor-
mance, data transfer rate, and communication performance.

4p 8p 12p 16p
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

The Comparison of HPL Performance

Tf
lo
p/
s

The Number of Threads

 para
 full

Figure 10. The performance comparison of HPL in a 16-node
para-virtualized and full virtualized cluster

5.1.1. Computational Performance. Figure 10-12 illustrate the floating-point
performance. From the figures, we found that the performance of full virtualized
cluster is worse than para-virtualized cluster at a degradation of 48.98% in HPL
testing, 19.07% in DGEMM testing, and 24.38% in FFT testing. It indicates that
the computational applications are sensitive to the virtualization in different de-
grees. What’s more, from the DGEMM testing, we found that the star performance
decreases as the processor number increases while single performance keeps stable.
It is because in star mode all the processors run separate independent copies of the
benchmark which means more system resources will be consumed as the processor
number increases that affecting the performance. For FFT benchmark, it is ob-
vious that when running in mpi mode, full virtualization gets worse performance
than para-virtualization due to the huge overheads of MPI communication. The
MPI communication overheads are the major factors affecting the floating-point
performance in full virtualized cluster.

5.1.2. Memory Performance. Figure 13 and 14 show the memory performance
of two virtual clusters. The RandomAccess presents a similar phenomenon with the
FFT performance that running in the mpi mode, full virtualization obtains very
poor performance due to the huge MPI communication overheads. In order to save
space, we only present the STREAM performance running in single mode. We

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS363

4p 8p 12p 16p
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

The Comparison of DGEMM Performance

G
flo

p/
s

The Number of Threads

 para.star full.star
 para.single full.single

Figure 11. The performance comparison of DGEMM in a 16-
node para-virtualized and full virtualized cluster

4p 8p 12p 16p
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

The Comparison of FFT Performance

G
flo

p/
s

The Number of Threads

 para.star full.star
 para.single full.single
 para.mpi full.mpi

Figure 12. The performance comparison of FFT in a 16-node
para-virtualized and full virtualized cluster

find the performance of full virtualization is very close to the para-virtualization
which means the memory virtualization efficiency is not the bottleneck affecting
the performance of HPC applications.

5.1.3. Data Transfer Rate. In the PTRANS testing as shown in Figure 15, full
virtualization pursues poor performance obviously. It is because, the PTRANS

364 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

4p 8p 12p 16p
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

The Comparison of RandomAccess Performance

G
U
P/
s

The Number of Threads

 para.star full.star
 para.single full.single
 para.mpi single.mpi

Figure 13. The performance comparison of RandomAccess in a
16-node para-virtualized and full virtualized cluster

4p 8p 12p 16p
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

The Comparison of STREAM Performance

G
B
/s

The Number of Threads

 para.copy full.copy
 para.scale full.scale
 para.add full.add
 para.triad full.triad

Figure 14. The performance comparison of STREAM in a 16-
node para-virtualized and full virtualized cluster

exercises the communications where processor pairs communicate with each other
simultaneously and leads to significant overheads. It again indicates the communi-
cation overheads including the data transferring is a bottleneck in full virtualized
cluster.

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS365

4p 8p 12p 16p
0.0

0.2

0.4

The Comparison of PTRANS Performance

G
B
/s

The Number of Threads

 para
 full

Figure 15. The performance comparison of PTRANS in a 16-
node para-virtualized and full virtualized cluster

4p 8p 12p 16p
0

50

100

150

200

250

300

350

400

The Comparison of AvgPingPongLatency

us
ec

The Number of Threads

 para
 full

Figure 16. The performance comparison of average network la-
tency in a 16-node para-virtualized and full virtualized cluster

5.1.4. Communication Performance. Figure 16 and 17 show the network com-
munication performance for both para-virtualized cluster and full virtualized clus-
ter. The latency of full virtualized cluster is 9.38 times to para-virtualized cluster,
and the bandwidth of full virtualized cluster is only 3.22% of the para-virtualized

366 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

4p 8p 12p 16p
0.0

0.1

0.2

The Comparison of AvgPingPongBandwidth

G
by

te
s

The Number of Threads

 para
 full

Figure 17. The performance comparison of average network
bandwidth in a 16-node para-virtualized and full virtualized cluster

4p 8p 12p 16p
0.0

0.2

0.4

0.6

0.8

1.0

1.2

The Comparison of CPI

The Number of Threads

 para
 full

Figure 18. The comparison of CPI in a 16-node para-virtualized
and full virtualized cluster

cluster since the network communication overheads of full virtualized cluster is too
significant.

5.2. Micro performance analysis. In order to analyze the performance bottle-
neck from micro perspective, we collect the profiling data from several hardware
events using Oprofile/Xenoprof toolkit. Figure 18 and 19 show the CPI (Cycles

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS367

4p 8p 12p 16p
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

The Comparison of L2 MPI

The Number of Threads

 para
 full

Figure 19. The comparison of L2 MPI in a 16-node para-
virtualized and full virtualized cluster

per Instruction) and L2 MPI (L2 cache Misses per Instruction). It is obvious that
the L2 cache misses is the main cause affecting the virtualization efficiency between
para-virtualized and full virtualized cluster. What’s more, the increase in the num-
ber of threads will lead to the increase of L2 cache miss rate due to the competition
of shared resources.

5.3. Correlation Analysis. From the macro benchmark evaluation, we have al-
ready found that the multiple virtual machine system loses a part of performance
when running HPC applications. It is because the communication operations is
very common in HPC applications, such MPI communication, data transmission,
and network communication, which will result in huge communication overheads
and affect the performance of multiple virtual machine system. What’s more, the
para-virtualized cluster achieves better communication performance than full virtu-
alized cluster. It is because, in the para-virtulized network I/O mechanism (Front-
End/Back-End mechanism), the network interfaces can DMA the packet into a
buffer, and read the packet header and decide where to send the data. With the
shared memory, the network interfaces can directly copy the data or remap the
page, either of which is particularly cheap. This mechanism makes the inter-domain
communication with low overheads without via the network interface and achieves
better performance that no Domain0 interactions are required beyond the initial
setup. However, in the emulated network I/O mechanism of full virtualized cluster,
there are frequent traps into the VMM when the packet requests arrive and sacrifice
a lot of performance. Different from the macro analysis, we have also investigate
the CPI (Cycles per Instruction) and L2 MPI (L2 cache Misses per Instruction)
from the micro perspective to help explain the performance penalty of multiple vir-
tual machine system. The obvious increase of L2 cache miss rate is the main cause
affecting the virtualization efficiency between para-virtualized and full virtualized
cluster.

368 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

6. Related work

Many research has analyzed the performance overheads of virtualization in single
virtual machine [10, 12, 13] using traditional benchmarks focusing on CPU, memory,
I/O, and network. Barham et al. [10] gave a full-scale introduction to Xen and
measures its performance against VMware, User-Mode Linux and Base Linux with
SPECCPU2000, OSDB, DBench and SPECWeb99. Clark et al. [12] reproduced the
results from [10] with almost identical hardware, and compared Xen with native
Linux on a less powerful PC and evaluated the ability of Xen as a platform for
virtual web hosting. Che et al. [23] studied an initial comparison of Xen and KVM.
Differ from the above work, we present a combinative evaluation of the performance
issues of single virtual machine system that investigates both macro and micro
performance to explore the overheads and bottleneck.

In multiple virtual machine system, some researchers evaluated the performance
of server consolidate scenario [1, 2, 16]. Ye et al. [24] analyzed the performance
of virtual cluster and presented a performance model. The work described in
[18, 25] evaluate the HPC performance impact when running MPI codes in Xen
para-virtualized environment. Work in [4] investigated the performance and man-
agement overheads of VM-based HPC framework using VMM bypass I/O scheme
and InfiniBand. Work in [26, 27] compared performance impacts of different vir-
tualization technologies on HPC applications, including para-virtualization, full
virtualization and OS level virtualization. However they only evaluate the macro
performance using benchmarks and not refer to a deep analysis into architecture
characterization from the micro perspective.

Menon et al. [13] firstly used Xenoprof to diagnose the performance overheads in
Xen. They focused on the network performance when running applications in the
VM, and used the information extracted by Xenoprof to uncover bugs and optimize
the performance of Xen. Tikotekar et al. [28] used a real scientific application to
evaluate the virtualization performance and also used the Oprofile tool to better
understand the overheads of virtualization. Ye et al. [29] developed a automatic
and configurable benchmarking tool - vTestkit for the performance evaluation in
virtualization environment. Recently, Kundu et al. [30] modeled the virtualization
performance by collecting CPU, memory and I/O parameters to train the artificial
neural network model.

7. Conclusion and future work

Our study was motivated by the interests in using virtualization technology
in both single virtual machine system and multiple virtual machine system. How-
ever, the performance overheads of various virtualization scenarios are not yet clear
enough due to the lack of micro analysis in traditional unitary evaluation method
which measures the performance only by running macro benchmarks. In this pa-
per, we firstly study the component virtualization overhead of single virtual machine
system (such as the virtualization efficiency of processor, memory, disk I/O, net-
work, etc) by comparing the performance of different virtualization technologies.
Then we create two 16-node virtual clusters, and do a comprehensive performance
evaluation of multiple virtual machine system to investigate the virtualization effi-
ciency for HPC applications. Besides, we also investigate the micro performance for
both single virtual machine and multiple virtual machine system. For single virtual
machine system, we investigate some specific operations such as system call and
context switch. While for multiple virtual machine system, we analyze the profiling

PERFORMANCE COMBINATIVE EVALUATION FROM SINGLE VM TO MULTIPLE VMS369

data from the hardware events when running HPC applications in virtualization
environment using Oprofile/Xenoprof toolkit.

Experimental results show that: 1) Disk I/O is a performance bottleneck and
the latencies of process create and context switch are two main factors that baf-
fle the performance of single virtual machine system; 2) The optimized network
I/O processing mechanism in Xen’s para-virtualized cluster can achieve better effi-
ciency compared to full virtualized cluster since the Front-End/Back-End network
I/O mechanism of para-virtualization can cause fewer traps than emulated I/O
mechanism of full virtualization which performs better performance in inter-domain
communication; 3) Different forms of communication overheads (MPI communica-
tion, network communication, etc) in multiple virtual machine system are the main
bottleneck for full virtualized cluster, which cause huge L2 cache miss rate.

Future work will include optimizing the virtualization performance for both sin-
gle virtual machine and multiple virtual machine system (especially the disk I/O
performance and communication performance), and analyzing the performance us-
ing modeling technology.

Acknowledgments

The author thanks the anonymous reviewers for their comments and suggestions
on the paper. This is an extension work of the conference paper published in
the 2009 international conference on high performance computing and applications
(HPCA’09).

References

[1] M. Marty, M. Hill, Virtual hierarchies to support server consolidation, in: Proceedings of the
34th annual International Symposium on Computer Architecture, 2007, pp. 46–56.

[2] P. Apparao, R. Iyer, X. Zhang, D. Newell, T. Adelmeyer, Characterization & analysis of
a server consolidation benchmark, in: Proceedings of the fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2008, pp. 21–30.

[3] M. F. Mergen, V. Uhlig, O. Krieger, J. Xenidis, Virtualization for high-performance comput-
ing, SIGOPS Oper. Syst. Rev. 40 (2) (2006) 8–11.

[4] W. Huang, J. Liu, B. Abali, D. K. Panda, A case for high performance computing with virtual
machines, in: Proceedings of the 20th annual International Conference on Supercomputing,
2006, pp. 125–134.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al., A view of cloud computing, Communications of the ACM 53 (4)
(2010) 50–58.

[6] K. Ye, D. Huang, X. Jiang, H. Chen, S. Wu, Virtual machine based energy-efficient data
center architecture for cloud computing: a performance perspective, in: Proceedings of the
IEEE/ACM International Conference on Green Computing and Communications, 2010, pp.
171–178.

[7] M. Rosenblum, T. Garfinkel, Virtual machine monitors: current technology and future trends,
Computer 38 (5) (2005) 39–47.

[8] C. Waldspurger, Memory resource management in VMware ESX server, ACM SIGOPS Op-
erating Systems Review 36 (SI) (2002) 181–194.

[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, kvm: the Linux virtual machine monitor,
in: Proceedings of the Linux Symposium, Vol. 1, 2007, pp. 225–230.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
A. Warfield, Xen and the art of virtualization, ACM SIGOPS Operating Systems Review
37 (5) (2003) 164–177.

[11] OpenVZ: server virtualization open source project, http://openvz.org.
[12] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, J. Matthews, Xen and

the art of repeated research, USENIX annual Technical Conference (2004) 135–144.
[13] A. Menon, J. Santos, Y. Turner, G. Janakiraman, W. Zwaenepoel, Diagnosing performance

overheads in the Xen virtual machine environment, in: Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, 2005, pp. 13–23.

370 K. YE, J. CHE, Q. HE, D. HUANG, AND X. JIANG

[14] L. Cherkasova, R. Gardner, Measuring CPU overhead for I/O processing in the Xen virtual
machine monitor, in: Proceedings of the annual Conference on USENIX Annual Technical
Conference, 2005, pp. 24–24.

[15] P. Apparao, S. Makineni, D. Newell, Characterization of network processing overheads in
Xen, in: Proceedings of the 2nd International Workshop on Virtualization Technology in
Distributed Computing, 2006.

[16] K. Ye, X. Jiang, D. Ye, D. Huang, Two optimization mechanisms to improve the isolation
property of server consolidation in virtualized multi-core server, in: 12th IEEE International
Conference on High Performance Computing and Communications, 2010, pp. 281–288.

[17] A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engelmann, S. Scott, An analysis of

HPC benchmarks in virtual machine environments, in: Proceedings of 3rd Workshop on
Virtualization in High-Performance Cluster and Grid Computing, 2009, pp. 63–71.

[18] L. Youseff, R. Wolski, B. Gorda, C. Krintz, Evaluating the performance impact of Xen on MPI
and process execution for HPC systems, in: Proceedings of the 2nd International Workshop
on Virtualization Technology in Distributed computing, 2006, p. 1.

[19] A. Ranadive, M. Kesavan, A. Gavrilovska, K. Schwan, Performance implications of virtu-
alizing multicore cluster machines, in: Proceedings of the 2nd Workshop on System-level
Virtualization for High Performance Computing, 2008, pp. 1–8.

[20] Xenoprof: System-wide profiler for Xen VM, http://xenoprof.sourceforge.net/.
[21] HPC Challenge benchmark, http://icl.cs.utk.edu/hpcc.
[22] LMbench: tools for performance analysis, http://lmbench.sourceforge.net/.
[23] J. Che, Q. He, Q. Gao, D. Huang, Performance measuring and comparing of virtual machine

monitors, in: Proceedings of the IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, Vol. 2, 2009, pp. 381–386.

[24] K. Ye, X. Jiang, S. Chen, D. Huang, B. Wang, Analyzing and modeling the performance
in Xen-based virtual cluster environment, in: Proceedings of the 12th IEEE International
Conference on High Performance Computing and Communications, 2010, pp. 273–280.

[25] L. Youseff, R. Wolski, B. Gorda, C. Krintz, Paravirtualization for HPC systems, in: Pro-
ceedings of the ISPA Workshop on Xen in HPC Cluster and Grid Computing Environments,
2006, pp. 474–486.

[26] W. Emeneker, D. Stanzione, HPC cluster readiness of Xen and User Mode Linux, in: Pro-
ceedings of the IEEE International Conference on Cluster Computing, 2006, pp. 1–8.

[27] V. Chaudhary, M. Cha, J. Walters, S. Guercio, S. Gallo, A comparison of virtualization
technologies for HPC, in: Proceedings of the 22nd International Conference on Advanced
Information Networking and Applications, 2008, pp. 861–868.

[28] A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engelmann, S. L. Scott, A. M. Filippi,
Effects of virtualization on a scientific application running a hyperspectral radiative transfer
code on virtual machines, in: Proceedings of the 2nd Workshop on System-level Virtualization
for High Performance Computing, 2008, pp. 16–23.

[29] K. Ye, J. Che, X. Jiang, J. Chen, X. Li, vTestkit: aperformance benchmarking framework
for virtualization environments, in: Proceedings of the Fifth ChinaGrid Annual Conference,
2010, pp. 130–136.

[30] S. Kundu, R. Rangaswami, K. Dutta, M. Zhao, Application performance modeling in a
virtualized environment, in: Proceedings of the 16th International Symposium on High Per-
formance Computer Architecture, 2010, pp. 1–10.

College of Computer Science, Zhejiang University, Hangzhou 310027, China
E-mail : yekejiang@zju.edu.cn

Information & Network Security Laboratory of State Grid Corporation, State Grid Electric
Power Research Institute, Nanjing 210003, China

E-mail : chejianhua@zju.edu.cn

College of Computer Science, Zhejiang University, Hangzhou 310027, China
E-mail : hqm@zju.edu.cn and tossboy.hdw@zju.edu.cn and jiangxh@zju.edu.cn

