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A PARALLEL METHOD FOR QUERYING TARGET
SUBNETWORK IN A BIOMOLECULAR NETWORK

JIANG XIE, WU ZHANG, SHIHUA ZHANG, AND TIEQIAO WEN

Abstract. Similarity analysis of biomolecular networks among different species or within one
species is an efficient approach to understand evolution or disease. The more data from biological
experiment, the larger networks. Sequential computational limitation on single PC or workstation
have to be considered when methods are developed. The Immediate Neighbors-in-first Method is a
method for querying the subnetwork which is most similar to the target in a biomolecular network.
Parallel algorithm for it to treat large-scale networks is developed and the parallel performance
is evaluated in this paper. Moreover, we apply the present method to two groups of tests on real
biological data including protein interaction networks of Fly and Yeast and metabolic networks of
Yeast and E. coli. Several conserved protein interactions and metabolic pathways are found and
some new protein interactions and functions are predicted.
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1. Introduction

Since the birth of molecular biology, a great deal of knowledge on biological
molecules has been accumulated. With further in-depth research and biotechnol-
ogy development, investigators pay more and more attention to interactions between
molecules and networks constructed by them rather than single molecule. Various
biological networks are being constructed, such as protein-protein interaction net-
works (PIN)[1, 2], gene regulatory networks[3, 4] and metabolic networks|[5, 6] etc..
Due to the complexity of life, revealing how genes, proteins and small molecules in-
teract to form functional cellular machinery is a major challenge in systems biology.
Studies on those molecular networks provide new opportunities for understanding
life science at a system-wide level[7, 8, 9, 10]. It is verified that modular structure
exist in biology networks[11, 12, 13]. One of the important problems is how to im-
personally and accurately define a functional module, conserved pathway or signal
path as well as how to find them from a molecular network.

Network alignment and network querying are typical network comparison
methods[14]. Because of evolution of species, we can expect there are some con-
served sub-networks in biomolecular networks of different species. Comparison of
biomolecular network between species is a promising approach to analyzing sig-
naling pathway, looking for conserved region, discovering new biological function
and understanding evolution of species. In recent years, many investigators have
contributed themselves to this field and made great progress[15, 16, 17, 18, 19, 20,
21, 22]. A few querying tools have been developed, but searching a sub-network
from a large network is a problem of local network comparison, involving large scale
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computation and belongs to NP hard cluster. The existing network querying tools
are still at an early stage and far from perfect.

For instance, the online network comparison provided by PathBlast can only
deal with some special cases because of the computational complexity, though
the PathBlast family tools[15, 16, 17, 18] can implement network querying.
MetaPathwayHunter[19] developed by Pinter et al. is a pathway alignment tool
based on the sub-tree homeomorphism model, but the topological structure is lim-
ited to tree-like graphs. Other querying tools, such as QPath[20] that has been
developed for searching linear pathways, also Netmatch [21] has been developed for
one-one matching without gap, and MNAligner[22] has been developed for aligning
two molecular networks. But they both have their own limitations. The bottleneck
is that biomolecular networks are complex networks and querying a sub-network is
computationally demanding.

To meet the demand of computational complexity and deal with large-scale
biomolecular networks, an effective way is to adopt parallel computation. In this
paper we adopt the Immediate Neighbors-in-first Method (INM) for biomolecular
network and propose its parallel computing algorithm, and the performance of par-
allel computing is demonstrated by Parkinson’s Disease related protein interaction
network (PIN). The rest of this paper is organized as follows. Section 2 describes
the INM for direct or undirected networks. Section 3 proposes the parallel comput-
ing algorithm and analyses the computational performance, including the speedup
and scalability. In section 4, PIN of Fly and Yeast and metabolic networks of Yeast
and E. coli are studied, some conserved protein interactions and metabolic path-
ways are found and some protein interactions and functions are predicted. Section
5 summarizes this paper and discusses future work.

2. Biomolecular Network Querying

A biomolecular network can be represented as a graph. PIN can be represented
as an undirected graph, while metabolic network or gene regulatory network can
be represented as a directed graph. Each node in the graph represents a molecule,
and each edge represents the relationship between two molecules.

The biomolecular network querying problem that we will study in this paper,
aims to discovery sub-networks that are identical or most similar to the target
within or cross species in the biological sense. The characteristics of the proposed
method is that it bases on attributes (such as sequences or function) of molecules
themselves and increases the chance that two molecules will be matched if their
neighbors have been matched. We call the algorithm Immediate Neighbors-in-first
Method(INM). The INM for querying sub-networks from graph Gy is divided in
four phases here. Given the target sub-network Gy, in the first phase, the similarity
score between every pair of nodes (a,b) where a € Gy and b € Gy is initialized. In
the second phase, the score is updated by an iterative process. In the third phase,
with immediate neighbors-in-first, the result sub-network G that similar to the G,
is obtained from Gq. Finally, a similarity score between G5 and G; is computed by
summing the similarity of the matched nodes and by the similarity of the edges.

2.1. Initialize the similarity scores of molecules. Let Gy = (V4, Eq) (undi-
rected graph) or Go = (V1, E1,A) (directed graph), where |Vi| = n1, and Gy =
(Va, E3) (undirected graph) or Gy = (Va, Ea, A) (directed graph), where |[Va| = na.
Go and Gy are represented by their adjacency matrix Aj(n1 X n1) and As(ng X na).
Apyxn, is the similarity matrix S, where the entry S(a,b) indicates the similarity
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coefficient between the node a € Gy and node b € G;. The initial value of S(a,b)
is Sim(a,b).

In the case of the metabolic graphs, the similarity between enzymes can be de-
fined as Tohsato[23] or Pawlowski[24] did. According to the similarity between
Enzyme Classification (EC) number of the corresponding reactions, we compute
the initial similarity between enzyme a € Gy and b € (G, by following for-
mulation: Sim(a,b) = 0.25 x r(eq,ep) Where r indicates the number of unin-
terrupted and unchanged EC number. For example, r([1.2.3.4],[1.2.3.5]) = 3,
r([1.2.3.4],[2.1.3.4]) = 0.

If it is the PIN or gene regulatory network, we compute the initial similarity
between molecule a € Gg and b € G; based on their sequences. E-value is computed
by BLAST|[25], converted into number between 0 and 1, and treated as initial value.

Regardless of the manner in which the initial value of S(a,b) is obtained,
Sim(a,b) expresses relationship of the function or sequence of molecule a and b.

2.2. Computation of similar scores between molecules. Biomolecular net-
works are different from each other not only because of differences in their com-
ponents, but also in their network architectures. So their similarity includes two
aspects: one is nodes similarity, which means the similarity of their function or
sequence, and the other is edges similarity, which means the network topological
structure similarity. To take into account both of the two aspects, the topological
information of network and the initial values should be put together.

Similarity of network topological structure can be described as A1-A4 and D1-
D4 proposed by [26][27] for general network querying. Considering incorrectness
and incompleteness of experiment data[28, 29, 30, 31], the INM describes similarity
of network topological structure as terms Al-A4. Term Al(a,b) represents the
average similarity between the in-neighbors of a (nodes from which a has incoming
edges) and the in-neighbors of b, Term A2(a,b) represents the average similarity
between the out-neighbors of a (nodes to which a has outgoing edges) and the
out-neighbors of b, Term A3(a,b) is similar to Al(a,b) and represents the average
similarity between the non-in-neighbors of a (nodes from which a has no incoming
edges) and the non-in-neighbors of b, Term A4(a, b) represents the average similarity
between the non-out-neighbors of a (nodes to which a has no outgoing edges) and
the non-out-neighbors of b, their mathematical definition can be found in [27]. Then
the INM computes the similar coefficient in matrix S as follows:

Initialization

(1) S%a,b) = Sim(a,b)

Iteration
A. for directed graph

(2) S+ (g, ) = A’f(a,b)JrA;“(a,b)JQrAg(a,b)JrAZ(a,b) x Sim(a,b)
B. for undirected graph

(3) S+ (a, b) = w x Sim(a,b)
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in which
Sk (ag, bg)
GQH%Q% deg(a)deg(b)’
if deg(a) # 0 and deg(b) # 0
(4) N (a,b) = g Senby

)
ny Xn
a2€G1,b2€G2 ! 2

if deg(a) = deg(b) =0
0, otherwise

S (ag,bg)
2 (n1 — deg(a)) - (n2 — deg(b))’

a2<+>a,b2<+>b

if deg(a) # n1 and deg(b) # na
(5) Nék)(a, b) = Z S* (ag, by)

ny X ng
a2€G1,b2€G2

if (n1 — deg(a)) = (ng — deg(b)) =0
0, otherwise

Nomorlization

(6) S 5

1512
So the similarity information of network topology is added upon initial value,

and the similar coefficient that involves both function and topology information of
molecules is obtained by iteration.

2.3. Querying by Immediate Neighbors-in-first. After building the similar-
ity matrix S, we are ready to start implementation of network querying. Molecules
in same functional module often have similar function, take part in one molecular
process, or form one signaling pathway etc., which implies that molecules that have
relationship with similar molecules are probably similar to each other. In the pro-
cess of querying, if the similarity of a pair of molecules with similar neighbors is
invariable, the relationship between molecules cannot be captured well.

So based on NBM[32], the INM is immediate neighbors-in-first, which creases
similarity of their neighbors while two nodes have been matched. According to the
similarity matrix S of Gy and Gy, every molecule in Gy which is the most similar to
molecule in G is found, put into queue @ in descending order of similar coefficient.
In each iteration, the most matched molecule pair (a, a’) that had not been matched
in @ is selected, the similar coefficient of molecules that are neighbors of (a,a’) and
had not been matched are increased. As a result, chance that these neighboring
molecules can be matched with each other will be increased in next iteration. The
iteration will not finish until all molecules in A matched. Then the matched nodes
and the edges between them in Gy construct the result sub-network Gy [33].

2.4. Computing graph similarity score. As mentioned above, similarity of two
biomolecular networks is not only the similarity of their molecules, but also that
of the relationship between the molecules. So the similarity score of G4 and G; is
defined as follows [33]:

Let Gs = (‘/SaEs) or Gs = (‘/saEsaAs); Gt = (‘/Q;EQ) or Gt = (‘/27E2;>\2)7
[Vs| = n, vi,v; € Vi, ei; € Es, (v5,v;) = e;5, the matched node in the Gy to
Yu; € Vs is ¢(i), and the similar coefficient between them is Sim(i, ¢(¢)), then the
scoring of G for Gy is:
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(7) Score(Gs,Gy) = Z Score(e;;) + ZScore v;)
,J=1
in which
1, Je(d(i), ¢(5)), and Sim(i, ¢(i )) 0,
Score(e;j) = Sim(j, ¢(5)) >
0, otherwise

Sim(i, ¢(7)), Zk: Score(e;;) >0
j=1

Score(v;) =
0, otherwise

3. Parallel Computing

The INM aims at studying the similarity between biomolecular networks.
As bioinformatics progresses, there are a lot of professional databases, such as
NCBI[34], HPRD[35], MINT[36], which supply curated data of biomolecular net-
work for researchers. It is reported that these data is doubled every 15 months[37].
So far for some species such as Fly, Yeast and Human, magnitude of proteins that
their interactions exist in databases is about 103, the interactions is 10, and these
data is rising continuously. Challenge is emerging with dramatically growth of
data resource. In order to meet requirements of computing large scale biomolecular
network, we designed the parallel strategy of the INM.

3.1. Method. The parallel computing environment is the cluster of workstation
(COW). 14 IBM HS21 blade servers and 2 x3650 servers are the computing and
management nodes, each node is equipped two dual-cores CPU and 4GB memory,
and connected to each other by 1IKM Ethernet and 2.5G infiniBand. The storage
is distributed and memory shared. The operation system of this COW is Linux,
programming environment is Message Passing Interface (MPI), and the language
is C/C++.

As described above, the INM is mainly composed of two parts: one is initial-
ization of the similarity matrix S of Gy and Gj, the other is network querying.
The former is ng x n; iteration of matrix (where number of nodes is ng and n; in
Gy and G respectively), and the computational complexity is O((ng x n¢)?). The
latter is querying the similar nodes and increasing the similarity coefficient of their
neighbors, and the computational complexity is O(ny X ng). So most computational
time is cost for the former part, namely the initialization of similarity matrix.

Therefore, partition of parallel tasks for the INM is to decompose the initializa-
tion process of the similarity matrix S. Let entry s;; = S(a,b) in S indicates the
similarity score between node a € Gy and b € Gy, where i = 0...ng—1,j = 0..ny — 1,
we decompose S by row to partition parallel tasks. The initialization process of S
in parallel algorithm is as follows.

1. Send S, initial value is Spto each processor.

2. According to the number of itself, each processor judges which row in S, will
be computed in the local, the rule is: entry sj; (j =0...n; — 1) in row ¢ is computed
by node which number is (imodk), where k is the total number of processors.

3. Each processor computes similarity between s (j = 0...ny — 1) that need to
process in the local and each entries in S, obtains s“‘l(j =0..ny — 1), and sends
the result to NO.O processor.
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4. No.0 processor adjudges whether S,4; is convergence, if not, then S, is
replaced by S,11, and repeat step 1-4; else stop computing.

3.2. Performance Evaluation. To study Parkinson’s Disease (PD), our biolog-
ical research group obtained some differentially expressed proteins in Fly model.
Based on the PIN dataset in [31] including 7038 proteins and 20720 interactions,
we construct the target sub-network G}, which includes 60 proteins and 100 in-
teractions of Fly. The Gy is PIN of human that is obtained from HPRD[35] and
involves 6340 proteins and 23591 interactions.

By different number of processor, computing time for querying sub-network Gy
in Gy is shown in Fig. 1.
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FiGURE 1. Parallel computing time and number of processor.
With the increase in the number of processors, the computation
time significantly reduced.

As we know, performance of parallel computing is often evaluated by two indi-
cators, one is the speedup, and the other is the scalability. The speedup of this
parallel algorithm is shown in Fig. 2, and the scalability is shown in Fig. 3.
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FIGURE 2. Speedup of parallel computing

As shown in Fig. 2, along with the increasing of number of processors, the
multiple of speed up is increased, which demonstrates that the speedup of this
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FiGURE 3. Efficiency of parallel computing

algorithm is good. Fig. 3 describes that there is no significant changes in the
efficiency of parallel computing when the number of processor is from 4 to 12. It
implies that the additional cost, such as communication, synchronization or idle
time, is not improved markedly while processor grows in number. Fig. 1, Fig. 2
and Fig. 3 are indicate that the algorithm has good scalability.

4. Examples

4.1. Undirected Network. PINs are undirected biomolecular networks. Here
we study similar sub-PINs of Fly and Yeast by the INM. The PINs of Fly and
Yeast are download from DIP [38] and used by Ideker group [31], which include
4389 proteins and 14319 interactions of Yeast and 7038 proteins and 20720 inter-
actions of Fly. 236 target sub-networks G; are complex of Yeast that come from
MIPS [39]. By querying the 236 targets in PIN of Fly, scoring their relevant result
sub-networks and evaluating by T-test, we obtained 34 result sub-networks with
statistical significance (p value < 10722), as shown in table 1.

Protein interaction can be predicted by comparison of similar sub-networks in
different species [16]. If protein D, and Dy, is of Fly, protein Y, and Y}, is of Yeast,
D, and Y, have similar sequence, D;, and Y; have similar sequence, we predict
protein interaction from two aspects:

1) If D, interacts with Dj and Y, interacts with Y3, then the interactions (D,,
Dy) and (Y,, Yp) are conserved between Fly and Yeast, and interactions probably
exist between the proteins that have similar sequence to the two pairs of proteins
in other species. Therefore 19 conserved protein interactions are obtained here, as
shown in table 2.

2) If D, interacts with D;, while Y, does not interact with Y}, it implies that
Y, potentially interacts with Y}, and it is same in the opposite case. So 5 protein
interactions are predicted in table 3. By now these 5 protein interactions have not
been in DIP [38], BioGrid[40], FlyBase [41] or MINT [36].

Functions of protein can be predicted by comparison of similar sub-networks
in different species and Gene Ontology (GO) [16]. In a sub-PIN; if most proteins
have same function, then the remainder proteins in this PIN are likely to have the
same function. Table 4 lists the function prediction of some proteins, here we only
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TABLE 1. Querying results that have statistical significance

Complex NO. p-value Complex NO. p-value
510 1.47e-22 140 8.218849e-23
140.20 8.218849e-23 510.190 3.771932e-26
440 1.576521e-28 510.190.10 | 1.576521e-28
510.190.10.20.10 | 1.576521e-28 500.20 7.171947e-30
500.20.10 7.171947¢-030 500-1 1.355895e-31
500.40.10 1.355895e-31 140.30 3.249916e-34
500-2 3.160313e-35 140.20.20 6.510381e-36
360.10 6.510381e-36 440.30 6.510381e-36
510.190.10.10 6.510381e-36 360.10.10 1.309831e-37
260 2.773203e-40 500.10 5.818282e-42
100 2.716906e-43 177 2.716906e-43
180.30 2.716906e-43 260.30 2.716906e-43
260.30.10 2.716906e-43 360.10.20 2.716906e-43
440.30.10 2.716906e-43 445 2.716906e-43
445.10 2.716906e-43 510.50 2.716906e-43
140.30.20 1.306746e-52 410 3.358057¢-54
410.40 3.358057e-54 410.40.30 3.358057e-54

TABLE 2. conserved protein interactions

No. | Yeast protein Fly protein
1 YIL034C YKLOOTW CG17158 CG10540
2 YKL190W YMLO57W |  CG4209 CG1455
3 YBLO78C YNL223W CG12334 CG4428
4 YLR200W YMLO094W | CGT7770 CG7048
5 YJL031C YPR176C CG12007 CG18627
6 YDL145C YILO76W CGT961 CGY543
7 YLR170C YPRO029C CGhH864 CGI113
8 YFR0O04W YOR261C CG18174 CG3416
9 YMR314W YOR362C CG4904 CG1519
10 YJRO68W YNL290W CG8142 CGbH313
11 YNL290W YOL094C CGH313 CG14999
12 YDLO0O30W YJL203W CG2925 CG16941
13 YDR328C YFLOO9W CG16983 CG15010
14 YDL081C YLR340W CG4087 CG7490
15 YDR211W YOR260W | CG3806 CG8190
16 YALOO3W YKLO81W CG6341 CG11901
17 YKL028W YKRO062W | CG10415 CG1276
18 YKLO058W YOR194C CGH163 CG5930
19 YDR448W YGR252W | CG9638 CG4107

consider the PINs that p value < 10722 and more than 50% proteins in the PIN
have the same function.

4.2. Directed Network. Take metabolic network as an example, we study di-
rected biomolecular network querying between E.coli and Yeast by the INM. Meta-
bolic network is the data that used by Pinter et al. [19], which include 113 metabolic
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TABLE 3. protein interaction prediction

No. protein protein
1 CG9638 CG31973
2 CG3195 CG4087
3 CG8142 CG14999
4 CG9327 CG3416
5 CG4428 CG9277

TABLE 4. GOid of predicted protein function

No. protein GOid predicted
1 0006470, 0005955, 0004723,
CG11154 0007269, 0016192, 0008021
2 CG12334 0004197
3 CG12576 0016272, 0006457, 0051082
4 CG31135 0016272, 0006457, 0051082
5 CGT961 0008270
6 CG8Y42 0008270
7 CG17945 0008270
8 CGY543 0008270
9 0006260, 0003677, 0005663,
CG12470 0005524, 0003689, 0005634
10 CG6196 0006412, 0003735, 0022625, 0005811
11 CG14818 0006412, 0003735, 0022625, 0005811
12 CG10255 0006412, 0003735, 0022625, 0005811
13 0005829, 0003746, 0005853,
CGL401 0006414, 0005811
14 0005829, 0003746, 0005853,
CG10654 0006414, 0005811
15 CGH163 0031177

pathways of E.coli and 151 metabolic pathways of Yeast. There are 49 pathways
are matched well, it demonstrates that lots of conserved pathways exist between
the two species. Here 3 matched pathways are listed in A, B, C of Fig. 4.

In A of Fig. 4, enzyme 1.1.1.8 and 1.1.1.94 are different, but they are both belong
to the 1.1.1.- classification, and their neighbors are identical. It makes us known
that function of this metabolic pathway is conserved during evolution. The p value
is 7.89 x 1072%. In B of Fig.4, the upper one can be considered to be sub functions
of the lower one. The p value is 8.05 x 10722, In C of Fig. 4, though the structure
of the two graph are different, they both include the similar sub-pathway, which
maybe occur because of evolution that organism have to adapt to the changed
environment. The p value is 2.65 x 10712,

5. Conclusions and Future Work

Similarity between biomolecular networks is of great significance in species evo-
lution and diseases investigation. With expansion of biomolecular networks, the
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FIGURE 4. Metabolic pathway of yeast and E.coli. Each node
represents a match: the upper part represents the enzyme of Yeast
and the lower part represents the enzyme of E.coli. Color shades
reflect enzyme matched well, and the thick arrows imply that the
pathway exists both in Yeast and E.coli. (A)Metabolic pathway of
yeast aerobic glycerol catabolism and E.coli glycerol degradationl.
(B) Metabolic pathway of yeast heme biosynth and E.coli proto
siroheme biosynth. (C) Metabolic pathway of yeast phosphatidic
biosynth and E.coli phospholipids biosynthl.

computing scale of conventional sequential algorithms gradually cannot meet re-
quirement of bioinformatics. The INM is developed to achieve biomolecular net-
work querying, hence sub networks that are identical or similar to the target net-
work within or cross species in biological sense can be discovered. It can process
both undirected networks, such as PINs, and directed networks, such as metabolic
networks. The parallel algorithm of the INM is developed to treat with large-scale
networks. Experimental results demonstrate that its speedup and scalability are
promissing.

To keep pace with the development of bioinformatics, some challenging problems
should be considered in the future studies. The iteration process of computing
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similarity matrix involves all molecules in the network; heuristic algorithm should
be taken into account to reduce correlation between molecules during iteration,
and new parallel strategies should be adopted to further improve parallel efficiency.
Moreover, computational results should be labored to mine more information in
biomolecular networks.
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